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ABSTRACT 

CHANGE DETECTION IN RHESUS MONKEYS AND HUMANS 

Deepna Devkar, M.S. 

Supervisory Professor: Anthony Wright, Ph.D. 

  

Visual working memory (VWM) is the temporary retention of visual 

information and a key component of cognitive processing. The classical 

paradigm for studying VWM and its encoding limitations has been change 

detection. Early work focused on how many items could be stored in VWM, 

leading to the popular theory that humans could remember no more than 4±1 

items. More recently, proposals have suggested that VWM is a noisy, continuous 

resource distributed across virtually all items in the visual field, resulting in 

diminished memory quality rather than limited quantity. This debate about the 

nature of VWM has predominantly been studied with humans. Nevertheless, 

nonhuman species could add a great deal to the debate by providing evidence 

related to evolutionary continuity (similarities and/or differences) and model 

systems for investigating the neural basis of VWM. To this end, in the first aim, 

we tested monkeys and humans in virtually identical change detection tasks, 

where the subjects identified which memory item had changed between two 

displays. In addition to the typical manipulation of the number of items to-be-

remembered (2-5 oriented bars), we varied the change magnitude (degree of 

orientation change) – a critical manipulation for discriminating among leading 
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models of VWM encoding limitations. We found that in both species VWM 

performance was best accounted for by a model in which memory items are 

encoded in a noisy manner, where quality of memory is variable and on average 

decreases with increasing set size.  

 The second aim focused on the decision-making component of change 

detection, where observers use noisy sensory information to make a judgment 

about where the change occurred. We tested monkeys and humans in the same 

change detection task (Aim 1), but with ellipses that varied in their height-to-width 

ratio so that their reliability of communicating orientation discrimination could be 

manipulated. The high-reliability ellipses were long and narrow, and the low-

reliability ellipses were short and wide. We compared models that differed with 

respect to how the observers incorporate knowledge of stimulus reliability during 

decision-making. We found that in both species performance was best accounted 

for by a Bayesian model in which observers take into account the uncertainty of 

sensory observations when making perceptual judgments, giving more weight to 

more reliable evidence.  

The comparative results across these related primate species are 

suggestive of evolutionary continuity of basic VWM processing in primates 

generally. These findings provide a strong theoretical foundation for how VWM 

processes work and establish rhesus monkeys as a good animal model system 

for physiological investigations to elucidate the neural substrates of VWM 

processing.  
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In a brief instant, our visual system can be inundated with an 

overwhelming amount of information. The ability to store and process critical 

information efficiently from our rich, dynamic, and highly complex visual world is 

important to the survival of a species. Visual working memory (VWM) is the 

short-term retention and manipulation of visual information over a few seconds 

(Baddeley, 1992). It is a temporary buffer that allows the brain to compare 

information from the immediate past to the present and integrate changes in a 

visual scene (Phillips, 1974; Rensink, 2002).   

A simple example of the importance of VWM in our everyday lives is when 

a car driver needs to make a quick decision about changing lanes:  he/she must 

be able to detect changes in a traffic situation after looking in all directions (rear 

view mirror, side mirrors, front view of the road, etc.) and remember that 

information sufficiently so that it can be integrated to make safe and optimal 

decisions. Similarly, non-human animals constantly use VWM to detect changes 

in their visual scene to effectively navigate, forage, interact with conspecifics, and 

avoid predators.  

Apart from its role in detecting changes in the visual scene, VWM also 

underpins the execution of many basic cognitive processes such as smooth 

visual perception across saccadic eye movements, target search, guidance of 

goal-directed reaching movements, and filtering of relevant information (Brouwer 

& Knill, 2007; Chun & Potter, 1995; Henderson, 2008; Irwin, 1991; Miller, 

Erickson, & Desimone, 1996; Rainer, Asaad, & Miller, 1998). Additionally, VWM 

is interlinked with visual attention, frontal executive control centers, and long-term 
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visual memory (Awh, Vogel, & Oh, 2006; Chun, 2011; Cowan, 2011; Fukuda & 

Vogel, 2011).  Because vision is the dominant sense of many animals, including 

primates, VWM is thus fundamental to the cognition of such species.  

In humans, performance on VWM tasks has been correlated with 

measures of higher cognitive abilities such as problem solving, learning, 

language comprehension, selective/executive attention, and general intelligence 

(Conway, Kane, & Engle, 2003; Cowan, 2001; Cowan et al., 2005; Kiyonaga & 

Egner, 2014). Given its importance in everyday cognitive functioning, it is not 

surprising that deficits in VWM have been associated with several cognitive and 

neuropsychiatric disorders such as spatial neglect, parietal and temporal lobe 

damage, Schizophrenia, Attention Deficit Hyperactivity Disorder, Autism, 

Alzheimer’s disease, Post-traumatic Stress Disorder, and Depression (Alescio-

Lautier et al., 2007; Berryhill & Olson, 2008; Christopher & MacDonald, 2005; 

Ezzyat & Olson, 2008; Farmer et al., 2000; Gold, Wilk, McMahon, Buchanan, & 

Luck, 2003; Kim, Liu, Glizer, Tannock, & Woltering, 2014; Pellicano, Gibson, 

Maybery, Durkin, & Badcock, 2005; Pisella, Berberovic, & Mattingley, 2004; 

Vasterling, Brailey, Constans, & Sutker, 1998). Despite decades of work relating 

VWM to psychiatric diseases and cognition generally, answers to many basic 

processes of VWM remain elusive. With so much left to be understood about the 

impairments associated with failures of VWM, a better understanding of the 

normal functioning of VWM mechanisms might provide a better foundation for 

treating these impairments and evaluating the efficacy of treatment. 
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Behavioral research aimed at understanding VWM has used delayed 

matching-to-sample, memory span, or N-back tasks which in many cases require 

remembering only a single memorandum at a given instant (Fuster & Alexander, 

1971; Goldman-Rakic, 1995; Miller et al., 1996). Although these approaches 

have been  influential in understanding some time limitations of VWM by testing 

only single-item VWM, they are not particularly relevant to natural visual scenes, 

where  multiple items must be processed and integrated in a continuously 

changing stream of information (Funahashi, Bruce, & Goldman-Rakic, 1989; 

Fuster & Alexander, 1971; Goldman-Rakic, 1990; E. K. Miller et al., 1996). The 

basic processes by which multiple items are encoded and processed in visual 

working memory needs to be better understood for assessing many of the 

underlying processes, neural circuitry, and failures of VWM.  

Over the past few decades, the leading task for investigating multiple-item 

VWM and the amount of information that can be maintained simultaneously in 

VWM has been change detection (Rensink, 2002). In a typical change detection 

task, an observer is presented with a sample array of two or more stimuli, which 

is followed by a brief delay (usually more than 80 ms to exceed the duration of 

attentional capture). The number of stimuli in the sample array (or the items that 

are to-be-remembered) will be referred to as set size. After the delay, a test array 

is presented with a changed item and the observer’s task is to identify whether or 

where the change occurred between the two arrays.  

Results from such human change detection studies have shown 

proportion correct to be very high for small set sizes (e.g., 2 - 4 items), but 



5 
 

becomes progressively less accurate with increasing set sizes beyond 3 to 4 

items (Luck & Vogel, 1997; Pashler, 1988; Vogel, Woodman, & Luck, 2001). 

These results have led to the popular theory that VWM is capacity limited, where 

only a fixed number of items can be held in memory. This fixed-capacity theory 

was first suggested by George Miller; however at the time, the ‘magical’ number 

was thought to be 7± 2 items (Miller, 1956). The capacity was then estimated to 

be higher than it is now because of the human ability to “chunk” bits of 

information together to maximize capacity. This number has since been replaced 

with 4 ± 1 items (Cowan, 2001). This fixed-capacity theory has also been called 

the item-limit or slot theory because only a limited number of items are proposed 

to be stored in discrete “slots”. According to this theory, items are encoded in 

memory in an all-or-none fashion such that remembered items are stored with 

high fidelity, and no information is retained about other items. This theory of a 

fixed capacity has dominated much of the thinking about  working memory for 

about half-a-century and has formed the basis of many neural investigations of 

human VWM (Edward Awh, Barton, & Vogel, 2007; Luck & Vogel, 2013; Rouder 

et al., 2008; Todd & Marois, 2004; Vogel & Machizawa, 2004; Xu & Chun, 2006).  

In the last decade, the item-limit model has been challenged in the human 

literature on several grounds. First of all, even though it has been argued that the 

capacity estimate is stable across several short-term memory modalities 

(including visual, verbal, and auditory) and across testing paradigms (Cowan, 

2001, 2005), some studies have reported that this so-called ‘magical number’ 

actually does vary when information load and  stimulus complexity are 



6 
 

manipulated (Alvarez & Cavanagh, 2004; Eng, Chen, & Jiang, 2005; Olson & 

Jiang, 2002). Second, the fixed-capacity theory proposes an absolute view of all-

or-none storage that is highly questionable based on grounds of signal detection 

theory. Signal detection theory has dominated psychophysics for the past half 

century, showing that sensory observations are subject to noise, and detection 

performance is imperfect due to errors in separating the true signal from noise 

(Green & Swets, 1966; Macmillan & Creelman, 2005). Third, the notion that a 

stimulus can be encoded perfectly is at odds with the evidence that  neural 

systems are inherently noisy (e.g., Faisal, Selen, & Wolpert, 2008).  

An alternative theory that reconciles most of the problems associated with 

all-or-none fixed capacity is that memory is a continuous resource that can be 

allocated to many (if not all items) in the field of view (Ma, Husain, & Bays, 2014). 

At the inception of these resource models, Wilken & Ma (2004) proposed that 

stimuli are encoded in memory in a noisy fashion, with the level of noise per item 

increasing with set size. Memory precision (which is inversely related to noise) 

decreases with the number of objects in the visual scene. Thus, according to the 

resource view, performance decreases because of a reduction in the quality of 

memories, rather than a cap or limit on the number of items that can be stored 

(Bays & Husain, 2008; Bays, Catalao, & Husain, 2009; Keshvari, van den Berg, 

& Ma, 2013; van den Berg, Shin, Chou, George, & Ma, 2012; Wilken & Ma, 

2004). Nevertheless, in an attempt to salvage the item-limit theory, variants on 

the item-limit theory have been proposed, including combining fixed capacity with 

resource (e.g., Zhang & Luck, 2008). Recent work in humans has attempted to 
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distinguish among the item-limit model, its more recent variants, and resource 

models (Keshvari et al., 2013; van den Berg, Awh, & Ma, 2014; van den Berg, 

Shin, et al., 2012; van den Berg & Ma, 2014).  

Compared to this rich body of ongoing work in humans, very little is known 

about how visual information is encoded in non-human animals and whether their 

VWM system suffers from the same limitations as humans. Rhesus monkeys are 

an ideal species for such investigations because they have similar visual memory 

processing mechanisms as humans (Wright, 2007; Goldman-Rakic, 1990; 

Goldman-Rakic, 1995; Sands & Wright, 1980). Results from such studies might 

help to disambiguate some of the controversies surrounding visual memory 

processing mechanisms in primates generally. For example, if rhesus monkeys 

(or some other animal species) were to show qualitative similarity to humans in 

underlying mechanisms of VWM then this nonhuman animal could be used as a 

model system for invasive investigations of VWM such as electrophysiological 

recordings, lesions, genetic, and pharmacological manipulations.  

Several  recent studies have begun to investigate these questions in, 

rhesus monkeys, but the results and findings have been mixed (Buschman, 

Siegel, Roy, & Miller, 2011; Elmore et al., 2011; Heyselaar, Johnston, & Paré, 

2011; Lara & Wallis, 2012).. For example, Elmore et al. (2011) noted that 

memory sensitivity (discriminability, d’, used as a measure of precision) 

decreases as the number of memory items increases. Moreover, this decline in 

performance is well fit by a power law function. Similarly, Lara and Wallis (2012) 

reported that precision of memory representations, and subsequently, 
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performance accuracy decreases with increasing set size. These findings are 

consistent with the theory of a continuous-resource model, where memory 

resource can be flexibly allocated to multiple items. Buschman and colleagues 

simultaneously recorded from area V4 and prefrontal cortex in the rhesus 

macaque while the animal was performing a change localization task at varying 

set sizes. They found that at the neural level, information is distributed among 

multiple items in the visual scene in a graded fashion. However, this sharing of 

resource only occurred when items were displayed in the same visual hemifield. 

They concluded that the two hemifields seemed to have discrete, slot-like 

resources with independent capacities. To interpret neural data from such an 

experiment, it is essential to connect them to critical measures describing the 

animal’s behavioral performance. However, which behavioral parameters are 

most relevant depends on which model describes behavior best. For example, if 

a resource model were to fit the behavioral results  better than a fixed-capacity 

model, then the common practice of finding neural correlates of the item capacity 

would make little sense, and instead would point to a resource description of 

neural activity. Thus, it is essential to first determine which model best accounts 

for non-human primate behavior in order to specify the framework for neural 

investigations of the basis of VWM. 

Unfortunately, psychophysical studies with monkeys are sparse and none 

have performed detailed model comparisons such as those in the human 

literature (Keshvari, van den Berg, & Ma, 2012; Keshvari et al., 2013; van den 

Berg, Shin, et al., 2012; but see Lara & Wallis, 2012 for limited model 
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comparisons). Ma and colleagues have suggested that in order to distinguish 

among models of VWM, it is important to measure change detection performance 

across a wide range of change magnitudes, in addition to the typical 

manipulation of set size. This approach has been used effectively with humans to 

distinguish among leading models of VWM in detailed model comparisons 

(Keshvari et al., 2012, 2013; van den Berg, Shin, et al., 2012). However, change 

detection studies with monkeys have typically used displays containing highly 

discriminable stimuli such as clip art images of everyday objects or colored 

shapes (Buschman et al., 2011; Elmore et al., 2011; Heyselaar et al., 2011; Lara 

& Wallis, 2012). Differences among such highly discriminable stimuli are difficult 

to measure (but see Elmore et al, 2011 for multidimensional scaling of stimuli).  

Nevertheless, measuring discriminability of such stimuli would not in itself provide 

a basis for distinguishing among current models of VWM.  To make such 

distinctions, the degree of change discrimination needs to be parametrically 

varied to produce psychometric functions, where accuracy gradually rises from 

near chance performance (50% correct in many cases) to near maximum 

accuracy for very large change discriminations.  To this end, in the first set of 

experiments to be presented, we used oriented line bars and systematically 

varied change magnitude along with set size. By using these manipulations and 

the psychometric functions generated by them, our purpose was to rigorously 

compare five leading models of VWM encoding in parallel with monkeys and 

humans in an identical change detection paradigm. The theory and 
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computational details of each of these models are described in detail in Chapter 

2.  

VWM processing consists of two components: an encoding stage, where 

internal representations of the observed stimulus are generated, and a decision-

making stage, during which information from these noisy measurements is used 

to make a decision. Change detection tasks are designed to test both the 

encoding and decision components of VWM. The observer encodes information 

about the sample stimuli, compares the maintained memory of the sample stimuli 

with the test stimuli at the corresponding locations, makes a judgment about 

which test stimulus has changed, and then makes a response based on this 

decision. Memory of the stimuli are seldom perfectly precise, therefore this less-

than-perfect precision translates (proportionately) to noisy internal 

representations of stimuli. This internal noise varies across stimuli and trials. For 

example, even when the same stimulus is presented repeatedly, the sensory 

responses that it evokes in the form of neural activity can vary largely from trial-

to-trial (Faisal et al., 2008; Tolhurst, Movshon, & Dean, 1983). Thus, an observer 

has to make a judgment about sensory observations in the presence of 

uncertainty caused by both internal and external factors. In making such 

judgments, knowing the nature of memory precision would benefit the observer in 

making better decisions.  

Signal detection theory suggests that observers use Bayesian inference to 

make decisions that will maximize his/her decision performance on a trial, given 

the noisy stimulus encoding. In the change detection task, for example, a 
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Bayesian observer uses this noisy information to compute a probability 

distribution of whether or where the change occurred. Based on this computation, 

the observer chooses the location with the highest probability of change. In 

recent decades, studies have shown that in many perceptual tasks, humans are 

Bayesian observers and take into account the uncertainty associated with the 

noisy encoding of stimuli (Knill & Pouget, 2004; Knill & Richards, 1996). This 

uncertainty about the stimulus and precision itself can vary from trial-to-trial. 

Thus, in order to optimize performance, the observer must interpret uncertain 

sensory information by taking into account memory precision on a trial-by-trial 

basis. This process is referred to as “probabilistic computation’’ (Ma, 2012).  

Psychophysical evidence for these types of probabilistic computations 

have been reported across several paradigms, including change detection, cue 

combination, multisensory integration, object perception, and sensorimotor 

learning (Angelaki, Gu, & DeAngelis, 2009; Ernst & Banks, 2002; Kersten, 

Mamassian, & Yuille, 2004; Keshvari et al., 2012; Knill & Richards, 1996; Körding 

& Wolpert, 2004).  In these paradigms, the encoding precision not only varies 

from trial to trial for the same stimulus but also varies across different stimuli and 

possibly other factors as well (e.g., location). The purpose of explicitly 

manipulating the nature of the stimuli themselves (in addition to their orientation) 

is to vary the reliability of the stimulus, such as the height-to-width aspect ratio of 

an ellipse or the contrast ratio of the stimuli. For example, shorter, wider ellipses 

would provide less reliable information about orientation and consequently less 

information about orientation changes than longer, narrower ellipses.  A 
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Bayesian observer would give more weight to measurements with higher 

reliability and thus higher certainty. It is important to note that Bayesian inference 

does not always translate to optimal inference (Ma, 2012). Bayesian inference is 

based on a subjective computation over sensory observations, which are prone 

to incorrect assumptions. When an observer’s Bayesian estimation is based on 

incorrect assumptions, he/she can be suboptimal. The question, then, is the 

degree to which observers optimally evaluate the reliability of the stimulus in 

making a task-relevant decision.  

Aim 2 of my thesis focuses on the decision-making component of VWM in 

a task related to that of Aim 1. I tested monkeys and humans in the same 

decision task and compared three Bayesian models of decision-making that vary 

with respect to the assumption that the observer makes about memory precision, 

based on their evaluation of stimulus uncertainty. The theoretical explanations of 

these models and their mathematical derivations are described in Chapter 4.  

Qualitative similarities in monkeys and humans for encoding (Aim 1) and 

decision-making (Aim 2) would suggest evolutionary continuity and provide a 

model system for exploring the neurobiology and neural circuitry of VWM.  

Differences could also be important. For example, monkeys might be similar to 

humans in stimulus processing (encoding) but different from humans in decision 

optimality.  Such results might suggest a judgment difference despite processing 

similarity, and perhaps lead to a better understanding of how these fundamental 

cognitive processes are employed and how they might be improved. 
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CHAPTER 2: MODEL FORMALISM 
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As discussed in the previous chapter, VWM processing consists of two 

stages: an encoding stage, where internal representations of visually presented 

stimuli are generated in memory, and a decision stage, where the internal 

representations are used to make a decision. We conducted two experiments of 

change detection that were designed to tap into both of these stages of 

processing. In Aim 1, we tested leading models of VWM encoding. In this task, 

observers briefly viewed a sample array of N randomly oriented bars (henceforth 

called items) and, following a delay, a test array containing two randomly chosen 

items from the sample array, of which one had a different orientation than in the 

sample array. The magnitude of the associated orientation change could take 

one of nine values. Observers reported which item had changed orientation. In 

this chapter I describe how we mathematically formalized and tested the 

encoding and decision stages.  

Encoding 

We tested five leading models of encoding, which differ in the way that 

they conceptualize the precise nature of memory resource and how it is allocated 

across multiple items in the visual scene. The five models are: item-limit, equal 

precision, equal precision with a fixed capacity, variable precision, and variable 

precision with a fixed capacity. The theory and modeling of each of these models 

are described below. N here represents set size, or the number of items in the 

sample array and K represents capacity.  

Item-limit (infinite-precision) model 
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In the item-limit model, observers cannot store more than K items. When 

N≤K, all items are stored. The probability of being correct is then 1−ε, where ε 

accounts for lapses of attention and unintended responses. When N>K, K 

randomly selected items from the sample display are stored. When the test 

display appears, there are then four scenarios to consider: 

• Both test items were stored. This happens with probability . The 

probability of being correct is then 1−ε. 

• One test item was stored, the other was not. This happens with probability 

. The probability of being correct is then 1−ε. 

• Neither test item was stored. This happens with probability 

The observer then has to guess about which item 

changed, and probability correct is 0.5. 

Overall proportion correct is then 
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Note that storing all N items (K=N) yields the same proportion correct, 

namely 1−ε, as storing only N−1 items, since even if one test item was not stored, 

the trial can be answered correctly by using the other test item. As can be seen 

from the equation, in the item-limit model, proportion correct depends on set size 

but not on change magnitude. 

Noise-based (finite-precision) models 

We assume that both orientations in the test display, which we denote by 

φ1 and φ2, are known noiselessly to the observer, because they remain on the 

screen until the subject responds. We model the memories of the orientations in 

the sample display as noisy. Noise can stem from encoding (presentation time 

was limited) or maintenance of memories; we do not distinguish between these 

possibilities. We model the noisy memory of the ith item in the sample display, 

denoted xi (i=1,..,N), as following a Von Mises distribution (circular Gaussian 

distribution because our stimuli exist in circular space) centered at the true 

stimulus, θi, with concentration parameter κi: 

  (1) 

where I0 is the modified Bessel functions of the first kind of order 0. We have 

postulated previously that the role of precision is played by the Fisher information 

in this memory representation, denoted Ji  (Keshvari et al., 2013; van den Berg, 

Shin, et al., 2012). This quantity is related to the concentration parameter through 
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 , 

where I1 is the modified Bessel functions of the first kind of order 1. The 

relationship between precision and concentration parameter is nearly the identity 

and none of our results would qualitatively change if one were to replace Ji by κi. 

In the equal-precision (EP) model, the precision of each item is inversely related 

to set size through a power law: 

 . 

where JN=1 is the precision of a single item. The precision of all items in a display 

is equal. 

In the equal precision with fixed capacity (EPF) model (also known as slots-plus-

resources), no more than K items can be stored. Thus, the number of stored 

items is min(N,K). The precision of a stored item is inversely related to the 

number of stored items through a power law, 

 . 

The precision associated with a non-stored item is zero. When N≤K, the EPF 

model is equal to the EP model.  

In the variable-precision (VP) model, precision exhibits fluctuations across both 

space and time. The precision of each item is drawn independently from a 
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gamma distribution with mean  and scale parameter τ. This mean is inversely 

related to set size through a power law: 

 , 

where  is the mean precision of a single item.  

The variable precision with fixed capacity (VPF) model is equal to the VP model 

when N≤K. The precision of a stored item is drawn independently from a gamma 

distribution with mean  and scale parameter τ. This mean is inversely related to 

the number of stored items through a power law: 

  

where  is the mean precision of a single item. The precision associated with 

a non-stored item is zero.  

The models have 2, 2, 3, 3, and 4 free parameters, respectively. 

Decision-making  

So far, we have described the encoding stage: how stimuli give rise to 

noisy memories. What is also needed in each of the noise-based models is a 

description of how the observer makes the two-alternative localization decision 

based on the noisy memories and the test display. We use an ideal (Bayesian-

optimal) observer to describe this process. Bayesian-optimal inference refers to 
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the decision strategy that maximizes the observer’s accuracy on a given trial 

based on the noisy measurements (Knill & Richards, 1996). The resulting 

decision rule is similar to the ideal-observer models of related N-alternative 

change localization and change detection tasks (Keshvari et al., 2012, 2013; van 

den Berg, Shin, et al., 2012), but differs in the details. 

Step 1: Generative model 

We begin by describing the decision process for the EP and VP models. 

The diagram shows the relevant variables: the location of the change, L (1 or 2), 

the magnitude of the change, Δ, the relevant sample orientations, θ1 and θ2 (all 

other sample items are irrelevant to the decision), their noisy memories, x1, and 

x2, and the two test orientations, φ1 and φ2. 

 

 

Each variable has an associated probability distribution. Since both test locations 

are equally likely to contain the change, we have p(L)=0.5. Change magnitude Δ 

and each of the sample orientations have discrete distributions, but we 

L

θ1, θ2 φ1, φ2

x1, x2

Δ
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approximate them by uniform distributions, , and  . 

The noisy memories x1 and x2 are distributed according to

, where p(xi|θi) is given by Eq. (1). Finally, the 

test orientations are , where 1L is equal to (1,0) when L=1 

and (0,1) when L=2. 

Step 2: Inference 

The observer infers L based on the noisy memories x1 and x2 and the test 

orientations φ1 and φ2. An ideal observer does this by computing the posterior 

distribution over L, p(L|x1,x2,φ1,φ2). Since L is binary, all information about the 

posterior is contained in the log posterior ratio, which can be rewritten using 

Bayes’ rule: 

 

since p(L=1)=p(L=2). We evaluate the likelihood of L=1: 
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Similarly, the likelihood of L=2 is: 

. 

Combining, we find for the log posterior ratio 

 

The ideal observer responds that the change occurred at location 1 when 

the log posterior ratio is positive: 

 (2) 

This decision rule is valid for both the VP and EP models. In the VP 

model, precision per item is a random variable, and therefore κ1 and κ2 will 
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generally not be equal to each other. However, in the case of the EP model, we 

have κ1=κ2 and the inequality simplifies to  

. (3) 

This rule is intuitive: the observer reports that the change occurred at 

location 1 when the angular distance between the noisy memory at location 2 

and the test orientation at location 2 is smaller than the corresponding distance at 

location 1. Then, there is more evidence that the change occurred at location 1. 

One can think of Eq. (2) as a precision-weighted version of Eq. (3). 

The EPF model is very similar to the EP model, but with one difference 

when N>K. Then, a noisy measurement has a probability of not being stored. 

This is equivalent to setting the concentration parameter of the corresponding 

memory to 0. Thus, we can immediately obtain the decision rule from the EPF 

model by taking special cases of Eq. (2): 

 (4) 

 The VPF model is identical to the VP model when N≤K. When N>K, just 

as in the EPF model above, a noisy measurement has a probability of not being 

stored (precision = 0). But, unlike the EPF model, the concentration parameters, 

 and in the VPF model are drawn independently. With these modifications, 
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we can again take the special cases of Eq. (2) and obtain the decision rules for 

the VPF model: 

                   

(5) 

The second and third inequality in the EPF and VPF models may seem 

counterintuitive, since they only involve one memory. However, they make 

sense: even when the observer only has the memory corresponding to one of the 

test items, the discrepancy between the memory and the test is still informative 

about whether or not the change occurred in that one item. 

Expected behavior 

If we had access to the observer’s noisy memories x1 and x2 on each trial, 

the model would predict their response exactly. Since we don’t, the best we can 

do is to compute the probability of being correct for a given stimulus condition. 

Under the assumptions in our generative model, the stimulus condition is 

determined completely by set size N and change magnitude Δ, and the values of 

θ1 and θ2 are irrelevant. Thus, we are interested in the probability that the 

decision rule (Eq. (2) for VP, Eq. (3) for EP, Eq. (4) for EPF, and Eq. (5) for VPF) 

returns the correct location, when the memories x1 and x2 follow their respective 
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distributions given N and Δ. Without loss of generality, we compute proportion 

correct by taking θ1=θ2=0, and L=1, so that φ1=0 and φ2=Δ.  

For the EP model then,

  

where VM(µ,κ) denotes the Von Mises distribution with mean µ and 

concentration parameter κ.  

For the EPF model, proportion correct is computed as a sum across the four 

possibilities for which items were stored (see Eq. (4)): 

 

For the VP model, 

 

 

For the VPF model, proportion correct is computed as a sum across the four 

possibilities for which items were stored (see Eq. (5)): 
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Each of these proportions correct was determined through Monte Carlo 

simulation, i.e. through a large number (10,000) of random draws of x1 and x2 

(and of J1 and J2 as well in the case of the VP and VPF models). For each draw, 

we evaluated the decision rule, and then computed across all draws the 

proportion of correct responses.  

Finally, for each model, we discretized parameter space finely and 

calculated a look-up table in which each entry gave the predicted probability of a 

correct response at one (N,Δ) combination for one parameter combination. Once 

we derived proportion correct for each model, the next step was to fit the models 

to the subjects’ data. The specific methods for this step are described in the next 

chapter.  
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CHAPTER 3: CHANGE DETECTION TESTING IN RHESUS MONKEYS AND 
HUMANS: ENCODING 
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Introduction 
 

As described in Chapter 2, we tested the five leading models of VWM 

encoding n parallel with monkeys and humans: 1) item-limit 2) equal-precision 3) 

equal-precision+fixed capacity 4) variable-precision and 5) variable-

precision+fixed capacity (Figure 3.1).  

Figure 1 

 

Figure 3.1 Schematic representation of resource allocation in five leading models 

of VWM. Each box represents an item to-be-remembered and the height of the 

fill represents the amount of resource allocated to that item. Set size is 2 (left) or 

5 (right), with a hypothetical capacity limit of 3 for the Item-Limit, Equal-Precision 

+ Fixed Capacity, and Variable-Precision + Fixed Capacity models.  

  

N=2 N=5

Equal-Precision

Equal-Precision + Fixed Capacity

Variable-Precision

Item-Limit

Variable-Precision + Fixed Capacity
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According to the item-limit (IL) model, a fixed number of items (the 

capacity) are kept in memory with infinite precision, while remaining items are 

absent from memory (Cowan, 2001; S J Luck & Vogel, 1997; Pashler, 1988). The 

equal-precision (EP) model postulates that all items are remembered with equal 

memory precision, but the precision per item decreases with increasing set size 

(Palmer, 1990; Shaw, 1980). Decreasing precision is associated with increasing 

noise; that is, at a larger set size, each item is remembered in a noisier fashion 

(with lower precision). The equal-precision + fixed capacity (EPF) model 

combines elements of the item-limit and equal-precision models such that only a 

fixed number of items can be remembered, but each item in memory has finite 

precision (Zhang & Luck, 2008). When set size is smaller than the capacity, the 

model allows for precision to depend on set size. The variable-precision (VP) 

model is like the equal-precision model in that all items are remembered with 

finite precision but, by contrast, precision can vary from item to item and trial to 

trial (Fougnie, Suchow, & Alvarez, 2012; Keshvari et al., 2013; van den Berg, 

Shin, et al., 2012). The variable-precision + fixed capacity (VPF) model combines 

elements of the item-limit and variable-precision models such that only a fixed 

number of items can be remembered, but precision varies across items (van den 

Berg et al., 2014). All four finite-precision models (EP, VP, and to a lesser extent, 

EPF and VPF) attribute change-detection errors to the difficulty of separating the 

signal from noise. For these four models, we used Bayesian inference to model 

the decision stage; on each trial, the observer reports the location that has the 
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highest probability of containing the changed item (see Chapter 2. The IL, EP, 

EPF, VP, and VPF models have 2, 2, 3, 3 and 4 free parameters, respectively.  

Three rhesus monkeys were tested for 11,520 trials each and ten humans 

were tested for 1152 trials each on the same visual change detection task 

(Figure 3.2). Subjects viewed a brief sample array of 2, 3, 4, or 5 randomly 

oriented bars (henceforth called items) and, following a delay, a test array 

containing two randomly chosen items from the sample array, of which one had a 

different orientation than in the sample array. The magnitude of the associated 

orientation change could take one of nine values. Subjects identified which item 

had changed orientation by touching it, and received trial-to-trial feedback. 

Figure 2 

 

Figure 3.2 Trial Procedure. Subjects (monkeys and humans) were asked to 

report which item changed in its orientation between sample and test displays.  

Delay

Fixation

Sample 

Test 

300 ms

1000 ms

touch to
respond

touch to 
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Methods 
Monkeys 

Subjects 

Three adult male rhesus monkeys (Macaca mulatta; weights: M1 = 16.5 

kg, M2 = 14.5 kg, M3 = 13.51 kg; ages: M1 = 17.5, M2 = 16.5, and M3 = 12.5 

years) were tested in a change detection experiment for five days each week. 

Food and water were regulated prior to experimental sessions. After completing 

daily testing, animals were returned to their caging room, where they were 

housed individually and received primate chow and water to maintain their 

normal body weight. On days that the monkeys were not tested, they were given 

supplemental fruits and vegetables for enrichment in addition to the daily diet. All 

animal procedures were performed in accordance with the National Institutes of 

Health guidelines, approved by the Institutional Review Board at University of 

Texas Health Science Center at Houston, and supervised by the Institutional 

Animal Care and Use Committee.  

Apparatus 

During experimental sessions, the monkeys were placed unrestrained in a 

custom-made aluminum experimental chamber (47.5 cm wide x 53.1 cm deep x 

66.3 cm high). An infrared touchscreen detected touch responses to a 17" 

computer monitor. The touch responses were guided using a Plexiglas template 

with 6 cutouts (diameter of each circle cutout = 2.75 cm) that were arranged on 

an imaginary circle of 9.0 cm diameter, matching the six possible locations of the 
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stimuli, and a cutout in the center (diameter = 2.5 cm) for touches to a fixation 

point. Using a computer-controlled relay interface (Model P10-12; Metrabyte, 

Taunton, MA), correct responses were rewarded with either a banana pellet or 

cherry Koolaid. The relay interface controlled the illumination of the chamber 

using a 25 W green light bulb located outside of the chamber. The offset of the 

green light illuminating the chamber through a small gap between the 

touchscreen and the monitor marked the start of the next trial. Throughout 

testing, the monkeys were monitored with a video camera outside the chamber 

and focused through a small glass covered port on the right side of the chamber. 

Experimental sessions were designed, operated, and recorded using a custom 

program written in Microsoft Visual Basic 6.0. 

Stimuli 

Stimuli consisted of 1.8 cm x 0.4 cm white bars displayed on a black 

background. Based on the average distance of the monkey from the screen 

(approximately 35 cm), the stimuli subtended a visual angle of 2.9° x 0.65°. 

Stimuli were presented in six possible locations on the screen, arranged on an 

imaginary circle (see Apparatus).  

Trial procedure 

Each trial began with a red fixation point in the center of the screen as 

shown in Figure 2.1. The monkeys had to make a one-touch response to the 

fixation point, which initiated the presentation of a sample display. This display 

contained two or more items (see below), and had a duration that differed 
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between monkeys and between training and testing (see below). After a delay of 

1000 ms, the test display was presented, which always consisted of two items, 

placed at the same locations as two items from the sample display. One test item 

had the same orientation as the corresponding item in the sample display, and 

the other test item had a different orientation. The monkeys’ task was to identify 

which item had changed, and to touch that item. The test display remained on 

the screen until response. Correct responses were rewarded. An intertrial interval 

of 3000 ms followed the choice response, during which a green light illuminated 

the chamber and the screen was dark. 

Training  

Two of the monkeys that participated in this study (M2 and M3) had been 

previously trained in a change detection task using clip art images and colored 

squares (Elmore et al., 2011). For these two monkeys, we intermixed trials of 

oriented bars (new stimuli) with trials of colored squares for initial task 

acquisition. Once the monkeys’ performance on these orientation trials was 

similar to their baseline color trial performance, we began training them with only 

orientation trials. Since M1 had not been previously trained on this task, we 

directly trained him with oriented bars. All three monkeys were first trained at set 

sizes 2 and 3, change magnitudes of 22.5°, 45°, 67.5°, and 90°, and a sample 

viewing time of 1000 ms. Once overall accuracy reached approximately 70%, set 

sizes 4 and 5 and finer change magnitudes (10° to 90° in 10° increments) were 

gradually introduced. Finally, we gradually reduced sample viewing times while 

maintaining approximately 70% accuracy on set size 2 trials. For M1 and M3, this 
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led to a viewing time of 300 ms, and for M2 to a viewing time of 600 ms. Total 

training lasted approximately 8 months.  

Testing 

The sample display was shown for 300 ms for M1 and M3, and 600 ms for 

M2. Set size was 2, 3, 4, or 5. Set sizes were pseudorandomized within each 

192-trial block (48 trials per set size). The orientation of each sample item, θ, was 

drawn independently from a uniform distribution over 18 possible orientations (−

90°, −80°,…, −10°, 10°, 20°,…, 80°). The orientation of the changed item in the 

test display was drawn from the same distribution, except for orientation of the 

other sample items on this trial, so that the changed orientation would not be 

confused with other stimuli that did not change. Testing consisted of 60 sessions, 

with 192-trial blocks per session, for a total of 11,520 trials per monkey.  

Humans 

Subjects 

Ten human subjects (8 females) aged 21-33 years (mean age = 27.1 

years) participated. Each subject visited the lab for two 1.5-hour sessions and 

was compensated $10 per session. Study procedures were approved by the 

University of Texas Health Science Center at Houston Institutional Review 

Board.   

Apparatus and stimuli  
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Subjects were seated in a chair in a small room equipped with a computer. 

At the beginning of the experiment, the distance between the chair and the 

screen was adjusted so that the stimuli and display would subtend approximately 

the same visual angles as for the monkeys. Subjects were asked to maintain 

approximately the same distance. The monitor and touchscreen were identical to 

those used for monkeys. Two 25 W light bulbs were mounted on the wall behind 

the subjects to provide feedback. Stimuli were identical to those used for 

monkeys.  

Trial Procedure 

The trial procedure was identical to that for the monkeys, except for the 

feedback. Feedback consisted of a green room light (75 W) that  illuminated the 

testing room for 1 s and was accompanied by a tone following correct responses, 

or a red light that illuminated testing room for 1 s following incorrect responses.  

Training and Testing 

Each subject completed two testing sessions, each consisting of three 

192-trial blocks, for a total of 1152 trials per subject. Subjects were given a 10-

minute break time in between blocks. Each subject completed 8 practice trials at 

the beginning of the first session.  

Model fitting 

Denoting all parameters of a model by a vector t, the log likelihood of t (the 

parameter log likelihood) is 
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where the product is over trials (from 1 to ntrials) and correctnessi is 1 if the 

subject was correct on the ith trial and 0 if not. We can rewrite this as 

, (1) 

where trials are grouped by set size N, change magnitude Δ, and by whether the 

observer was correct or incorrect, and n (N,Δ,correct) is the number of trials with 

a particular N, Δ, and correctness. 

For each subject data set, we used Eq. (1) and the precomputed look-up table of 

model predictions mentioned above to find the log likelihood of each parameter 

combination. The parameter combination on this grid that maximized the log 

likelihood gives the estimates of the parameters. The model predictions 

corresponding to that parameter combination were then used to compute the 

model fits to the psychometric curves. 

Model comparison 

To compare models, we used four metrics: the Akaike Information Criterion 

(Akaike, 1974), the Akaike Information Corrected Criterion (Burnham, 2002; 

Hurvich & Tsai, 1989), the Bayesian Information Criterion (Schwarz, 1978), and 
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the log marginal likelihood (MacKay, 2003). All four measures penalize models 

for having more free parameters, but the penalties differ.  

Akaike Information Criterion (AIC) 

AIC rewards a model’s good fit but penalizes free parameters. It is defined as 

, 

where  is the maximum of the parameter log likelihood LL(t) and is the 

number of free parameters in the model. In this thesis, the following multiple of 

AIC are reported:  

, 

so that the leading term is the maximum log likelihood. 

Akaike Information Corrected Criterion (AICc) 

AICc is a corrected version of AIC, designed for data sets with few trials:  

, 

where ntrials denotes the number of trials. We report a modified AICc value, 

defined as 

. 

Bayesian Information Criterion (BIC) 
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BIC is similar to AIC in that it is also based on the maximum likelihood, but it has 

a larger penalty term for the number of free parameters.  

. 

We report the modified BIC, 

. 

Log Marginal Likelihood (LML) 

Bayesian model comparison consists of calculating the log likelihood of a model 

m given the data, LL(model) = log p(data|model). Unlike the previous metrics, 

this is not solely based on the maximum likelihood. Instead, it involves integrating 

over the parameters; this is also called marginalizing over the parameters, which 

is why LL(model) is also called the log marginal likelihood: 

  

For the parameter prior p(t|model), we chose a discrete uniform distribution on 

the same grid as used for parameter estimation. We denote the size of the range 

of the jth parameter by Rj, and its grid spacing by δtj. Numerical values are 

specified in Table S1. We also rewrite slightly so as to avoid highly negative 

numbers in the exponent (those cause numerical underflow). Then we find 

max trialsBIC 2 logLL k n= − +

*
max trials

1BIC BIC log
2 2

kLL n≡ − = −

( ) ( )

( ) ( )

( ) ( )

model log data |model

log data |model, |model

log |modelLL

LL p

p p d

e p d

=

=

=

∫

∫
t

t t t

t t



38 
 

 . 

The difference of the log marginal likelihood between two models is also called 

the log Bayes factor of those two models. 

Bootstrapping 

Since we had only three monkey subjects, we used bootstrapping (Efron, 1993) 

for each monkey separately to estimate the standard errors on all summary 

statistics. The original data set for each monkey consisted of 11,520 trials. We 

sampled the same number of trials (a combination of set size, change 

magnitude, and correctness) with replacement from this dataset, to create a new 

dataset. We repeated sampling 100 times to create 100 bootstrapped data sets 

for each monkey.   From each individual bootstrapped data set, we estimated the 

parameters, computed psychometric curves, calculated R2, and computed AIC, 

AICc, BIC, and LML, and computed means for each by averaging across all 

bootstrapped data sets from the same monkey, with standard deviations serving 

as estimates of the standard errors of the means.  

 

Results and Discussion 
 

For both species, proportion correct decreased monotonically as a 

function of set size, with humans being substantially more accurate than 

monkeys (Figure 3.3).  
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Figure 3 

 

Figure 3.3 Proportion correct as a function of set size for humans and three 

monkeys (M1, M2, and M3).  
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A more detailed representation of the data is provided by proportion 

correct as a function of change magnitude for each of the four set sizes (Figure 

3.4). We found large effects of both set size and change magnitude on VWM 

performance in both species (humans: two-way repeated-measures ANOVA; set 

size: F(3,27) = 64.05, p < 0.001, change magnitude: F(8,72) = 80.36, p <  0.001). 

The dependence on set size replicates findings  found in many prior studies, both 

with humans (Keshvari et al., 2013; S J Luck & Vogel, 1997; van den Berg, Shin, 

et al., 2012; Wilken & Ma, 2004) and with monkeys (Buschman et al., 2011; 

Elmore et al., 2011; Heyselaar et al., 2011; Lara & Wallis, 2012). While most 

studies have ignored the variable of change magnitude, a few recent studies 

have systematically measured the effect of change magnitude and found effects 

similar to those shown in Figure 2.4 (Keshvari et al., 2012, 2013; Lara & Wallis, 

2012; van den Berg, Shin, et al., 2012). Here, we exploit the statistical strength 

afforded by the joint dependencies of proportion correct on set size and change 

magnitude to compare models of VWM. 
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Figure 4 

 

Figure 3.4 (A) Proportion correct across set size (N) and change magnitude (º) 

for humans; mean ± s.e.m. across ten subjects (B – D) Same for M1, M2, and 

M3 respectively; mean ± s.e.m. across bootstrapped datasets.  
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In spite of the large performance differences between both species, it is 

possible that the underlying VWM mechanisms are the same. To test this 

possibility, we compared the five leading models of VWM limitations for each 

individual monkey and human. We used maximum-likelihood estimation to fit the 

parameters in each model for each individual human subject as well as for each 

data set sampled using bootstrapping from an individual monkey’s data. We 

found that models could not be strongly distinguished based on set size only 

(Figures 3.5-3.8).  
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Figure 5 

 

Figure 3.5. Proportion correct as a function of set size for humans. Circles and 

error bars: behavior; shaded areas: model fits. IL: Item-Limit, EP: Equal-

Precision, EPF: Equal-Precision + Fixed Capacity, VP: Variable-Precision, VPF: 

Variable-Precision + Fixed Capacity.  
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Figure 6 

 

Figure 3.6. Proportion correct as a function of set size for M1. Circles and error 

bars: behavior; shaded areas: model fits. IL: Item-Limit, EP: Equal-Precision, 

EPF: Equal-Precision + Fixed Capacity, VP: Variable-Precision, VPF: Variable-

Precision + Fixed Capacity.  
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Figure 7 

 

Figure3.7. Proportion correct as a function of set size for M2. Circles and error 

bars: behavior; shaded areas: model fits. IL: Item-Limit, EP: Equal-Precision, 

EPF: Equal-Precision + Fixed Capacity, VP: Variable-Precision, VPF: Variable-

Precision + Fixed Capacity.  
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Figure 8 

 

Figure 3.8. Proportion correct as a function of set size for M3. Circles and error 

bars: behavior; shaded areas: model fits. IL: Item-Limit, EP: Equal-Precision, 

EPF: Equal-Precision + Fixed Capacity, VP: Variable-Precision, VPF: Variable-

Precision + Fixed Capacity.  
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The added manipulation of change magnitude, however, clearly separates 

these model predictions (Figures 3.9-3.12). The data from both species are best 

described by the two variable precision models, one in which there is a fixed 

capacity limit and another without a fixed capacity limit (VPF: R2 values, M1: 

0.902 ± 0.022; M2: 0.887 ± 0.024; M3: 0.896 ± 0.020; Humans: 0.803 ± 0.023; 

VP: M1: 0.90 ± 0.023; M2: 0.885 ± 0.024; M3: 0.891 ± 0.020; Humans: 0.799 ± 

0.023), followed by the equal-precision + fixed-capacity model (R2 values, M1: 

0.755 ± 0.046; M2: 0.854 ± 0.030; M3: 0.817 ± 0.035; Humans: 0.714 ± 0.043), 

the equal-precision model (R2 values, M1: 0.718 ± 0.055; M2: 0.835 ± 0.031; M3: 

0.817 ± 0.035; Humans: 0.619 ± 0.037), and the item-limit model (R2 values, M1: 

0.402 ± 0.041; M2: 0.222 ± 0.038; M3: 0.263 ± 0.049; Humans: 0.228 ± 0.048).  
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Figure 9 

 

Figure 3.9. Proportion correct as a function of set size (N) and change magnitude 

(º) for humans. Circles and error bars: behavior; shaded areas: model fits (mean 

± s.e.m. across subjects). IL: Item-Limit, EP: Equal-Precision, EPF: Equal-

Precision + Fixed Capacity, VP: Variable-Precision, VPF: Variable-Precision + 

Fixed Capacity.  
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Figure 10 

 

Figure 3.10. Proportion correct as a function of set size (N) and change 

magnitude (º) for M1. Circles and error bars: behavior; shaded areas: model fits 

(mean ± s.e.m. across bootstrapped datasets). IL: Item-Limit, EP: Equal-

Precision, EPF: Equal-Precision + Fixed Capacity, VP: Variable-Precision, VPF: 

Variable-Precision + Fixed Capacity.  
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Figure 11 

 

Figure 3.11. Proportion correct as a function of set size (N) and change 

magnitude (º) for M2. Circles and error bars: behavior; shaded areas: model fits 

(mean ± s.e.m. across bootstrapped datasets). IL: Item-Limit, EP: Equal-

Precision, EPF: Equal-Precision + Fixed Capacity, VP: Variable-Precision, VPF: 

Variable-Precision + Fixed Capacity.  
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Figure 12 

 

Figure 3.12. Proportion correct as a function of set size (N) and change 

magnitude (º) for M3. Circles and error bars: behavior; shaded areas: model fits 

(mean ± s.e.m. across bootstrapped datasets). IL: Item-Limit, EP: Equal-

Precision, EPF: Equal-Precision + Fixed Capacity, VP: Variable-Precision, VPF: 

Variable-Precision + Fixed Capacity.  
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Possibly a more principled way to compare models is the Bayesian model 

comparison, a likelihood-based method that automatically corrects for the 

number of free parameters. It is important to note that the variable precision 

model with the fixed capacity limit is not a substantial improvement over the 

variable precision model without an upper bound, when taking into account that 

the former has an extra parameter (in humans, the latter actually performs 

marginally better). We thus prefer the simpler version of the variable precision 

model.  We found that the log marginal likelihood of the variable-precision model 

exceeded that of the equal-precision + fixed capacity, equal-precision, and item-

limit models for both species (Figures 3.13 - 3.16); this result remains unchanged 

when other model comparison metrics are used (see Table 2.1). These findings 

demonstrate that both monkey and human VWM are not limited by a fixed item 

capacity, but instead gradually deteriorate as more items have to be 

remembered. Despite the quantitative differences in memory performance 

between species, the success of the variable-precision model for both species 

demonstrates qualitative similarity and suggests evolutionary continuity of basic 

VWM mechanisms. 
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Figure 13 

 

Figure 3.13. Marginal log likelihoods of the item limit, equal-precision, equal-

precision with fixed capacity, and variable-precision with fixed capacity models 

minus those of the variable-precision model (mean ± s.e.m.), for humans. A 

value of –x means that the data are ex times more probable under the variable-

precision model. 
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Figure 14 

 

Figure 3.14. Marginal log likelihoods of the item limit, equal-precision, equal-

precision with fixed capacity, and variable-precision with fixed capacity models 

minus those of the variable-precision model (mean ± s.e.m.), for M1. A value of –

x means that the data are ex times more probable under the variable-precision 

model. 
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Figure 15 

 

Figure 3.15. Marginal log likelihoods of the item limit, equal-precision, equal-

precision with fixed capacity, and variable-precision with fixed capacity models 

minus those of the variable-precision model (mean ± s.e.m.), for M2. A value of –

x means that the data are ex times more probable under the variable-precision 

model. 
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Figure 16 

 

Figure 3.16. Marginal log likelihoods of the item limit, equal-precision, equal-

precision with fixed capacity, and variable-precision with fixed capacity models 

minus those of the variable-precision model (mean ± s.e.m.), for M3. A value of –

x means that the data are ex times more probable under the variable-precision 

model. 
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Table 1 

Model  AIC*(model)-

AIC*(VP) 

AICc*(model)-

AICc*(VP) 

BIC*(model)-

BIC*(VP) 

 LML(model)-

LML(VP) 

 

  Mean Mean Mean s.e.m. Mean s.e.m 

IL M1 -126 -125 -122 15 -121 15 

 M2 -184 -183 -180 18 -180 18 

 M3 -168 -167 -164 18 -163 18 

 Humans -48.2 -47.2 -45.7 6.8 -47.1 6.6 

EP M1 -48.5 -47.5 -44.8 9.2 -48.9 9.1 

 M2 -13.8 -12.8 -10.1 4.6 -12.7 4.8 

 M3 -31.3 -30.3 -27.6 7.8 -31.3 8.1 

 Humans -13.9 -12.9 -11.4 1.5 -14.4 1.7 

EPF M1 -40.2 -40.2 -40.2 7.9 -39.0 7.8 

 M2 -9.3 -9.3 -9.3 4.4 -6.7 4.6 

 M3 -24.0 -24.0 -24.0 6.7 -22.6 6.9 

 Humans -7.6 -7.6 -7.6 1.5 -6.2 1.6 

VPF M1 -0.50 -1.3 -4.18 0.83 1.5 1.5 

 M2 -0.31 -2.2 -4.0 0.91 1.2 0.81 

 M3 0.44 -0.56 -3.2 1.5 2.0 1.1 

 Humans -0.48 -1.46 -3.00 0.32 -0.57 0.31 

 

Table 3.1. Model comparisons of each model (IL: item-limit, EP: equal-precision, 

EPF:  equal-precision + fixed capacity, and VPF: variable-precision + fixed 

capacity) showing mean differences minus that of the variable-precision model. 

The standard error of the mean is the same across AIC, AICc, and BIC because 

these measures have the same leading term, , and only differ in their 

penalty terms. 

 

maxLL
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Given that the fundamental nature of VWM limitations is consistent 

between these two species, the quantitative performance differences may simply 

be due to differences in their parameter values within the same model (Tables 

3.2 and 3.3). Mean precision, , was much lower in monkeys than in humans, 

which might be related to attentional differences between the two species. The 

exponent, α, in the relationship between mean precision and set size was similar 

across monkeys and somewhat higher in humans.  
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                                    Humans 
 
Table 2 

  Tested range  
Model Parameter Min Step Max Mean s.e.m. 

IL  1 1 5 1.50 0.17 

  0 0.003 3 0.079 0.011 

EP  0 0.13 25 17.7 2.3 

  0 0.015 3 2.07 0.12 

EPF  1 1 5 2.20 0.36 

  0 0.13 25 15.3 2.5 

  0 0.015 3 1.43 0.25 

VP  0 1.01 100 65.8 8.7 

  0.1 1.11 100 29.3 8.5 

  0 0.03 3 1.82 0.13 

VPF  0 2.02 200 83.0 17.9 

  0.1 2.13 200 25.3 5.4 

  0 0.061 3 1.97 0.18 

  1 1 5 4.10 0.28 

 

Table 3.2. Parameter ranges and parameter estimates for humans. Means and 

standard errors were computed across subjects. 

 

 

 

 

 

 

 

K
ε

1J

α

K

1J

α

1J

τ

α

1J

τ

α

K



60 
 

Monkeys 

Table 3 

  Tested range M1 M2 M3 
Model Parameter Min Step Max Mean s.e.m. Mean s.e.m. Mean s.e.m. 

IL  1 1 5 1 0 1 0 1 0 

  0 0.003 3 0.248 0.0055 0.269 0.0062 0.249 0.0065 

EP  0 0.13 25 3.51 0.78 2.41 0.68 2.71 0.69 

  0 0.015 3 2.35 0.21 1.98 0.27 1.98 0.26 

EPF  1 1 5 1 0 1.16 0.79 1.12 0.62 

  0 0.13 25 1.23 0.085 1.12 0.16 1.35 0.31 

  0 0.015 3 1.35 0.60 1.57 0.74 1.89 0.83 

VP  0 0.30 30 11.0 1.8 3.82 0.87 7.0 1.8 

  0.1 0.40 30 24.9 4.4 6.2 2.6 15.7 5.9 

  0 0.03 3 1.47 0.14 1.32 0.14 1.31 0.13 

VPF  0 0.30 30 10.2 2.7 3.7 1.4 7.7 2.7 

  0.1 0.40 30 23.8 5.1 5.6 2.8 13.9 5.2 

  0 0.03 3 1.55 0.49 1.47 0.48 1.5 0.41 

  1 1 5 3.6 1.8 3.4 1.5 3.2 1.1 

 

Table 3.3. Parameter ranges and parameter estimates for monkeys. Means and 

standard errors were computed across bootstrapped datasets. 
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Our findings provide cross-species evidence that visual information is 

encoded in working memory in a noisy manner, with precision per item varying 

across items and trials, and on average decreasing with increasing set size. This 

is consistent with mounting evidence in humans (Keshvari et al., 2012, 2013; van 

den Berg et al., 2014; van den Berg, Shin, et al., 2012). Variability in precision 

could result from a variety of factors including, eye movements, interference from 

other stimuli, and fluctuations in attention. At the neural level, precision may 

correspond to the gain of a neural population pattern encoding the stimulus (Ma 

et al., 2014; van den Berg, Shin, et al., 2012). Neurophysiological evidence 

supports this notion, showing that firing rate decreases as set size increases 

(Churchland, Kiani, & Shadlen, 2008). A plausible mechanistic implementation of 

the variable-precision model was recently proposed (Bays, 2014). Thus, at 

present, behavioral, physiological, and computational data seem to 

unambiguously point toward resource models as the best account of VWM 

limitations, and our results establish rhesus monkeys as a suitable model system 

for further elucidating the neural substrates of these limitations.  
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CHAPTER 4: CHANGE DETECTION TESTING IN RHESUS MONKEYS AND 
HUMANS: DECISION-MAKING 
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Introduction 
 

One of the key functions of the brain is to process and interpret sensory 

information to make perceptual decisions. Sensory information available to the 

subject is necessarily limited. For example, the sensory measurements might be 

of low quality, due to both internal (noisy encoding) and external (e.g., poor 

contrast, distant or fast-moving objects, etc.) factors. Even when sensory quality 

is high, the same sensory stimulus is subject to multiple interpretations. Given 

this partially informative sensory information, our inference is probabilistic; that is, 

it comes with some degree of uncertainty. The brain must evaluate the uncertain 

sensory information effectively, make judgments relative to goals, and respond to 

the environment accordingly.  

As described in previous chapters, the precision with which sensory 

information is represented internally can vary across items and trials, and in 

many perceptual tasks, the degree of precision not only has a role in  the 

encoding stage, but also plays a role in the observer’s decision-making stage. 

The change detection task taps into both of these stages of VWM processing. 

The observer encodes and maintains information about the sample stimuli, 

compares its memory of the sample stimuli with the test stimuli at the 

corresponding locations, makes a judgment about which test stimulus has 

changed, and then makes a response. In the change-detection task, the 

precision of the task-relevant stimulus can be manipulated by changing the 

reliability of the stimulus; for example, the height to width ratio of an ellipse in an 

orientation change detection task, such that a low reliability ellipse would be 
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shorter and wider, making the orientation change more difficult to discriminate. 

The question, then, is how the observer factors in unreliable stimuli along with 

reliable stimuli in making judgments and decisions about which stimulus changed 

in orientation.  

A Bayesian-optimal observer would learn to use the noisy internal 

representations of the stimuli and essentially compute a probability distribution 

indicating where the change occurred, giving more weight to reliable evidence 

(e.g., longer and thinner ellipses) than to unreliable evidence (e.g., shorter, fatter 

ellipses). Based on the computed relative weight of evidence, the observer 

chooses the location with the higher probability of change. Since the uncertainty 

can change on an item-by-item and trial-by-trial basis, this requires trial-to-trial 

computations of probability distributions over stimulus features. These types of 

computations are referred to as probabilistic computations (see Ma, 2012 for a 

review).  

In a related visual change-detection paradigm, human subjects were 

asked to identify whether or not an orientation change occurred in the test display 

containing four ellipses (Keshvari, Van den Berg, and Ma, 2012). Reliability of the 

stimuli was manipulated (as previously described) and the results were evaluated 

by fitting an optimal-observer model against suboptimal models to assess how 

the observers took into account the reliability of the stimuli and the variability in 

precision. The decision models that were tested differed according to the 

assumption that the observer makes about encoding precision. 
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Performance was best described by an optimal model, in which the 

observer had complete knowledge about precision for every item on every trial. 

In the decision stage, the observer uses this information about encoding 

precision and about the reliability stimulus differences on an item-by-item and 

trial-by-trial basis to make an optimal decision about change. Two suboptimal 

models were also tested in which the observer makes an incorrect assumption 

about precision by either 1) assuming that precision is completely determined by 

the reliability of the stimulus and ignored other sources of variability or 2) 

assuming a single value of precision throughout the experiment, and ignored all 

sources of variability including manipulations of reliability of the stimulus.  

  Although monkeys and humans were shown to have similar VWM 

encoding mechanisms (Chapter 3), it is nevertheless an open question whether 

monkeys would employ similar or different decision processes in this change 

detection task.  To this end, two rhesus monkeys and ten humans were tested to 

determine similarities or differences in decision processes in nearly identical 

change detection tasks.  

Subjects briefly viewed a sample array of three randomly oriented ellipses 

(fixed set size) and, following a delay, a test array containing two randomly 

chosen ellipses from the sample array, of which one had a different orientation 

than in the sample array (Figure 4.1). The reliability of the stimulus was 

manipulated by changing the height-to-width ratio of the ellipse (see Methods). 

Thus, on each trial, each item could either be a high-reliability ellipse (longer, 

thinner) or a low-reliability (shorter, wider) ellipse. Furthermore, in a manner 
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similar to Aim 1, the magnitude of the orientation change could take one of nine 

values and subjects identified which item had changed orientation by touching it, 

and received trial-to-trial feedback. 

Figure 17 

 

Figure 4.1. Task Procedure. Schematic representation showing a sample trial. 

Set size was always 3. Stimulus reliability was controlled by ellipse elongation.  
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The decision models tested by Keshvari et al. (2012) were adapted to fit 

the somewhat different change-detection task used here where subjects were 

presented with only two test stimuli each trial and had to report which changed. 

The three decision models considered here differed only in the decision rule. For 

the encoding stage, precision was modeled based on the variable-precision 

model (Chapter 3) since evidence from the first experiment suggested variable 

precision encoding by both species (Figure 4.2). The decision rules are based on 

the assumption that the observer makes about encoding precision.  

Figure 18 

 

Figure 4.2. Flow diagram of the encoding and decision processes. Models here 

are identical in the encoding stage, but differ in the assumption that the observer 

makes about precision.  
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The theory and derivations of these models are described in the Methods 

section. In the names of the models below, the “variable precision” before the 

hyphen indicates encoding stage and the latter indicates the decision stage, 

which is based on the observer’s assumption about precision.  

1) Variable Precision-Variable Precision (Optimal): Encoding precision is variable 

and the observer has complete knowledge of an item’s precision on each trial. 

The observer, thus, computes precision on a trial-by-trial and item-by-item basis, 

taking into account the reliability of the stimulus and giving more weight to more 

reliable stimuli. 

2) Variable Precision-Equal Precision (Suboptimal): Encoding precision is 

variable; however, the observer assumes that precision is completely determined 

by the reliability of the stimulus, and ignores any other variability in encoding 

precision across items and trials. The observer, thus, assumes only two values of 

precision: high (when the stimulus has high reliability) and low (when the stimulus 

has low reliability).  

3) Variable Precision-Single Precision (Suboptimal): Encoding precision is 

variable; however, the observer assumes that precision stays constant 

throughout the experiment; thus, ignoring both variations due to reliability of the 

stimuli and other variability. The observer, then, applies a single value of 

precision across all items and trials.  
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Methods 
Monkeys 

Subjects 

Two adult male rhesus monkeys, M1 and M2 from Chapter 3 participated 

in this experiment (M3 could not participate because of health issues) five days 

each week. All animal procedures were performed in accordance with the 

National Institutes of Health guidelines, approved by the Institutional Review 

Board at University of Texas Health Science Center at Houston, and supervised 

by the Institutional Animal Care and Use Committee.  

Apparatus 

 Monkeys were tested with the same apparatus as the one described in 

Chapter 3.  

Stimuli 

Stimuli consisted of white ellipses displayed on a black background. Two 

types of ellipses were used: “high-reliability” (long and narrow) and “low-

reliability” (short and wide). In this experiment, ellipses were chosen instead of 

oriented bars (ones used in Chapter 3) because ellipses contain less corner 

information and orientation changes are more difficult to discriminate, particularly 

as the ellipses get shorter and wider. The size of the high-reliability stimuli was 

1.8 x 0.4 cm and that of the low-reliability stimuli was 0.93 x 0.77 cm. The area of 

both types of stimuli remained the same; only the height-to-width ratio was 

changed. Based on the average distance of the monkey from the screen 
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(approximately 35 cm), the high-reliability and low-reliability stimuli subtended a 

visual angle of 2.9° x 0.65 ° and 1.5° x 1.3° respectively. Stimuli were presented 

in six possible locations on the screen, arranged on an imaginary circle (same as 

Chapter 3).  

Trial procedure 

Each trial began with a red fixation point in the center of the screen as 

shown in Figure 4.1. The monkeys had to make a one-touch response to the 

fixation point, which initiated the presentation of a sample display. In this 

experiment, the set size remained fixed, so the sample display always contained 

three items, and had a presentation time of 300 ms.  After a delay of 1000 ms, 

the test display was presented, which always consisted of two items, placed at 

the same locations as two randomly chosen items from the sample display. One 

test item had the same orientation as the corresponding item in the sample 

display, and the other test item had a different orientation. It is important to note 

that the test items always had the same stimulus type (reliability) as the sample 

items. For example, a high-reliability sample item would always be a high-

reliability if it was chosen as a test item; the only change occurred in the 

orientation of the changed item. The monkeys’ task was to identify which item 

had changed, and to touch that item. The test display remained on the screen 

until response. Correct responses were rewarded. An intertrial interval of 3000 

ms followed the choice response, during which a green light illuminated the 

chamber and the screen was dark. There were four trial conditions: 1) Both test 

items were of high reliability; therefore the changed item was of high reliability 2) 
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The changed item was of high reliability and the unchanged item was of low 

reliability 3) The changed item was low-reliability and the unchanged item was 

high-reliability 4) Both test items were low-reliability, so the changed item was 

low-reliability.  

Training  

Both monkeys that participated in this study (M1 and M2) had been 

previously trained in a change detection task using oriented bars. For preliminary 

training of these two monkeys, we intermixed trials of oriented bars (old stimuli) 

with trials of oriented ellipses for initial task acquisition, which required 6 sessions 

per monkey. Once the monkeys’ performance on ellipse trials was similar to 

baseline performance with oriented bars, we began training them with only 

ellipses trials. Both monkeys were first trained with only high-reliability ellipses at 

a set size of 2 and a sample viewing time of 300 ms. Once overall accuracy 

reached approximately 70%, the monkeys were tested with a set size of 3. 

Finally, we gradually intermixed the low-reliability trials with set size 3 and once 

the monkeys’ performance on these trials reached 60%, they were ready for 

testing. For M1 and M2, this training required 28 and 32 sessions respectively.  

Testing 

Set size was fixed at 3. On every trial, each item had an equal probability 

of being a high- or low-reliability ellipse. The locations of the ellipses were 

chosen randomly from 6 possibilities. The orientation of each sample item, θ, 

was drawn independently from a uniform distribution over 18 possible 
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orientations (−90°, −80°,…, −10°, 10°, 20°,…, 80°). The orientation of the 

changed item in the test display was drawn from the same uniform distribution. 

Testing consisted of 60 sessions, with 192-trial blocks per session, for a total of 

11,520 trials per monkey.  

Humans 

Subjects 

Ten human subjects (8 females) aged 21-33 years (mean age = 27.1 

years) participated. Each subject visited the lab for two 1.5-hour sessions and 

was compensated $10 per session. Study procedures were approved by the 

University of Texas Health Science Center at Houston Institutional Review 

Board.   

Apparatus and Stimuli  

The apparatus for this experiment remained the same as the one used to 

test subjects in Experiment 1 (Chapter 3). Subjects were seated in a chair in a 

small room equipped with a computer. At the beginning of the experiment, the 

distance between the chair and the screen was adjusted so that the stimuli and 

display would subtend approximately the same visual angles as for the monkeys. 

Subjects were asked to maintain approximately the same distance. The monitor 

and touchscreen were identical to those used for monkeys.  

Trial Procedure 
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The trial procedure was identical to that for the monkeys, except for the 

feedback. Feedback consisted of a green light that was illuminated for 1 s and 

accompanied by a tone for correct responses, or a red light illuminated for 1 s for 

incorrect responses (same feedback as the one in Chapter 3 experiment).  

Training and Testing 

Each subject completed two testing sessions, each consisting of three 

192-trial blocks, for a total of 1152 trials per subject. Subjects were given a 10-

minute break time in between blocks. Each subject completed 8 practice trials at 

the beginning of the first session (same from Chapter 3 experiment).  

 

Theory and Modeling 
 

Three models of decision-making were considered in this change-

detection task. On a given trial, the observer’s decision process consists of an 

encoding stage and a decision stage. Here, the encoding stage in all three 

models remained identical and was modeled according to the variable precision 

model from Aim 1 (see below).  

Encoding stage: Variable Precision 

 For this task, we model encoding precision as a random variable. The 

theory and derivations of this encoding stage remain largely the same as one 

described in Chapter 2. First, as in Experiment 1, the orientation space was 

mapped to the interval [0,2π) by multiplying all orientations and orientation 
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change magnitudes by 2 before analysis for simplification. This method was 

expressed in all equations shown below; however, for the figures, the change 

magnitudes were mapped back to actual orientation space. Second, it was 

assumed that both orientations in the test display, denoted by φ1 and φ2, are 

known noiselessly to the observer, because they remain on the screen until the 

observer responds. Third, the relationship between encoding precision 

(expressed as Fisher information denoted J) and the concentration parameter 

(denoted ) remains the same as in Chapter 2:  

 ,                                   (6) 

where I1 is the modified Bessel functions of the first kind of order 1. 

 As previously described for the variable precision model, encoding 

precision is a random variable that follows, independently for each item and each 

trial, a gamma distribution with mean and scale parameter , denoted

with mean and variance .  

A key difference in this experiment is that mean differs between the 

stimulus type: encoding precision is drawn from two distributions depending upon 

stimulus type: For a high-reliability item, mean precision is . For a low-

reliability item, mean precision is . The noisy measurements x1 and x2 are 

drawn from a doubly stochastic process, where first, precisions J1 and J2 are 

each drawn from a gamma distribution with mean  or  and scale 
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parameterτ; then, the noisy measurements are drawn from the Von Mises 

distribution (Eqn 2) with concentration parameters κ1 and κ2, which are 

determined by J1 and J2 respectively (Eqn 1).  

  (2) 

where I0 is the modified Bessel functions of the first kind of order 0 and the noisy 

memory of the ith item in the sample display, denoted xi.  

Generative model and Inference 

 The generative model and inference in this experiment remains the same 

as described in Chapter 2. The resulting decision rule is identical to the one used 

to model the decision process in Experiment 1. For derivations of the log 

posterior ratio, refer to Chapter 2.  

The ideal observer responds that the change occurred at location 1 when 

the log posterior ratio is positive: 

 

This decision rule is valid for all decision models considered here. They simply 

differ in how the concentration parameters, and weigh the reliability of the 

stimulus. These differences are described below.  
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In the Variable Precision-Variable Precision (optimal) model, the observer 

has complete knowledge of precision on every item and trial so uses the actual 

values of κ1 and κ2. The decision rule is then to localize the change at location 1 

if 

 

In the Variable Precision-Equal Precision (suboptimal) model, the 

observer assumes equal precision for every item, on every trial. The assumed 

value is  for a high-reliability item, and  for a low-reliability item. These 

correspond to concentration parameters κhigh and κlow. The decision rule, then, is 

the same as above but with κ1 and κ2 each taking on one of only two possible 

values, κhigh and κlow, depending on the reliability of that item.  

In the Variable Precision-Single Precision (suboptimal) model, the 

observer completely disregards the reliability of the stimulus and pretends κ1=κ2, 

so they do not use a weighted precision value. Then, the decision rule simplifies 

to: 

 

Lapse rate: For each of these models, we fitted a lapse rate parameter 

which accounts for errors due to lapses in attention, blinking or eye movements 

during stimulus presentation, or errors in making a response.  
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Each of these models have 4 parameters: , , , and lapse.  

Model predictions 

The probability of correct predicted by each model was computed for each 

stimulus condition, given the model parameters. Based on the assumptions in the 

generative model, in this task, the stimulus condition is determined by change 

magnitude Δ, and four condition types, C, described above: 1) Both high-

reliability 2) Mix stimuli; high-reliability change 3) Mix stimuli; low-reliability 

change and 4) Both low-reliability. Thus, the probability that the decision rules for 

each of the models returns the correct location is computed when the memories 

x1 and x2 follow their respective distributions given C and Δ.  

Each of these proportions correct was determined through Monte Carlo 

simulation, i.e. through a large number (10,000) of random draws of x1 and x2 

and of J1 and J2. For each draw, the decision rule was evaluated, and then 

computed across all draws of the proportion of correct responses.  

Finally, for each model, the parameter space was discretized finely (see 

Table 1) and a look-up table was calculated in which each entry gave the 

predicted probability of a correct response at one trial combination (C, Δ) for one 

parameter combination. 

Model fitting 

For a given model, the model parameters are denoted by a vector t. The 

log likelihood of t (the parameter log likelihood) is 

highJ lowJ τ
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where the product is over trials (from 1 to ntrials) and correctnessi is 1 if the 

subject was correct on the ith trial and 0 if not. We can rewrite this as 

, (4) 

where trials are grouped by trial condition, C, change magnitude Δ, and by 

whether the observer was correct or incorrect, and n (C,Δ,correct) is the number 

of trials with a particular C, Δ, and correctness. 

The same method of maximum likelihood estimation (as one described in 

Chapter 3) was used to compute parameter estimates. Thus, for each subject’s 

data set Eq. (4) and the precomputed look-up table of model predictions 

mentioned above was used to find the log likelihood of each parameter 

combination. The parameter combination on this grid that maximized the log 

likelihood gives the estimates of the parameters. The model predictions 

corresponding to that parameter combination were then used to compute the 

model fits to the psychometric curves. 

Model comparison 

To compare models, the same four metrics from Chapter 3 were used: the 

Akaike Information Criterion (Akaike, 1974), the Akaike Information Corrected 

( ) ( ) ( )
trials

1

log data | model, log correctness | , ,
=

= = Δ∏
n

i i i
i

LL p p Ct t t

( ) ( )

( ) ( )
( ) ( )( )

trials

1
log correctness | , ,

, ,correct log correct | , ,

, , incorrect log 1 correct | , ,

=

Δ

= Δ

Δ ⋅ Δ +⎡ ⎤
= ⎢ ⎥

+ Δ ⋅ − Δ⎢ ⎥⎣ ⎦

∑

∑∑

n

i i i
i

C

LL p C

n C p C

n C p C

t t

t

t



79 
 

Criterion (Burnham, 2002; Hurvich & Tsai, 1989), the Bayesian Information 

Criterion (Schwarz, 1978), and the log marginal likelihood (MacKay, 2003).  

Bootstrapping 

The original data set for each of the two monkeys consisted of 11,520 

trials. The same bootstrapping method (described in Chapter 2) was used to 

create 100 bootstrapped data sets for each monkey. A random sample 11,520 

trials (a combination of condition, change magnitude, and correctness) was 

selected with replacement from the original dataset to create each bootstrapped 

data set. The parameter estimates, psychometric curves, R2 values, and model 

comparisons (AIC, AICc, BIC, and LML) were generated for each bootstrapped 

data set separately. The means for each of these were computed by averaging 

across all bootstrapped data sets from the same monkey, and the standard 

deviations served as estimates of the standard errors of the means.  

 

Results and Discussion 
 

 Humans and monkeys both showed the highest proportion correct at 

condition 1, where both stimuli were high-reliability ellipses and the lowest 

proportion correct at condition 4, where both stimuli were low-reliability ellipses 

(Figure 4.3). Proportion correct was intermediate in the mix conditions (where 

one test item was high- and one was low-reliability) compared with conditions 

1and 4. Interestingly, in the mix conditions, when the changed item was of high-
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reliability, accuracy was higher than when the changed item was of low-reliability 

reflecting their training to look for and chose the stimulus that changed.  

Figure 19 

 

Figure 4.3. Proportion correct across four trial conditions for humans and two 

monkeys.  
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A more detailed representation of the data is provided by proportion 

correct as a function of change magnitude for each of the four conditions (Figure 

4.4). We found large effects of both condition (high vs. low reliability) and change 

magnitude on performance for both species (humans: two-way repeated-

measures ANOVA; condition: F(3,27) = 231.35, p < 0.001, change magnitude: 

F(8,72) = 64.91, p <  0.001; interaction: F(24,216) = 15.73, p < 0.001). 

Interestingly, the effect of change magnitude dissipates in both species in 

conditions 3 and 4, when the changed item is a low-reliability stimulus. This 

finding of change-magnitude dissipation in condition 3 suggests that both species 

took into account the uncertainty of the low-reliable stimulus and gave more 

weight to the high-reliable stimulus. And to the extent that the subjects could 

judge that the high-reliability item did not change, they were able to infer that the 

changed item then must be the low-reliability item. Thus, the change magnitude 

of the low-reliability item was less important since the decision could be based on 

a ‘default’ response when the subject was confident that the high-reliability item 

did not change. Overall, humans performed better than monkeys at all 

conditions; however, both species showed strikingly similar qualitative patterns of 

performance in all conditions.   
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Figure 20 

 

Figure 4.4. (A) Proportion correct as a function change magnitude across four 

trial conditions for humans (mean ± s.e.m. across ten subjects) (B) Same for M1 

(mean ± s.e.m. across bootstrapped datasets) (C) Same for M2 (mean ± s.e.m. 

across bootstrapped datasets) 
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In spite of the large quantitative differences between the performances of 

both species, it is possible that the underlying mechanisms of perceptual 

decision-making are similar. To test this possibility, three decision models were 

compared for each individual monkey and human. The parameter estimates in 

each model were derived by using maximum-likelihood estimation and were fitted 

for each human subject as well as for each data set sampled using bootstrapping 

from an individual monkey’s data.  

Performance of both species was best described by the variable precision-

equal precision suboptimal model (Humans: R2 = 0.875 ± 0.018, M1: R2 = 0.845 

± 0.025, M2: R2 = 0.901 ± 0.021), followed by the variable precision-variable 

precision optimal model (Humans: R2 = 0.814 ± 0.025, M1: R2 = 0.782 ± 0.031, 

M2: R2 = 0.641 ± 0.033), and the variable precision-single precision suboptimal 

model (Humans: R2 = 0.431 ± 0.039, M1: R2 = 0.507 ± 0.047, M2: R2 = 0.391 ± 

0.038; Figures 4.5 - 4.7). These conclusions were similar when likelihood-based 

model comparison metrics were used (Table 4.1).  
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Figure 21 

 

Figure 4.5. Proportion correct across trial conditions and change magnitudes (º) 

for humans. Circles and error bars: behavior; shaded areas: model fits (mean ± 

s.e.m. across subjects). VP-SP: Variable Precision-Single Precision, VP-EP: 

Variable Precision-Equal Precision, and VP-VP: Variable Precision-Variable 

Precision.  
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Figure 22 

 

Figure 4.6. Proportion correct across trial conditions and change magnitudes (º) 

for M1. Circles and error bars: behavior; shaded areas: model fits (mean ± s.e.m. 

across bootstrapped datasets). VP-SP: Variable Precision-Single Precision, VP-

EP: Variable Precision-Equal Precision, and VP-VP: Variable Precision-Variable 

Precision.  
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Figure 23 

 

Figure 4.7. Proportion correct across trial conditions and change magnitudes (º) 

for M2. Circles and error bars: behavior; shaded areas: model fits (mean ± s.e.m. 

across bootstrapped datasets). VP-SP: Variable Precision-Single Precision, VP-

EP: Variable Precision-Equal Precision, and VP-VP: Variable Precision-Variable 

Precision.  
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Table 4 

Model  AIC*/AICc*/BIC*(model)-
AIC*/AICc*/BIC* (VP-EP) 

LML(model)-
LML(VP-EP) 

  Mean s.e.m. Mean s.e.m 

VP-SP M1 -107 14 -107 14 

 M2 -199 23 -204 24 

 Humans -57.5 5.9 -39 4.5 

VP-VP M1 -16 11 -19 11 

 M2 -102 17 -107 17 

 Humans -12.1 2.4 -2.4 1.4 

 

Table 4.1. Model comparisons of two models (VP-VP: variable precision-variable 

precision and VP-SP: variable precision-variable precision) showing mean 

differences minus that of the winning model, variable precision-equal precision 

model. The VP-EP model outperforms the other models according to all metrics. 

The means and standard error of the means are the same across AIC, AICc, and 

BIC because these measures have the same leading term, , and an equal 

number of parameters. 

 

 

 

 

maxLL
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These findings demonstrate that monkeys and humans are Bayesian-

observers that take into account the uncertainty of sensory observations when 

making perceptual judgments, giving more weight to more certain evidence (see 

parameter estimates in Table 4.2). Even though encoding precision varies on an 

item-by-item and trial-by-trial basis, in this task, humans and monkeys make a 

wrong assumption about precision, and assume two values of precision that are 

completely determined by the reliability of the stimulus. They ignore other 

variability in encoding precision that may arise due to noise from both external 

and internal factors to the brain. 
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Table 5 

     Monkeys Humans 

  Tested Range M1 M2  

Model Parameter Min Step Max Mean ± s.e.m. Mean ± s.e.m. Mean ± s.e.m. 

VP-VP highJ  0 1.01 100 7.0 ± 1.9 6.8 ± 1.2 30.3 ± 3.6 

 lowJ  0 1.01 100 1.08 ± 0.26 1.07 ± 0.24 1.72 ± 0.34 

 τ 0.1 1.1 100 61 ± 18 63 ± 17 45 ± 11 

 lapse 0 0.002 0.2 0.041 ± 0.038 0.044 ± 0.034 0.046 ± 0.018 

VP-EP highJ  0 1.01 100 6.34 ± 0.92 9.2 ± 1.9 38.4 ± 4.4 

 lowJ  0 1.01 100 1.09 ± 0.28 1.46 ± 0.54 2.32 ± 0.45 

 τ 0.1 1.1 100 22.7 ± 4.7 41 ± 10 42.9 ± 7.8 

 lapse 0 0.002 0.2 0.210 ± 0.002 0.19 ± 0.026 0.031 ± 0.013 

VP-SP highJ  0 1.01 100 9.8 ± 3.7 7.85 ± 0.94 29.0  ± 3.1 

 lowJ  0 1.01 100 4.1 ± 1.8 4.0 ± 0.47 5.35 ± 0.77 

 τ 0.1 1.1 100 52  ± 25 70 ± 12 22.4 ± 5.4 

 lapse 0 0.002 0.2 0.17 ± 0.061 0.011 ± 0.031 0.088 ± 0.018 

 

Table 4.2. Parameter ranges and parameter estimates. For monkeys, means and 

standard errors were computed across 100 bootstrapped data sets. For humans, 

means and standard errors were computed across subjects. 
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These findings differ from those in a related change-detection task 

(Keshvari et al., 2012). Notably, the change-detection task used in the two 

studies differed in some important ways that changes the complexity of the task. 

First, the sample display in this study contained three items as opposed to four 

items in the Keshvari et al. (2012) study. Second, in the Keshvari study, subjects 

were asked to report whether or not a change occurred in two consecutive 

displays that were identical, except for one changed item in 50% of the trials. In 

the current study, there was always a change in the orientation of one of the 

items between displays and the task was to identify where the change occurred. 

Subjects in this study had a 50% chance of responding correctly, since only two 

items were shown during test. Third, in the Keshvari study, both the sample and 

test stimuli were presented for 100 ms each, whereas in this study, sample 

viewing time was 300 ms and the test stimuli remained on the screen until 

response. The latter two differences change the dependence of the task 

parameters and thus the generative model, which changes the inference and 

decision rules in many ways. Lastly, in the Keshvari (2012) task, subjects did not 

receive trial-to-trial feedback, whereas in this study, both humans (green light + 

tone) and monkeys (food reward) received trial-to-trial feedback. It has been 

suggested that when subjects receive trial-to-trial feedback to their responses, 

both humans and nonhuman animals could learn the values of the task variables, 

and use them strategically rather than relying on the internal estimates of 

uncertainty in the sensory measurements of those variables (Ma, 2012). For 

example, in our task, after receiving feedback, subjects (both humans and 
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monkeys) may have learned that they could maximize their performance by 

strategically allocating attention only to the high-reliability stimuli. It remains to be 

understood which of these differences could have contributed to the differences 

in the findings.   

Change detection has primarily been used to understand the encoding 

limitations of VWM processing. This is the first account of testing monkeys in a 

change-detection task to understand whether monkeys use Bayesian-inference 

in perceptual decision-making. Our findings provide cross-species evidence that 

while humans and monkeys may be Bayesian observers, they may not always 

use probabilistic computations for optimal decision-making. In this regard, 

primates in general might be suboptimal, depending on the complexity of the 

task. It remains to be understood at which point optimality breaks down, even 

though probabilistic computations continue to be performed at the neural level.  
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CHAPTER 5: GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 
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General Conclusions 

The experiments presented in this thesis combined tools of 

psychophysics, learning, memory and computational modeling to compare for the 

first time encoding and decision processes of rhesus monkeys to those of 

humans in nearly identical visual working memory (VWM) tasks. In Aim 1 

(Chapter 2), predictions of five leading models of VWM encoding limitations were 

tested in monkeys and humans using a change-detection task, where set size 

and change magnitude were systematically manipulated.  In Aim 2 (Chapter 3), 

the change-detection task from Chapter 2 was modified to investigate whether 

monkeys and humans integrate uncertain sensory information from multiple 

items and whether they do so in an optimal fashion. Although change detection 

has been studied extensively in humans, several of these models had not been 

applied to the specific parameters of this task, and no previous study had 

compared all of these models in parallel with monkeys and humans.   

 I have shown here that in both species, resource models in general, 

provided a much better fit to the data than the classic item-limit (“slot”) model. 

Resource models account for noisy encoding of stimuli, as opposed to an “all-or-

none” storage. In accord with this theory, the errors in performance are then due 

to a problem in separating the signal from noise, rather than due to a fixed limit in 

the number of items that can be remembered. This notion fits well within the 

framework of signal detection theory and has been shown in many Bayesian 

models of perception, including change detection and its close variants (Elmore 

et al., 2011; Keshvari et al., 2012, 2013; Lara & Wallis, 2012; van den Berg, Shin, 
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et al., 2012; Wilken & Ma, 2004). A question that we do not formally address here 

is the source(s) of noise. Errors in recollecting stimuli from memory could be due 

to several factors that arise at different stages of memory processing; for 

example, noise during initial encoding of stimulus when sensory information is 

processed (particularly due to short viewing times), inability to maintain these 

memory representations when they are no longer accessible for view (delay 

period), difficulty retrieving memory of a sample stimulus, or deciding which 

response to make.  We do not formally distinguish among these possibilities 

here; however, future studies might consider investigating these sources of 

noise, whether they can be manipulated or minimized, and how the nature of 

memory will be affected.  

Specific to the class of resource models, results from both species support 

the notion of variability in memory precision, which allows for flexible allocation of 

precision for the encoding of most (if not all) items in the visual scene, as 

opposed to being equally distributed and/or with a fixed cap (Palmer, 1990; 

Zhang & Luck, 2008).  We found that precision per item varies across stimuli and 

trials, and on average decreases with increasing set size. These findings are 

consistent with mounting evidence in humans across multiple tasks – change 

detection, change localization (color and orientation change), and delayed-

estimation (color and orientation) -- providing further support for the variable 

precision point of view (Fougnie et al., 2012; Keshvari et al., 2012, 2013; van den 

Berg et al., 2014; van den Berg, Shin, et al., 2012). While the origins of the 

variability in precision are not completely understood, several factors could be at 



95 
 

play; for example, eye movements, fluctuations in attention over items and trials, 

differences in precision due to stimulus effects such as cardinal orientations and 

configural grouping, and variability in memory decay rates across stimuli (Brady 

& Tenenbaum, 2013; Fougnie et al., 2012; Girshick, Landy, & Simoncelli, 2011; 

Lara & Wallis, 2012; Nienborg & Cumming, 2009).  

We considered two variants of the variable-precision model in Aim 1. One 

version was a variable-precision model with no fixed item limit, and the other was 

a hybrid model with an item limit. It is important to address the key parameters of 

these winning models. The parameter  that characterizes mean precision when 

set size is 1, differed greatly within individual subjects and between species. 

Differences in the values of mean precision could be attributed to several factors, 

including the stimulus-related effects, level of motivation, fatigue, or distraction. A 

second parameter, , captures the effect of set size on mean precision, and  

describes the power with which precision per item decreases as set size 

increases. If set size had no effect on memory precision, then the value of  

would be 0 (indeed, when set size was fixed in Aim 2 and thus had no effect on 

precision, we eliminated this parameter). We found that in both species and in 

both variants of the variable precision model, the  values were more negative 

than -1, indicating steep decreases in mean precision as set size increases.   

In the variable-precision model with the fixed item limit, we found that K 

(typically taken to be the item limit number) was equal to about 3.5 in monkeys 

and 4.1 in humans. In initial reading, these values of K might be reminiscent of 

1J

α

α

α
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the famous magical number 4 ± 1 items. However, it is important to realize that 

there is nothing magical about the values of this parameter. These values seem 

to vary largely across memory tasks, set sizes, as well as stimulus complexity, 

and are greatly dependent on which model is being considered; in fact, across 

monkeys and humans these values have been shown to vary anywhere from 

less than 1 to more than 6 items (Alvarez & Cavanagh, 2004; Buschman et al., 

2011; Elmore et al., 2011; Eng et al., 2005; Heyselaar et al., 2011; Keshvari et 

al., 2013; Lara & Wallis, 2012; van den Berg et al., 2014; van den Berg, Shin, et 

al., 2012; Zhang & Luck, 2008). It is being suggested that if one were to adhere 

to the idea of a magical number for capacity, then the power value of is a 

better replacement for K, as it provides a better characterization of the interplay 

between precision and set size to describe VWM limitations (Ma, 2014; under 

review). We do not interpret the value of K as the maximum limit on how many 

items can be remembered. Instead, we believe that it represents the number of 

items that an observer might process on a given trial (which could be a subset of 

total items presented), depending on their level of motivation, attention, or any 

strategic employments. Of course, memory resource (and precision) is limited, 

and as the amount of information presented increases, this resource may not in 

practice be infinitely divisible. In such cases, it is possible that observers flexibly 

allocate memory resource to a subset of visual stimuli (which could be an item or 

a combination of stimulus features as when viewing natural scenes).  

In Aim 2, we found that monkeys and humans are Bayesian-observers 

and take into account the uncertainty of sensory observations when making 

α
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perceptual judgments, giving more weight to more certain evidence. However, 

while memory precision varies on an item-by-item and trial-by-trial basis, in this 

task, humans and monkeys seemed to make an incorrect assumption about 

precision, and assume two values of precision that are completely determined by 

the reliability of the stimulus. They ignore any additional variability in precision 

that may arise due to noise from both external and internal factors to the brain. 

This begs the question, how can observers make a wrong (or right) assumption 

about precision? In probabilistic models, it is suggested that neural populations 

encode with probability distributions over stimulus values on a trial-by-trial and 

item-by-item basis (rather than using point estimates). This “implicit” knowledge 

of the internal representations of stimuli can then be used in downstream 

computation for perceptual judgment and decision-making in optimal or 

suboptimal ways. Since these computations have been shown to differ based on 

the complexity of the tasks in both humans and monkeys, it is important to 

investigate which factors determine whether optimal or suboptimal decision rules 

are used (Gu, Angelaki, & DeAngelis, 2008; Keshvari et al., 2012; Ma & Jazayeri, 

2014; van den Berg, Vogel, Josic, & Ma, 2012; Yang & Shadlen, 2007).  

We think that the most remarkable findings in these series of experiments 

are the qualitative similarities that these two primate species share in both 

encoding and decision-making. In both aims, we found that despite the 

quantitative performance differences between the two species, the same winning 

models account for the species’ behavior. The qualitative similarities between the 

two species shown here may have been expected because rhesus monkeys 
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have been shown to share many aspects of memory processes with humans.  

For example, monkeys show the same primary and recency effects in serial 

position functions and show striking similarities with humans providing evidence 

for a continuous-resource model (Elmore et al., 2011; Roberts & Kraemer, 1981; 

Sands & Wright, 1980; Wright, Santiago, Sands, Kendrick, & Cook, 1985).  

Nevertheless, it is one thing to expect similarities from our experiments, but it is 

another thing altogether to show them and show just how extensive they are.   

These earlier findings along with ours are suggestive of evolutionary 

continuity and common underlying mechanisms of VWM processes in primates 

generally. Indeed, rhesus monkeys and humans have similar neural architecture, 

especially the visual cortex and areas of the prefrontal cortex that are relevant to 

VWM processing (Funahashi et al., 1989; Orban, Van Essen, & Vanduffel, 2004; 

Petrides, 1996). Our results, thus, establish rhesus monkeys as a suitable model 

system for further elucidating the neural substrates of VWM limitations in 

encoding and decision-making. The combination of psychophysics, 

computational modeling, and neurophysiological methods offers great potential to 

unravel how VWM works and why it fails.  

 

Future directions 

It is encouraged that future studies using change detection not only 

consider the typical manipulation of set size, but also vary change magnitude. As 

demonstrated here, the addition of the change-magnitude manipulation unveils 
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profound differences in model predictions. In the same vein, future studies aimed 

at understanding the mechanisms of VWM should provide direct comparisons 

across many if not all leading models (than considering just one or two), because 

only then can goodness-of-fit be properly compared across models and 

arguments of specific processing. Indeed, a recent study that conducted a 

factorial comparison of 32 models that reanalyzed data from several studies of 

VWM limitations found that the conclusions of these data could greatly differ from 

previously-made claims, when such an approach is used (van den Berg et al., 

2014). 

The studies described here (and a growing body of research in humans) 

have pointed to the variability in precision as the key factor in characterizing 

VWM limitations, although the neural basis of variability in precision is only 

beginning to be explored (Emrich, Riggall, Larocque, & Postle, 2013; Ester, 

Anderson, Serences, & Awh, 2013). In general, the neural substrates of VWM 

limitations have previously been based on the framework of fixed-capacity 

models. But now with a growing body of evidence in humans for the variable-

precision model, coupled with identical findings in monkeys from this study, there 

is convergent evidence for the fundamental underlying processes of VWM that 

will serve as a standard for guiding and interpreting neurobiological investigations 

of the complex maze of neural circuits responsible for memory.   
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