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SUMMARY

Multisensory plasticity enables us to dynamically
adapt sensory cues to one another and to the envi-
ronment.Without external feedback, ‘‘unsupervised’’
multisensory calibration reduces cue conflict in a
manner largely independent of cue reliability. But
environmental feedback regarding cue accuracy
(‘‘supervised’’) also affects calibration. Here we
measured the combined influence of cue accuracy
and cue reliability on supervised multisensory cali-
bration, using discrepant visual and vestibular
motion stimuli. When the less reliable cue was inac-
curate, it alone got calibrated. However, when the
more reliable cue was inaccurate, cues were yoked
and calibrated together in the same direction. Strik-
ingly, the less reliable cue shifted away from external
feedback, becoming less accurate. A computational
model in which supervised and unsupervised cali-
bration work in parallel, where the former only relies
on the multisensory percept, but the latter can cali-
brate cues individually, accounts for the observed
behavior. In combination, they could ultimately
achieve the optimal solution of both external accu-
racy and internal consistency.

INTRODUCTION

Multisensory plasticity enables us to dynamically adapt sensory

cues to one another and to the environment, facilitating percep-

tual and behavioral calibration. Although most pronounced dur-

ing development, plasticity is now believed to be a normal

capacity of the nervous system throughout our lifespan (Pasc-

ual-Leone et al., 2005). Intriguingly, sensory cortices can func-

tionally change to process other modalities (Merabet et al.,

2005), with multisensory regions demonstrating the highest

degree of plasticity (Fine, 2008). Sensory substitution devices

and neuroprostheses aim to harness this intrinsic and ongoing

capability of the nervous system in order to restore lost function,

but fall short—likely due to our limited understanding of multi-

sensory plasticity (Bubic et al., 2010).

The vestibular system is particularly well suited to study multi-

sensory plasticity. Loss of vestibular function is initially debili-
tating, but the deficits rapidly diminish (Smith and Curthoys,

1989). A natural form of sensory substitution is thought to

mediate the impressive behavioral recovery (Sadeghi et al.,

2012). But multisensory plasticity is not limited to lesion or

pathology: perturbation of environmental dynamics, e.g., in

space or at sea, results in multisensory adaptation, with afteref-

fects and reverse adaptation evident upon returning to land

(Black et al., 1995). Also, multisensory adaptation is believed to

ameliorate motion sickness by reducing sensory conflict (Shu-

pak and Gordon, 2006). But, despite its importance in normal

and abnormal brain function, the rules governing multisensory

plasticity are still a mystery.

Proficiency of multisensory perception can be assessed by

two different properties: reliability and accuracy. Reliability

(also known as precision) means that repeated exposure to the

same stimulus consistently yields the same percept. It is

measured by the inverse variance of the percept. Accuracy

means that the perception truly represents the real-world phys-

ical property. It is measured by the bias of the percept in relation

to the actual stimulus. An ideal sensor is both reliable (minimum

variance) and accurate (unbiased). Similarly, reliable behavior

represents a consistent response, while accuracy measures its

‘‘correctness’’ in the external world.

The prevalent theory of multisensory integration accounts for

improved reliability (Yuille and Bülthoff, 1996; Ernst and Banks,

2002; van Beers et al., 2002; Knill and Pouget, 2004; Alais and

Burr, 2004; Fetsch et al., 2009; Butler et al., 2010), but not for ac-

curacy. Maintaining accuracy is a complex task. It requires

simultaneous calibration ofmultimodal cues and their related be-

haviors to a changing environment (moving target), which is itself

estimated from those cues. Recent studies suggest that the

mechanisms underlying multisensory calibration are different

from those of multisensory integration (Smeets et al., 2006; Ernst

and Di Luca, 2011; Burr et al., 2011; Block and Bastian, 2011;

Zaidel et al., 2011), but a comprehensive and quantitative under-

standing is missing.

We recently showed that multisensory calibration without

external feedback (‘‘unsupervised’’ calibration) acts to reduce

or eliminate discrepancies between the cues and is largely inde-

pendent of cue reliability (Zaidel et al., 2011). This result is in line

with the proposal that cue accuracy is more relevant than cue

reliability for multisensory calibration (Gori et al., 2010; Ernst

and Di Luca, 2011). This is especially important during develop-

ment (Gori et al., 2012). But external feedback from the environ-

ment also affects multisensory calibration (Adams et al., 2010),

especially when explicit and likely attributable to perception
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(e.g., wearing new glasses, a hearing aid, working with gloves, or

due to sensory loss or perturbation). This may result in percep-

tual changes, behavioral changes, or both. Hence incorporating

the effects of external feedback (‘‘supervised’’ calibration) is

required in order to fully understand multisensory calibration.

Furthermore, since an interaction between reliability and accu-

racy is likely, manipulation of both in the same experiment is

essential for a proper understanding of multisensory calibration.

Previous studies (including our own) have drawn conclusions

from manipulating only one of these features or assumed that

cue reliability also reflects cue accuracy (e.g., testing calibration

of a less reliable sense to vision). Some studies did dissociate

accuracy from reliability (Knudsen and Knudsen, 1989a; Adams

et al., 2001; van Beers et al., 2002) but did not measure reliability.

Moreover, the results of these studies are conflicting; for

example, Adams et al. found recalibration of the presumably

more reliable cue, whereas Knudsen and Knudsen did not. Other

studies have controlled reliability, but not accuracy (Burge et al.,

2010; Zaidel et al., 2011). To the best of our knowledge, the pre-

sent study is the first to systematically control both accuracy and

reliability for multiple senses.

RESULTS

Multisensory Calibration Hypotheses
The ability to assess the accuracy of individual sensory cues

would be beneficial for multisensory calibration, since it would

allow targeted calibration of only the inaccurate cue. However,

the extent to which the brain can accomplish this is unknown.

Whether or not accuracy can be assessed for individual cues

leads to very different calibration hypotheses. Specifically, if

the mechanism of supervised calibration can correctly assess

each individual cue’s accuracy, then one would expect targeted

calibration of the inaccurate cue alone, regardless of reliability

(optimal strategy). Alternatively, if supervised calibration can

only assess accuracy for the combined cue, then individual

cue accuracy would be unknown. Namely, if the combined cue

is sensed to be inaccurate, there would be ambiguity regarding

which single cue is responsible. In this case, cue reliability may

come into play; this could result in suboptimal calibration. These

ideas are implemented in the multisensory calibration models

that we consider here.

In Figure 1, we simulated two cues of heading direction, e.g.,

visual and vestibular, with a constant discrepancy between

them (leftmost column; discrepancy exaggerated for illustration).

In accordancewith the actual experiments,we simulatedonecue

as beingmore reliable, and the other as less reliable (red and blue

shades, respectively). In the experiment, monkeys reported

whether their headingdirectionwas to the right or leftwith respect

to straight ahead. Psychometric functions for heading discrimi-

nation (second column) represent the simulated proportion of

rightward heading choices as a function of true heading; they

take the formof cumulative Gaussian distributions. For each psy-

chometric curve (cue-specific), the monkey’s representation of

straight ahead is estimated from the point of subjective equality

(PSE, equal rightward and leftward choice probability). The third

column shows the distributions over the perceived heading for

each cue, in response to a particular heading stimulus. Assuming
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a flat Bayesian prior and that PSE represents perceptual straight

ahead, the bias in the perceived heading is equal in magnitude,

but opposite in sign, to the corresponding PSE: when perception

is biased to the left, the subject will make excessive leftward

choices, and therefore the PSE will be shifted to the right.

During unsupervised calibration (Figure 1A), no external feed-

back is provided. In this case, cue accuracy is unknown and

there is no externally defined ‘‘straight ahead’’ (no depiction of

accurate perception on the axes). However, discrepant sensory

cues still undergo mutual calibration toward one another (Burge

et al., 2010; Zaidel et al., 2011). The simulated cue calibration is

depicted by the horizontal arrows, which mark the shifts from

precalibration (darker colored curves) to postcalibration (lighter

colored curves).

Unsupervised calibration presumably occurs in order to

achieve ‘‘internal consistency,’’ that is, agreement between the

different sensors (Burge et al., 2010). Previous work has shown

that the ratio by which the individual cues are calibrated is not

dependent on their reliabilities but rather may reflect the under-

lying internal estimate of cue accuracy (Zaidel et al., 2011)

such as a ‘‘prior’’ regarding which cue is more likely to go out

of calibration (Ernst and Di Luca, 2011). Hence, in this simulation,

we arbitrarily used equal cue calibration rates, and thus the cues

shifted by equal amounts. We portray here complete calibration,

which leads to internal consistency (equality of postcalibration

PSEs). More generally, calibration could be partial, for example,

due to the limited duration of an experiment. In this case, the

cues will have shifted toward one another but not yet converged.

Partial calibration is represented by the points along the curves in

the rightmost column.

During supervised calibration, a ‘‘straight ahead’’ stimulus

(zero heading) is defined for each experimental condition (left-

most schemas, Figures 1B and 1C). External feedback for right-

ward or leftward heading choices is then given according to this

reference. Since there is a cue discrepancy, only one cue is actu-

ally congruent with feedback and therefore accurate; the other

cue is offset to the side, and thus feedback indicates that it is

biased (inaccurate). In response, the cues’ psychometric curves

can shift to attain better accuracy. These shifts may incorporate

both perceptual changes and choice-related changes (dis-

cussed further below). Thus, ‘‘calibration’’ refers here, generally,

to the observed PSE shifts. We consider twomodels: in Model 1,

supervised calibration has access to each individual cue’s noisy

measurement (Figure 1B), while in Model 2, supervised calibra-

tion relies only on the combined (multisensory) cue (Figure 1C).

If supervisedcalibration has full access to each individual cue’s

measurement (Model 1) then only the inaccurate cue should be

calibrated, irrespective of cue reliability. The already accurate

cue should on average not shift at all; it can have small fluctua-

tions due to sensory noise, but these will be limited by the low

rate of calibration, and feedback will subsequently bring it back.

Consequently, in the simulation, we see that when the less reli-

able cue is initially inaccurate (top row, Figure 1B), it alone shifts

to become accurate (dark blue to light blue curves). The already

accurate cue does not shift (light and dark red curves, superim-

posed). Also, when the more reliable cue is inaccurate and the

less reliable cue, accurate (bottom row, Figure 1B), once again,

only the inaccurate cue shifts. Cue reliability is ignored.



Figure 1. Simulations of Multisensory Calibration

Two cues for heading direction were generated with a constant heading discrepancy between them (stimulus schematics, leftmost column; discrepancy

exaggerated for illustration). One cue was made more reliable (red), and the other less reliable (blue). For each cue, psychometric plots (cumulative Gaussian

functions; second column) were simulated to represent the ratio of rightward choices as a function of heading direction. Each psychometric plot’s intersection

with the horizontal dashed line marks its point of subjective equality (PSE, estimate of straight ahead). Corresponding probability distributions (third column)

represent the perceived heading for each cue in response to a particular heading stimulus, with biases equal in magnitude, but opposite in sign, to the PSEs.

Vertical dotted lines represent accurate perception, according to external feedback. Dark colors represent precalibration (baseline) behavior, lighter colors,

postcalibration, and the connecting horizontal arrows mark the cues’ shifts. The time course of calibration is presented in the rightmost column, with the vertical

arrows demonstrating complete calibration (corresponding to the postcalibration psychometric and probability distribution plots).

(A) During unsupervised calibration, the cues shift toward one another, achieving internal consistency.

(B and C) For supervised calibration: (B) according to Model 1, only the inaccurate cue is calibrated, both when it is less reliable (top, blue) and more reliable

(bottom, red). (C) According to Model 2, only the combined cue is used and thus both cues are calibrated according the combined cue (green).
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By contrast, if only the combined cue is used by supervised

calibration (Model 2), then individual cue accuracy cannot be as-

sessed. Hence a viable calibration strategy would be to calibrate

each individual cue in accordance with the combined cue’s inac-

curacy (dark green, Figure 1C). This would result in cue yoking,

i.e., calibration of both cues together in the same direction until

the postcalibration combined cue (light green) is accurate.

Notably, in this case, the initially accurate cue will shift away
from the external feedback, becoming inaccurate postcalibra-

tion (red and blue in the top and bottom rows of Figure 1C,

respectively).

The strategy of Model 2 is dependent on relative reliabilities of

the cues since the combined cue itself depends on these reliabil-

ities. Namely, the combined cue bias, and resulting shifts, will be

smaller when the more reliable cue is accurate (and the less reli-

able, inaccurate; top row, Figure 1C) than when the less reliable
Neuron 80, 1–14, December 18, 2013 ª2013 Elsevier Inc. 3



Neuron

Supervised Multisensory Calibration

Please cite this article in press as: Zaidel et al., Supervised Calibration Relies on the Multisensory Percept, Neuron (2013), http://dx.doi.org/10.1016/
j.neuron.2013.09.026
cue is accurate (and the more reliable, inaccurate; bottom row,

Figure 1C). In Figure 1C, we presented two examples with spe-

cific reliability ratios; however, these need not necessarily remain

fixed. Rather, Model 2 is described by iterative equations (see

Supplemental Experimental Procedures available online) and

thus depends on the combined cue at any given time. Hence it

generally incorporates any dynamic changes in cue reliabilities.

The strategy of Model 1, individual cue calibration, is ideal in

that it converges monotonically to the solution in which both

cues are individually accurate (rightmost column, Figure 1B). In

contrast, Model 2, with yoked cue calibration, is not ideal. An

accurate cue is inadvertently shifted to become less accurate.

In fact, although the combined cue is accurate postcalibration,

neither cue is individually accurate. If, however, the supervised

calibration system only has access to the combined cue, then

yoked cue calibration would be the optimal calibration strategy,

given the limited information. Namely, it converges monotoni-

cally to the solution in which the combined cue is accurate (right-

most column, Figure 1C).

To discover the actual strategy that the brain uses for super-

vised multisensory calibration, we now analyze the data of visual

and vestibular calibration from our heading discrimination exper-

iments. In the experiments, we manipulated cue accuracy by

means of external feedback and relative cue reliability through

the coherence of the visual stimulus (as in Gu et al., 2008; Fetsch

et al., 2009). Accordingly, we are able to characterize supervised

multisensory calibration under the different scenarios of cue

accuracy and relative cue reliability.

Supervised Visual-Vestibular Calibration—Examples
Four experimental sessions from one monkey are presented in

Figure 2. The examples shown here all had a cue discrepancy

of D = +10� (vestibular cue to the right; visual to the left), but re-

sults were similar and in the opposite direction, for D = �10�.
Here, the x axis represents heading according to feedback.

Hence, a cue that is in accordance with feedback (accurate)

has a PSE of zero; and a cue that is offset from feedback exper-

imentally is by definition displaced on the x axis. This manner of

presentation allows visualizing which cues shift in accordance

with feedback (toward 0) or away from feedback (away from 0).

Behavioral data (circle markers, middle column) were fit with

cumulative Gaussian distributions. For each session, we

measured visual (red) and vestibular (blue) calibration by the shift

in the psychometric PSE from precalibration (darker colors) to

postcalibration (lighter colors). We observe that when the visual

cue was both more reliable and accurate (Figure 2A, top row), it

did not shift. However, the less reliable and inaccurate vestibular

cue did. Similarly, when the vestibular cue was both more reli-

able and accurate (Figure 2A, bottom row), it did not shift. How-

ever, the less reliable and inaccurate visual cue did.

By contrast, when accuracy and reliability were dissociated

such that the less reliable cuewas accurate and themore reliable

cue inaccurate (Figure 2B), a surprising form of calibration

occurred: cues were yoked and shifted together. Specifically,

when the vestibular cue was more reliable but inaccurate (top

row in Figure 2B), it was correctly calibrated to become more

accurate (it shifted toward the dotted line). The less reliable

and initially accurate visual cue was yoked to, and shifted in
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the same direction as, the vestibular cue. It therefore wrongly

shifted away from the external feedback, thus becoming less

accurate (it shifted away from the dotted line). Similarly, when

the visual cue was more reliable but inaccurate (bottom row in

Figure 2B), it was correctly calibrated to becomemore accurate.

But the less reliable and initially accurate vestibular cue was

yoked to, and shifted in the same direction as, the visual cue,

becoming less accurate.

Since this form of calibration caused an initially accurate cue

to become inaccurate, it seems suboptimal. This latter result is

particularly striking, since (1) we did not expect the less reliable

cue to shift at all—it was already accurate and objectively did

not need calibration—and (2) if at all, one may have expected it

to shift in the opposite direction—toward the more reliable cue,

reducing the cue conflict (like the barn owl; Knudsen and Knud-

sen, 1989a). Hence, when the less reliable cue was inaccurate, it

shifted away from both feedback and the other cue!

Cue Reliability and Accuracy Together Influence
Multisensory Calibration
The qualitative differences observed between the examples in

Figures 2A versus 2B indicate that multisensory calibration is

dependent on the configuration of cue accuracy and reliability.

We now demonstrate that this ensues also at the population

level. To do so, we calculated the population-averaged psycho-

metric functions. This was done using the mean PSE and geo-

metric mean threshold (SD from the cumulative distribution fit)

from all sessions of the five monkeys, in each condition. The

population psychometric functions are displayed together with

the PSE histograms in Figure 3.

Here too, we observe that when the vestibular cue was both

more reliable and accurate (Figure 3A, left), only the visual cue

shifted significantly (p < 0.0001; using t tests and the Bonferroni

correction for multiple comparisons). The vestibular cue did not

shift (pre- and postcalibration SEM intervals overlap) and hence

remained accurate. Similarly, when the visual cue was bothmore

reliable and accurate (Figure 3A, right), only the vestibular cue

shifted significantly (p < 0.0001). The visual cue did not shift.

However, when external feedback was contingent on the less

reliable cue, such that it was accurate, and the more reliable cue

inaccurate (Figure 3B), cue yoking was observed. Both cues

shifted significantly (p < 0.0001) and in the same direction. The

more reliable, but initially inaccurate, cue was correctly cali-

brated to become more accurate (visual cue in Figure 3B, left,

and vestibular cue in Figure 3B, right). However, the other,

initially accurate but less reliable cue was yoked to, and shifted

with, the more reliable cue. Hence, it wrongly shifted away

from the external feedback, becoming less accurate (vestibular

cue in Figure 3B, left, and visual cue in Figure 3B, right). In the

histograms (Figure 3), the PSE distributions seem to be wider

postcalibration. This probably reflects the addition of shift vari-

ability, since the actual postcalibration PSEs (not normalized to

precalibration) are presented.

Cue shifts were then calculated for each session as the differ-

ence between the post- and precalibration PSEs (i.e., normalized

to precalibration). In Figures 4A and 4B (top plot), we compare

the average cue shifts for each monkey, individually, across

the different conditions. This demonstrates the same outcome



Figure 2. Examples of Supervised Visual-Vestibular Calibration

Four example sessions of supervised calibration are presented (each combination of the cues being more/less reliable and accurate/inaccurate). The heading

discrepancy for all examples here was D = 10� (vestibular to the right of visual). Plotting conventions are similar to Figure 1, except that red colors represent the

visual cue and blue colors the vestibular cue. Stimulus schematics (left column; discrepancy exaggerated for illustration) indicate which of the discrepant cues

was accurate (lies on vertical dotted line), according to external feedback. Psychometric data (circles, middle column) were fitted with cumulative Gaussian

functions, and corresponding probability distributions were generated (right column). Horizontal arrows mark significant shifts of the cues, with the shift size in

degrees presented below the arrows on the probability distribution plots.

(A) When the more reliable cue was also accurate, only the other (less reliable and inaccurate cue) was calibrated.

(B) When accuracy and reliability were dissociated (the less reliable cue was accurate), cue yoking was observed, i.e., both cues shifted together in the same

direction. ‘‘X’’ symbols mark shifts of the less reliable cue away from feedback, becoming less accurate.
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as described above but shows that the calibration strategy is

robust and consistent across individual monkeys. For all mon-

keys, when the more reliable cue was accurate, it did not shift

(Figure 4A). Only the less reliable cue shifted. Hence, the data

points lie along the axes. In contrast, when the less reliable

cue was accurate (Figure 4B, top plot), they do not. Rather,

they indicate visual and vestibular shifts in the same direc-

tion—cue yoking (further analysis of monkey cue shifts and their

dependence on reliability is presented in Supplemental Data and

Figure S1). In order to gain further insight into the phenomenon of

cue yoking, we performed the same experiment in humans.

Here, accuracy feedback was provided by auditory beeps and
subjects were instructed to get as many trials as possible cor-

rect. We specifically tested the conditions in which we found

cue yoking in the monkeys, i.e., when the less reliable cue was

accurate.

Cue Yoking in Human Subjects
Similar to the monkeys, humans also yoked their cues, namely

the cues shifted in the same direction (as demonstrated by the

location of the data in the top right and bottom left quadrants

in Figure 4B, bottom plot). Subjective reports after the experi-

ments indicated varying levels of awareness: when the visual

cue was more reliable, subjects were more aware that the
Neuron 80, 1–14, December 18, 2013 ª2013 Elsevier Inc. 5



Figure 3. Population Shifts

Population-averaged psychometric functions and

PSE histograms are presented for each condition.

All data are presented in the form of D = +10� but
also comprise data collected with D = �10� (the

latter were flipped for pooling). Color conventions

are the same as Figure 2. Significant shifts are

marked by horizontal arrows on the psychomet-

rics and ‘‘*’’ symbols between the ±SEM intervals

(horizontal bars above the histograms).

(A) When the more reliable cue was also accurate,

only the other (less reliable and inaccurate cue)

was calibrated.

(B) When accuracy and reliability were dissociated

(the less reliable cue was accurate) cue yoking

was observed, i.e., both cues shifted together in

the same direction. ‘‘X’’ symbols mark shifts of the

less reliable cue away from feedback, becoming

less accurate. See also Figure S1.
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feedback was ‘‘offset’’ and reported consciously ‘‘correcting’’

their responses in order to align them better with the feedback.

When the vestibular cue was more reliable, subjects were less

aware—mostly not noticing an offset (or unsure) and often postu-

lating that postcalibration their cues were left unchanged (when

in fact they were yoked).

The difference in awareness between visual more reliable

versus vestibular more reliable sessions probably reflects the

fact that, in the latter, the combined cue was less reliable (since

only visual reliability was manipulated to control relative reli-

ability), and thus a feedback offset was less discernible. None-

theless, in both conditions, calibration was similar and demon-

strated cue yoking. Also, absence of subject awareness is not

required to study calibration (e.g., in the classic visuomotor rota-

tion, movement perturbation, or prism adaptation experiments,

subjects are typically also aware of the discrepancy).

Hence, while the yoked component of supervised calibration

may incorporate perceptual shifts, it clearly seems to employ a

cognitive or explicit strategy. This suggests that supervised cali-

bration may utilize unique mechanisms; we address this in more

depth below. From our data, we are unable to quantitatively

assess the extent to which remapping was perceptual versus

choice related (i.e., occurred between perception and response).
6 Neuron 80, 1–14, December 18, 2013 ª2013 Elsevier Inc.
Disambiguating the two will require

different methods, for instance, magni-

tude estimation of heading direction.

Similarly, while the supervised calibra-

tion hypotheses introduced above (Fig-

ure 1) may imply perceptual calibration,

they too can represent choice-related

calibration (also characterized by PSE

shifts). The only difference would relate

to the calibration rates (see Supplemental

Experimental Procedures): for perceptual

calibration, each cue shifts at its own rate,

whereas for choice-related calibration,

the same rate should be expected for

both cues. In our data, the vestibular
cue demonstrates a significantly higher PSE shift rate versus

visual (see Supplemental Data). This seems to imply presence

of perceptual calibration. However, in general, the PSE shifts in

both the data and the models can represent perceptual shifts,

choice-related shifts, or a combination thereof. We now

compare the monkey data to the models in order to gain insight

into what information is used during supervised calibration. We

begin with a qualitative comparison and continue thereafter

with a quantitative model fit.

Yoked versus Individual Cue Calibration Models
When the less reliable cuewas accurate, the data clearly demon-

strate cue yoking (Figures 2B, 3B, and 4B). Therefore, the model

of supervised individual cue calibration (Model 1, Figure 1B;

which calls for calibration of only the inaccurate cue) does not

seem feasible. However, also yoked cue calibration (Model 2,

Figure 1C) does not completely explain the results. (1) According

toModel 2, the cues should always shift in the same direction, by

a proportional amount. This is not what we see (Figure 4A). (2) It

does not explain why, when themore reliable cue is accurate, we

see a shift only for the other, inaccurate, cue (Model 2 predicts a

significant shift for both cues). (3) Lastly, according to Model 2,

both cues should shift more when the less reliable cue is



Figure 4. Individual Shifts

Visual versus vestibular PSE shifts were plotted in the different conditions.

Data for vestibular-accurate sessions are plotted in purple and data for visual-

accurate sessions are plotted in orange. An ellipse around each data point

marks the SEM calculated for each cue, individually. Data are presented in the

form of D = +10� but also comprise data collected with D = �10�.
(A) When the more reliable cue was accurate, the data lie on the axes (dotted

lines), indicating that only the inaccurate cue was calibrated. The accurate cue

did not shift.

(B) When the less reliable cue was accurate, the data lie in the quadrants of

positive correlation, demonstrating cue yoking. Cue yoking was demonstrated

for both monkeys (top plot) and humans (bottom plot).

Neuron

Supervised Multisensory Calibration

Please cite this article in press as: Zaidel et al., Supervised Calibration Relies on the Multisensory Percept, Neuron (2013), http://dx.doi.org/10.1016/
j.neuron.2013.09.026
accurate. However, the inaccurate cue seems to shift by roughly

the same amount, regardless of reliability (Figure S1).

Therefore, neitherModel 1 norModel 2 accounts well for all the

data. An initial impression is that when the more reliable cue was

accurate, Model 1 best describes the data, whereas when the
less reliable cue was accurate, Model 2 works best. It is possible

to model these two scenarios separately. Accordingly, there

could be a switching mechanism that chooses the appropriate

strategy (Model 1 or Model 2) by context. However, a unifying

model that can apply the same rules and explain the behavior

for both would remove the need to infer context and select be-

tween multiple strategies. It would thus be more parsimonious.

To attain a more comprehensive theory for multisensory cali-

bration, we need to address why cue yoking, as predicted by

Model 2, is demonstrated at all. Namely, why (and when) would

the combined cue be used for calibration? Ernst and Di Luca

(2011) recently proposed a model for unsupervised calibration

in which cues are calibrated toward one another according to

the extent that they are not integrated. Namely, nonintegrated

cues will have a large discrepancy between their posterior esti-

mates and thus calibrate at a faster rate than highly integrated

cues. Their model allows for the whole range of integration

(from segregation to complete integration). However, we find

that a very high degree of integration is required in order to

achieve calibration rates sufficiently low to account for our unsu-

pervised calibration data (see Supplemental Experimental Pro-

cedures, and simulation results below). By extension, supervised

calibration may thus also rely on the highly integrated cues, as

proposed by Model 2.

Recently, Prsa et al. (2012) found that during rotational self-

motion mainly the combined cue is relied upon for perceptual

judgments. Based on this and the human reports of using an

explicit strategy (above), we propose that Model 2 represents a

more explicit, or conscious, component of supervised multisen-

sory calibration. Accordingly, during supervised calibration, a

highly integrated percept is used for comparison to external

feedback, and thus cues are yoked in an effort to achieve

external accuracy.

Interestingly, recent studies of visuomotor adaptation have

also described the effects of an explicit strategy and propose

that it is superimposed on implicit adaptation (Mazzoni and Kra-

kauer, 2006; Taylor and Ivry, 2011). In these studies, subjects

were instructed, in a pointing task, to counter an introduced

45� visuomotor rotation using an explicit cognitive strategy—

by moving to a marker located 45� away from the target. With

this strategy, subjects were initially error free. However, as

training continued, the subjects progressively increased their

offset, such that they were making errors (miscalibrated). The

authors propose that this drift arises from superimposing implicit

adaptation on the explicit strategy. Thus, Model 2 may represent

only one aspect of multisensory calibration—a more explicit,

supervised component. Perhaps, like in sensorimotor adapta-

tion, here too there is a more implicit form of calibration simulta-

neously taking place—one that is not comparing external feed-

back to overt perception but rather implicitly comparing the

cues to one another.

We have already described amechanismof unsupervised cali-

bration for maintaining internal consistency (Zaidel et al., 2011).

Thus, it seems plausible to superimpose that component onto

the supervised component from Model 2. This brings us to

Model 3: a hybrid between yoked calibration for external accu-

racy (Model 2, supervised) and individual cue calibration for in-

ternal consistency (unsupervised). Note that this is not a hybrid
Neuron 80, 1–14, December 18, 2013 ª2013 Elsevier Inc. 7



Figure 5. Model 3 Simulation

Two cues for heading direction were generated

with a constant heading discrepancy between

them, and calibration was simulated according to

Model 3. Precalibration, one cue was accurate

(blue) and the other biased (red) in relation to

external feedback. Psychometric plots and prob-

ability density functions were generated similar to

Figure 1. But here, postcalibration plots represent

partial calibration, as depicted by the vertical

dashed lines and arrows in the time course plots

(rightmost column). Green arrows represent the

supervised, yoked component, and blue and red

arrows (for the accurate and inaccurate cue,

respectively) represent the unsupervised, individ-

ual component.

(A) When the accurate cue was also more reliable,

the combined cue bias was small (Dcomb; left

column) and hence the yoked component was

small. In total, this resulted in a shift of the inac-

curate, but not accurate, cue.

(B) When accuracy and reliability were dissoci-

ated, the combined cue bias was large and hence

the yoked component was dominant. This resulted

in a shift of the accurate cue together with the

inaccurate cue.
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of Models 1 and 2 but rather a hybrid of supervised (Model 2) and

unsupervised calibration. Incorporating both components of

supervised and unsupervised calibration,Model 3 has the poten-

tial to be a comprehensive framework for multisensory calibra-

tion. But does Model 3 account for the actual behavior observed

in our data, in all the different conditions of cue accuracy and

reliability?

Model 3: Simultaneous External-Accuracy
and Internal-Consistency Calibration
We propose here amodel in which supervised cue calibration for

external accuracy, achieved by cue yoking, is superimposed

with unsupervised cue calibration for internal consistency.

Although it may take a seemingly suboptimal path (discussed

further below), this hybrid model will ultimately converge on the

externally accurate solution. Namely, only the inaccurate cue

will have shifted to become accurate. Since, once the combined

cue is externally accurate and the individual cues are internally

consistent, both cues must also be externally accurate.

Since Model 3 converges on external accuracy, its endpoint is

indistinguishable from Model 1. Both converge on the optimal

solution. However, the route that they take will be different. In

Model 3, unlike in Model 1, the accurate cue will temporarily shift

away from accuracy. Our data, presented above, represent the

PSE shift after 500 calibration trials and represent multisensory

calibration after a finite number of trials. Hence, they can expose

this suboptimal shift and thus provide a widow into the mecha-

nisms of multisensory calibration.

We present Model 3 in Figure 5. The postcalibration plots de-

picted are after 500 calibration trials (like the experiment) and

thus represent partial calibration. Each cue shift is comprised

of two components: the supervised, yoked component (green

arrows) and the unsupervised, individual component (blue and

red arrows for the accurate and inaccurate cue, respectively).
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The yoked component of the cues is always in the same direc-

tion, whereas the individual components are in opposite direc-

tions. The yoked and individual components for the inaccurate

cue are always in the same direction and will therefore sum up.

By contrast, the yoked and individual components for the accu-

rate cue are always in opposite directions and will thus partially

or fully cancel out. The extent of cancelling out depends on the

components’ magnitudes.

When the accurate cue is more reliable, the yoked component

is small and thus more easily cancelled out by the individual cue

component (blue probability density and psychometric curves in

Figure 5A). However, when the accurate cue is less reliable, the

yoked component will be larger and thus likely be dominant (blue

curves in Figure 5B). In contrast, the components of the inaccu-

rate cue are summed in both cases, and thus the inaccurate cue

will always shift to improve accuracy (red curves in Figures 5A

and 5B).

The rightmost column of Figure 5 demonstrates the postcali-

bration PSE as a function of calibration trials for the model.

The vertical dashed line marks 500 trials, as used to collect

data in this study, and used to create the postcalibration proba-

bility density and psychometric plots in this figure. It can be seen

that if calibration is run for a long time, cues will ultimately reach

external accuracy (curves asymptote to the horizontal dotted

line, which marks accurate performance, according to external

feedback). Also, Model 3 still captures the cue yoking observed

in the data for the case in which the less reliable cue is accurate

(Figure 5B). But, when the more reliable cue is accurate, no cue

yoking is observed (Figure 5A), like in the data.

Model 4: Extended Ernst and Di Luca Model
Extending the Ernst and Di Luca (2011) model to include external

feedback in a manner consistent with their model (i.e., on the in-

tegrated ‘‘posterior’’ cue) provides a model strikingly similar to



Figure 6. Example Model Fit

(A) Circles mark the average visual and vestibular shifts and error bars represent the SEM (red and blue, respectively; in column 8, the blue circles are partially

occluded by the red circles). The data were grouped (from left to right) by low, medium, and high visual to vestibular reliability ratios. Each group comprises three

columns that depict (from left to right) unsupervised calibration, vestibular accurate (supervised calibration), and visual accurate (supervised calibration). Solid

curves represent themodel simulations as a function of calibration trials, whichwere fit simultaneously to all the data at 500 trials (vertical dashed lines). Horizontal

dotted lines mark the externally accurate solution. The model fit parameters are presented in column 9.

(B) The model fits were assessed by the mean squared error (MSE) between the model simulations and the data for each condition (red and blue, for visual and

vestibular errors, respectively). See also Figures S2 and S3 for Model 3 and 4 fits for all monkeys.
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Model 3. We call this Model 4 (see Supplemental Experimental

Procedures). It too comprises an unsupervised term (according

to their standard model) in addition to a supervised term that re-

lies on the highly integrated cues. Thus, Model 3may represent a

simplified subspace of Model 4, apart from a few small differ-

ences (one relating to unsupervised calibration; discussed

further below).

Model Comparison
Figure 6 presents the model fits for all four models, averaged

across monkeys. The models were fit at 500 calibration trials

(vertical dashed lines, in accordance with data collection) but

allowed to run for longer in order to see the extended dy-

namics of the models. Figure 6A shows the data (circle

markers) and model predictions (solid curves) for each of the

different conditions. While in the previous analyses and figures

we focused on supervised calibration at the extremities (low

and high reliability ratio), here, all conditions are presented,

including the medium reliability ratio data and unsupervised

calibration data (Zaidel et al., 2011). We note that also for the

medium reliability ratio data, supervised calibration causes
yoking but to a lesser degree (vestibular cue in column 5 and

visual cue in column 6).

As shown in Figure 6B, Models 3 and 4 produced the lowest

mean squared errors between the model predictions and the

data. To better understand the models’ performance, we now

analyze them one at a time. In Model 1 (top row), the inaccurate

cue shifts, and the accurate cue remains unchanged. Although

Model 1 converges on the externally accurate solution (horizon-

tal dotted lines), it does not account well for the data. This is

especially evident when the less reliable cue is accurate and

cue yoking is observed (columns 3 and 8; Figures 6A and 6B).

By definition, Model 1 cannot account for cue yoking. Model 2

(second row) displays cue yoking but also performs poorly,

especially when cue yoking is not observed in the data

(columns 2 and 9; Figures 6A and 6B). It cannot account for

both situations in which cues are and are not yoked and hence

results in large errors.

For Models 3 and 4, when the more reliable cue is accurate,

only the inaccurate cue shifts (columns 2 and 9; Figures 6A

and 6B). But when the less reliable cue is accurate, cue yoking

takes place (columns 3 and 8; Figures 6A and 6B). BothModels 3
Neuron 80, 1–14, December 18, 2013 ª2013 Elsevier Inc. 9



Figure 7. Model Fit Comparison

(A) Scatter plots demonstrate themodel predicted versus actual cue shifts (red

and blue for visual and vestibular, respectively). The diagonal is marked by a

solid black line and represents a perfect model fit. R2 values indicate the data

fit to the diagonal.

(B) Circles and horizontal bars mark the mean squared error and the Tukey-

Kramer 95% confidence intervals, respectively (*p < 0.05; **p < 0.01).
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and 4 indicate that cue yoking is transient, and thus, the cues will

ultimately converge on the externally accurate solution. We

cannot test this latter hypothesis in our data due to the limited

number of calibration trials and the unfeasibility of greatly ex-
10 Neuron 80, 1–14, December 18, 2013 ª2013 Elsevier Inc.
tending this. However, support for this model can be found in

the recent sensorimotor adaptation study by Taylor and Ivry

(2011), which similarly showed miscalibration due to superim-

posed explicit and implicit components and indeed found that

increasing the number of adaptation trials reduced the miscali-

bration. Future validation of this predicted time course is

required. Model 3 and 4 fits for all the monkeys, individually,

are presented in Figures S2 and S3, respectively.

Figure 7 presents a model comparison summary for all the

data (a total of 328 sessions from the 5 monkeys). Scatter plots

of the model-predicted visual and vestibular shifts (red and blue,

respectively) versus the actual shifts are shown in Figure 7A. For

a perfect model, the data points would lie along the diagonal

black lines. Models 3 and 4 provide better data fits than Models

1 and 2, having higherR2 values (see plot), whichmeasures the fit

to the diagonal. To compare the models statistically, we calcu-

lated the mean squared error across all the data (Figure 7B). A

two-way ANOVA showed that the models are significantly

different (p = 0.0006).

Using Tukey’s honestly significant difference criterion, we

found that Model 3 has a significantly smaller mean squared

error than both Models 1 and 2 (p = 0.012 and p = 0.005, respec-

tively). Model 4 was significantly better than Model 2 (p = 0.028)

and better than Model 1, but the latter did not reach our criterion

for significance (p = 0.060). These comparisons were made

across all the data (according to the way the models were fit).

However, if we were to compare only the supervised calibration

fits, thenModel 4 does do significantly better than both Models 1

and 2 (p = 0.016 and p = 0.008, respectively). Thus, we attribute

the lack of significance between Model 4 andModel 1 to the fact

that Model 4 performs worse than the other models for unsuper-

vised calibration (see Figure 6B; specifically columns 1 and 4).

This may relate to the fact that Model 4 (unlike Models 1–3) pre-

dicts that the unsupervised rate of calibration depends on the

cue reliabilities (see Supplemental Experimental Procedures),

whereas our unsupervised calibration data (fitted here) do not

demonstrate that dependence (Zaidel et al., 2011). However,

this may depend on task or species, since Burge et al. (2008)

did find a dependence between reliability and the calibration

rate of human reaching movements.

Finally, replacing Model 3 with a slightly different formulation,

in line with choice-related, as opposed to perceptual, shifts (see

Supplemental Experimental Procedures) resulted in perfor-

mance and data fits indistinguishable from the standard Model 3

(mean squared error 7.44 ± 0.63 deg2 versus 7.43 ± 0.62 deg2 for

the standard Model 3; the latter presented in Figure 7B). Thus,

the extent to which supervised calibration is perceptual versus

choice related represents an interesting question for future

studies.

DISCUSSION

In this study, we showed that supervised multisensory calibra-

tion is highly dependent on both cue accuracy and relative cue

reliability. Through a seemingly suboptimal behavior, we were

able to gain a better understanding of the underlying mecha-

nisms of multisensory calibration. Specifically, our data indicate

that in response to external feedback, supervised multisensory
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calibration relies only on the combined (multisensory) cue. These

results seem to be in line with Prsa et al. (2012), who found that

mainly the combined cue is relied upon for perceptual judgments

during rotational self-motion. Our results do not require manda-

tory cue fusion but rather indicate that the explicitly available

combined cue is used during supervised calibration.

In contrast, during unsupervised multisensory calibration,

which arises due to a cue discrepancy, cues are calibrated in

opposite directions, toward one another (Burge et al., 2010; Zai-

del et al., 2011). Individual cue calibration would not be possible

without the ability to access the cues individually. Hence, for un-

supervised calibration, individual visual and vestibular informa-

tion is utilized. This seems to agree with Hillis et al. (2002), who

showed that single-cue information is not lost when different

modalities are integrated. However, here (for self-motion percep-

tion) single-cue information may only be available implicitly (Prsa

et al., 2012). Together, these findings suggest more explicit

versus implicit mechanisms for supervised and unsupervised

calibration, respectively. Also, they might indicate that the neural

mechanisms of supervised and unsupervised calibration tap into

different sensory representations (discussed further below).

In the supervised calibration experiments performed in this

study, we manipulated cue accuracy through external feedback

(and relative reliability) in the presence of a cue discrepancy.

Modeling an unsupervised component (with access to the indi-

vidual cues) superimposed on a supervised component (which

relies only on the combined cue) best described the behavior.

That individual cue information is used here for the unsupervised,

but not supervised, component of multisensory calibration may

stem from their different time courses and levels of processing.

Unsupervised calibration arises from simultaneously presented,

discrepant, cues. In contrast, supervised calibration relies on

task feedback after the trial. Adams et al. (2010) showed that de-

layed and intermittent perceptual feedback is more important

and efficient for multisensory calibration than continuous feed-

back. Our results of stronger supervised calibration are in line

with this and indicate that only the combined cue percept is

used after the trial, perhaps highlighting a limitation of the brain.

The more implicit process of unsupervised calibration may be

slower and less efficient than supervised calibration, but it is

able to compare cues to one another, probably due to their

simultaneity.

We therefore suggest that unsupervised, and supervised,

calibration differ in their purpose, mechanisms, and the informa-

tion they utilize. The goal of unsupervised calibration is ‘‘internal

consistency.’’ It achieves this by simultaneously comparing the

cues to one another and calibrating them individually. By

contrast, the goal of supervised calibration is ‘‘external accu-

racy.’’ It compares the combined cue percept to feedback

from the environment but lacks cue-specific information. It

therefore calibrates the underlying cues together (yoked)

according to the combined cue error. Interestingly, it has been

proposed that absence of multisensory integration during devel-

opment may be to allow calibration of the sensory systems (Gori

et al., 2012). This emphasizes the importance of this process

and also indicates that, with less cue integration, children may

calibrate differently (perhaps better) in response to external

feedback.
While unsupervised calibration is more implicit and thus likely

to be perceptual, the supervised component seems to employ a

more explicit mechanism. From our data and models, we were

unable to quantitatively assess howmuch of the supervised cali-

bration was perceptual versus choice related. It is possible, for

example, that supervised calibration targets the mapping be-

tween perception and action. This may explain why we found

two different mechanisms, superimposed. This question pro-

vides an interesting next step, which should be addressed in

future studies.

In combination, these two mechanisms of calibration (yoked

calibration for external accuracy and individual cue calibration

for internal consistency) can ultimately achieve external accu-

racy also for the individual cues. But the route to this ideal steady

state may seem suboptimal. Adams et al. (2001) observed cali-

bration of the inaccurate (but, in the context of their study,

presumably more reliable) disparity cue. They say that the (pre-

sumably less reliable) texture cue remained accurate. However,

the latter was not shown quantitatively, and calibration occurred

over the course of days. Thus, we do not knowwhat happened to

the less reliable cue in the short term. In our paradigm (<1 hr of

calibration), we found cue yoking of the less reliable to the

more reliable cue. Our hybrid model is consistent with both re-

sults: it predicts cue yoking for the short term but convergence

on the optimal solution after prolonged calibration. Hence, a

strong characteristic of this hybrid model is suboptimal shifts

after partial calibration but optimal shifts eventually.

We find support for our proposal of two superimposed multi-

sensory calibration mechanisms from recent studies of sensori-

motor adaptation, which also describe separate perceptual and

task-dependent components (Simani et al., 2007; Haith et al.,

2008) and superimposed explicit and implicit mechanisms of

adaptation (Mazzoni and Krakauer, 2006; Taylor and Ivry,

2011). Strikingly they too can cause miscalibration, which is

reduced after longer adaptation (Mazzoni and Krakauer, 2006;

Taylor and Ivry, 2011). Hence, although we focus here on multi-

sensory calibration, this result is broad and spans multiple

disciplines.

Unlike Adams et al. (2001), although long-term prism exposure

in barn owls did achieve internal consistency, it did not achieve

external accuracy—owls continued to make large errors even

after months of continuous prism experience (Knudsen and

Knudsen, 1989a, 1989b). Knudsen and Knudsen themselves

determined that their results may reflect differences in species.

Primates are capable of utilizing more complex (possibly cogni-

tive and/or sensory) mechanisms. Also amphibians may be inca-

pable of broad recalibration, since physical rotation of the eye by

180� or contralateral transplantation (after nerve regeneration)

resulted in response behaviors that were opposite in direction

to normal animals (Sperry, 1945).

When comparing the hybrid Model 3 to our data, it provided a

significantly better fit than the nonhybrid models of multisensory

calibration. Furthermore, it comprehensively accounts for multi-

sensory calibration whether supervised or unsupervised (for the

latter, the supervised term simply falls away) and for the different

conditions of cue accuracy and reliability. The extended Ernst

and Di Luca model (Model 4) was also a supervised-unsuper-

vised hybrid and, similar to Model 3, converged on a solution
Neuron 80, 1–14, December 18, 2013 ª2013 Elsevier Inc. 11
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whereby supervised calibration relies on a highly integrated

percept. Thus, Models 3 and 4 were very similar in concept

and performance. Here, Model 3 performed marginally better

due to its better account of our unsupervised data (Zaidel

et al., 2011).

Heading perception involves several multisensory cortical re-

gions, such as the dorsal medial superior temporal (MSTd),

ventral intraparietal (VIP), and visual posterior sylvian (VPS) areas

(Bremmer et al., 2002; Page and Duffy, 2003; Chen et al., 2011).

Thus, the effects of multisensory calibration are likely to be

evident cortically. But the mechanisms of calibration may also

engage subcortical regions, such as the cerebellum and basal

ganglia, both renowned for their roles in adaptation and learning

(Raymond et al., 1996; Graybiel, 2005). Although traditionally

associated with motor control, the cerebellum and basal ganglia

are nowbelieved to also be involved in nonmotor tasks, including

sensory processing and perceptual discrimination (Gao et al.,

1996; Lee et al., 2005; Nagano-Saito et al., 2012), and they

have been proposed to specialize in supervised and reinforce-

ment learning, respectively (Doya, 2000). Since ‘‘correct’’ feed-

back may be rewarding, they are both good candidates to

mediate supervised multisensory calibration.

In conclusion, we presented here a comprehensive analysis of

multisensory calibration during manipulations of both cue reli-

ability and accuracy. Our results indicate that two mechanisms

of calibration work in parallel: unsupervised calibration has

access to and calibrates cues individually, whereas supervised

calibration relies only on the combined cue, resulting in cue

yoking. In combination, they could ultimately achieve the optimal

solution of both internal consistency and external accuracy.

EXPERIMENTAL PROCEDURES

Details of the apparatus, stimuli, and basic task design, previously published

(Gu et al., 2008; Fetsch et al., 2009; Zaidel et al., 2011), are briefly summarized

below together with the methods specific for this study. For further details,

please see the previous publications. For details of the models and human

experimental methods, please see Supplemental Experimental Procedures.

The human study was approved by the internal review board at Baylor College

of Medicine and subjects signed informed consent.

Monkeys and Experiment Protocol

Five male rhesus monkeys (Macaca mulatta) participated in the study. All

procedures were approved by the Animal Studies Committee at Washington

University, St. Louis, MO (where the study began) and Baylor College of Med-

icine. Monkeys were head fixed and seated in a primate chair that was

anchored to a motion platform (6DOF2000E; Moog). Alsomounted on the plat-

form were a stereoscopic projector (Mirage 2000; Christie Digital Systems), a

rear-projection screen, and a magnetic field coil (CNC Engineering) for

measuring eye movements (Judge et al., 1980). The projection screen (60 3

60 cm) was located �30 cm in front of the eyes, subtending a visual angle of

�90� 3 90�. Monkeys wore custom stereo glasses made from Wratten filters

(red 29 and green 61, Kodak), which enabled rendering of the visual stimulus in

three dimensions as red-green anaglyphs.

The monkeys’ task was to discriminate heading direction (two-alternative

forced choice, right or left of straight ahead), after presentation of a single-in-

terval stimulus. The monkeys were required to fixate on a central target during

the stimulus and then report their choice by making a saccade to one of two

choice targets (right/left) illuminated at the end of the trial. The stimulus pre-

sented was vestibular only, visual only, or simultaneously combined vestibular

and visual stimuli. The stimulus velocity followed a 4-sigma Gaussian profile

with duration 1 s and total displacement 13 cm. Peak velocity was 0.35 m/s
12 Neuron 80, 1–14, December 18, 2013 ª2013 Elsevier Inc.
and peak acceleration was 1.4 m/s2. Ten heading directions were tested,

five to each side. Heading angles were varied in small, logarithmically spaced,

steps around straight ahead and presented using the method of constant

stimuli.

The optic flow simulated self-motion of the monkey through a random-dot

cloud. Visual cue reliability was varied by manipulating the motion coherence

of the optic flow pattern, i.e., percentage of dots moving coherently. Three

levels of coherence were used: high (100% coherence), medium, and low.

Medium and low coherence values were monkey specific—determined such

that the monkey’s visual threshold was comparable to and larger than his

vestibular threshold, respectively. Vestibular reliability was fixed throughout

the trials. For each session, the actual reliability ratio of the visual/vestibular

cues, extracted from the data, was used for analysis (see section Data Analysis

below). Combined cue reliabilities were similar to those predicted theoretically

by the individual cues (Figure S4).

At the end of a trial, monkeys were rewarded for a correct heading selection

with a portion of water or juice. This provided the monkey with external feed-

back regarding cue accuracy. We assume that the monkey related to the feed-

back as accurate, insomuch as they needed to calibrate themselves to it.

Hence, a cue aligned to external feedback was considered externally accu-

rate. Reward strategy thus provided the means to control cue accuracy. How-

ever, it had to bemanipulated carefully in order not to interfere with the calibra-

tion, as described in detail below. Each experimental session comprised three

consecutive blocks: precalibration, calibration, and postcalibration.

The precalibration block comprised visual only/vestibular only/combined

cues, interleaved. For some sessions, the combined stimulus was excluded.

The monkey was rewarded for correct choices 95% of the time and not re-

warded for incorrect choices. The 95% correct reward rate was used in order

to accustom the monkey to not getting rewarded all of the time, as was the

case in the postcalibration block described below. This block was used to

deduce the baseline bias and individual reliability (psychometric curve) of

each modality for the monkeys. It comprised: 10 repetitions3 3 stimuli (visual

only/vestibular only/combined) 3 10 heading angles = 300 trials. When the

combined stimulus was excluded, the block comprised 200 trials.

In the calibration block, only combined visual-vestibular cues were pre-

sented. A discrepancy of D = ±10� was introduced between the visual and

vestibular cues for the entire duration of the block. The sign of D indicated

the orientation of discrepancy: positive D represented an offset of the vestib-

ular cue to the right and visual cue to the left; negative D indicated the reverse.

During this block, reward was consistently contingent on one of the cues

(visual or vestibular). The reward-contingent cuewas considered externally ac-

curate; the other, inaccurate. Only one discrepancy orientation (D) and reward

contingency was used per session. This block typically comprised 50 repeti-

tions 3 10 heading angles = 500 trials. The majority of sessions (75%) had

500 calibration trials exactly. Some sessions (25%) had more or less than

500 calibration trials (within ±100). No differences were noted for these data,

and they were included with the rest.

During the postcalibration block, a shift of the individual (visual/vestibular)

cues was measured by single-cue trials, interleaved with the combined-cue

trials (with D = ±10� as in the calibration block). The combined-cue trials

were run in the same way as in the calibration block. They were included in

order to retain calibration, while it was measured. The probability of reward

for single-cue trials worked slightly differently to the precalibration block, in or-

der not to perturb the calibration: when the single-cue trial was at a heading

angle, such that if it were a combined-cue trial the other modality would be

to the same direction (right/left), the monkey was rewarded as in the precali-

bration block (95% probability reward for correct choices; no reward for incor-

rect). If, however, the other modality would have been to the opposite side, a

rewardwas given probabilistically (70%, nomatter what the choice). This value

was chosen since it roughly represents the correct choice rate in a normal

heading discrimination task. This block typically comprised 20 repetitions 3

3 stimuli (visual only/vestibular only/combined) 3 10 heading angles = 600

trials. At least ten repetitions were required in this block for the session to be

included in the study.

A typical session comprised �1,400 trials (�2.5 hr in total) and was run at

high, medium, or low coherence, with either positive/negative delta and with

either the visual or vestibular cue accurate. Unsupervised calibration data
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(from Zaidel et al., 2011) were also used in this study. These data were

available for four of the fivemonkeys. Monkey I did not have unsupervised cali-

bration data, since he was not part of the previous study. In total, n = 328

experimental sessions from the five monkeys were analyzed in this study

(116 vestibular accurate, supervised calibration; 102 visual accurate, super-

vised calibration; 110 unsupervised calibration). Data were sorted by low,

medium, and high visual to vestibular reliability ratio (RR) using the actual

cue thresholds (see section Data Analysis below), resulting in 121, 87, and

120 low, medium, and high RR sessions, respectively.

Data Analysis

Data analysis was performed with custom software using MATLAB R2011b

(MathWorks) and the psignifit toolbox for MATLAB (version 2.5.6; Wichmann

and Hill, 2001). Psychometric plots were defined as the proportion of rightward

choices as a function of heading angle and calculated by fitting the data with a

cumulativeGaussiandistribution function. Foreachexperimental session, sepa-

ratepsychometric functionswere constructed for visual andvestibular cuespre-

and postcalibration. The psychophysical threshold and point of subjective

equality (PSE)were theSD(s) andmean (m), respectively,deduced fromthefitted

distribution function. The PSE represents the heading angle of equal right/left

choice proportion, i.e., perceived straight ahead, also known as the bias.

Visual/vestibular calibration was measured as the difference between the

pre- and postcalibration PSEs. Postcalibration, the combined cue consisted

of discrepant visual and vestibular stimuli (like during the calibration itself—

see experiment protocol above). Hence, it was different to the combined

cue precalibration, which consisted of nondiscrepant stimuli. This prohibited

comparison between the pre- and postcalibration combined cue PSEs.

For 4 out of 656 monkey postcalibration psychometric functions (and 3 out

of the 32, human), there was only one data point that was not zero or one (there

were none with only zeros and ones). This resulted from a large PSE shift to a

region where the function was sparsely sampled. For these psychometric

functions, it was difficult to determine the SD of the cumulative Gaussian fit.

Hence, the precalibration SD was used as a Bayesian ‘‘prior’’ for fitting the

postcalibration psychometric function. The ‘‘prior’’ was a raised cosine func-

tion that touched 0 at the 95% confidence limits of the precalibration SD.

The reliability ratio (RR) was defined as the ratio of visual to vestibular reli-

ability and calculated for each session individually. Cue reliability was

computed by taking the inverse of the threshold squared, using the geometric

mean of the pre- and postcalibration thresholds extracted from the fitted psy-

chometric curves. The data were divided into three RRs: low RR (RR% 2.5�1),

mediumRR (2.5�1 <RR< 2.5), and high RR (RRR 2.5). For the human data, we

used slightly more relaxed boundaries of 2 and 2�1. Since behavioral perfor-

mance could change over time due to a ‘‘practice’’ effect, we did not assume

that RRs were equal across sessions with the same coherence. We therefore

calculated the RR for each session individually.

Formany analyses in the paper, we grouped the data by (1)more reliable cue

accurate and (2) less reliable cue accurate. The former comprise sessions of

low RR with vestibular accurate and high RR with visual accurate. The latter

comprise sessions of low RR with visual accurate and high RR with vestibular

accurate.
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