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Categorization is a cornerstone of perception and cognition. Compu-
tationally, categorization amounts to applying decision boundaries in
the space of stimulus features. We designed a visual categorization
task in which optimal performance requires observers to incorporate
trial-to-trial knowledge of the level of sensory uncertainty when
setting their decision boundaries. We found that humans and
monkeys did adjust their decision boundaries from trial to trial as
the level of sensory noise varied, with some subjects performing
near optimally. We constructed a neural network that implements
uncertainty-based, near-optimal adjustment of decision boundaries.
Divisive normalization emerges automatically as a key neural oper-
ation in this network. Our results offer an integrated computational
and mechanistic framework for categorization under uncertainty.
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Imagine a woman is approaching you from a distance and you
are trying to determine whether or not she is the friend you are

waiting for. Because of various sources of noise, your observations
of her facial features, hair color, etc. will be uncertain. A sensible
strategy would be to be more tolerant to deviations between your
observations and your knowledge of your friend’s looks when she
is far away than when she is close by and your observations are
less uncertain. In this categorization problem, you are determining
whether the image of the approaching woman falls into the narrow
category of images of your friend or the wide category of images
of all other people. Categorization can be modeled as a process
of applying one or more decision boundaries to a noisy measure-
ment in a space of stimulus features (1–7). The example suggests
that adjusting such decision boundaries based on the current level
of sensory uncertainty might be a better strategy than using un-
certainty-independent decision boundaries.
Previous studies have not addressed whether organisms adjust

their decision boundaries from trial to trial according to the level
of sensory uncertainty. Perceptual studies of categorization un-
der sensory uncertainty have typically used category distributions
for which the level of uncertainty was irrelevant for optimal be-
havior (2, 3, 6, 8). For example, in a classic task, observers cate-
gorize the direction of motion of a set of dots coherently moving
to the left or to the right, in the presence of distractor dots
moving in random directions (8). Regardless of the level of
sensory noise corrupting the brain’s measurement of the net mo-
tion direction, the optimal decision is simply to report whether this
measurement was to the right or to the left. In other words, ap-
plying a fixed decision boundary to a scalar estimate is optimal in
this task; no knowledge of uncertainty about motion direction is
needed. In cognitive models of categorization, dynamic decision
boundaries have been invoked to explain a broad range of phe-
nomenona, including sequential effects (9, 10), context effects
(11), and generalization (12). However, these studies limited
themselves to fixed levels of sensory noise and were not able to
demonstrate optimality of behavior. Thus, a dichotomy exists:
perceptual models are often normative and describe behavior in
tasks with variable sensory uncertainty but trivial category dis-
tributions, whereas cognitive models examine more complex

forms of categorization but are typically nonnormative and ignore
the role of sensory uncertainty.
Here, we attempt to connect these domains using a visual cat-

egorization task in which sensory noise is varied unpredictably
from trial to trial. Our simple experimental design allows us to
determine how observers should adjust their decision boundaries
to achieve optimal performance; thus, our approach is normative.
We found that humans and monkeys do adjust their decision
boundaries from trial to trial according to sensory uncertainty.
We also constructed a biologically inspired neural network model
that can perform near-optimal, uncertainty-based adjustment of
decision boundaries. Thus, we offer both a computational and
a mechanistic account of brain function in a task in which trial-
to-trial sensory uncertainty drives decision boundary dynamics.

Results
Task. Human and monkey observers categorized the orientation
of a drifting grating. The two categories (C = 1, 2) were defined
by Gaussian probability distributions with the same mean (defined
as 0°) and different SDs, denoted by σ1 and σ2 for categories 1
and 2, respectively (Fig. 1 A and B). As in related tasks (13, 14),
the overlap of these distributions introduces ambiguity: a given
orientation can come from either category, and therefore, cate-
gorization performance cannot be perfect even in the absence of
sensory noise. Observers were trained using high-contrast stimuli
and trial-to-trial feedback. During testing, contrast was varied from
trial to trial to manipulate sensory uncertainty. Human observers
did not receive trial-to-trial feedback during testing.

Theory. The statistical structure of the task, also called the
generative model, contains three variables (Fig. 1C): category
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C, stimulus orientation s, and measurement x. On each trial, C
is drawn randomly and determines whether s is drawn from
the narrow Gaussian, p(s jC = 1) with SD σ1 or the wide
Gaussian, p(s jC = 2) with SD σ2. We assume that on each trial,
the true orientation is corrupted by sensory noise to give rise to the
observer’s measurement of orientation, x. We denote by p(x j s) the
probability distribution over x for a given stimulus orientation s.
We assume it to be Gaussian with mean s and SD σ (6). This
SD is experimentally manipulated through contrast.
On a given trial, the observer uses the measurement x to infer

category C. An optimal observer would do this by computing the
posterior probability distribution over category, denoted p(C j x),
which indicates the degree of belief that the category was C,
based on x. It is convenient to express the posterior in terms of
the log posterior ratio, d, which is, using Bayes’ rule, the sum of
the log likelihood ratio and the log prior ratio

d= log
pðC= 1  j  xÞ
pðC= 2  j  xÞ = log

pðx  j  C= 1Þ
pðx  j  C= 2Þ + log

p1
1− p1

; [1]

where p1 is the observer’s prior belief that C = 1. The absolute
value of d is one possible measure of decision confidence. The
difficulty in computing the category likelihood p(x jC) is that
the stimulus s that caused x is unknown. The optimal observer
deals with this by multiplying, for every possible s separately,
the probability that the observed x came from this s with the prob-
ability of this s under the hypothesized category, and finally
summing over all s

pðx  j  CÞ=
Z

pðx  j  sÞpðs  j CÞds=
Z

LxðsÞpðs  j  CÞds: [2]

Here, we use the notation Lx(s) to denote the likelihood of a
stimulus value s based on a measurement x, Lx(s) = p(xjs).
The width of this function, also σ, measures sensory uncertainty
(Fig. 1E). Thus, Eq. 2 reflects the combination of sensory

information, Lx(s), with category information, p(s jC). An integral
over a hidden variable, as in Eq. 2, is known as marginalization and
is a central operation in Bayesian computation (15–18). A straight-
forward calculation gives (SI Text)

d= k1 − k2x2; [3]

where k1 = 1
2 log

σ2 + σ22
σ2 + σ21

+ log p1
1− p1

  and  k2 =
σ22 − σ21

2ðσ2 + σ21Þðσ2 + σ22Þ
. The deci-

sion strategy that maximizes accuracy is the maximum-a-posteriori
(MAP) read-out, i.e., to report the value of C for which p(C j x) is
larger. This rule is equivalent to reporting category 1 when d is

positive, or in other words, when jxj<
ffiffiffiffi
k1
k2

q
≡ k. Thus, the optimal

observer reports category 1 when the measurement lies within the
interval from −k to k and category 2 otherwise. Critically, the
optimal boundary or criterion k depends on the sensory uncer-
tainty σ: when evidence is uncertain, the optimal observer is more
willing to attribute measurements far away from zero to category
1 (Fig. 1D). This effect, which reflects the intuition of the friend
recognition example, is a direct consequence of the shape of the
category distributions. We consider two variants of the optimal
model: one in which p1 = 0.5, reflecting the experimental statistics
(which we call the Opt model), and one in which p1 is a free
parameter (Opt-P model).
The main alternative to the optimal model is one in which the

observer uses a fixed decision boundary (Fixed model). Then, the
decision rule is jxj< k0, with k0 a constant.
Of course, the optimal model is not the only possible model in

which the observer takes into account uncertainty on a trial-to-trial
basis, even when we restrict ourselves to decision rules of the form
jxj < function of σ. As a first step in exploring this model space, we
test all linear functions of σ (we call this model Lin-σ): the observer
uses the rule jxj< k0

�
1+ σ

σp

�
. We also test a model in which the

observer applies a fixed boundary not to the measurement x but

to the MAP estimate of the stimulus,
σ 2
p

σ 2
p + σ2

x, obtained under a
Gaussian prior with mean 0 and SD σp. The decision rule is then
jxj< k0

�
1+ σ2

σ2p

�
. We call this the Quad-σ model (Fig. 1E). In

all models except for the Fixed model, the observer takes
into account the trial-to-trial level of sensory uncertainty; these
models therefore describe probabilistic, but not necessarily
optimal, computation (19).
In each model, we describe the relationship between noise

variance σ2 and contrast c (expressed as a proportion, not as a per-
centage) as a power law with a baseline, σ2(c) = (αc)–β + γ, and
include a lapse rate λ to account for random guesses and unintended
responses (20). The Opt model has four free parameters (α, β, γ,
and λ), Opt-P and Fixed each have one more (p1 and k, re-
spectively), and Lin-σ and Quad-σ each have two more (k and
σp). Thus, Lin-σ and Quad-σ can be considered more flexible
models than Opt and Opt-P. Models are summarized in Table S1.

Behavioral Results. We first obtained maximum-likelihood esti-
mates of the model parameters (Table S2). To compare models,
we then computed both the marginal log likelihood (using the
Laplace approximation) and the Akaike information criterion
(AIC) for each model and each subject (Materials and Methods).
Our goal was to determine whether observers take into account

sensory uncertainty in setting their decision boundaries. Thus, we
are interested in whether or not the Fixed model accounts better
for the data than all probabilistic models. It did not for any
human subject or either monkey, according to either measure
(Table 1 and Table S3). Moreover, the differences between the
best probabilistic model and the Fixed model were large; to il-
lustrate, Jeffreys (21) considered a marginal log likelihood dif-
ference of more than log(30) = 3.4 very strong evidence. Subjects
differed in which probabilistic model described their data best,
with Opt, Opt-P, Lin-σ, and Quad-σ each winning for at least
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Fig. 1. Task and models. (A) Probability distributions over orientation for Cat-
egories 1 and 2. The distributions have the same mean (0°) but different SDs
(σ1= 3° and σ2 = 12°; for Monkey L, σ2= 15°). (B) Sample stimuli drawn from
each category. (C) Generative model of the task (see text). (D) A completely
certain (σ= 0°) optimal observer would set the decision boundaries ±k at the
intersection points of the two category distributions (black curves). The shaded
areas indicate where the optimal observer would respond Category 2. When
sensory noise is larger, not only will the measurements (open circles) bemore
variable for a given true orientation (arrow), but the optimal observer will also
move the decision boundaries to larger values. In the experiment, noise levels
are interleaved. (E ) Decision boundary as a function of uncertainty level under
four models: optimal, linear (example with k0= 4.5° and σp= 5°), quadratic
(example with k0= 6° and σp = 9°), and Fixed (example with k0= 8°).
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one human subject, according to either method. The data of
monkey A were best described by Quad-σ and those of monkey L
best by Lin-σ. These results suggest that observers use different
and sometimes suboptimal strategies to incorporate sensory
uncertainty information on a trial-by-trial basis, but no observer
ignores this information.
Fig. 2 shows three types of psychometric curves with corre-

sponding model fits: proportion correct as a function of contrast
(Fig. 2A), proportion of category 1 reports as a function of con-
trast and true category (Fig. 2B), and as a function of contrast and
orientation (Fig. 2C). For each curve, the Fixed model pro-
vides a much worse fit than each of the probabilistic models
(measured by RMSE), providing further indication that observ-
ers compute their decision boundaries in an uncertainty-de-
pendent manner. In Fig. 2C, we observe that the curve widens as
contrast decreases; because the Fixed model has a fixed decision
boundary, it cannot account for this widening. Among the
probabilistic models, the Lin-σ model fits best overall, in accor-
dance with Table 1 and Table S3, but the differences are small.
Although the Opt model provides a slightly worse fit, it should be
kept in mind that in this model, the decision boundary is rigidly
specified as a function of uncertainty σ: in contrast to the Lin-σ
and Quad-σ models, the Opt model does not introduce any free
parameters in the decision boundary function. In this light,
the good fit of the Opt model is remarkable.
To agnostically estimate the uncertainty-dependent de-

cision boundary humans use, we fitted an additional, flexible

model, in which a separate boundary is fitted at each contrast
level (SI Text). The decision rule is then jxj< kc, where kc is the
boundary at contrast c. The resulting estimates of kc are
plotted in Fig. 2D. We find a significant effect of contrast on kc
[repeated-measures ANOVA: F(5,25) = 12.4, P < 10−5]. The
probabilistic models account for the trend in kc much better than
the Fixed model (in RMSE).
To confirm that the fitted values of sensory uncertainty σ in

the probabilistic models are meaningful, we measured them in an
independent experiment. The same six human observers performed
a left/right orientation discrimination task (Materials and Methods)
under the same contrasts and other experimental settings as in the
categorization experiment. The estimates of σ obtained from the
categorization task were strongly correlated with those obtained
from the discrimination task (Fig. 2E; Pearson r = 0.89, P < 10−3).
Using the estimates of σ from the discrimination task instead of
those obtained from the estimates of α, β, and γ in the flexible
model, although worse, still produces reasonable probabilistic
model fits to the decision boundary function (Fig. 2F). To-
gether, these results are evidence that the fitted values of σ in
the main experiment are meaningful.
To ascertain that our results did not depend on the choice of

vertical as the central orientation, we repeated the experiment
using 45° clockwise from vertical instead. Results were consistent
with the main experiment (SI Text and Fig. S1).
Monkey summary statistics are shown in Fig. 3 and Fig. S2.

Again, the Fixed model did not account well for the data. For

Table 1. Model comparison using log marginal likelihood for main experiment

Numbers are marginal log likelihoods obtained using the Laplace approximation. Shaded in green are the models whose values fall
within log(30) of the value of the best model. The Fixed model is never among them. DIFF, difference between the Fixed model and the
best probabilistic model.
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Fig. 2. (A) Proportion correct versus con-
trast, with model fits. Model fits often do
not look smooth because they were com-
puted based on the orientations actually
presented in the experiment, and those
were drawn randomly (see SI Text). Here
and elsewhere, error bars and shaded
areas indicate 1 SEM, and numbers in-
dicate root mean squared error between
data and model means (red is worst). (B)
Proportion “Category 1” responses versus
contrast, separated by true category, with
model fits. (C) Proportion “Category 1”
responses versus orientation and contrast,
with model fits. For visibility, not all con-
trasts are plotted. (D) Decision boundaries
fitted separately at each contrast level
(error bars: data; shaded areas: models).
(E) Estimates of sensory uncertainty σ
estimated from the categorization task
against ones obtained from an indepen-
dent orientation discrimination task; color
labels contrast. (F) Decision boundaries
predicted by three probabilistic models
based on the uncertainty estimates from
the discrimination task.

Qamar et al. PNAS Early Edition | 3 of 6

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219756110/-/DCSupplemental/pnas.201219756SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219756110/-/DCSupplemental/pnas.201219756SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219756110/-/DCSupplemental/pnas.201219756SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219756110/-/DCSupplemental/pnas.201219756SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219756110/-/DCSupplemental/pnas.201219756SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219756110/-/DCSupplemental/pnas.201219756SI.pdf?targetid=nameddest=STXT


monkey L, Lin-σ provided the best fit (Fig. 3), and for monkey A,
Quad-σ (Fig. S2). Taken together, our results indicate that both
humans and monkeys adjust their decision boundaries from trial
to trial based on sensory uncertainty, but use diverse and sometimes
suboptimal strategies to do so.

Neural Network Results. Our next goal is to provide a proof of
concept that a biologically plausible neural network can adjust the
decision boundary from trial to trial based on sensory uncertainty.
We do this for the optimal model, because in this model, on each
trial, the observer does not simply evaluate the decision rule, but
also has a representation of the probability that the decision is
correct. Although we did not explore it experimentally, knowing
this probability is important for combining category information
with information about the consequences of actions. For example,
an animal might categorize a sound as being caused by the wind,
but if the posterior probability of wind is 55% and that of predator
is 45%, the best course of action would still be to run. Thus, for this
animal, it is important to know whether the posterior probability of
wind is 55% or 99%. In many forms of decision-making, observers
must possess knowledge of posterior probability to maximize re-
ward (3, 22–24). Although such a posterior probability is naturally
given by the optimal model, it might also be possible to associate
(suboptimal) posterior probabilities with the decision rules in
the Lin-σ and Quad-σ models. However, this is not obvious and
we leave it for future work.
To obtain a neural code, we replace the scalar observation x by

the vector of spike counts in a population of orientation-tuned
neurons, denoted r (Fig. 4A). We assume variability in the ex-
ponential family with linear sufficient statistics (Poisson-like
variability) (25), which is consistent with the physiology of primary
visual cortex (26, 27). Then, the distribution of r across trials for
a given stimulus s can be described by

pðr  j  s; gÞ=φðr; gÞehðsÞ·r; [4]

where g denotes the gain (mean amplitude) of the population,
which is affected by contrast, and φ is an arbitrary function. Using
the framework of probabilistic population coding (25), all available

information about the stimulus is contained in the neural like-
lihood function, LrðsÞ= pðr  j  sÞ= R

pðr  j  s; gÞpðgÞdg=ΦðrÞehðsÞ·r
(Fig. 4B), where Φ is easily expressed in terms of φ. We as-
sume that h(s) is a quadratic function of s and thus can be written as
hðsÞ= − 1

2 s
2a+ sb, where a and b are constant vectors, so that the

likelihood Lr(s) is an (unnormalized) Gaussian. The mean b · r
a · r and

variance 1
a · r of this likelihood function correspond to x and σ2 in the

behavioral model, respectively. In the special case of independent
Poisson variability with Gaussian tuning curves, a is a vector whose
entries are equal to the inverse squared widths of the neurons’
tuning curves, and b · r

a · r is the center-of-mass decoder (28), the
real-line analog of the population vector decoder (29) (SI Text).
The log likelihood ratio over category can then be found from
Eq. 3 by substituting the neural quantities for x and σ2

d= log
pðr  j  C= 1Þ
pðr  j  C= 2Þ =

1
2
log

1+ σ22a · r
1+ σ21a · r

−
�
σ22 − σ21

�ðb · rÞ2
2
�
1+ σ21a · r

��
1+ σ22a · r

�:
[5]

Compared with Eq. 3, we have left out the log prior ratio; this is
a constant shift and therefore easily implemented. A key aspect
of Eq. 5 is that the log posterior ratio is a nonlinear function
of r, in line with probabilistic population code implementations of
other Bayesian computations that require marginalization (17, 18).
We propose that categorization is performed by a feedforward

neural network that is Poisson-like both in input and output (Fig.
4C). For concreteness, one could think of the input layer as pri-
mary visual cortex, encoding orientation, and of the output layer
as prefrontal cortex, encoding category; however, the computation
does not depend on these labels. The assumption that category
is encoded by a Poisson-like output population z is supported by
extant physiological findings in decision-making areas (30). The
problem is then to find the mapping from r to z such that z encodes
not just category, but the optimal likelihood of category. Poisson-
like variability in the output can be described by a probability
distribution analogous to Eq. 4, namely pðz  j  C; gzÞ=φzðz; gzÞeHðCÞ·z.
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The log likelihood ratio over C encoded in z is then log pðzjC= 1Þ
pðzjC= 2Þ=

ðHðC= 1Þ−HðC= 2ÞÞ · z, which we write shorthand as ΔH · z. To
encode the optimal likelihood over category, this linear combi-
nation of output activity must equal the right side of Eq. 5.
We now approximate the optimal log likelihood ratio d by

constructing a neural network consisting of a basis of nonlinear
functions of input activity that are linearly combined to produce
z (Fig. 4C). Our goal is to find a minimal and biologically plausible
set of basis functions that can achieve near optimality. We allow
operations that have been found in electrophysiology: linear,
quadratic (i.e., multiplicative) (31–33), and divisive normalization
(34, 35). The second term in Eq. 5 can already be constructed
using these operations; we now study whether the first term can be
approximated using functions of the same general form. Therefore,
we consider a basis of functions that are quadratic in neural ac-

tivity in the numerator and denominator: RQDN =
h

rirj
1+ v2 · r+ rTVr

i
,

where QDN stands for “quadratic and divisive normalization.”
The approximate decision variable is a linear combination of these
basis functions.

We simulated independent Poisson input with six values of
gain. The network was trained using stochastic gradient descent
(SI Text). After training, the network closely approximated the
optimal posterior over category across a range of gains (Fig. 5A)
and accurately reproduced the proportion reports of category 1
as a function of orientation of the optimal observer (Fig. 5B).
Shannon information loss (Materials and Methods) was less than
0.5%. By comparison, we were unable to veridically approximate
the posterior (Fig. 5A) or the psychometric curves (Fig. 5B) using
a linear (LIN) network and a quadratic (QUAD) network. These
networks had information losses of 42% and 21%, respectively,
suggesting that the crucial operation for this categorization task is
a quadratic operation combined with a divisive normalization
that is itself also quadratic. We visualized the ability of the
QDN network to approximate a highly nonlinear decision
surface (Fig. S6).

Discussion
We showed in a simple but nontrivial categorization task that both
humans and monkeys adjust their decision boundaries according
to the current level of sensory uncertainty. Despite its sim-
plicity, the task contains both ambiguity and variable sensory
uncertainty—essential elements of natural forms of categorization.
Evidence that organisms possess and use trial-to-trial knowledge
of sensory uncertainty is abundant in perception (18, 36, 37), but
rare in tasks with nontrivial stimulus categories (38, 39). It
might be worth studying the effects of sensory uncertainty on
decision boundaries in more complex or more cognitive forms
of categorization.
We found that some observers’ behavior is better described by

simple suboptimal (but still probabilistic) decision rules than by
the optimal rule. This finding raises the interesting question of
whether these suboptimal rules are still associated with poste-
rior distributions over category (and thus with a marginalization
operation), but ones based on incorrect assumptions about the
generative model.
We constructed a simple neural network that not only performs

near-optimal categorization under varying levels of sensory noise,
but also returns a good approximation of posterior probability.
Divisive normalization, found in many species and brain areas,
emerges automatically from our construction. This provides a
normative justification for the operation (for other justifica-
tions, see ref. 35). In our framework, divisive normalization has
an intuitive origin: it arises from the fact that in a Poisson-like
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probabilistic population code, the amplitude of the population
pattern of activity encodes certainty. As a result, the stimulus es-
timate, x, must be computed using an amplitude-invariant opera-
tion. A representative example is the center-of-mass (or population
vector) decoder, which computes the weighted sum of the neurons’
preferred orientations, with weights equal to the neurons’ spike
counts; because the sum of the spike counts appears in the de-
nominator, the center-of-mass decoder automatically contains
a divisive normalization. Bayesian decision-making is performed
by applying an operation to x and σ2. In the present task, the
decision variable is a quadratic function of x (Eq. 3), explaining
why quadratic operations and quadratic divisive normalization
appear in the neural implementation (Eq. 5).
Quadratic operations and divisive normalization have proven

crucial for implementing a number of seemingly disparate forms of
Bayesian inference (19, 20). At first sight, these frequent appear-
ances might be surprising, because in the probabilistic population
code implementation of cue combination, neither quadratic oper-
ations nor divisive normalization are needed (27). However, this is
because cue combination is special in that optimal inference
only involves the ratio x/σ2, in which the divisive normalization is
cancelled out to produce an operation linear in neural activity.
However, this type of cancellation is the exception rather than
the rule. In virtually every other form of Bayesian decision-making,
the optimal decision variable will involve quadratic operations
and divisive normalization when implemented with probabilistic
population codes.
We make several predictions for physiology. First, we predict

that populations of orientation-sensitive neurons in early visual
cortex not only encode an estimate of orientation but also trial-
to-trial information about sensory uncertainty and that this encoded
sensory uncertainty correlates with the animal’s decision boundary
as obtained from its behavior in the categorization task. Second, we
predict that the activity of category-sensitive neurons, which might
be found in prefrontal cortex (2) or lateral intraparietal cortex (LIP)

(1, 5), is linearly related to the logarithm of the posterior prob-
ability ratio over category. This prediction is consistent with pat-
terns found in LIP, where category probability can be reconstructed
from a logistic mapping on neural activity (33). Third, we predict
that sensory uncertainty decoded on each trial from early visual
areas is propagated (along with the best estimate of orientation) to
categorization neurons, so that including this decoded uncertainty
as an explanatory factor should help to predict the activity of those
neurons. Finally, we predict that if divisive normalization is selec-
tively removed from a neural circuit involved in computing category,
then the observer will become severely suboptimal in a way pre-
dicted by the QUAD network (Fig. 5). These predictions illustrate
how a probabilistic, computationally [in the sense of Marr (40)]
driven approach to categorization can guide the generation of
hypotheses about neural mechanisms.

Materials and Methods
Details of all methods are provided in SI Text. Categories were defined by
normal distributions with means 0° and SDs σ1 = 3° and σ2 = 12° (except
for monkey L, for whom σ2= 15°). On each trial, a category was selected
with equal probability. The stimulus was a drifting Gabor (50 ms for humans;
500 ms for monkeys) whose orientation swas drawn from the distribution of
the selected category. Contrast was varied randomly from trial to trial. For
monkeys, through training, the narrow distributon was associated with a
red target and the wide distribution with a green target; the monkey
reported category through a saccade to the red or the green target. Humans
responded using a key press. Stimuli were delivered using Psychophysics
Toolbox for Matlab (Mathworks). Models were fitted using maximum-likelihood
estimation, implemented through a conjugate gradient method. Bayes’
factors were computed using the Laplace approximation. Neural networks
were trained using a stochastic gradient descent on the Kullback-Leibler
divergence between the true and the approximated posterior.
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SI Text
Human Psychophysics: Main Experiment. Stimuli. The stimulus was a
drifting Gabor whose orientation s was drawn from one of two
category distributions. On each trial, category 1 or category 2 was
selected with equal probability. Categories distributions were
normal with means 0° (horizontal, drifting to the right) and SDs
σ1 = 3° and σ2 = 12°, respectively (Fig. 1A). During training, the
Gabor had 100% contrast. During testing, the contrast of the Gabor
was 1.8%, 3.0%, 5.0%, 8.2%, 13.5%, or 22.3%. Stimuli were
delivered using Psychophysics Toolbox for Matlab (Mathworks).
Procedure. Six human subjects participated (one female). Each
subject completed five sessions, each consisting of 816 trials, or-
ganized as follows: 72 training, 216 testing, 48 training, 216 testing,
48 training, and 216 testing. The last two training blocks served to
refresh observers’ memories of the category distributions. In total,
each subject completed 3,240 testing trials, equally divided
among six contrast levels, for a total of 540 trials per contrast
level. Contrast was chosen randomly on each trial. Exemplars of
stimuli in each category were shown at the beginning of each
session. A trial proceeded as follows (Fig. 1C). Subjects fixated
on a central cross. The Gabor appeared at fixation for 300 ms
during training and for 50 ms during testing. Immediately after-
ward, subjects indicated through a key press whether they be-
lieved the stimulus belonged to category 1 or category 2. During
training, the fixation turned green if the response was correct and
red if it was incorrect. During testing, no such feedback was given.
After each block, the total score on that block was shown.

Human Psychophysics: Control Experiment.The control experiment was
identical to themain experiment except for the following differences.
Stimuli. Stimuli were generated as in the main experiment but then
rotated clockwise by 45°. An interrupted black diagonal line at
the mean orientation was shown continuously to provide a ref-
erence. During testing, stimulus contrast could take values 1.1%,
1.8%, 3.0%, 5.0%, 8.2%, 13.5%, 22.3%, or 36.8%.
Procedure. Six human subjects participated (five females). Each
subject completed five sessions, each consisting of 816 trials,
organized as follows: 72 practice, 288 testing, 72 practice, and
288 testing. In total, each subject completed 2,880 testing trials,
equally divided among eight contrast levels, for a total of 360
trials per contrast level.

Monkey Psychophysics.Monkeys engaged in a similar task to humans.
The Gaussian category distributions (Fig. 1A) had a mean of
vertical (grating drifting to the right) and widths σ1 = 3° and
σ2 = 12° for monkey A and σ1 = 3° and σ2 = 15° for monkey L.
Contrast was 1%, 2%, 3%, 5%, 8%, 10%, 20%, 35%, 50%, 70%,
or 100% for monkey A and 1.25%, 2.5%, 5%, 10%, 15%, 17%,
20%, 25%, 30%, or 35% for monkey L. Monkey A completed
100,267 trials. Monkey L completed 184,838 trials.
A trial proceeded as follows. A fixation point appeared, and the

monkey was required to fixate on it for 300 ms. A drifting grating
then appeared for 500 ms, after which the monkey could select
a stimulus category. Through training, the narrow distribution was
associated with a red target and the wide distribution with a green
target. The targets only appeared after the stimulus period, and
the locations of the red and green targets were randomized be-
tween left and right. The monkey reported category through a
saccade to the red or the green target. The monkey received
a juice reward for each correct categorization response. Eye
position was tracked using a custom-built field-programmable
gate-array-based optical eye tracker running at 250 Hz. Stimulus

and reward were controlled by a custom state system running
LabView (National Instruments). Visual stimulation was de-
livered through a separate computer running Psychophysics
Toolbox for Matlab (Mathworks).

Derivation of the Optimal Decision Rule. Starting from Eq. 2, we
substitute the expressions for the noise distribution and the
category-conditioned stimulus distribution (with C equal to 1
or 2) and evaluate the integral:

pðx  j CÞ=
Z

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−
ðx− sÞ2
2σ2

1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2C

q e
− s2

2σ2
Cds=

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

�
σ2 + σ2C

�q e
− x2

2ðσ2+σ2CÞ:

[S1]

Substituting Eq. S1 in Eq. 1, we find

d=
1
2
log

σ2 + σ22
σ2 + σ21

−
σ22 − σ21

2
�
σ2 + σ21

��
σ2 + σ22

�x2 + log
p1

1− p1
; [S2]

which is Eq. 3. Because x2 is nonnegative, d is bounded from
above by k1, which in turn is a decreasing function of σ. Therefore,
the posterior probability of category 1 is bounded from above
bypðC= 1  j  x= 0; σ = 0Þ= 1

1+ e−k1
= σ2

σ1 + σ2
. The decision rule is d >

0, which translates to jxj<
ffiffiffiffi
k1
k2

q
  ≡  k in the main text.

List ofModels.The decision rules and parameters sets of all models
tested are listed in Table S1.

Response Probability. All model fits and comparisons are based
on the probability that an observer reports category 1 for a given
stimulus s and given uncertainty level σ. Recall that the decision
rule is of the form jxj< kðσÞ, where k(σ) is some function of σ (as
given by Table S1). Then, the probability that the observer reports
category 1 for given s is straightforwardly computed to be

p
�
Ĉ= 1  j  s�= 1

2

�
erf

s+ kðσÞ
σ

ffiffiffi
2

p − erf
s− kðσÞ
σ

ffiffiffi
2

p
�
; [S3]

where erf denotes the error function. In other words, the psycho-
metric curve as a function of s at a given contrast is predicted to
be a difference of two cumulative normal distributions.

Model Fitting. For a given model, we denote its set of parameters
collectively by a vector θ. We aimed to find the parameter com-
bination θ that maximized the parameter likelihood function. The
parameter likelihood function is the probability of all of a single
subject’s responses given the presented stimuli and the parame-
ters. Assuming conditional independence between trials, the log
of the parameter likelihood function is

LLðθ;modelÞ= log  pðdata  j  θ;modelÞ
= log ∏

Ntrials

i=1
p
�
Ĉi   j  si; ci;θ

�
:

=
XNtrials

i=1

log  p
�
Ĉi   j  si; ci;θ

�
;

where the product and the sum are over all of a single subject’s
trials, and si, ci, and Ĉi are the orientation, contrast, and subject’s
category response on the ith trial, respectively.
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We implemented the optimization of the log likelihood function
using the Matlab program minimize.m (Carl Rasmussen, www.
gaussianprocess.org/gpml/code/matlab). This software is based on
a conjugate gradient algorithm and requires expressions for the
first partial derivatives of the log likelihood function, which can
straightforwardly be calculated in our models. We typically per-
formed an initial stage with 1,000 randomly chosen initial pa-
rameter combinations and a maximum of 15 line searches for
each, followed by a second stage where we took the 50 best pa-
rameter combinations found in the first stage and used them as
initial conditions for a maximum of 1,000 line searches each. Of
the 50 resulting parameter combinations, we took the one with
the highest likelihood. We confirmed the results of the optimi-
zation using a custom-built genetic algorithm with a population
size of 800, one child per parent, a 50% survival rate (including
parents), and 650 generations. Although based on different princi-
ples, this algorithm produced maximum log likelihood values that
were typically within one point from those obtained using minimize.
m. We are therefore reasonably confident that we found the global
maxima in parameter space.
Maximum-likelihood estimates of parameters in the five models

are given in Table S2.

Model Comparison. Making use of the parameter likelihood func-
tion, we applied Bayesian model comparison, also called Bayes’
factors (1, 2), to compare the goodness of fit of models. This
method involves calculating the probability of the subject’s
responses under a model given the presented stimuli on in-
dividual trials by integrating the parameter likelihood over the
parameters of the model

pðdata  j modelÞ=
Z

pðdata  j  θ;modelÞ pðθ  j modelÞdθ:

The result is also called the marginal likelihood of the model. We
assumed that each parameter θi takes values on an interval of size
R(θi), and that the prior distribution p(θ jmodel) factorizes over
parameters and is for each parameter uniform on its interval.
Thus, pðθ  j modelÞ= ∏dimθ

i=1
1

RðθiÞ. Moreover, we used Laplace’s ap-
proximation to compute the integral (2)

log  pðdata  j modelÞ= log
Z

pðdata  j  θ;modelÞ  pðθ  j modelÞdθ

= log
�
∏
dimθ

i=1

1
RðθiÞ

�
+ log

Z
pðdata  j  θ;modelÞdθ

= log
�
∏
dimθ

i=1

1
RðθiÞ

�
+ log

Z
eLLðθ;modelÞdθ:

≈ log
�
∏
dimθ

i=1

1
RðθiÞ

�
+LLðθ p;modelÞ+ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

2π
Hðθ pÞ

s
;

where θ* is the maximum-likelihood parameter set and H(θ*)
is the Hessian (matrix of second derivatives) of −LL evaluated
at θ*. We then compared the approximated values of the log
marginal likelihood between models.
The second method for model comparison was the Akaike

information criterion (AIC) (3). Although it was derived under
stringent assumptions, this measure is often used without regard
to those assumptions. The AIC is equal to

AIC= − 2LLðθ pÞ+ 2 · number of parameters:

For ease of comparison with the Bayes factor results, we multi-
plied AIC by −0.5: −0.5AIC = LL(θ*) − number of parameters.

Model comparison results are given in Tables 1 and 2 for the
main experiment (humans and monkeys) and in Tables S3 and S4
for the control experiment (humans). Parameter ranges are given
in Table S1.

Psychometric Curves.After fitting each model, we computed model
fits to the psychometric curves. To compute the model fits for the
psychometric curves as a function of contrast and orientation
(Figs. 2C, 3C, etc.), we averaged, separately for every subject,
contrast, and orientation bin, Eq. S3 with parameters substituted
across all values of s presented to that subject at that contrast in
that orientation bin. In these figures, orientation was binned into
13 bins with centers equally spaced between −18.46° to 18.46°
(this means that the data were cut off at ±20°).
To compute the model fits for the psychometric curves as a

function of contrast and category (Figs. 2B, 3B, etc.), we averaged,
separately for every subject, contrast, and true category, Eq. S3
with parameters substituted across all values of s presented to that
subject at that contrast with that true category. This procedure
explains why the model fits do not look smooth: they are based
on the orientations in the actual experiment, which were drawn
randomly from their respective category-conditioned distributions.
Finally, to compute the model fits for accuracy as a function of

contrast (Figs. 2A, 3A, etc.), we averaged, separately for every sub-
ject and contrast, the probability of a correct response across all
values of s presented to that subject at that contrast. The probability
of a correct response was equal to Eq. S3 when the true category
was 1 on that trial, and 1 minus Eq. S3 when the true category was 2.
Throughout the paper, root mean squared error (RMSE) was

computed based on vectorized forms of the subject-averaged
data and corresponding subject-averaged model fits across all
conditions in a plot.

Flexible Model.The flexible model was designed to provide a model-
neutral estimate of the decision boundary as a function of contrast
(Figs. 2 D–F and 3D and Figs. S1D and S2D). This model has
the following parameters: α, β, and γ to parametrize the relation-
ship between σ and contrast, lapse rate λ, and the boundary at each
contrast, kc. We compared the boundaries estimated by the flexible
model with those predicted by the Opt-P, Lin-σ, Quad-σ, and Fixed
models. To this end, in each of these four models, we fixed α, β, γ,
and λ to their estimates from the flexible model, and then fitted
the remaining parameters (p1 for Opt-P, k0 and σp for Lin-σ and
Quad-σ, and k0 for Fixed), and finally substituted all parameters in
the model’s expression for the decision boundary. These fits pro-
duced the shaded areas in Figs. 2D and 3D and Figs. S1D and S2D.

Orientation Discrimination Experiment. To obtain an independent
measure of subjects’ sensory noise level, we conducted an orientation
discrimination task. The same six subjects participated as in the main
categorization experiment. Subjects determined whether an oriented
Gabor similar to the one used in the categorization task was tilted
clockwise or counterclockwise with respect to the horizontal. This
task was done at the same contrast levels as used in the categori-
zation task. Orientation was ±1.2°, ±3°, ±5°, or ±8°, all with equal
probability (method of constant stimuli). We estimated the sensory
noise parameter σ separately at each contrast level by fitting a cu-
mulative normal distribution using maximum-likelihood estimation.
To obtain Fig. 2E, we first computed, for each subject and each

contrast, an estimate of σ using the equation

σ̂ðcÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
α̂c
�−β̂

+ γ̂

r
; [S4]

where α̂; β̂; γ̂ are estimates obtained from the flexible model. We
then scattered those against the corresponding sensory noise
estimates from the discrimination experiment.
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In the section Flexible Model, we mentioned that we used the
estimates of α, β, and γ from the flexible model to compute the
predictions of the Opt-P, Lin-σ, and Quad-σ models for the de-
cision boundaries (Fig. 2D). This computation was done via an
estimate of σ as given by Eq. S4. To obtain Fig. 2F, we replaced, for
each subject and each contrast, those estimates by the estimates
obtained from the discrimination experiment, changing nothing
else; in particular, the remaining parameters were not refitted.

Neural Likelihood Function.We use the Poisson-like distribution in
Eq. 5 to model the variability of a population of sensory input
neurons

pðr  j  s; gÞ=φðr; gÞehðsÞ·r:

As a consequence, the likelihood function of the stimulus is

LrðsÞ= pðr  j  sÞ=
Z

pðr  j  s; gÞpðgÞdg

=
�Z

φðr; gÞpðgÞdg
�
ehðsÞ·r ≡ΦðrÞehðsÞ·r:

The likelihood of category C is

pðr  j CÞ=
Z

LrðsÞpðs  j  CÞds=ΦðrÞ
Z

ehðsÞ·rpðs  j CÞds:

To make progress, we need to make assumptions about h(s). We
will assume that it is a quadratic function of s, so that the likelihood
Lr(s) is an (unnormalized) Gaussian. Under this assumption, we
can write h(s) as

hðsÞ= −
1
2
s2a+ sb;

where a and b are constant vectors. Then the stimulus likelihood
function is

LrðsÞ=ΦðrÞehðsÞ·r =ΦðrÞe−1
2s

2a·r+sb·r∝ exp

0
B@−

�
s−

b · r
a · r

�2

2ða · rÞ−1

1
CA: [S5]

This expression shows that the maximum-likelihood estimate of
the stimulus is equal to b · r

a · r, and the variance of the normalized
likelihood function over the stimulus is equal to 1

a · r. These
quantities correspond to x and σ2 in the behavioral model, re-
spectively. In the special case of independent Poisson variability
and Gaussian tuning curves (4), we have

hiðsÞ= log  fiðsÞ= −

�
s− sprefi

�2

2σ2tc
= −

1
2σ2tc

s2 +
sprefi

σ2tc
s+ constant:

where si
pref is the preferred stimulus of the ith neuron, and σtc is the

width of tuning curve. Therefore, ai = 1/σtc2 and bi = si
pref/σtc2. The

mean of the likelihood function over the stimulus is b · r
a · r=

PN

i=1
ris

pref
iPN

i=1
ri
,

which is the center-of-mass (population vector) decoder. The
variance of the normalized likelihood function is 1

a · r=
σ2tcPN

i=1
ri
.

Substituting this mean and variance into Eq. 3 gives us Eq. 6.

Neural Networks.Most neural network methods were similar to the
ones described in our earlier work on visual search (5). Input
consisted of activity in a population of 41 independent Poisson

neurons with Gaussian tuning curves [f1(s),..,f41(s)], with fiðsÞ=

ge
−
ðs− spref

i
Þ2

2σ2tc , where σtc = 10° and preferred orientations si
pref ranged

from −60° to 60° in steps of 3°. Our results are insensitive to
these numerical choices. Gain was varied, as it represents the
effect of contrast. We considered three networks, each of which
is characterized by a set of basis functions

RQDN =
	

rirj
1+V · r+ rTVR




RLIN = ½1; ri�
RLIN =

�
1; ri; rirj

�
:

The output activity z is now a linear combination of the basis
functions in the network, with fixed coefficients. We further im-
pose the condition that the output activity z is also Poisson-like:
pðz  j  C; gzÞ=φzðz; gzÞeHðCÞ·z. The log likelihood ratio over C en-
coded in z is thenlog pðz  j C= 1Þ

pðz  j C= 2Þ= ðhðC= 1Þ−hðC= 2ÞÞ · z, which
we write shorthand as ΔH · z. The network approximation
to the log likelihood ratio under the assumption of Poisson-like
output is then

dnetworkðr;wÞ=Δh · z=w · rnetwork;

where Rnetwork is RQDN, RLIN, or RQUAD and w is the vector of all
network parameters (W, v, and V). The network approximation
to the posterior is

qðC  j  r;wÞ= 1
1+ e−Cdnetworkðr;wÞ

:

Network Training.We trained networks by minimizing the Kullback-
Leibler distance between the network posterior and the optimal
posterior over category using stochastic gradient descent. The
Kullback-Leibler distance, averaged over r, is

hDKLir =
X
r

pðrÞ
X2
C=1

pðC  j  rÞlog pðC  j  rÞ
qðC  j  r;wÞ

=
X
r;C

pðC; rÞlog pðC  j  rÞ
qðC  j  r;wÞ:

The gradient is

∂hDKLir
∂w

= −
∂
∂w

X
r;C

pðC; rÞlog  qðC  j  r;wÞ

= −
X
r;C

pðC; rÞ ∂
∂w

log
1

1+ e−Cdðr;wÞ

=
X
r;C

pðC; rÞ −Ce
−Cdðr;wÞ

1+ e−Cdðr;wÞ
∂
∂w

dðr;wÞ

= −
X
r;C

pðC; rÞCð1− qðC  j  r;wÞÞ ∂
∂w

dðr;wÞ

≈−


Cð1− qðC  j  r;wÞÞ ∂

∂w
dðr;wÞ

�
samples  of   ðr;CÞ

;

where the last step is a sampling approximation. The change in
weights from one iteration to the next is proportional to this gradient
and has opposite sign. This produces the learning rule
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wk+1 =wk + α



Cð1− qðC  j  r;wÞÞ ∂

∂w
dðr;wÞ

�
samples of ðr;CÞ

; [S6]

where α is the learning rate. We used an adaptive method (6) to
adjust the learning rate. We drew 10,000 trials on each iteration, and
terminated learning after 10,000 iterations for the QDN network
and after 100,000 iterations for LIN and QUAD. We then tested on
100,000 trials. For the QDN network, the initial values of the pa-
rameters were chosen according to Eq. 6. For LIN and QUAD, they
were given by a first- and second-order Taylor expansion of Eq. 6
around the mean activity, hri, respectively, except that the weight to
the constant term was set to 0 for better convergence. Information
loss was measured as the average Kullback-Leibler distance between
the optimal posterior and the network posterior, normalized by the
mutual information between the input activity and category:

δI
I
=
hDKLir
IðC; rÞ =

X
r;C

pðC; rÞlog pðC  j  rÞ
qðC  j  r;wÞX

r;C
pðC; rÞlog pðC  j  rÞ

pðCÞ

=
hlog  pðC  j  rÞ− log  qðC  j  r;wÞisamples of ðr;CÞ

hlog  pðC  j  rÞ− log  pðCÞisamples of ðr;CÞ
:

Note that this number can be greater than 1.

Visualization of Network Performance. To appreciate the ability of
the QDN network to approximate a highly nonlinear decision

surface, we plotted the optimal log likelihood ratio d as a
function of the input quantities a · r and b · r (Fig. S3A, surface),
along with the log likelihood ratios obtained from the QDN
network. The plane at d = 0 separates the network categori-
zation decisions well, showing that the network makes the same
decisions as the Bayesian observer. More importantly, the
network decision variable follows the optimal decision variable
closely, despite its highly nonlinear shape, even at low values of
precision (a · r < 1 deg−2, corresponding to a sensory un-
certainty of more than 1°). This similarity shows that the net-
work does not only make near-optimal categorization decisions
(and thus adjust the decision boundary on every trial based on
sensory uncertainty), but also correctly computes decision
confidence (absolute value of d), regardless of the quality of
the input.
Fig. S3B shows the pattern of weights learned by the QDN

network. These weights are multiplied by the basis functions cor-
responding to all possible products of activities of two input
neurons (shown in Fig. S3C for three values of orientation).
Positive (negative) weights indicate that activity of the corre-
sponding basis functions contributes to evidence for category 1
(2). The observed pattern makes intuitive sense: category 1 pop-
ulation activity tends to be more symmetric around zero than
category 2 activity; therefore, simultaneously high activity on both
sides of zero is evidence for category 1, whereas high activity in
a subpopulation with preferred stimuli away from zero is
a telltale sign of category 2. The basis function activity patterns
in Fig. 6C would lead to categorization decisions 2, 1, and
2, respectively.
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Fig. S1. As in Fig. 2, but for the human control experiment (central orientation 45° clockwise with respect to vertical).
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Fig. S2. As in Fig. 3, but for monkey A.
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Fig. S3. Properties of the divisive normalization network. (A) The surface represent the optimal log likelihood ratio, d, as a function of a · r = 1/σ2 and b · r = x/
σ2. Variations on the a·r-axis reflect changes in gain (or contrast), and variations on the b · r-axis can be interpreted as changes in the stimulus measurement.
The d = 0 plane (gray) separates the optimal Category 1 and 2 reports. Dots represent the QDN network log likelihood ratios, ΔH · z, for different com-
binations of gain and orientation. Patches of same-colored dots along the a·r-axis correspond to same-gain trials. Cool colors represent network reports of
Category 1 and warm colors correspond to network reports of Category 2. The QDN network not only provides correct categorizations, but also a close
approximation to the optimal log likelihoods. (B) Quadratic weights in the trained QDN network. Negative values are in blue, positive ones in red. (C) Average
basis function activity in the QDN network for orientations s=−15°, s = 0°, s = 15°. Each entry in the matrix represents a quadratic basis function obtained by
multiplying the spike counts of two input neurons. Zeros are in blue, the highest values in red. The inner product of the weights in (b) with the s=−15° and s =
15° activity yields a negative log likelihood ratio (evidence for Category 2), while with the s = 0° activity it results in a positive log likelihood ratio (evidence
for Category 1).

Table S1. Decision rules and parameter sets of all models

Model Decision rule jxj<k(σ), with k(σ)=. . . Parameters

Probabilistic computation
Opt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
σ2 + σ21

��
σ2 + σ22

��
σ22 − σ21

�−1
log

σ2 + σ22
σ2 + σ21

r
   α, β, γ, λ

Opt-P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
σ2 + σ21

��
σ2 + σ22

��
σ22 − σ21

�−1�
log

σ2 + σ22
σ2 + σ21

+ 2 log p1
1−p1

�r
   α, β, γ, λ, p1

Lin-σ k0
�
1+ σ

σp

�
α, β, γ, λ, k0, σp

Quad-σ k0
�
1+ σ2

σ2p

�
α, β, γ, λ, k0, σp

Nonprobabilistic computation
Fixed Constant k0 α, β, γ, λ, k0
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Table S2. Parameter estimates and ranges

Model Parameter Range Humans main Humans control Monkey A Monkey L

Opt α (0,50] 10.2 ± 1.0 14.3 ± 2.6 32.3 8.11
β (0,8] 2.32 ± 0.12 3.14 ± 0.33 6.79 2.87
γ (0,30] 3.20 ± 0.67 11.5 ± 3.0 9.91 18.2
λ (0,0.5] 0.108 ± 0.031 0.125 ± 0.065 0.019 0.051

Opt-P α (0,50] 9.2 ± 1.5 11.4 ± 3.7 34.5 13.3
β (0,8] 2.22 ± 0.26 2.62 ± 0.56 7.97 4.46
γ (0,30] 2.80 ± 0.27 9.8 ± 1.3 8.29 17.1
λ (0,0.5] 0.095 ± 0.026 0.054 ± 0.018 0.044 0.068
p1 [0.25, 0.75] 0.501 ± 0.024 0.514 ± 0.036 0.531 0.514

Lin-σ α (0,50] 8.6 ± 1.5 11.4 ± 3.4 25.9 11.9
β (0,8] 2.11 ± 0.13 2.59 ± 0.38 4.07 3.69
γ (0,30] 3.47 ± 0.43 10.8 ± 1.5 9.27 18.2
λ (0,0.5] 0.070 ± 0.024 0.063 ± 0.030 0.032 0.050
k0 (0,15] 3.14 ± 0.46 4.7 ± 1.0 0.440 0.614
σp (0,50] 3.29 ± 0.67 16.4 ± 7.2 0.213 0.352

Quad-σ α (0,50] 7.1 ± 1.8 9.9 ± 3.4 26.0 3.20
β (0,8] 1.78 ± 0.17 2.40 ± 0.41 4.21 1.66
γ (0,30] 2.65 ± 0.37 10.2 ± 1.4 8.73 17.2
λ (0,0.5] 0.078 ± 0.025 0.064 ± 0.032 0.037 0.047
k0 (0,15] 4.94 ± 0.32 6.78 ± 0.41 5.10 5.55
σp (0,50] 6.37 ± 0.68 15.4 ± 2.7 5.17 6.42

Fixed α (0,50] 21.3 ± 6.5 12.4 ± 7.3 7.79 9.61
β (0,8] 5.3 ± 3.0 2.02 ± 0.69 0.98 1.53
γ (0,30] 5.47 ± 0.81 8.5 ± 2.4 7.06 18.2
λ (0,0.5] 0.120 ± 0.038 0.109 ± 0.038 0.081 0.070
k0 (0,50] 6.42 ± 0.32 8.13 ± 0.66 7.23 8.35

Disclaimer: The meaningfulness of parameter estimates depends on the goodness of fit of the model.

Table S3. Model comparison using AIC for main experiment

Numbers are AIC multiplied by −0.5 for every model and every subject. Shaded in green are the models whose values fall within
log(30) of the value of the best model. The Fixed model is never among them. DIFF, difference between the Fixed model and the best
probabilistic model.
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Table S5. Model comparison using AIC for control experiment

Subject Opt Opt-P Lin-σ Quad-σ Fixed DIFF

Human 1

Human 2

Human 3

Human 4

Human 5

Human 6

−1,211.1

−1,089.2

−1,734.9

−1,602.8

−1,149.8

−1,176.1

−1,165.6

−961.1

−1,689.6

−1,554.9

−1,146.5

−1,111.8

−1,164.5

−960.7

−1,670.0

−1,547.5

−1,101.5

−1,113.0

−1,166.1

−961.7

−1,668.8

−1,546.8

−1,099.4

−1,100.0

−1,170.4

−1,016.5

−1,675.9

−1,559.4

−1,101.1

−1,273.0

−5.9

−55.9

−7.0

−12.6

−1.7

−173.0

See Table S3 for description.

Table S4. Model comparison using log marginal likelihood for control experiment

Subject Opt Opt-P Lin-σ Quad-σ Fixed DIFF

Human 1

Human 2

Human 3

Human 4

Human 5

Human 6

−1,216.8

−1,093.6

−1,738.4

−1,607.9

−1,156.4

−1,184.2

−1,175.4

−968.1

−1,701.7

−1,565.3

−1,156.0

−1,120.4

−1,173.5

−970.5

−1,678.6

−1,558.2

−1,111.0

−1,128.9

−1,175.7

−972.4

−1,678.8

−1,557.5

−1,110.6

−1,113.9

−1,179.1

−1,021.4

−1,685.7

−1,568.5

−1,112.6

−1,292.2

−5.7

−53.3

−7.1

−11.0

−1.9

−178.2

See Table 1 for description.
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