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Dr. Krešimir Josić (Committee Chair)
Department of Mathematics, University of Houston

Dr. Matthew Nicol
Department of Mathematics, University of Houston

Dr. Ilya Timofeyev
Department of Mathematics, University of Houston

Dr. Wei Ji Ma
Center for Neural Science and
Department of Psychology, New York University

ii



Dean, College of Natural Sciences and Mathematics

iii



Acknowledgements

I owe my deepest gratitude and intellectual debt to my advisor, Dr. Krešimir
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Abstract

Our brains process sensory information to infer the state of the world. How-

ever, the input from our senses is noisy, which may lead to errors in perceptual

judgements. A number of theoretical studies have modeled perception as a pro-

cess of probabilistic inference which involves making decisions based on uncer-

tain evidence. Bayesian optimality is a general principle of probabilistic infer-

ence that has been successfully used to build quantitative models of perception.

In addition, several experimental studies show that human behavior is close to

Bayes-optimal, in the sense that humans make best possible decisions given the

uncertain sensory input on various visual perceptual tasks such as visual search,

sameness judgement, and change detection. However, the impact of structured

stimuli on decision-making remains largely unexplored. Moreover, the sensory

measurements can themselves be strongly correlated to produce a structured rep-

resentation of the stimulus input. These measurement correlations can interact

with the structure of the external input in many possible ways, and should not be

considered in isolation.

In this work, we focus on visual search task to examine how visual percep-

tion is affected by structured input. We also theoretically analyze the impact of

measurement correlations on the decisions of an ideal observer. We analyze the

responses of subjects on a target detection experiment where the stimulus orienta-

tions were generated with varying strength of correlations across different experi-

mental sessions. We fit several models to the experimental data using maximum-

likelihood parameter estimation. We use rigorous model selection to determine
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how human observers take into account stimulus correlations in detecting a tar-

get. We subsequently describe how the relation between measurement, and stim-

ulus correlations effects the performance of an ideal Bayesian observer in a family

of target detection tasks.
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1.1 Bayesian modeling of a perceptual task - defining the generative
model, and deriving the inference process. (A) The generative
model. The first step in Bayesian modeling is to define the gen-
erative model. This figure outlines the graphical representation of
the generative model we will be using throughout the dissertation.
The nodes represent the variables involved in the task, and arrows
determine the influence of one node on another. This influence is
mathematically described in terms of conditional probabilities. The
observer infers the (hidden) state of the world, W from the stim-
ulus, s presented in the task by making a measurement, x of the
stimulus. (B) Inference process. The second step in Bayesian mod-
eling is to derive the inference process of an observer. That is, to
understand the mathematical process by which the observer infers
W based on the measurement, x. This step involves inverting the
generative model, and marginalizing over intermediate variable, s
to compute a decision criterion, and making a choice, Ŵ about the
state of the world. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

xvi



LIST OF FIGURES

1.2 The process of marginalization in Bayesian modeling. The gen-
erative model usually contains auxiliary variables that are not of
primary interest, but they may have necessary information about
the state of the world, W. Here the stimulus, s is an intermediate
variable, but it links the world state variable of interest with the
measurement, x. Marginalization is a process to deal with such an-
cillary variables to obtain the desired expression for the likelihood
or posterior probability of the world state variable of interest. It
involves averaging or integrating over the possible values of the
ancillary variable, and is very common in Bayesian modeling. . . . 19

1.3 Diagram of the steps involved in Bayesian modeling of a percep-
tual task. The figure presents the schematic of a Bayesian inference
process to model a perceptual task. We will follow this plan for all
the tasks discussed in the dissertation. The first step of specifying
the generative model involves describing the probability distribu-
tions to understand how sensory data is generated from the state of
the world. The observer makes an estimate of the world state based
on the sensory measurement on each trial of the task. This consti-
tutes the second step of deriving the inference process in a Bayesian
model. The estimate of the observer varies across trials in response
to a fixed stimulus, and follows a distribution. In the final step of
Bayesian modeling of the task, this estimate distribution is computed. 20
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1.4 Bayesian modeling of a simple target detection task with two
stimuli. (A) The generative model. The binary variable, T de-
scribes the target presence in a trial and determines the structure of
the display. The two stimuli, s1, and s2 are chosen conditioned on T.
When T = 1, one of the stimuli is a target with a vertical orientation,
while the orientation of the other stimulus is chosen randomly from
a normal distribution. The observer makes noisy and independent
measurements, x1, and x2 of the two stimulus. (B) The inference
process. The observer combines the two measurements to compute
a decision variable, d(x1, x2), and infers an estimate T̂ of the world
state variable, T. The variable d(x1, x2) is a log posterior ratio of the
probability of reporting ”target present”, and ”target absent” given
the observer’s measurements. If d > 0, the observer reports tar-
get is present, and absent otherwise. (C) Example displays in the
task. Since there are only two stimuli, and one target, three types
of visual displays can be presented to the observer. In the first two
displays, the target is present to the left and right of the cross in
the center. When there is no target, both stimuli are distractors and
have randomly chosen orientations. The bottom display illustrates
such an example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Performance of an observer in a simple target detection exam-
ple based on different models. The performance of an observer as
a function of the standard deviation of the distractor orientations,
σs based on different models. The optimal model has the maxi-
mum performance at all values of σs than other threshold models.
A lower performance is observed at low standard deviations for
all models since it becomes to difficult to detect a target on the task
among distractors that have relatively similar orientations to that of
the target. As the standard deviation of the distractor orientations
increases, the task becomes relatively easier, and the performance
increases in the case of all models. The model with high thresh-
old parameter, θ predicts a similar performance of the observer as
in the optimal model. This indicates that it is difficult to choose a
model that is most consistent to describe the observer’s behavior. . 31
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2.1 Statistical structure of relevant task variables in the optimal-observer
model for a target detection task with stimulus correlations. (A)
Generative model. The nodes represent the variables in the task,
and arrows indicate conditional dependencies between them. The
binary variable, T represents target presence for T = 1, and ab-
sent when T = 0. The standard deviation, σs, and the pairwise
correlation coefficient, ρs determine the structure of the stimulus,
s = (s1, s2, · · · , sN) in the task. An observer makes a measurement,
xi, of each presented stimulus si. These measurements are assumed
to be noisy and independent between locations. (B) Inference pro-
cess. The optimal observer infers T by ”inverting” the generative
model. The observer computes a decision variable, d(x) based on
the measurements, x, and it is given by the log-posterior ratio be-
tween the two possibilities, log (p(T = 1|x)/p(T = 0|x)). The sign
of d(x) gives the optimal estimate of T, and it is denoted by T̂. . . . 44

2.2 Target detection experiment procedure. (A) Gabor filter. Subjects
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Chapter 1
Introduction

Our decisions are based on sensory measurements, and prior knowledge of the

surroundings. The physical observations made by our eyes, ears, skin, and other

sensory organs are transmitted to the brain. The brain integrates, and interprets

this information to draw inferences about the state of the world.

However, our sensory observations are typically incomplete, and imperfect.

They may not always reflect the true state of the world. Noisy, and imprecise

measurements can be difficult to interpret, and may lead to incorrect inferences.

Thus, the question arises: how does the brain infer the state of the world from the

inadequate, and uncertain sensory observations? Theoretical neuroscientists have

hypothesized that our brain performs specific probabilistic computations to pro-

cess the partially informative observations, and makes an inference about the state

of the world [65, 76, 150, 114, 86, 89, 96, 78] . Thus, perception can be thought of as

a form of probabilistic inference [145, 61, 32]. The results of several experimental
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studies indicate that the brain interprets sensory information probabilistically to

make the best possible guess about the state of the world [40, 64, 10, 79, 80, 50,

51, 90, 142, 94, 71, 119]. These studies suggest that the brain computes the proba-

bility of many interpretations, and chooses the one with that is most likely. Such

a strategy of framing the best possible perceptual inference is known as optimal

probabilistic inference or Bayesian inference. The Bayesian theory of perception is

based on the assumption that the brain finds the option that has the maximum

probability of being correct given incomplete, and imperfect sensory information.

Earlier studies provide concrete evidence that humans, and other animals per-

form probabilistic inference in a number of idealized situations. However, it is not

always clear how these results translate to more realistic situations. In general, we

can expect that Bayesian models describing human behavior can be fairly com-

plex, and may require extensive, and elaborate analytic computations. Often our

observation time is short, and we need to make decisions in a short time. Further,

most of our decisions involve processing of information from multiple sources.

Given the constraints of biologically feasible computations, does our brain really

make the best possible use of the information? If not, does it use some approx-

imate strategies - and if so, when do such strategies fail? What are the possible

models that best describe the computations performed by the brain?

To examine these questions, we study human behavior in an experimental set-

ting (Chapter 2). The purpose of this study is to determine whether humans be-

have optimally in a fairly difficult perceptual task. We develop the theory for an
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optimal Bayesian observer (Section 2.2), and provide several alternative subop-

timal models (Chapter 4) that could possibly explain the observer’s responses.

These models encompass a range of assumptions about the observer’s behavior.

We compare these models (Chapter 5) using Bayesian, and Akaike model compar-

isons (described in Chapter 3) to find the model that is most consistent with the

experimental data.

Further, we theoretically analyze the performance of an ideal observer on a

family of target detection tasks (Chapters 6 and 7). We present our analysis under

certain assumptions about the parameters that determine the external structure of

the task, and those that govern the structure of observer’s measurements.

In this chapter, we give an overview of the key concepts of Bayesian infer-

ence. We begin by describing the different components of Bayes’ rule, and how

they can be interpreted in a perceptual task. We then describe the fundamentals

of Bayesian modeling, and their applications to psychophysical studies. Further,

we provide the detailed explanation of Bayesian modeling using a simple target

detection example. We conclude with a summary of the work presented in subse-

quent chapters of the dissertation.
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1.1. PERCEPTION AS BAYESIAN INFERENCE

1.1 Perception as Bayesian inference

Several experimental studies have provided evidence for Bayesian inference in

perception [50, 40, 64, 80, 10, 79, 51, 90, 142, 95, 71, 141]. These studies also sug-

gest that humans are capable of optimally integrating the available information.

For instance, the experiments performed by Ernst and Banks [40] have provided

an evidence that human observers can optimally combine visual, and haptic in-

formation to make a decision about the height of a raised object. More recently,

several studies have established that humans are near optimal in finding a target

among distractors [90, 94, 95]. The Bayesian framework presented in [74] indi-

cates that humans not only integrate information based on the content present in

the stimuli, but also based on the relevance of the task. These, and many other

similar studies are designed to investigate whether human behavior can be de-

scribed in probabilistic terms.

Probabilistic computations can be helpful in routine life activities. For exam-

ple, we try to predict the possibility of rain on a cloudy day based on weather con-

ditions. We use information of ongoing vehicle, and pedestrian traffic to make a

decision about crossing a busy road. These activities require us to integrate differ-

ent sensory information, and make an informed decision. Generally, there is more

than one possible choice or decision. Evidence suggests that we assign probability

to the different options, and base our decisions on them [79, 40, 89, 50]. According

to Bayesian theory, an optimal observer computes probabilities for each possible

event given the available information, and makes a decision based on the most
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1.1. PERCEPTION AS BAYESIAN INFERENCE

probable state of the world. The theory relies on the assumption that the observer

achieves this using Bayes’ computation [12, 84].

1.1.1 Bayes’ theorem

In the Bayesian framework, Bayes’ theorem is used to compute the subjective be-

lief about the state of the world based on accumulated evidence. The theorem

depends on the computation of conditional probabilities. Conditional probabilities

reflect the directional dependence between two events. For example, if A corre-

sponds to the event of rain on a particular day, and B to the presence of clouds

in the sky, then P(A|B) indicates the probability that it will rain given a cloudy

sky. We note that in general, P(A|B) 6= P(B|A), and the two probabilities have

different interpretations.

The Bayesian theory relies on the assumption that the brain combines the sen-

sory measurements with our prior belief of the world via Bayes’ formula,

P(world state|data) =
P(data|world state)P(world state)

P(data)

=
P(data|world state)P(world state)

Total states

∑
k

P(data|kthworld state)P(kthworld state)

. (1.1)

According to the Bayesian model of perception, we infer the probability of the

world state given our sensory information, P(world state|data). We do so by us-

ing the probability of making a sensory measurement given a particular state of

the world, P(data|world state). Importantly, we assume that this second proba-

bility is known to the observer, and is part of their of perceptions model thereof.
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1.2. ELEMENTS OF BAYES’ THEOREM

The denominator in Eq. (1.1) is a normalization constant, and ensures that the

sum of the posterior probabilities of different world states is one. Frequently, we

are interested in the expression in the numerator which establishes a direct pro-

portional relation of the inferred probability to the sensory measurements, and

the associated prior belief. Thus, we often consider the following unnormalized

version of Bayes’ equation,

P(world state|data) ∝ P(data|world state)P(world state). (1.2)

We note that given a particular observation, here ”world state” is the variable,

and ”data” is a constant. This formula combines our prior belief with available

evidence to infer the state of the world. In the following section, we provide an

intuitive interpretation of each term in the Bayes’ formula. We follow the ideas,

and examples presented in [89].

1.2 Elements of Bayes’ theorem

The Bayes’ theorem consists of the following components: the likelihood func-

tion, the prior probability distribution, and the posterior probability distribution

function.

The likelihood Function

Formally, P(data|world state) is written as L(world state|data), and is known as

the likelihood function over possible world states given the sensory data. We note
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1.2. ELEMENTS OF BAYES’ THEOREM

that this is a function of the world state. It is not a probability distribution over

the world states. Instead, it represents the likelihood of each state of the world

given available data, and summarizes the degree to which the sensory data favor

one world state interpretation over the other. The accuracy of this selection is

dependent on the quality of the observation.

The shape and nature of the likelihood function depend on the quality of the

sensory input. The function has a clearly defined peak in case of high quality

sensory input. It is usually flat, or has multiple peaks when the information is in-

adequate or ambiguous. As an example, consider that we are walking on a street

on a foggy day. Our visual information about incoming vehicle will be less accu-

rate, and informative given unclear visible conditions. However, the sound, and

moving vehicle noise can be informative in such a case. Therefore, our likelihood

function here will be concentrated around the world state favored by our auditory

sensory information rather than visual one.

In principle, there are many factors that could affect the likelihood function.

Weather, distance, and other physical conditions can influence the sensory mea-

surements, and hence the shape of the likelihood function. Moreover, the quality

of sensory measurement varies across observers. Visual, auditory, and other sen-

sory capabilities can impact the quality of an observer’s sensory measurement,

and hence the likelihood function.
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1.2. ELEMENTS OF BAYES’ THEOREM

The prior probability distribution

Prior knowledge about the world, P(world state) has significant impact on our

inference process. It represents our beliefs or expectations about the world, and

determines the probability of each hypothesized state. Similar to the likelihood

function, prior probability varies over hypothesized world states. Prior knowl-

edge can evolve over time as we gather new information. Prior belief is subjective

as it depends on the observer’s experiences. Hence, each observer may have a

different prior distribution.

In our previous example, we can use our prior knowledge about the street,

and traffic conditions there while walking under unclear visible conditions. If the

street has a curve or possible diversions, we can combine the prior information

about such conditions with our current sensory observation while walking.

The posterior probability distribution

Decisions, and inferences are based on the posterior probability of the world state,

denoted by P(world state|data). The posterior probability distribution function rep-

resents the probability of each possible world state given our observational data,

and prior beliefs. To compute this probability, we use the likelihood function de-

scribed above. Since the posterior probability is a combination of the likelihood

function, and prior information, the nature of the posterior distribution depends

on these two factors. A sharp, and peaked likelihood function results in a peaked,

and informative posterior probability distribution. On the other hand, in case of

8
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flat likelihoods, posterior distribution resembles the prior distribution function,

and the observer does not gain any new information from sensory data.

Continuing with our example of walking on a street under foggy conditions,

the likelihood function of a car approaching us could have a broader shape since

our visual information is less informative. In such a case, a prior information

about the traffic conditions on the street could be helpful in making a decision.

1.3 Bayesian modeling of perception

In this section, we discuss in detail the mathematical modeling of perception using

Bayesian framework. Bayesian methods have been used to describe the process

of perceptual inference, and explain decisions of humans, and animals on sim-

ple tasks [40, 90, 142, 64, 10, 79, 80]. Bayesian theory assumes that humans use

Bayesian inference to update their belief about the state of the world. They do

so by updating the posterior probability based on new sensory information. Also,

this inference process is continuous, and iterative since we incorporate our current

state belief as prior information in making a new decision. There are numerous

examples of routine life activities that can be explained using Bayesian inference.

We discuss some of them below.
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1.3. BAYESIAN MODELING OF PERCEPTION

1.3.1 Visual and auditory perception

Visual and auditory perception are commonly studied examples of Bayesian in-

ference. Recent experimental studies have focused on understanding visual per-

ception through Bayesian modeling [40, 10, 119, 74, 135, 90, 142, 95, 34, 38, 39, 107,

7, 143]. These studies examine human behavior on simple visual tasks. We discuss

some examples described further in [89].

Visual perception is of utmost importance to humans. We process multiple

pieces of information contained in visual scenes to make decisions about the state

of the world. One example is recognizing a friend in a crowd. If an observer is

trying to find a friend in a large crowd from a distance, the visual information

will have some degree of uncertainty. An ideal observer would compute a like-

lihood that each person in the crowd is the friend. As the observer gets closer to

the friend, the quality of the sensory data improves, and the likelihood function

gets more peaked around the friend. Further, the observer uses some prior knowl-

edge about the friend - for example, if the friend likes to wear black, then people

wearing black will be assigned larger prior probability.

Our brain also handles tremendous amount of auditory information every day.

We are exposed to numerous types of sounds, noise, and music in our environ-

ment, such as, music play, phone ring, alarm sound, vehicle horn, human speech,

etc. Similar to visual perception, our auditory perception can be described as a

process of Bayesian inference. For instance, when a song is played, we may try to

guess its name. An ideal observer would compute a likelihood function over all
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known songs. The observer would also use prior information about the songs, or

the type of music played by a radio station. In that case, the posterior distribution

will be concentrated on frequently played songs.

These examples show how Bayesian computations could explain decisions in

our daily routines. We now discuss how to design experiments to investigate

whether human observers do employ Bayesian computations, and how we model

the collected data on the experiment. Here we give a brief description of psy-

chophysical tasks that are extensively used to study perceptual behavior. We also

illustrate the mathematical steps involved in the Bayesian modeling of such per-

ceptual tasks.

1.3.2 Psychophysical studies

Psychophysical studies are used to analyze how animals process information from

the physical world. These tasks are frequently designed to understand how ani-

mals integrate information contained in the stimuli to make a decision. The diffi-

culty of these tasks usually depends on the characteristics of the presented stimuli.

For example, an observer may be asked to discriminate whether a line is to the left

or right of vertical. If the line is really close to vertical, the task can be difficult.

Observers are usually required to perform many iterations (trials) of the task.

The trials can differ from each other if the characteristics of the stimuli are ran-

domly chosen on each trial. The recorded responses of the observer can then be

analyzed using Bayesian models. A wide range of psychophysical experiments
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have been analyzed using Bayesian inference approach [79, 80, 10, 40, 141, 50, 51,

94, 74, 135, 90, 64, 142, 71, 95] .

Bayesian modeling of perception consists of the following three steps:

1. describing the generative model,

2. specifying the inference process, and

3. computing the observer’s estimate distributions.

These steps are the structural components of any perceptual Bayesian model, and

characterize the behavior of a model observer or a subject on the task. Below, we

discuss each step in detail.

1.3.3 Step 1: the generative model

The generative model is a probabilistic model that describes the generation of the

observer’s sensory data. It mathematically describes the complete structure of the

task. It is a forward directed graph, with nodes representing the random variables

characterized in the design of the task, and the directed edges indicate the depen-

dencies between variables. Each node has an associated probability distribution,

and the directed edge determines the influence of one variable on another, which

is expressed in terms of conditional probabilities. At least one node in the model cor-

responds to the variable of interest describing the state of the world, and another

variable is the observer’s sensory data. The observer infers the latent variable of

the world state from the stimulus shown in the task.

12



1.3. BAYESIAN MODELING OF PERCEPTION

We denote the feature, or characteristic of a stimulus by s. The feature is some-

times itself referred to as the stimulus. Depending on the problem, the variable

of interest, which we denote by W, could be different from the stimulus, s itself.

It is frequently assumed that the observer makes a noisy measurement, x, of the

presented stimulus. The measurement is also sometimes referred as the internal

representation or the observation of the stimulus. Thus, the generative model con-

tains the variable of interest (if different from the stimulus), the stimulus, and its

measurement. Figure 1.1(A) shows the graphical representation of the generative

model, and the probability distributions associated with each node.

1.3.3.1 Distributions in the generative model

The probability distributions in the generative model can be determined from the

experimental design of the task. The world state distribution or prior distribution,

denoted by p(W) represents the distribution of probabilities over the world states

in absence of any sensory information. This distribution could either be discrete

or continuous depending on the associated random variable. The stimulus dis-

tribution is a function of the world state variable, W, and is denoted by p(s|W).

This distribution is completely specified by the design of the experiment. When a

stimulus itself represents the state of the world, we have p(s|W) = p(s).

Measurements or sensory data are usually noisy. This noise could come from

many sources: the random variability due to intrinsic stochastic processes, limi-

tations of our sensing capability, and other unknown sources. We need to make

an assumption about the noise in the generative model. Even in response to the
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p(s |W )

p(x | s)

p(W )(A) 

p(x | s)

p(W | x)

p(s |W )(B)  s

 x

  Ŵ

Figure 1.1: Bayesian modeling of a perceptual task - defining the generative
model, and deriving the inference process. (A) The generative model. The first
step in Bayesian modeling is to define the generative model. This figure outlines
the graphical representation of the generative model we will be using through-
out the dissertation. The nodes represent the variables involved in the task, and
arrows determine the influence of one node on another. This influence is mathe-
matically described in terms of conditional probabilities. The observer infers the
(hidden) state of the world, W from the stimulus, s presented in the task by mak-
ing a measurement, x of the stimulus. (B) Inference process. The second step
in Bayesian modeling is to derive the inference process of an observer. That is,
to understand the mathematical process by which the observer infers W based
on the measurement, x. This step involves inverting the generative model, and
marginalizing over intermediate variable, s to compute a decision criterion, and
making a choice, Ŵ about the state of the world.
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same stimulus, the observer’s measurements vary randomly over the course of

experimental trials. The distribution of the measurement, x given the stimulus, s,

is a conditional distribution, denoted by p(x|s). It represents the probability with

which a stimulus results in a measurement, x. Frequently, we use the Gaussian

distribution to model measurement noise,

p(x|s) = 1√
2πσ2

e−
(x−s)2

2σ2 . (1.3)

The standard deviation, σ , of the Gaussian function reflects the uncertainty or

noise in the measurement. A higher (lower) value of σ reflects the low (high)

quality of the measurement, and is associated with a wider (narrower) measure-

ment distribution. The inverse of the variance, 1
σ2 , is commonly known as the

precision, or reliability of the measurement.

1.3.3.2 Used prior distributions in the experiment

The world state distribution reflects an observer’s prior belief about the state of

the world. Subjects can make incorrect assumptions about the prior state of the

world. Given the set up of a psychophysics experiment, it might be difficult for an

observer to correctly determine the world state distribution. Subjects could use a

prior based on the experiences in natural world, but this could potentially be very

different from the experimental world state distribution. For example, subjects

could have a higher prior probability for vertically, and horizontally aligned ob-

jects based on natural experiences while the objects in an experiment could have

an equal probability for any orientation. Also, a prior of light coming from above
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would be stronger than any other direction for similar reasons. Priors based on

common experiences are more likely to have higher probability. Therefore, sen-

sible assumptions need to be made about a subject’s prior in the experiment. In

most practical cases, a flat or uniform prior is assumed that assigns equal proba-

bility to each outcome for the state of the world, that is, p(W) = constant. Such a

prior simplifies the inference computations. Alternatively, we can also determine

the subject’s prior from experimental data. This practice is commonly used in the

case of binary world state variables.

In summary, the distributions p(W), p(s|W), and p(x|s) completely define the

generative model of the task, and constitute a major component of Bayesian mod-

eling of perceptual inference.

1.3.4 Step 2: the inference or perception process

In the next step of Bayesian modeling, we specify a model to determine how an

ideal observer makes decisions. In our computations, we use certain assumptions

about the observer’s measurements (specified in the generative model). As dis-

cussed earlier, the inference process involves computation of posterior probability

distribution given the likelihood function, and the prior distribution. It essentially

involves the ”inversion” of the generative model in order to perform computation

about the world state, W given the sensory data, x. Given the posterior distribu-

tion, denoted by p(W|x), the observer makes a single estimate of the world state.
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Commonly, the observer follows the maximum-a-posteriori estimation (MAP) to ob-

tain the point estimate that has the highest posterior probability. MAP estimation

is one of the most common ways of reading out the posterior distribution as it

finds the most probable option. The prior distribution p(W), the likelihood func-

tion L(W|x) or p(x|W), and the posterior distribution p(W|x) are key components

in the inference process. Figure 1.1(B) describes a general scheme of the inference

model in the Bayesian modeling.

We can also use the likelihood function to make the best guess of the stim-

ulus by maximizing the function over hypothesized world states. This estimate

is called as the maximum-likelihood estimate (MLE) of W, and is denoted by ŴML.

Mathematically, we write

ŴML = arg max
W

L(W|x). (1.4)

1.3.4.1 Marginalization

We note that the observer is interested in determining W, and not s. Hence, the

generative model includes a variable that is not of our interest, but it provides

important information for computing the posterior distribution function. Such a

situation is dealt with the marginalization process, where the information about

the intermediate variable is averaged out. It is a commonly applied technique in a

Bayesian model, that integrates or sums the values of all such auxiliary variables

to obtain the desired probability distribution over the parameter of interest. Al-

though auxiliary variables, such as, the stimulus are not of primary interest, but
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they play a critical role in the generative model, and must be accounted for via

marginalization to obtain an accurate perception.

In the present case, we need to compute the posterior distribution p(W|x), and

not p(s|x). We can obtain it using the Bayes’ formula described in Eq. (1.2)

p(W|x) ∝ p(x|W)p(W), (1.5)

The distribution p(x|W) is not specified in our Bayesian model, instead we have

the information about the noise distribution, p(x|s). Thus, we marginalize the

information over the intermediate variable s to obtain the required distribution

p(x|W) as follows

p(x|W) =

ˆ
p(x|s, W)p(s|W)ds, if s is continuous,

= ∑
i

p(x|s = si)p(s = si|W), if s is discrete.

The above marginalization step, also shown in Figure 1.2 links the world state

variable W, to the measurement x, via the intermediate variable, the stimulus s.

We further note that the shape of the posterior distribution is preserved under

the normalization constant in Eq. (1.5). After computing the posterior distribution,

the observer then reads the maximum-a-posteriori estimate, denoted by ŴMAP, by

maximizing the posterior distribution

ŴMAP = arg max
W

p(W|x). (1.6)

The MAP estimate, ŴMAP is also the mode of the posterior distribution, and re-

flects the observer’s estimate of the world state of interest.
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Variable of 
interest, 

p(W ) p(x | s)
Sensory 

measurement, 

x

p(s |W )

Stimulus, 

sW

p(W | x) via marginalization Inference, 

Figure 1.2: The process of marginalization in Bayesian modeling. The gener-
ative model usually contains auxiliary variables that are not of primary interest,
but they may have necessary information about the state of the world, W. Here
the stimulus, s is an intermediate variable, but it links the world state variable of
interest with the measurement, x. Marginalization is a process to deal with such
ancillary variables to obtain the desired expression for the likelihood or posterior
probability of the world state variable of interest. It involves averaging or inte-
grating over the possible values of the ancillary variable, and is very common in
Bayesian modeling.

1.3.5 Step 3: the observer’s estimate distribution

The observer’s measurement x heavily depends on the sensory noise. Even under

same experimental conditions, the measurements vary across trials due to differ-

ent sensory noise. Therefore, x is a random variable across experimental trials. As

a result, the MAP estimate ŴMAP is also a random variable in response to a fixed

stimulus, and has a probability distribution. In the final step of Bayesian mod-

eling, we thus determine the distribution of the observer’s estimates. We note

that the mapping from measurement to MAP estimate is completely determin-

istic, and the randomness in MAP estimate is only because of variability in the

measurements from trial to trial.
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Since we only have access to the MAP estimates of the observer, we need to

compute the probability of each possible estimate in a particular experimental

condition. We can then compare the predictions of the model with the observer’s

behavior. Thus, we compute the distribution of MAP estimates given a fixed stim-

ulus, say s = strue. This is usually denoted by p(ŴMAP|strue), and predicts how

likely the estimate is given the fixed stimulus strue.

To summarize, the Bayesian modeling of a perceptual task is based on the three

steps of specifying the generative model, deriving the inference process for the

observer, and evaluating the distribution of MAP estimates over many trials. This

mathematical tool of quantifying the perceptual behavior is schematically shown

in Figure 1.3.

True world 
state, W 

Sensory data, x   Estimated 
world state,  Ŵ

Generative  
model 

Inference 

Figure 1.3: Diagram of the steps involved in Bayesian modeling of a perceptual
task. The figure presents the schematic of a Bayesian inference process to model
a perceptual task. We will follow this plan for all the tasks discussed in the dis-
sertation. The first step of specifying the generative model involves describing
the probability distributions to understand how sensory data is generated from
the state of the world. The observer makes an estimate of the world state based
on the sensory measurement on each trial of the task. This constitutes the second
step of deriving the inference process in a Bayesian model. The estimate of the
observer varies across trials in response to a fixed stimulus, and follows a distri-
bution. In the final step of Bayesian modeling of the task, this estimate distribution
is computed.

So far, we have described the general process of modeling a perceptual task
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using a Bayesian approach. In the dissertation, we use Bayesian models to under-

stand visual perceptual inference. In the following section, we discuss a particular

group of vision based perceptual tasks, known as visual search tasks. Specifically,

we elaborate the process of Bayesian modeling in a simple example of such a task,

and discuss the possible questions that need to be explored further. We will ex-

amine those questions in extensive details in subsequent chapters.

1.4 Visual search

Visual search is a common example of vision based perceptual task. This involves

an active scan of multiple objects for a particular object or feature of interest, re-

ferred as the target among other objects or features, the distractors. Finding a friend

in a large crowd or finding a particular set of keys among other similar items or

locating an insect hidden in the corner are some examples of visual search from

our everyday life. These examples also indicate the high importance of perform-

ing visual search in our normal life. But, doing psychophysics with natural scenes

is challenging. The natural scenes are high dimensional, and highly structured,

they are so rich in content that a single mathematical model may not be plausible

to capture all the characteristics of a scene. Moreover, the noise in natural scenes is

largely unknown, and perhaps has a complex correlation structure that is harder

to capture with simple probability distributions. Further, a distinct object classifi-

cation may be unavailable in case of natural scenes. Therefore, for the purposes of

psychophysical studies conducted in the laboratory, quite simplified visual search

21



1.4. VISUAL SEARCH

tasks are considered. These psychophysical tasks usually contain some highly dis-

tinct objects that only differ along a small number of stimulus dimensions. Clearly,

these simple and fabricated tasks do not replicate natural scenes, however, they

serve as a practical tool for understanding the perceptual inference computation

performed by the brain.

The ability to consciously locate an object (target) among a complex array of

stimuli (distractors) has been extensively studied in psychophysics over many

years [104, 34, 139, 40, 38, 8, 39, 107, 108, 7, 143, 90, 94, 95]. These studies also

validate the modeling of our perceptual behavior using Bayesian approach.

1.4.1 An example of a target detection task

We now discuss a specific example of visual search task, namely, a target detection

task. Our example is similar to the one discussed by Ma et al. in [89]. We consider

a simple task with only two stimuli. The observer needs to report whether a target

stimulus is present in the scene. Stimulus orientation is the task-relevant feature.

We elaborate the mathematical steps involved in the Bayesian modeling of the

task.
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1.4.1.1 Step 1: Generative model

The observer is presented with two stimuli on a visual display. These stimuli

could either be bars or gratings characterized by their orientation, or ellipses char-

acterized by their orientation or eccentricity. A target is a stimulus with a particu-

lar characteristic. We assume that a target is a stimulus with vertical orientation,

and we denote its orientation by sT = 0, and measure stimulus orientation rela-

tive that of a target. A distractor is defined as the stimulus having a non-target

orientation. The observer reports whether a target is present in the visual display

on each trial. We denote the target presence by a binary variable, T, so that T = 1,

if a target is present, and T = 0 if absent. The target is present with a probability

of 0.5 in each trial, and it can be present at either of the two locations. Thus, the

location of the target is unknown to the observer, and hence, the observer needs

to take this into account by marginalizing over both possible target locations. Fig-

ure 1.4(C) shows the three possible displays in the task. We also represent the

target presence at location, i, by a binary variable, Ti, and further define the spa-

tial location vector as T = (T1, T2). We denote the stimulus orientation of the ith

stimulus by si.

When the target is absent, i.e., T = 0, each stimulus orientation is drawn from

a normal distribution with mean 0, and standard deviation σs, and we write (see

notation in Appendix A)

si|T = 0 ∼ N (0,σ2
s ). (1.7)

We denote the probability density function of the normal distributionN (0,σ2
s ) by

23



1.4. VISUAL SEARCH

f (si; 0,σ2
s ), where

f (si; 0,σ2
s ) =

1√
2πσ2

s
exp

(
−

s2
i

2σ2
s

)
.

The assumption of the Gaussian noise is reasonable since the stimuli are not placed

too close to each other on the screen. When T = 1, one of the stimuli is chosen

as the target with uniform probability. If the target is present at location, j, for

j ∈ {1, 2}, then s j = sT = 0, and we choose the distractor orientation according

to Eq. (1.7). We assume that the observer makes independent (between locations),

and noisy measurement of the stimulus, si, denoted by xi, which is drawn from

the following normal distribution

xi|si ∼ N (si,σ2
i ). (1.8)

The noise, σi determines the uncertainty in the ith measurement of the stimulus,

si, and is known to the observer. The generative model of the task is illustrated in

Figure 1.4(A).

1.4.1.2 Step 2: Inference

The optimal Bayesian observer infers target presence based on the stimulus mea-

surements, and using the information about the generative model. The observer

computes the log posterior ratio (LPR) of target presence from the measurements,

x1, and x2 as

d(x1, x2) = log
p(T = 1|x1, x2)

p(T = 0|x1, x2)
, (1.9)

and reports ”target present” if d > 0, and ”target absent” otherwise. The variable,

d is known as the Bayesian decision variable. Using the Bayes’ formula, we rewrite
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Figure 1.4: Bayesian modeling of a simple target detection task with two stim-
uli. (A) The generative model. The binary variable, T describes the target pres-
ence in a trial and determines the structure of the display. The two stimuli, s1, and
s2 are chosen conditioned on T. When T = 1, one of the stimuli is a target with
a vertical orientation, while the orientation of the other stimulus is chosen ran-
domly from a normal distribution. The observer makes noisy and independent
measurements, x1, and x2 of the two stimulus. (B) The inference process. The ob-
server combines the two measurements to compute a decision variable, d(x1, x2),
and infers an estimate T̂ of the world state variable, T. The variable d(x1, x2) is a
log posterior ratio of the probability of reporting ”target present”, and ”target ab-
sent” given the observer’s measurements. If d > 0, the observer reports target is
present, and absent otherwise. (C) Example displays in the task. Since there are
only two stimuli, and one target, three types of visual displays can be presented
to the observer. In the first two displays, the target is present to the left and right
of the cross in the center. When there is no target, both stimuli are distractors
and have randomly chosen orientations. The bottom display illustrates such an
example.
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the above equation as the sum of log likelihood ratio (LLR), and log prior ratio,

d(x1, x2) = log
p(x1, x2|T = 1)
p(x1, x2|T = 0)

+ log
p(T = 1)
p(T = 0)

.

Since the target is present or absent with equal probability, we have a uniform

prior over T, and therefore,

d(x1, x2) = log
p(x1, x2|T = 1)
p(x1, x2|T = 0)

. (1.10)

We compute the numerator in Eq. (1.10) by marginalizing over the two possible

target locations, and stimuli, si in the following equations

p(x1, x2|T = 1) =
2

∑
j=1

p(x1, x2|Tj = 1, T = 1)p(Tj = 1|T = 1)

=
1
2

2

∑
i, j=1
i 6= j

p(x j|Tj = 1)p(xi|Ti = 0)

=
1
2

2

∑
i, j=1
i 6= j

ˆ
p(x j|s j)p(s j|Tj = 1)p(xi|si)p(si|Ti = 0)ds jdsi

=
1
2

2

∑
i, j=1
i 6= j

ˆ
f (x j; s j,σ2

j )δ(s j − 0) f (xi; si,σ2
i ) f (si; 0,σ2

s )ds jdsi

=
1
2

2

∑
i, j=1
i 6= j

f (x j; 0,σ2
j ) f (xi; 0,σ2

i +σ2
s ) (using Eqs. (B.1) and (B.4))

=
1
2

2

∑
i, j=1
i 6= j

1

2π
√
σ2

j (σ
2
i +σ2

s )
exp

(
−

x2
j

2σ2
j
−

x2
i

2(σ2
i +σ2

s )

)
.
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When the target is absent, both stimuli are distractors. Thus, we compute the

denominator in Eq. (1.10) as

p(x1, x2|T = 0) = p(x1|T1 = 0)p(T1 = 0|T = 0)p(x2|T2 = 0)p(T2 = 0|T = 0)

=

ˆ
p(x1|s1)p(s1|T1 = 0)p(x2|s2)p(s2|T2 = 0)ds1ds2

=

ˆ 2

∏
i=1

(
f (xi; si,σ2

i ) f (si; 0,σ2
s )dsi

)
=

2

∏
i=1

f (xi; 0,σ2
i +σ2

s ).

We now substitute the above computed individual likelihoods for target present,

and absent cases to obtain an expression for Bayesian decision variable, d:

d(x1, x2) = log
1
2

2

∑
i, j=1
i 6= j

f (x j; 0,σ2
j ) f (xi; 0,σ2

i +σ2
s )

f (x j; 0,σ2
j +σ

2
s ) f (xi; 0,σ2

i +σ2
s )

= log
1
2

2

∑
j=1

f (x j; 0,σ2
j )

f (x j; 0,σ2
j +σ

2
s )

= log
1
2

2

∑
j=1

(
σ2

j +σ
2
s

σ2
j

)1/2

exp

−
x2

j

2σ2
j︸ ︷︷ ︸

I

−
x2

j

2(σ2
j +σ

2
s )︸ ︷︷ ︸

I I

. (1.11)

The above expression gives us the decision variable on the task. An ideal Bayesian

observer performing the above described target detection task makes a decision

based on this decision variable. The decision variable, d(x1, x2) depends on the

precision of the measurement, and also on the external variability of the distractor,

σ2
s . Each exponent term in the above expression provides an evidence towards jth

stimulus being a target: (I) if the jth measurement is close to the vertical orienta-

tion, this term corresponds to an increased likelihood for the jth stimulus being
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the target, while (II) the second term decreases such a likelihood. The appropri-

ate scaling of the two measurements by inverse of the external, and internal noise

variances determine the correct likelihood for the jth stimulus being the target or

a distractor.

1.4.1.3 Step 3: MAP estimate distribution

We denote the observer’s MAP estimate of T by T̂. When d > 0, the MAP estima-

tion is to report ”target present”, and ”target absent” otherwise. The distribution

of the MAP estimate describes the behavior of the Bayesian observer across many

trials, and involves computing the probabilities that the observer will report ”tar-

get present” when the target is actually present, and when it is absent. That is, we

need to compute p(T̂ = 1|T = 1), and p(T̂ = 1|T = 0). These probabilities are

also known as the hit and false-alarm rates, and are computed given a fixed set of

stimulus, s1 and s2:

p(T̂|s1, s2) =

ˆ
p(T̂|x1, x2)p(x1|s1)p(x2|s2)dx1dx2

=

ˆ
δT̂,sgn(d(x1 ,x2))

p(x1|s1)p(x2|s2)dx1dx2.

Here δ represents the Kronecker delta function. As the decision variable, d com-

puted in Eq. (1.11) is a non-linear function of x1, and x2, the above integral is

analytically intractable, and hence needs to be approximated using Monte Carlo

simulations in practice. This completes the final step in the Bayesian modeling of

the above described target detection task.
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1.4.1.4 A suboptimal model

Eq. (1.11) describes the decision variable for an optimal Bayesian observer to per-

form the task. However, it is not necessary that the observer will follow this rule.

Specifically, the observer may not be optimal in making a decision on the task,

and might use some other decision strategy to make a decision. The decision vari-

able d(x1, x2) computed in Eq. (1.11) is clearly non-linear, and implicitly depends

on other parameters that characterize the structure of the task. For instance, the

external variance of the distractor stimulus σ2
s , and the noise in making a mea-

surement σ2
i clearly affect this variable. It is generally assumed that the observer

is aware of the internal noise with which the measurement is made, but he might

not know the external variance that determines the structure of the task. In such a

case, the observer would use an incorrect assumption about the generative model

in making a decision. In the worst case, the observer could also make a guess on

each trial without using any information about the task.

Therefore, the following questions frequently emerge in analyzing the responses

of the observer on such tasks: What model does the observer follow in making a

decision on the task? How do we infer the parameters of a model that fit the sub-

ject’s data? And in the case of multiple models, how can we compare all models

to determine the best model describing the experimental data? We will examine

these questions in great length in Chapters 3 to 5, and present detailed analysis

for a particular target detection task described in Chapter 2.

We now consider an alternative to the optimal model derived in Section 1.4.1.2.
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Let us assume that the observer is not optimal, and instead makes a decision

based on the minimum of the two measurements of the stimuli. If the mini-

mum of the measurements is below some threshold,θ, the observer reports ”target

present”, and absent otherwise. We denote the decision variable for such a model

by dmin(x1, x2), and define

dmin(x1, x2) = min(|x1|, |x2|). (1.12)

The observer compares whether dmin(x1, x2) < θ to make an estimate T̂ = 1. We

note that the observer’s decisions based on the decision variable dmin(x1, x2) of

the threshold model are suboptimal. The threshold models have been used in

many earlier studies to model subjects’ responses on psychophysical tasks [108,

143, 8, 39, 52, 90].

Figure 1.5 compares the performance of an observer as a function of the stan-

dard deviation of the stimulus distribution, σs, for the optimal, and threshold

models. Here we assume that the observer has equal precision for both measure-

ments, that is, σ2
1 = σ2

2 = σ2. We consider the performance of the observer based

on the following models: (i) optimal model, (ii) threshold model, with θ = 1
2σ ,

(iii) threshold model withθ = σ , and (iv) threshold model, withθ = 3
2σ . Thus, we

consider models where the threshold parameter,θ depends on the precision of the

observers’ measurements. We note that the performance increases for all models

as the standard deviation of distractor orientations, σs increases. This is expected

since the task becomes easier as the orientations of the distractors deviates relative

to that of the target. Also, we observe that the performance predicted by threshold

models is lower as compared to the optimal model when the threshold parameter,
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Figure 1.5: Performance of an observer in a simple target detection example
based on different models. The performance of an observer as a function of the
standard deviation of the distractor orientations, σs based on different models.
The optimal model has the maximum performance at all values of σs than other
threshold models. A lower performance is observed at low standard deviations
for all models since it becomes to difficult to detect a target on the task among
distractors that have relatively similar orientations to that of the target. As the
standard deviation of the distractor orientations increases, the task becomes rela-
tively easier, and the performance increases in the case of all models. The model
with high threshold parameter, θ predicts a similar performance of the observer
as in the optimal model. This indicates that it is difficult to choose a model that is
most consistent to describe the observer’s behavior.
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θ is small. However, for a sufficiently large threshold value (here θ = 3
2σ), the ob-

server behavior is similar to the optimal model at large value ofσs. We find that all

models closely predict the performance as that of the optimal model at low values

of standard deviation between distractors. At low values of σs, the distractors are

more likely to have orientations close to that of the target (see Eq. (1.7)). In such

a case, it will be difficult for the observer to make a decision, and will have lower

performance as predicted by both optimal, and threshold models.

Therefore, the decisions of an observer depend on the model parameters, and

the precision of the measurements. In order to understand the responses of the

observer, we need to estimate these model parameters, and also determine the

precision level of observer’s measurements. Based on the parameter estimates, we

make predictions of the observer behavior based on different plausible models.

These models can be very close in their predictions (for example, optimal, and

threshold model with θ = 3
2σ in Figure 1.5), and it may be difficult to find the best

model that is consistent with the observer’s behavior.

1.4.2 Generalizations

In general, visual search task comprises of group of tasks: target detection - deter-

mining whether a target is present or not in a scene; target localization - finding

the location of the target when the target is always present, and target discrimina-

tion or classification - classifying the target to one of the pre-defined categories. We

only focus on the target detection tasks in the dissertation, and explore different
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parameter relations in these tasks.

The target detection task described in Section 1.4.1 is an extremely simple ex-

ample of a target (or visual) search task with only two stimuli. However, in gen-

eral, we make decisions in presence of a large number of distractors. For instance,

in order to find a friend in a large crowd, we need to carefully scan each individ-

ual, and undergo an identification process. Also, the distractor orientations may

not always be independent. They could possess an unknown complex structure,

and we must account for such structures to infer correct decisions.

Several research studies have considered the visual search tasks with a reason-

ably large number of stimuli [8, 71, 41, 107, 94, 127, 39, 95, 142, 90, 141, 129]. Some

of them have focused on analyzing performance as a function of set-size [107, 8,

39, 127, 41, 128, 94, 95]. Furthermore, the experimental studies done by Ma et

al. [90, 142, 94, 95] have explored the behavior of the subjects on a search task with

two types of distractors: when all distractors have identical orientation, and when

the distractors possess different independent orientations.

In addition to the possibility of varying set size, and structural orientations

of the distractors, the task could also have multiple targets in the visual display.

Such a possibility has not been explored in scientific studies. We thus examine this

possibility with complete mathematical details in Chapter 7, and further analyze

the impact of different parameter correlations on the performance of an optimal

observer on the task. In real life, there are several examples where multiple targets

are present, and our brain needs to process the information to find at least one of

them. For instance, we may need to find a blue marker in a box of black and blue
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markers. There could be more than one blue marker present in the box among

black markers that serve as distractors.

Thus far, we have described the principles of Bayesian approach used in build-

ing perceptual models. These concepts are fundamentals for the work presented

in the dissertation. We now present the outline of the dissertation, and the main

questions examined in the following chapters.

1.5 Outline of the dissertation

The dissertation is split into two parts. Each part is based on the application of

the Bayesian approach to understand how humans make decisions.

Visual search for a single target among distractors, with a single relevant fea-

ture has been studied extensively. These studies have largely focused on two types

of distractors: distractors with identical orientations, and with independent ran-

dom orientations. Therefore, either distractors are exactly alike, or they differ from

each other across trials. In a target present trial with identical distractors, the tar-

get would be an odd-ball stimulus, and hence can be detected easily. While if the

distractors have independent orientations, there would be hardly any structure

in the scene that could possibly help the observer in finding a target. The experi-

mental studies [90, 95] showed that human decision-making behavior is consistent

with optimal Bayesian models in the case of both types of distractors. But, these

two categories of distractors represent the two extremes: from high structure in

34



1.5. OUTLINE OF THE DISSERTATION

the scene to none. However, natural scenes possess more complex structure, and

the objects in the scene can be correlated with each other in many possible ways.

Therefore, this raises the question how humans make decisions in response to

scenes with weak structures? In particular, do humans take into account the weak

correlations among objects in the scene, and do they infer near-optimal decisions

in such a case?

We examine these questions in Chapters 2 to 5. We consider a target detection

task with N stimuli, and one target. The distractors are assigned orientations

that have different amount of correlations. The varying amount of correlations

among distractor orientations allows us to introduce structure in the visual scene.

The structure of these correlations must be taken into account to make optimal

decision about target presence. In Chapter 2, we derive the mathematical theory

of the Bayes-optimal model to infer correct decisions on this task. We also perform

a psychophysical experiment based on the design of the task, and analyze the

collected human subjects’ data in Chapters 4, and 5.

We explore whether humans are optimal in inferring correct correlation strength

among distractor orientations. We test several Bayesian models that could possi-

bly explain subjects’ behavior on the experiment, and fit them to the data. The

fitting of a model requires finding the model parameters that fit to the subjects’

responses. Further, we need techniques to compare any two models to determine

the better one. We describe the maximum-likelihood parameter estimation, and

model comparison techniques in details in Chapter 3. We use these techniques

to fit the different parameters of the models explained in Chapter 4, and find the
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model that best describes our experimental data in Chapter 5.

For the purposes of our analysis in Chapters 2 and 5, we have assumed the

noise in the measurements to be independent, and normally distributed. Both the

assumptions about independence, and Gaussianity can be questioned. In particu-

lar, there is some evidence that neural correlations can be present at long distances

in visual field suggesting that sensory measurements will be correlated [36, 28, 27,

118]. However, much of the visual search studies lack the assumption about noise

correlations in the sensory measurements. We thus focus on the effects of such an

assumption on the performance in categorical, and global perceptual judgements.

To make a correct decision in this case, the observer needs to take into account not

only the correlations between the measurements, but also the statistical structure

of the stimuli.

In the second part of the dissertation (Chapters 6 and 7), we explore the joint

effects of measurement, and the stimulus correlations in a family of visual search

tasks . To investigate how the interaction between two different types of corre-

lations: the stimulus, and measurements can affect the decisions of an observer,

we include the assumption of correlated sensory noise in the target detection task

introduced in Chapter 2. Thus, in Chapter 6, we study a target detection task

with a single target, and the sensory measurements of the observer are correlated

following a multivariate normal distribution. We provide complete details of the

analytical computations that an ideal observer follows to make a correct decision

on this task. We analyze the impact of statistical structure of the scene along with

measurement correlations on the performance of an ideal observer here.
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Further, in Chapter 7, we continue with our examination, and analysis in the

case of multiple targets in the detection task. Multiple targets having identical

orientation would introduce more statistical structure in the scene as compared

to a single target. Even if the distractors possess independent orientations, hav-

ing multiple targets increase the chance of detecting a target in a pool of stimuli.

Therefore, we inspect how the external structure present in the stimuli communi-

cates with the internal structure of the observer’s measurements, and affects the

decisions of the observer. In particular, we analytically, and numerically analyzed

how the performance of an ideal observer behaves as a function of different pa-

rameters that determine the structure in the external scene, and measurements of

the observer. We find that the performance changes by a considerable amount in

the case of multiple targets, while it remains unchanged when only a single target

is present. Therefore, the decisions on these visual search tasks are greatly influ-

enced by the relationship between the correlations present in the stimulus, and

measurements.
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Chapter 2
Stimulus correlations in a target

detection task

Bayesian models have been successfully used to study perceptual behavior. Many

studies have used these quantitive models to show that humans perform near-

optimally on simple perceptual tasks. That is, the behavior of the observers on

these tasks was successfully explained by optimal Bayesian models which as-

sumes that the observers make best possible decisions given the uncertain, and

noisy sensory measurements.

A number of recent studies have also analyzed human behavior in simplified

scenes containing multiple objects. Human behavior was found to be close to

Bayes-optimal, on different visual search [90, 94, 95], sameness judgement [142],

and change detection tasks [71]. However, many of the visual search studies have
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only considered two types of distractors: homogeneous, and heterogeneous distrac-

tors [138, 34, 151, 101, 143, 119, 90, 94, 102, 95]. Homogeneous condition refers

to having identical distractors, while heterogeneous condition have independent

randomly oriented distractors. These studies considered the orientations of ho-

mogeneous distractors to be same across all trials, while they varied the orienta-

tion of distractors across experimental trials in the heterogeneous condition. Thus,

orientations of the distractors on homogeneous condition were predictable from

trial to trial.

Recent studies done by Mazyar et al. [95] studied the human behavior on a

target detection task under the violation of trial-to-trial predictability in the case

of homogeneous distractors. They used Gaussian distribution to randomly draw

the orientation of distractors in the case of homogeneous condition. They also

performed experiments to study human decisions in response to heterogeneous

distractors, and found that humans were near-optimal in detecting a target in the

case of both types of distractors.

However, their studies were also limited to homogeneous, and heterogeneous

distractors. By contrast, visual stimuli in natural scenes possess a complex, and

higher-order structure. The orientations of the objects in natural scenes are corre-

lated to different extent with each other. It is therefore important to examine how

visual perception is affected by structured input. Specifically, to understand how

differently correlated input affect our decisions.

We examine these questions in a psychophysical task. We study the decisions

of human observers on a target detection experiment under the effect of structured
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input. We introduce structure in visual scenes by varying the amount of correla-

tions between distractor orientations. We note that homogeneous condition refers

to perfectly correlated (identical) distractors, while heterogeneous distractors are

uncorrelated. In our study, we interpolated between the heterogeneous, and the

homogeneous conditions, and studied the intermediate regimes of partial correla-

tions. We are interested in understanding how human observers make decisions

in response to differently correlated (uncorrelated, partially, and perfectly corre-

lated) stimuli. The intermediate regime of correlations can be challenging from an

observer’s point of view since the stimuli are only partially correlated, and only

introduce a weak structure in the scenes. The observer needs to take into account

the strength, and structure of the stimulus correlations to make an optimal deci-

sion.

Therefore, we examine the following questions in our study: Do humans take

into account the strength, and structure of the stimulus correlations? And if they

do, can they make near-optimal decisions? We note that visual search is one

particular example of a task where these questions are relevant. They are more

generally applied to a variety of perceptual tasks. We provide answers to these

questions for the target detection task in Chapter 4.

We begin this chapter with the description of the model for the target detection

task. We continue with the derivation of the inference process for an optimal

Bayesian observer. An ideal observer makes decisions according to the derived

decision rule to infer target presence on the task. Later in the chapter, we present

the details of the task based experiments we have conducted.
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2.1 Generative model

We consider the following target detection task: An observer is presented with N

stimuli. The observer reports whether a vertical target stimulus is present or ab-

sent among a group of distractors. Stimuli are characterized by their orientations.

We denote the target orientation by sT = 0. We represent target presence by the

binary variable, T, so that T = 1 if the target is present, and T = 0 if absent. This

notation is consistent with studies done by Ma et al. [90, 94, 95]. Target presence

at location i is similarly represented by a binary variable, Ti. We also denote the

spatial location vector by T = (T1, T2, · · · , TN). In each trial, the target is present

with a 1/2 probability.

We denote the orientations of the stimuli by s = (s1, s2, · · · , sN). When T = 0,

the target is absent, and all stimuli are distractors. Therefore, T = (0, 0, · · · , 0),

and we write

p(T|T = 0) = δ(T− 0N).

Here a subscript denotes the length of a vector, so that the vector 0N has N compo-

nents. In this case, the orientations of the stimuli are drawn from an N-dimensional

multivariate normal distribution with mean vector, sD = (sD, sD, · · · , sD) and co-

variance, Σs, and we write

s|T = 0 ∼ N (sD, Σs). (2.1)
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We denote the probability density function of the multivariate normal distribu-

tion, N (sD, Σs) by f (s; sD, Σs), where

f (s; sD, Σs) =
1√

(2π)N|Σs|
exp

(
−1

2
(s− sD)

TΣ−1
s (s− sD)

)
. (2.2)

The N × N covariance matrix, Σs, contains identical diagonal entries, σ2
s (vari-

ances), and identical off-diagonal entries, ρsσ
2
s (covariances):

Σs =



σ2
s ρsσ

2
s · · · ρsσ

2
s

ρsσ
2
s σ2

s · · · ρsσ
2
s

... . . . ...

ρsσ
2
s ρsσ

2
s · · · σ2

s


. (2.3)

We let the pairwise correlation coefficient, ρs, vary between 0 and 1. When T = 1,

one of the N possible location is chosen with equal probability, and the stimuli at

that location is assigned the target orientation. If 1 j represents the N-dimensional

vector having jth entry as 1, and rest zeros, then

p(T|T = 1) =
1
N

N

∑
j=1
δ(T− 1 j). (2.4)

When the target is present at location j, for some fixed j ∈ {1, 2, · · · , N}, we have

p(s j|Tj = 1) = δ(s j − sT). (2.5)

In such a case, the distractors will be present at all locations but the jth one. There-

fore, we can decompose the Eq. (2.4) into target, and distractors location:

p(Tj = 1|T = 1) =
1
N
δ(Tj − 1), and p(T\ j = 0N−1|T = 1) = δ(T\ j − 0N−1).
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The vector T\ j is obtained by removing the jth location from the spatial loca-

tion vector T. In the target present trial, the orientations of the N − 1 distrac-

tors are denoted by s\j (see notation in Appendix A). They are drawn from an

(N − 1)-dimensional multivariate normal distribution with (N − 1)-dimensional

mean vector sD\j , and covariance Σs\ j (conditioned on jth stimuli being the target).

We write

s\j|T = 1 ∼ N (sD\j , Σs\ j), (2.6)

where the (N − 1)× (N − 1) covariance matrix, Σs\ j is obtained by removing the

jth row and the jth column of Σs.

We assume that an observer makes a measurement, xi, of the presented stim-

ulus, si, for i ∈ {1, 2, · · · , N}. It is commonly assumed [90, 94, 95, 142] that these

measurements are noisy but unbiased, and are normally distributed. Therefore,

we assume that at each location i,

xi|si ∼ N (si,σ2
i ). (2.7)

Moreover, we consider the measurement noise to be independent between loca-

tions. Hence, for the vector of measurements, x = (x1, x2, · · · , xN), we write

x|s ∼ N (s, Σx) =
N

∏
i=1
N (si,σ2

i ). (2.8)

Here Σx is an N × N diagonal matrix with entries σ2
1 ,σ2

2 , · · · ,σ2
N on the diagonal.

The optimal-observer model of the task is illustrated in Figure 2.1.
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  x1

   d(x)

T̂

sσ  ρsT

    x = (x1,x2 ,,xN )

  x2  xN…"

    s = (s1,s2 ,,sN )

(A) (B) 

Figure 2.1: Statistical structure of relevant task variables in the optimal-
observer model for a target detection task with stimulus correlations. (A) Gen-
erative model. The nodes represent the variables in the task, and arrows indicate
conditional dependencies between them. The binary variable, T represents tar-
get presence for T = 1, and absent when T = 0. The standard deviation, σs,
and the pairwise correlation coefficient, ρs determine the structure of the stimu-
lus, s = (s1, s2, · · · , sN) in the task. An observer makes a measurement, xi, of each
presented stimulus si. These measurements are assumed to be noisy and inde-
pendent between locations. (B) Inference process. The optimal observer infers T
by ”inverting” the generative model. The observer computes a decision variable,
d(x) based on the measurements, x, and it is given by the log-posterior ratio be-
tween the two possibilities, log (p(T = 1|x)/p(T = 0|x)). The sign of d(x) gives
the optimal estimate of T, and it is denoted by T̂.
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2.2. INFERENCE PROCESS

2.2 Inference process

The observer infers target presence based on the stimulus measurements, x, and

knowledge of the process that generated the stimulus, also called the generative

model (Figure 2.1(A)). Specifically, an optimal observer computes the probability

of T = 0, and the probability of T = 1, given x, and chooses the option with

highest probability. This is equivalent to computing the log posterior ratio,

d(x) = log
p(T = 1|x)
p(T = 0|x)︸ ︷︷ ︸

log posterior ratio

, (2.9)

and reporting ”target present” when d(x) > 0 and ”target absent” otherwise. The

relation, d(x) > 0 to make an estimate is known as the Bayesian decision rule, and

d(x) itself is referred as the Bayesian decision variable. Here d(x) = 0 represents the

decision boundary, and 0 is also called as the decision criterion.

By applying Bayes’ theorem in the above equation we obtain

d(x) = log
p(T = 1|x)
p(T = 0|x)︸ ︷︷ ︸

log posterior ratio

= log
p(x|T = 1)
p(x|T = 0)︸ ︷︷ ︸

log likelihood ratio

+ log
p(T = 1)
p(T = 0)︸ ︷︷ ︸

log prior ratio

. (2.10)

Here p(T = 1) denotes the observer’s prior belief that the target is present. Based

on the above equation, the observer reports ”target present” when the log-likelihood

ratio is greater than the negative log prior ratio, i.e.,

log
p(x|T = 1)
p(x|T = 0)

> − log
p(T = 1)
p(T = 0)

.

Also, it is easy to see that any change in prior results in shifting of the decision

criterion, thus prior has a large effect in the inference process of the observer. The
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2.2. INFERENCE PROCESS

optimal observer uses a uniform prior on T, and compute the log-likelihood ratio,

and hence, the required decision variable. We denote the log-likelihood ratio for

the task by LST(x), and the decision variable by dST(x).

2.2.1 The log-likelihood ratio

The observer needs to marginalize over intermediate variables, T, and s to com-

pute the log-likelihood ratio. The marginalization process is described in Sec-

tion 1.3.4.1, and illustrated with an example in Section 1.4.1. In this case, we com-

pute the log-likelihood ratio in the following manner:

LST(x) = log
p(x|T = 1)
p(x|T = 0)

= log
∑
T

p(x|T, T = 1)p(T|T = 1)

∑
T

p(x|T, T = 0)p(T|T = 0)

= log

∑
T

(
p(x|T, T = 1)

1
N

N

∑
j=1
δ(T− 1 j)

)
∑
T

p(x|T, T = 0)δ(T− 0N)

= log
1
N

N

∑
j=1

(
∑
T

p(x|T, T = 1)δ(T− 1 j)

)
∑
T

p(x|T, T = 0)δ(T− 0N)

= log
1
N

N

∑
j=1

p(x|T = 1 j)

p(x|T = 0N)

= log
1
N

N

∑
j=1

ˆ
p(x|s)p(s|T = 1 j)ds

ˆ
p(x|s)p(s|T = 0N)ds

. (2.11)
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Here δ is the generalized Kronecker delta function defined on RN:

δ(z) =


1, if and only if zi = 0 for all 1 ≤ i ≤ N,

0, otherwise.

We further simplify the above expressions by decomposing the vector s into target

stimulus, s j, and distractors, s\j. Similarly, we break the vector x into a target

measurement, x j, and distractors measurements, x\j. Similar to Σs\ j, we define

matrix Σx\j obtained by removing the jth row and column of matrix Σx, so that

x\j|s\j ∼ N (s\j, Σx\j). (2.12)

Thus, we obtain

LST(x) = log
1
N

N

∑
j=1

ˆ
p(x j|s j)p(s j|Tj = 1)p(x\j|s\j)p(s\j|T\ j = 0N−1)ds j ds\jˆ

p(x|s)p(s|T = 0)ds

= log
1
N

N

∑
j=1

ˆ
f (x j; s j,σ2

j )δ(s j − sT) f (x\j; s\j, Σx\j) f (s\j; sD\j , Σs\ j)ds j ds\jˆ
f (x; s; Σx) f (s; sD, Σs)ds

.

We now apply the product and integral rules for normal distributions in Eqs. (B.3)

and (B.4), and denote

C = Σs + Σx, and C\j = Σs\ j + Σx\ j. (2.13)

The matrix C\j can also be obtained by removing the jth row and column of matrix

C. In the case of positive definite covariance matrices, i.e., for ρs 6= 1, we integrate
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2.2. INFERENCE PROCESS

and obtain the following expression for the log-likelihood ratio,

LST(x) = log
1
N

N

∑
j=1

f (x j; sT ,σ2
j ) f (x\j; sD\j , C\j)

f (x; sD; C)

= log
1
N

N

∑
j=1

√
|C|

σ2
j |C\j|

exp

(
−
(x j − sT)

2

2σ2
j

− 1
2
(x\j − sD\j)

TC\j
−1(x\j − sD\j)

+
1
2
(x− sD)

TC−1(x− sD)

)
. (2.14)

We further reduce the above expression by computing the determinant, and in-

verse of matrices C, and C\j. The matrices C, and C\j have rank 1, therefore, we

use the matrix determinant lemma, and Sherman-Morrison formula to compute

their determinants and inverses, respectively.

2.2.1.1 Determinants and inverses of matrices C and C\j

We decompose the matrix C =



σ2
s +σ2

1 ρsσ
2
s · · · ρsσ

2
s

ρsσ
2
s σ2

s +σ2
2 · · · ρsσ

2
s

... . . . ...

ρsσ
2
s ρsσ

2
s · · · σ2

s +σ2
N


, as

C =



σ2
s (1− ρs) +σ2

1 0 · · · 0

0 σ2
s (1− ρs) +σ2

2 · · · 0
... . . . ...

0 0 · · · σ2
s (1− ρs) +σ2

N


︸ ︷︷ ︸

D

+ρsσ
2
s



1 1 · · · 1

1 1 · · · 1
...

...
...

...

1 1 · · · 1


︸ ︷︷ ︸

J

,
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and compute the determinant of C using the matrix determinant lemma in Ap-

pendix B.2,

|C| = |D + ρsσ
2
s J| = |D + ρsσ

2
s 1 1T| = (1 + 1TD−11) |D|,

where 1 is a column vector of ones.

Since D is a diagonal matrix, |D| =
N

∏
i=1

(
σ2

s (1− ρs) +σ
2
i

)
, and

(D−1)k,l =


1

σ2
s (1−ρs)+σ2

k
, if k = l,

0, otherwise.

We also define

wi =
1
σ2

i
, w̃i =

1
σ2

s (1− ρs) +σ2
i

, W̃ =
N

∑
i=1

w̃i, and W̃\ j =
N

∑
i 6= j

w̃i, (2.15)

and obtain

|C| =
(

1 + ρsσ
2
s W̃

) N

∏
i=1

1
w̃i

. (2.16)

Similarly, we compute

|C\j| =
(

1 + ρsσ
2
s W̃\ j

) N

∏
i 6= j

1
w̃i

. (2.17)

Next, we compute the inverse of matrix C using Sherman-Morrison Formula

described in Appendix B.2. Specifically, we obtain

C−1 = D−1 − D−11 1TD−1

1 + 1TD−11
=



w̃1 −αw̃2
1 −αw̃1w̃2 · · · −αw̃1w̃N

−αw̃2w̃1 w̃2 −αw̃2
2 · · · −αw̃2w̃N

...
...

−αw̃Nw̃1 −αw̃Nw̃2 · · · w̃N −αw̃N
2


,

(2.18)
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with

α =
ρsσ

2
s

1 + ρsσ2
s W̃

=
1

1
ρsσ

2
s
+ W̃

. (2.19)

The inverse of matrix C\j has the same form as C−1 in Eq. (2.18) except that α is

replaced byα\ j with

α\ j =
ρsσ

2
s

1 + ρsσ2
s W̃\ j

=
1

1
ρsσ

2
s
+ W̃\ j

. (2.20)

2.2.1.2 Bayesian decision variable

We continue simplifying the log-likelihood ratio (Eq. (2.14)) in order to obtain an

analytically tractable expression for the decision variable, dST(x) (Eq. (2.9)). First,

we compute the required ratio in Eq. (2.14) of determinants of the two matrices

|C|
σ2

j |C\j|
=

w j|C|
|C\j|

=

w j (1 + ρsσ
2
s W̃)

N

∏
i

1
w̃i

(1 + ρsσ2
s W̃\ j)

N

∏
i 6= j

1
w̃i

=
w j (1 + ρsσ

2
s W̃)

w̃ j (1 + ρsσ2
s W̃\ j)

=
w j α\ j

w̃ j α
.

Next, we compute the exponent terms in Eq. (2.14):

(x− sD)
TC−1(x− sD) =

N

∑
i=1

(w̃i −αw̃2
i )(xi − sD)

2 −α
N

∑
i 6=k

w̃iw̃k(xi − sD)(xk − sD),

(x\j − sD\j)
TC\j

−1(x\j − sD\j) =
N

∑
i 6= j

(w̃i −α\ jw̃
2
i )(xi − sD)

2

−α\ j

N

∑
i 6=k

i,k 6= j

w̃iw̃k(xi − sD)(xk − sD),
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and combine them to obtain

− (x\j − sD\j)
TC\j

−1(x\j − sD\j) + (x− sD)
TC−1(x− sD)

= (w̃ j −αw̃2
j )(x j − sT)

2 − 2w̃ jα(x j − sD)
N

∑
i 6= j

w̃i(xi − sD)

+ (α\ j −α)
N

∑
i,k 6= j

w̃iw̃k(xi − sD)(xk − sD)

=
w̃ j α

α\ j
(x j − sT)

2 − 2w̃ jα(x j − sD)
N

∑
i 6= j

w̃i(xi − sD) + w̃ jαα\ j

(
N

∑
i 6= j

w̃i (xi − sD)

)2

.

We substitute the above expressions in Eq. (2.14) to compute the log-likelihood

ratio, and therefore, obtain the following expression for the decision variable

dST(x) = log
1
N

N

∑
j=1

(
w j(1 + ρsσ

2
s W̃)

w̃ j(1 + ρsσ2
s W̃\ j)

)1/2

exp

−1
2

w j(x j − sT)
2︸ ︷︷ ︸

I

+
1
2
(w̃ j −αw̃2

j )(x j − sD)
2︸ ︷︷ ︸

I I

− w̃ jα(x j − sD)
N

∑
i 6= j

w̃i(xi − sD)︸ ︷︷ ︸
I I I

+
1
2
(α\ j −α)

N

∑
i,k 6= j

w̃iw̃k(xi − sD)(xk − sD)︸ ︷︷ ︸
IV

 . (2.21)

The above equation gives the non-linear decision variable dST(x) in terms of the

stimulus measurement, and model parameters: the total number of stimuli, N, the

variability, and covariability between distractors orientations determined by σ2
s ,

and ρs. These parameters govern the statistical structure of the visual stimuli. The

observer must infer these model parameters in order to make an optimal decision

on the task. We assume that the observer is aware of the noise with which the

measurement is made.
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2.2.2 Interpretation of the decision variable

We note that the decision variable computed in Eq. (2.21) depends in an intricate

manner on the model parameters that describe the structure of the stimulus, and

its measurements. Although the expression is complex, each term in the expo-

nent has an intuitive interpretation. We can think of the different terms as dif-

ferent pieces of evidence about whether the jth stimulus is a target: (I) if the jth

measurement is close to the target orientation, this term is larger (less negative),

corresponding to an increased likelihood that the jth stimulus is the target; (II)

the second term decreases as the jth measurement approaches the mean distractor

orientation, this corresponds to a decreased likelihood that the jth stimulus is the

target; (III) the third term compares the jth measurement to the sample distractor

mean; if it is large, it is less likely that the jth stimulus is the target; (IV) the fourth

term can be rewritten in terms of sample covariance of potential distractor mea-

surements, and in that case a large covariance increases the likelihood that the jth

stimulus is the target. Therefore, different terms in Eq. (2.21) contribute towards

finding the target.

2.3 MAP estimate distribution

We denote the observer’s MAP estimate of T by T̂. The optimal observer responds

T̂ based on the sign of the decision variable dST(x) computed in Eq. (2.21). The

probability of the optimal observer responding T̂ given a fixed stimuli sfixed is
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denoted by p(T̂|sfixed). As illustrated in [142], we compute this probability by

marginalizing over the hypothesized observations x generated by s:

p(T̂|sfixed) =

ˆ
p(T̂|x)p(x|sfixed)dx =

ˆ
δT̂,sgn(dST(x))

p(x|sfixed)dx. (2.22)

This means that the probability of reporting T̂ = 1 is evaluated by averaging over

the observations that are drawn from the distribution x|sfixed, and have dST(x) >

0. But we note that the decision variable dST(x) is a non-linear function of x, and

hence, the above expression is analytically intractable. Therefore, we use numeri-

cal approximations for our computational purposes. In particular, we apply Monte

Carlo method that is described in Section 3.2.2.

2.4 Suboptimal models

The computations involved in evaluating the exponent terms in Eq. (2.21) are com-

plex, and require the complete information about the generative model. But in

general, an observer may not learn, and use the correct generative model in mak-

ing decisions. The observer can either use an incorrect assumption about the cor-

relation strength, ρs, or may not use an equal odd prior for T. In that case, their

inferences will be suboptimal. Therefore, we need to investigate what inference

models are used by the observers to make their decisions, and what model pa-

rameters have been assumed by them to infer their responses. We study a range

of suboptimal models along with the optimal one in Chapter 4. For mathemati-

cal purposes, we consider two special variants of the suboptimal models below.
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These are the cases of homogeneous, and heterogeneous distractors. The experi-

mental studies [90, 95] have well characterized the human behavior on both these

conditions, however, they assumed different probability distributions in the gen-

erative model.

2.4.1 Heterogeneous model, ρs = 0

In this model, we assume that the observer do not learn any information about the

stimulus correlations, and make decisions assuming that no structure is present

in the scenes. This amounts to the observer using ρs = 0 in making decisions,

therefore, the decision variable in Eq. (2.21) reduces to the following simplified

expression in such a case

dST(x) = log
1
N

N

∑
j=1

(1 + w j σ
2
s )

1/2 exp
(
−1

2
w j (x j − sT)

2 +
1
2

w̃ j (x j − sD)
2
)

= log
1
N

N

∑
j=1

(
σ2

j +σ
2
s

σ2
j

)1/2

exp

(
(sT − sD)

x j − (sT+sD)
2

σ2
j +σ

2
s
−

σ2
s (x j − sT)

2

2 σ2
j (σ2

j +σ
2
s )

)
.

(2.23)

This condition reflects a suboptimal decision, and we would expect the observer

following this model to have a low performance.

2.4.2 Homogeneous model, ρs = 1

We also consider another extreme possibility: the observer may assume that the

stimuli are always maximally correlated, and may make decisions using ρs = 1.
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That is, the distractors always have a common orientation. We note that when

ρs = 1, the covariance matrix Σs (defined in Eq. (2.3)) is singular. Therefore, the

conditions to use Eqs. (B.3) and (B.4) are violated. Hence, we cannot use Eq. (2.21)

here.

Instead, we independently compute the decision variable in this case. We note

that the covariance matrix Σs reduces to a single entry σ2
s for ρs = 1, and the

multivariate normal distribution to a one-dimensional Gaussian distribution with

mean, sD, and variance, σ2
s . This results in having all distractors with an identical

orientation, and we denote that common orientation by s. Thus, the common

distractor orientation follows the Gaussian distribution

s|T ∼ N (sD,σ2
s ).

As before, we compute the log-likelihood ratio by marginalizing over the inter-

mediate variables T, and s as in Eq. (2.11) to obtain

LST(x) = log
p(x|T = 1)
p(x|T = 0)

= log
1
N

N

∑
j=1

ˆ
p(x|s)p(s|T = 1 j)ds

ˆ
p(x|s)p(s|T = 0N)ds

.

We now use the assumption about the independence (between locations) of

measurement noise, and use the product form in Eq. (2.8) for the probability dis-

tribution P(x|s). Also, we decompose the measurement vector x into a target

measurement x j, and a common distractor measurement, xi for i 6= j. This gives
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us

LST(x) = log
1
N

N

∑
j=1

ˆ
p(x j|s j = sT)p(s j|Tj = 1)ds j

(
N

∏
i 6= j

p(xi|si = s)

)
p(s|T)ds

ˆ ( N

∏
i=1

p(xi|si = s)

)
p(s|T)ds

= log
1
N

N

∑
j=1

ˆ
f (x j; s j,σ2

j )δ(s j − sT)ds j

(
N

∏
i 6= j

f (xi; s,σ2
i )

)
f (s; sD,σ2

s )ds

ˆ ( N

∏
i=1

f (xi, s,σ2
i )

)
f (s; sD,σ2

s )ds

.

We use Eqs. (B.2), and (B.4) to further compute the expression for the log-likelihood

ratio

LST(x) = log
1
N
×

N

∑
j=1

f (x j; sT ,σ2
j )√√√√(2π)(N−1)

(
1
σ2

s
+

N

∑
i 6= j

1
σ2

i

)
σs

N

∏
i 6= j
σi

exp

−
1
2


N

∑
i 6= j

x2
i
σ2

i
+

s2
D
σ2

s
−

(
N

∑
i 6= j

xi

σ2
i
+

sD

σ2
s

)2

1
σ2

s
+

N

∑
i 6= j

1
σ2

i





1√√√√(2π)N

(
1
σ2

s
+

N

∑
i=1

1
σ2

i

)
σs

N

∏
i=1
σi

exp

−
1
2


N

∑
i=1

x2
i
σ2

i
+

s2
D
σ2

s
−

(
N

∑
i=1

xi

σ2
i
+

sD

σ2
s

)2

1
σ2

s
+

N

∑
i=1

1
σ2

i





.

56



2.4. SUBOPTIMAL MODELS

We simplify above expression to obtain

LST(x) = log
1
N

N

∑
j=1

√√√√√√√√√√


1
σ2

s
+

N

∑
i=1

1
σ2

i

1
σ2

s
+

N

∑
i 6= j

1
σ2

i



× exp

−
(x j − sT)

2

2σ2
j

+
x2

j

2σ2
j
− 1

2

(
N

∑
i=1

xi

σ2
i
+

sD

σ2
s

)2

1
σ2

s
+

N

∑
i=1

1
σ2

i

+
1
2

(
N

∑
i 6= j

xi

σ2
i
+

sD

σ2
s

)2

1
σ2

s
+

N

∑
i 6= j

1
σ2

i

 . (2.24)

Assuming the observer uses a uniform prior over T, the above equation represents

the decision variable under the assumption of heterogeneous distractors. Using

the variables defined in Eqs. (2.15), and (2.19) we rewrite the following compact

expression for the decision variable in the case of ρs = 1

dST(x) = log
1
N
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(2.25)

The above decision variable characterizes the decision-making behavior of an ob-

server that assumes the distractors to be always perfectly correlated. The observer

making decisions based on this variable will be suboptimal since the correct cor-

relation strength ρs is ignored, and always assumed as 1.

The homogeneous, and heterogeneous models explained above are two partic-

ular suboptimal models. We consider a range of other possible suboptimal models
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in Chatper 4. We now provide the details of the experiment designed on the target

detection task. We performed the experiment to collect human subjects data on

the task.

2.5 Experimental Methods

We conducted an experiment based on the design of the target detection task de-

scribed in Section 2.1. The experiment was performed under the supervision of

Dr. Wei Ji Ma in the Theoretical Systems Neuroscience laboratory at the Depart-

ment of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.

The aim of our experimental study was to determine whether human observers

use the structures present in the visual scenes to infer their decisions. In the case

that they do, we want to examine whether they are able to infer the correct cor-

relation strength ρs that is used to generate the experimental displays. If not, we

test several suboptimal models in Chapter 4, and find the one that best explain the

responses of the subjects on the experiment. In the following section, we provide

the details of the experiment.

2.5.1 Subjects

Eleven subjects (6 male, 5 female) participated in the experiment. All subjects had

normal or corrected-to-normal acuity and gave informed consent.
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2.5.2 Apparatus and stimuli

Stimuli were generated in Matlab using the Psychophysics Toolbox [23, 109], and

were presented on a 21” LCD monitor with a refresh rate of 60 Hz. Subjects

viewed the displays from a distance of approximately 60 cm. The background

luminance was 33.1 cd/m2. A set of 4 stimuli were shown on each trial. On target-

present trials, the stimulus set consisted of one target, and 3 distractors while on

target-absent trials, it contained 4 distractors. A target was present in exactly half

of the trials. Each stimulus was a Gabor patch (or a Gabor filter) with a spatial fre-

quency of approximately 2.67 cycles/deg, a standard deviation of 0.26 deg, and

a peak luminance of 136 cd/m2. A Gabor patch is a sine wave multiplied by a

Gaussian function (additional details can be found in Appendix C). Figure 2.2(A)

shows one example of a Gabor patch. Stimuli were placed on a circle centered at

the fixation cross with a radius of 3.2 degrees of visual angle. The position of the

first stimulus was chosen at random on each trial, and other stimuli were placed

in a way so that the angular distance between two adjacent stimuli was always

45◦. The target (sT) and mean distractor orientation (sD) were set to vertical, and

used to define the origin. The standard deviation of the distractor distribution σs

was fixed at 15◦ while the correlation coefficient ρs was varied to be 0, 1
3 , 2

3 , and 1

across different experimental sessions.
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2.5.3 Sessions and blocks

The experiment was split into four different sessions. The correlation coefficient

was fixed at 0, 1/3, 2/3, or 1 within a session. The order of the sessions was ran-

domized across subjects. Each session consisted of one practice block of 50 trials

and 6 testing blocks of 150 trials each, and lasted for about 50 minutes. A 30 sec

break was provided between blocks. After each block, performance on that block

was revealed to the subject along with the scores of the other subjects who had

completed the same session. Each subject completed a total of 3600 test trials.

All subjects were instructed about the experiment at the beginning of their first

session with a demo consisting of 10 practice trials.

2.5.4 Procedure

Testing trials: Each test trial began with the display of a fixation cross at the cen-

ter of the screen (0.5 sec), followed by the stimulus display containing 4 stimuli

(0.1 sec), and followed by a screen with the fixation cross until the subject re-

sponded. The subject reported whether a target was present or absent through

a key press. Feedback was provided by subsequently coloring the fixation cross

green (correct) or red (incorrect) during the (0.75 sec) inter-trial period. The ex-

periment, and time course are shown in Figure 2.2(B).

Practice trials: Each practice trial was identical to a test trial, except that it was

followed by a feedback screen showing the original stimulus display with a blue
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every possible location of the target. The Bayesian observer solves this by averaging over all 
possible target locations – in other words, by marginalizing over location.  
 Consider a very simple search display with only two stimuli, as in Fig. 6.9. The target 
orientation is 5° tilted to the right of the vertical; we denote this as sT=5°. Any non-target 
stimulus – a distractor – is tilted 5° to the left of vertical; we denote this as sD=−5°. On each trial, 
the target is present with 50% probability. If it is absent, both stimuli have orientation sD. If it is 
present, it can be in either location with equal probability. The figure shows the three possible 
combinations that can occur in this task.  
 

 
Figure 6.9. A simple laboratory visual search task. The observer reports whether the 5° 
rightward tilted grating is present or not. Shown are the possible displays with their respective 
frequencies. 
 
The observer is presented with a display like this for a brief period of time – for example, 100 ms 
– and asked to judge whether the target is present or not. 
 
6.3.1 Step 1: Generative model 
Figure 6.10 describes the generative model, under the usual assumption that the observation of 
each stimulus is corrupted by Gaussian noise. Since there are two stimuli, we assume the noise is 
independent between locations; this is a reasonable assumption when the stimuli are not close to 
each other on the screen. Note that, like classification, this is a hierarchical structure. As in any 
detection task, the state-of-the-world variable of interest is C, which can take values 0 (target 
absent) and 1 (target present). We denote by L the location of the target, by s1 and s2 the 
orientations of the stimuli on the left and right sides of the display, and by x1 and x2 their 

s1=sD

s2=sT

s2=sD

Target'absent+trial
(C=0)

Target+present'trial
Target'on'left'
(C=1,'L=1)

50%

s1=sD

s1=sT

s2=sD

Target+present'trial
Target'on'right
(C=1,'L=2)

25%

25%

Frequency'in'
experiment

(D) 

Figure 2.2: Target detection experiment procedure. (A) Gabor filter. Subjects
were presented with 4 stimuli on each trial. Each stimulus was a Gabor patch.
The figure illustrates an example of a Gabor patch from the experiment. (B) Time
course of a test trial. The experiment started with a display of fixation cross in
the center followed by the stimulus display for 0.1 sec. Subjects reported through
a key press whether a vertical stimulus was present in the display. After their
response, a display screen was shown with a green (correct) or red (incorrect)
fixation cross to provide feedback. (C) Time course of a practice trial. Each ex-
perimental session started with 50 practice trials. The procedure of a practice trial
was same as a test trial, except that an additional feedback screen was shown for
2 sec at the end of the trial. The extra display contained the original stimulus with
a blue circle marking the target stimulus if it was present. (D) Sample displays of
different experimental conditions. The experiment was divided in four different
sessions. Each session was characterized by the unique value of the correlation
coefficient ρs ∈ {0, 1

3 , 2
3 , 1} used in generating stimuli. The order of the sessions

was randomized across subjects. This figure shows example displays from each
experimental session.
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circle identifying the target stimulus, when present (Figure 2.2(C)). The data from

practice trials was excluded for the analysis, and results purposes.
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Chapter 3
Model fitting and model comparison

Our perception about the true state of the world is based on our sensory infor-

mation along with the prior knowledge of the world state. But it is not clear

what computations the brain performs to combine the information it receives, and

makes a decision. Numerous theoretical, and experimental studies provide evi-

dence that our perception can be described as a process of probabilistic inference.

In particular, Bayesian models are applied to study human behavior on various

perceptual tasks. Several experimental studies have found that humans are near-

optimal in simple visual perceptual tasks [64, 40, 8, 39, 95, 107, 7, 101, 90, 10, 79,

144, 94]. We note that the observers needs to have complete knowledge of the un-

derlying generative model of the task in order to make the best possible decisions.

However, we may expect that on a complex task, or a task with a large number of

latent variables, it may not always be possible for the observers to determine the

correct generative model. Therefore, the relevant question here is what model of
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the world observers use to make their decisions, and what are the possible tech-

niques that we can use to compute the predictions of a model for the experimental

data.

In this chapter, we discuss some commonly used techniques of fitting a model

to the responses of subjects on a psychophysical task. We describe the maximum-

likelihood parameter estimation method to find the model parameters that de-

scribe the best fit to an experimental data. Further, we discuss the criteria that

can be used to compare models, and find the one that best describes the data.

We present these techniques in a generalized form here, but discuss their appli-

cations, and possible issues in the context of our experimental study (described

in Chapter 2). Specific to our experiment, we begin this chapter with a detailed

description of the experimental data we have collected. Further, we elaborate the

types of psychometric curves we use to represent the subjects’ responses from

our experiment. In the end, we describe how we use different model comparison

criteria specific to the models used to predict our experimental data.

3.1 Experimental data

The set up of our experiment has been described in Section 2.5. Subjects were

presented with a set of 4 stimuli on each experimental trial. The orientations of

the stimuli were drawn randomly across trials. Also, the stimuli were placed at

random locations. As a consequence, each subject was presented with a unique

set of stimuli over the course of the experiment. We thus recorded the collection
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of stimulus orientations presented to the subject. We then recorded whether any

stimulus is a target in the trial, that is, we noted if T = 1, or T = 0. Furthermore,

we documented the response of the subject in each trial as either 1 or 0. Finally, we

measured the exact duration of the stimulus presentation on the display screen.

We note that this duration is actually a constant (100 ms) in the experiment. In

summary, for each subject we recorded the following information on each trial:

1. a set of 4 stimulus orientations, s,

2. the information about the target presence variable T,

3. the subject’s response or the MAP estimate T̂,

4. whether T̂ matches T or not,

5. the duration of the stimulus presentation.

In the following section, we discuss the methods of obtaining model predictions

for an experimental data, and to use these predictions for fitting the subject’s re-

sponses. In our analysis, we evaluate the predictions of a model for each individ-

ual instead of relying on average (over subjects) statistics. Therefore, our model

fitting, and model comparison processes are computed based on individual re-

sponses.
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3.2 Model predictions

In the experiment, we record the responses of a subject - whether the subject re-

sponded ”target present” or ”absent” on each trial. However, we are not aware

of the sensory measurements with which the subject made a decision on a trial.

Thus, as part of the modeling process, we need to consider what measurements

would have led the subject to make a particular response on the trial. Hence, we

must use a reasonable assumption about the distribution of the measurements.

Moreover, in general, we have no means of measuring what parameters the sub-

ject would have used to make the decision. For instance, the sensory noise with

which the subject made the measurement is unknown to us, and we need to es-

timate it in order to understand the behavior of the subject. Such parameters are

sometimes referred as free parameters of the model, and can be estimated from the

data. Therefore, we consider two important issues here: to find the maximum-

likelihood estimates of model parameters based on subject’s data, and to make

predictions of the model for the data given those parameters.

Let us consider a model M having a parameter θ. The parameter θ can either

be a scalar or vector quantity given the model. We assume that we have access to a

subject’s responses on K trials in the experiment. We denote the subject’s response

by a binary variable ri, and the set of presented stimuli by si on the ith trial. We are

interested in evaluating the model prediction for the response ri on ith trial given

the model parameter θ. We denote p(ri|si, M,θ) as the probability of the subject

response ri given the stimuli on the ith trial under the model M with hypothesized
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parameter value θ. This is also known as the response probability under model M

with parameterθ.

3.2.1 Computing response probabilities

We would like to compute the response probability p(ri|si, M,θ) on the ith trial

under model M. This is similar to evaluating the distribution of the MAP estimate

in Eq. (2.22) under the decision variable of the model M. The cases where such

an evaluation is not analytically possible, we use Monte Carlo method [58, 11, 56,

68, 120, 15] for a numerical approximation of the involved integral. The integral

is approximated by the sum which converges to the correct value as the number

of measurement samples increases:

p(ri|si, M,θ) =
ˆ

p(ri|x)p(xi|si, M,θ)dx ≈∑
xi

p(ri|x)p(xi|si, M,θ)

= ∑
xi

δri ,sgn(dM(xi))
p(xi|si, M,θ). (3.1)

Here xi is the hypothesized measurement of the subject on the ith trial, and dM(x)

represents the Bayesian decision variable under the model M with parameterθ.

3.2.2 Monte Carlo algorithm

We now describe the Monte Carlo algorithm we implemented for computing the

response probabilities under the assumptions of a model M.

1. The first step is to describe the model M, and its parameter(s)θ.
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2. We then derive the Bayesian decision variable dM(x) under the hypothesis

of the model M.

3. We fix a value of the model parameterθ.

4. For this fixed hypothesized value of the parameterθ, we draw hypothesized

measurements xi of the subject following Eq. (2.8) on the ith trial in response

to the presented stimulus si. The stimuli si are used from the experimental

data, and not generated during this step.

5. Using the hypothesized measurements xi, we evaluate the decision variable

dM(xi) of the model M. Further, we compute the prediction for the subject’s

response, denoted by r̂i on the ith trial based on the decision rule for the

model M.

6. We then compare the model predicted response r̂i with the subject’s true

response ri on the ith trial. A match between the two results in an increased

probability of the response p(ri|si, M,θ).

7. We repeat steps 4 to 6 with R samples of measurements xi, and thus compute

R values of model predicted responses r̂i. We subsequently match each of

them with the corresponding actual response ri of the subject.

8. We obtain an approximation of the probability of response p(ri|si, M,θ) by

averaging over the number of correct matches in R samples.

9. Next, we pick a different value of θ, and evaluate the response probability

on the ith trial for a different parameter value by following steps 4 to 8.
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Steps 3 to 9 are repeated for every experimental trial to obtain the likelihood func-

tion of the subject’s actual responses under the model M with parameterθ.

3.3 Maximum-likelihood estimation

Our aim is to find the value of the model parameterθ that maximizes the response

probabilities over all trials. In other words, we are interested in finding the model

parameter at which the predictions of the model provide the best possible expla-

nation for the behavior of subjects in an experiment. This amounts to finding the

maximum-likelihood estimate of θ. Below, we discuss the parameter estimation

method illustrated in [89, 90, 94]. The likelihood function of a parameter value θ

is defined as the probability of the data given the model M with parameterθ:

LM(θ) = p(data|M,θ).

For simplification purposes, it is generally assumed that the noise in the observer’s

responses is independent across trials. Thus, we can write the probability of the

data given the model, and its parameters as a product of probabilities over trials:

LM(θ) =
K

∏
i=1

p(ri|si, M,θ). (3.2)

Here K denotes the total number of trials in the experiment. Maximizing the above

parameter likelihood is equivalent to maximizing its logarithm log LM(θ),

log LM(θ) =
K

∑
i=1

log p(ri|si, M,θ). (3.3)

The logarithm prevents possible numerical issues which could arise because of a

very small probability that could mistakenly be treated as zero, and could lead
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to potential errors in the computation of the product in Eq. (3.2). We denote the

maximum-likelihood estimate (MLE) of parameterθ by θ̂, and the corresponding

maximum value of the likelihood function as L∗M = max
θ

LM(θ) = LM(θ̂).

In the event that an analytical expression is unavailable for the response proba-

bility p(ri|si, M,θ) under the model M, and hence, for the log-likelihood function

in Eq. (3.3), we evaluate the function using numerical methods. Therefore, most of

our data analysis practices rely on obtaining an accurate approximation of the log-

likelihood function. As expected, the accuracy of this evaluation depends on the

size of the data, and the number of measurement samples used in the numerical

approximation. Further, we need to find an appropriate numerical algorithm to

find the maximum of the numerically evaluated stochastic log-likelihood function

LM(θ). We use suitable optimization algorithms to find the maximum-likelihood

estimate of the parameterθ that maximizes the log-likelihood function defined in

Eq. (3.3).

In our target detection task (Chapter 2), we do not have any analytical approx-

imation of the log-likelihood function for any model. Therefore, we numerically

evaluate the function for a model M at all hypothesized values of the model pa-

rameter θ. But the evaluation of our function log LM(θ) depends on the decision

variable dST(x) computed in Eq. (2.21), and thus it is a non-linear, non-smooth

stochastic function. To maximize this stochastic function, we tested the following

optimization algorithms, and chose the one that was most suitable for our pur-

poses.
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3.4 Optimization techniques

In order to find the maximum of our non-linear stochastic objective function LM(θ),

we tried several different optimization algorithms, and compared the obtained

results. We checked the common practice of grid search method, and the stan-

dard techniques such as genetic algorithm, and pattern search. However, most of

our models (described in Chapter 4) were high-dimensional in parameter space,

and thus optimization algorithms required tremendous amount of computational

power, and time to produce results. This restricted us to only use grid search

method for our results purposes. In the following section, we briefly describe the

three algorithms we had tested for our data.

3.4.1 Exhaustive or grid search

Exhaustive or brute-force is one of the simplest possible methods of optimizing

an objective function by manually evaluating it on a predefined set of parameter

space. The possible parameter space is identified, and systematically divided into

possibly a large set of discrete values known as the grid space. The objective func-

tion is then evaluated at all points of the pre-defined grid space, and the point

at which the function attains the global maximum is regarded as the maximum-

likelihood estimate of the parameter. The accuracy of this method greatly depends

on the choice of the parameter space, and the grid spacing.
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Most of our models (described in Chapter 4) have a high-dimensional param-

eter vector θ. This resulted in a multi-dimensional grid spacing for θ, and also a

large number of grid points. Also, the number of evaluations of the log-likelihood

function has an exponential increase with respect to finer discretization of the grid

space. Moreover, our likelihood function is evaluated using Monte Carlo method

(see Eqs. (3.1), and (3.3)), and require a large number of measurement samples to

guarantee convergence. As a consequence, finding maximum-likelihood parame-

ter estimates for our models requires a large amount of computational resources,

and time. Furthermore, the precision of the results depends on the convergence

of the log-likelihood evaluation, and the discretization of the grid space.

However, we still use grid search method over other optimization algorithms

to obtain our results (in Chapter 4). It is because this method can be run in parallel

for each grid point as the evaluation of the log-likelihood function for our models

is independent between grid points. Therefore, we can numerically evaluate the

function at multiple grid points at the same time, and combine the results together.

To be able to run in parallel is the most crucial feature of this exhaustive search that

led us to use this method for our analysis purposes. Also, we obtained consistent

results with this approach. We performed several tests on synthetic data sets to

ensure the accuracy, and performance of the algorithm.
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3.4.2 Genetic algorithm and pattern search

Genetic algorithm [99, 134, 49] belongs to a larger class of optimization search al-

gorithms, known as evolutionary algorithms that work on the principle of natural

selection. An initial population of the parameter θ is (randomly) chosen, and the

objective function is evaluated for each individual in the parameter population.

The value of the objective function usually represents the fitness of the individual.

A fixed number of fittest members of the parameter population are stochastically

chosen to be evolved at the next iteration. The parameter is usually characterized

by specific features or properties, which are then mutated or altered to obtain a

new population or generation of the parameter at the next iteration. The process

is repeated until a desired fitness or maximum value of the objective function is

achieved, or predefined maximum number of generations is reached.

Genetic algorithm is suitable for both constrained, and unconstrained opti-

mization problems. It is specifically used for discontinuous, non-differentiable

stochastic functions to obtain a global extremum, however, it has a slow conver-

gence rate, and requires sufficiently large number of iterations to converge.

On the other hand, pattern search [19, 63, 137, 85] converges quickly to the

solution. The search is initiated by evaluating the objective function at an ini-

tial value of the parameter. Then, successively neighboring parameter points are

found for which the value of the objective function increases. The new parameter

points are found using a mesh around the previous ones, and the search contin-

ues until a maximum number of iterations is reached or mesh size is too small.
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Pattern search belongs to the family of direct search algorithms, and is applied for

discontinuous or non-differentiable objective functions.

We tested both genetic algorithm, and pattern search to optimize the log-likelihood

function of our models. In the case of simple models having less than 4 parame-

ters, the results were consistent with those obtained using the grid search method.

However, the algorithms did not work for high dimensional models. The in-

volved computations makes it difficult for the algorithms to be run in parallel,

and in general, they require a huge amount of computational time, and resources.

Though these methods are certainly better, and more precise than grid search al-

gorithm, we were unable to obtain results using them for our models. Hence,

our analysis is only based on the results obtained using grid search optimization

algorithm.

Thus far, we discussed the procedure to obtain the predictions of a model given

the data. We summarized the estimation method for model parameters, and dif-

ferent optimization techniques that can be used for numerical estimation. We now

focus on the visualization of our experimental data. We described the format of

our collected data on the experiment in Section 3.1, but the question is how we

could plot the data for analysis purposes. In the following section, we discuss the

different types of psychometric curves we have used to analyze our data. Psychome-

tric curves are frequently used in psychophysics to study the responses of subjects

on an experiment. The predictions of a model are generated for these curves using

model fitting techniques (discussed in Section 3.2). The error between a subject’s

actual psychometric curve, and the model predicted curve provides a measure of
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goodness of a model fit.

3.5 Psychometric curves

Psychometric curves [147, 73] are extensively used in psychophysics to represent

the summary of subjects’ responses on an experiment. They describe the behavior

of subjects over a range of stimulus values. The curve is determined by the num-

ber of alternative choices in the task, for example, a psychophysical task can have

binary choice, two-alternative forced choice (2AFC), or n-alternative choices. We

are mainly interested in the curves having binary choices as our target detection

task has a yes/no paradigm.

For our analysis purposes, we examine the behavior of subjects on our experi-

ment using three different types of psychometric curves. We note that our experi-

ment was divided into four sessions (details in Section 2.5), and each session was

characterized by the unique value of correlation coefficient ρs used to generate the

stimuli. The purpose of our study is to determine whether subjects learn the struc-

ture present in the scenes, and infer the correct correlation strength to make their

decisions. Therefore, correlation coefficient ρs serves as the physical stimulus pa-

rameter of our interest, and we specify our results in terms of this parameter. We

consider three types of psychometric curves based on different characterizations

of stimuli as a function of ρs.
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3.5.1 Types of psychometric curves

We consider the following three types of psychometric curves to analyze the re-

sponses of subjects on our target detection experiment described in Chapter 2:

(I) Hit and false-alarm rates: In a target detection task, the probability of re-

porting ”target present” when the target is present is known as the hit rate,

or detection rate, or true positive rate, and is denoted by P(T̂ = 1|T = 1).

Whereas, the probability of reporting ”target present” when the target is ab-

sent is known as the false-alarm rate or false-positive rate, and is denoted by

P(T̂ = 1|T = 0). The origin of these terminologies lies in the signal detection

theory [53, 93, 148, 69, 97]. Further, we can obtain miss rate or false negative

rate, and correct rejection rate or true negative rate by subtracting the hit, and

false-alarm rates, respectively from 1.

We plot the hit, and false-alarm rates as a function of correlation strength ρs

in four different experimental conditions. We also compare the performance

of subjects as the strength of ρs varies in the experiment.

(II) We also plot the proportion of ”target present” responses as a function of

minimum difference between the target and a distractor’s orientation. We

plot these curves separately for the target-present, and target-absent trials.

In a target absent trial, as the distractor orientation gets closer to the target

orientation, the difference between the two reduces, and it would be difficult

for an observer to discriminate the distractor from the target. The distractor

would appear as a target in such a case, and the observer is more likely to
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report ”target present” even though there is no target. On the other hand,

as the minimum difference increases, the distractors will have significantly

different orientations than the target, and the observer may be able to detect

the absence of target easily.

While on a target present trial, a comparatively small orientation difference

between the target, and a distractor could provide more evidence to the ob-

server in responding ”target present”. This is because more than one object

in the display would have orientation closer to the target, and the observer

could possibly make a decision based on either one of them. In the case of

large minimum difference between the target, and a distractor, the observer

must make a decision based on the measurement of the target.

(III) Further, we analyze the behavior of subjects using a plot of proportion of

”target present” responses as a function of sample standard deviation

between distractor orientations. Again, we separate the data on target-

present, and target-absent trials. In terms of interpretation, these curves are

closely related to type (II) curves with x-axis as the minimum orientation

difference between target, and a distractor. Also, the curve follows a similar

shape as its counterpart in type (II) except in the case of perfect correlations.

In the case of ρs = 1, all distractors are identical, and hence the standard

deviation between any pair of distractor orientation is equal. Thus, all data

points lie in a single bin on target absent trials, and we only obtain a single

point in the plot. For instance, left panel in Figure 4.1(C), and other similar

figures in Chapter 4 have such curves.
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3.5.2 Predictions using synthetic data

We want to fit the psychometric curves of subjects on the experiment with a hy-

pothesized model M. We use the maximum-likelihood estimate θ̂ of model pa-

rameterθ to generate the predictions of the model for a subject’s data. We assume

that θ̂ represents the subject’s parameter, and can be used to completely describe

the behavior of the subject. We use this estimate to generate the stimuli, and the

corresponding hypothesized measurements of the subject. These measurements

are then used to make hypothesized responses of the subject based on the decision

variable dM(x) of the underlying model. This constitutes the model predicted data

set for the subject, and is also referred as the synthetic, or fake data set. The synthetic

data is generated to replicate the subject’s behavior based on the assumptions of

the model M. These data sets are then used to make model generated psychome-

tric curves. The psychometric curves predicted by the model with the parameter

estimate of θ̂ are compared with the actual psychometric curves of the subject

on the experiment. If the model predicted curves are well fitted to the subject’s

true responses, then the model provides a good explanation of the behavior of

the subject on the experiment. If the two curves are significantly different, then

the underlying model lacks the assumptions that could reproduce the subject’s

responses.

It is possible that the responses of the subjects are best described by multiple

models, or behavior of different individuals is explained by different models. We

find such issues in Chapters 4, and 5. But, we use summary statistics to draw
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conclusions. We generate the model predictions for each subject, and take an av-

erage over all subjects. These average model predictions are then matched with

averaged true psychometric curves of the subjects. The results based on summary

statistics may not reflect a complete picture in the event subjects follow different

strategies or models to make decisions. However, it is difficult to build a mathe-

matical model to test such a possibility.

3.5.3 Error measures

The model provides a prediction for the subject’s data based on the maximum-

likelihood estimate of parameter θ. The subject’s psychometric curves are fitted

using the model predicted curves. To quantify the difference between both curves,

we measure two types of statistical errors: (i) the root-mean-square error (RMSE),

and (ii) the R2 statistic or coefficient of determination. RMSE is defined as the square

root of the mean square error between the subject’s data, yi, and the model pre-

dicted curves, ŷi:

RMSE =

√√√√√√
DN

∑
i=1

(yi − ŷi)
2

DN
.

Here DN denotes the total number of data points in the psychometric curve.

Statistic R2 is another measure of determining how well the model fits to the
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experimental data, and it is defined as:

R2 = 1−

DN

∑
i=1

(yi − ŷi)
2

DN

∑
i=1

(yi − ȳ)2

,

where ȳ =
1

DN

DN

∑
i=1

yi is the sample mean of subject’s data. The range of R2 de-

pends on the type of regression used; however, a negative value can occur in case

a non-linear function is fitted to the data [29].

3.6 Model comparison

The fitting of model predicted psychometric curves to a subject’s responses deter-

mines the goodness of the model to the experimental data, and we measure this

goodness in terms of the statistical error between the two curves. Frequently, we

consider multiple models with different assumptions about the behavior of the

subject. Models generally differ in terms of the assumptions about their param-

eters, and the dimensionality of the parameter space. We fit each hypothesized

model to the data using a similar fitting procedure. It is possible that more than

one model provide a good explanation for the subject’s behavior. They could have

equally well predicted curves that match the experimental data, and the error is

comparable for both models.

How do we compare models to find the one that best describes the data? Psy-

chometric curves do not help in discriminating two models if both predict similar
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fitting curves for the data. Instead, we compare models on standard criteria that

also weigh models based on their dimensionality. A general model with large

number of parameters will always provide a fit that is at least as good as a special

model obtained from the general case. This could mainly be because of additional

free parameters in the general model. Therefore, we consider criteria that take

this issue into account, and penalize a model for the number of free parameters it

has. In the following section, we briefly discuss three criteria that are commonly

used to compare models in pscyhophysics. We also discuss the limitations we en-

countered while comparing our models (described in Chapter 5) based on these

criteria.

3.6.1 Bayesian model comparison (BMC)

Bayesian model comparison (BMC) [92, 89, 146] is a fundamental method of model

selection. The model with the highest posterior probability (probability of the

model given the data) is selected. The posterior probability of a model M given

the data can be computed using Bayes’ theorem

p(M|data) =
p(data|M)p(M)

p(data)
.

The ratio of posterior probabilities is computed for the two models M1, and M2

that need to be compared

p(M1|data)
p(M2|data)

=
p(data|M1)p(M1)

p(data|M2)p(M2)
.
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An equal prior is chosen for both models, p(M1) = p(M2) = 1
2 since no model

is favored over the other. This reduces the comparison to the ratio of model like-

lihoods, p(data|M). The ratio is also called a Bayes’ factor. The model likelihood is

computed [89, 94] by averaging the model likelihood under a hypothesized value

of the parameter in the parameter space

p(data|M) =

ˆ
p(data|M,θ)p(θ|M)dθ. (3.4)

The above expression is rewritten in terms by taking logarithm

log p(data|M) = log L∗M + log
ˆ

elog LM(θ)−log L∗M p(θ|M)dθ. (3.5)

Bayesian model comparison computed using the above equation is based on the

entire model likelihood function LM(θ), instead of only of its maximum value L∗M.

Further, it penalizes models for additional free parameters. Therefore, BMC is a

principal method to compare models.

However, there are several issues in the practical implementation of BMC.

Eq. (3.5) is based on the integral evaluation of the parameter likelihood function

LM(θ) over the entire parameter space. This integral does not have a closed form

expression in case of analytically intractable model likelihood. Thus in practice,

the integral is approximated by Riemann sums. The accuracy of such an approx-

imation depends on many factors. For instance, the parameter grid spacing, and

number of samples used in the evaluation can potentially change the results to a

large extent. Further, the sum may not converge to the true value, and could suffer

numerical issues. High-dimensional models are most sensitive to these problems,
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and precaution must be taken when using Bayesian model comparison for com-

plex models.

Most of the models that we considered to explain our experimental data are

high-dimensional in parameter space. Thus, we faced computational issues using

BMC to compare our models. In general, the integral in Eq. (3.5) can be evaluated

using Markov Chain Monte Carlo (MCMC) method [47, 115, 92, 103, 18]. However,

we also encountered problems in implementing this method to apply BMC in our

case. Lack of an analytical approximation for the model likelihood function LM(θ)

created most of the numerical problems for us. Due to computational inefficiency

of our models, we use criteria that use maximum model likelihoods to compare

models. We describe two such comparison measures below.

3.6.2 Bayesian information criterion (BIC)

Bayesian information criterion (BIC) [123] is a model selection criterion that is based

on the maximum value of model likelihoods L∗M. It computes the goodness of a

model from maximum model likelihood while penalizing the model for extra free

parameters. The penalty term increases with the number of free parameters in the

model. BIC is mainly computed using the following formula

BIC = −2L∗M + f log K, (3.6)

where f is the total number of free parameters in the model, and K represents

the total number of experiment trials. The above formula is based on a Laplace’s

approximation of the integral in Eq. (3.5). Bhat et al. [17] have provided a detailed
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derivation of the same.

The penalty term in BIC increases with increasing number of free parameters,

f , and it scales with the size of the data. Thus, it more strongly penalizes models

with large number of free parameters as compared to the Akaike information cri-

terion (AIC). Therefore, the model with the lower value of BIC is preferred when

using Bayesian information criterion to compare models. A lower value of BIC

for a model implies fewer free parameters, better fit or both.

3.6.3 Akaike information criterion (AIC)

Similar to BMC, and BIC, Akaike information criterion(AIC) [3, 20, 21, 25] is also a

relative measure of a statistical model quality. It is closely related to BIC in terms

of the criterion, and the penalty term. However, the penalty term is weaker as

compared to BIC. The following equation is generally used to compute Akaike

information criterion:

AIC = −2L∗M + 2 f . (3.7)

Under this criterion of model selection, the model with the minimum value of AIC

is preferred over others, and it also penalizes models for over fitting.

The derivation of the criterion in Eq. (3.7) can be found in [3]. It is mainly

based on the information theoretic concept, and computing the Kullback-Leibler

(KL) divergence [81, 25, 18] between a model prediction, and the data. The model

with the minimum value of KL distance, or having minimized information loss is

selected.
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We note that both BIC, and AIC are only based on maximum model likeli-

hoods. Thus, this requires finding the maximum-likelihood estimates, however,

we do not need to compute any integrals here. Therefore, to overcome our nu-

merical difficulties, we compare our models using BIC, and AIC in Chapter 5, and

make conclusions based on the results obtained from these comparisons.

3.7 Discussion

In this chapter, we have presented a brief description of the tools that are fre-

quently used in fitting models to the psychophysics experimental data. Estimat-

ing maximum-likelihood parameters of a model is a crucial step in order to gen-

erate predictions of the model for a subject’s responses. However, the possible

numerical issues must be diagnosed that are specific to the task, and the data. A

suitable, and efficient optimization algorithm must be applied to estimate model

parameters. Lack of a better approximation of the underlying model likelihood,

or an inefficient method of obtaining this approximation can limit the application

of an optimization algorithm to the data.

The parameter estimates are then used to generate the model predictions for

the psychometric curves of the subject’s responses. These curves are analyzed

to determine the goodness of the model fit to the data, and how well the model

explains the behavioral response of the subject on the experiment. Eventually,

different models are compared on an appropriate criterion to find the model that

best describes the data.
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Chapter 4
Data analysis I: model fitting

Recent experimental studies have found that humans behave in Bayes-optimal

manner in detecting a target among homogeneous, and heterogeneous distrac-

tors [90, 94, 95]. But both these conditions are extremes, and do not represent

the possible realistic intermediate structure present in natural scenes. This pro-

vides the motivation for our experimental study to interpolate between the ho-

mogeneous, and heterogeneous conditions by varying the strength of correlation

between distractor orientations. The correlation coefficient ρs defined in the gen-

erative model in Section 2.1 controls the amount of correlations between pairs of

distractors. A higher correlation between distractors introduces more similarity

in their orientations, and hence gives more structured stimuli. To examine the ef-

fect of structured input on visual perception, we designed a target detection task

with distractors having correlated orientations (details in Section 2.1), and per-

formed an experiment based on the task to determine how human subjects make
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decisions in response to structured stimuli. The information about the recorded

experimental data is provided in Section 3.1.

We provide several plausible models here, and use rigorous model compari-

son to decide which one explains the data best. Further, we interpret the behavior

of subjects based on the assumptions of the best fitting model, and its parameters.

We mainly focus on understanding the impact of stimulus correlations on sub-

jects’ responses. We note that the correlation coefficient ρs is an experimental pa-

rameter that controls the amount of correlations between distractor orientations.

It is also the relevant stimulus feature of our interest. We controlled the statis-

tical structure in visual scenes by varying the strength of stimulus correlations

ρs. We chose 4 different levels of ρs - 0, 1
3 , 2

3 , and 1 to be tested in the experi-

ment. The condition ρs = 0 corresponds to heterogeneous distractors, and ρs = 1

with perfectly correlated (or homogeneous) distractors. The intermediate value

of ρs ∈ { 1
3 , 2

3} interpolates between the two extreme conditions, and introduces

a partial structure in the scenes. The experiment was divided in four different

sessions (details in Section 2.5.3), and a unique value of ρs was used to generate

the stimuli in each session. Therefore, each session was characterized by a unique

statistical structure present in the displays, and represents a different condition

on the experiment. We thus refer to these sessions as experimental conditions, and

the difference between these conditions is determined by the experimental value

of ρs used in that session.

Our objective is to examine the subjects’ behavior on different experimental

conditions, and determine whether subjects use correct or incorrect assumption
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4.1. PSYCHOMETRIC CURVES OF SUBJECTS DATA

about the experimental value of ρs in different conditions. In addition, we are not

aware of the precision levels with which subjects made their measurements. It

is evident from Eq. (2.21) that precision (inverse of measurement noise σ2
i ) of a

measurement can greatly affect the accuracy of a subject’s decisions. In order to

generate model predictions for the data, we also need to estimate the precision

parameters that regulate the subject’s measurements. Therefore, our models have

two important category of parameters – the subject’s assumption about ρs, and

the uncertainty in the subject’s measurements.

We present a variety of models in this chapter that differ in their assumption

about ρs, and the encoding precision. We consider a range of assumptions about

both parameters in our models. Each model is individually tested on the exper-

imental data, and model predications are generated for subjects’ psychometric

curves. We use the methods, and procedures described in Chapter 3 for find-

ing parameter estimates, and fitting a model to the data. We evaluate the error

(RMSE), and goodness of fit (R2) between model predicted curves, and the data.

Finally, we discuss why we need to compare models.

4.1 Psychometric curves of subjects data

We first examine the experimentally obtained psychometric curves that are based

on subjects’ responses. We consider three types of psychometric curves: (I) hit

and false-alarm rates, (II) proportion of ”target present” responses as a function
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of minimum difference between the target, and any distractor, and (III) propor-

tion of ”target present” responses as a function of sample standard deviation be-

tween stimuli orientations. We separately analyze type (II), and (III) curves in

target-present, and target-absent trials. A detailed description of these curves is

presented in Section 3.5.1. Figure 4.1 shows the mean responses of subjects on

different types of psychometric curves.

4.1.1 Hit and false-alarm rates

The left panel in Figure 4.1(A) displays the average behavior of subjects in terms

of hit (black), and false-alarm rates (red curve). The mean proportion of subjects

responding ”target present” on target-present, and target-absent trials are plotted

in each experimental condition (ρs ∈ {0, 1
3 , 2

3 , 1}). The hit, and false-alarm rates

show a similar trend in the first three experimental conditions, while they have an

expected increase (hit rate), and decrease (false-alarm rate) in the case of homoge-

neous distractors. Increased pairwise correlations between distractor orientations

result in more structure among the stimuli, which should make it easier to single

out the target, if present. Therefore, the hit rate increase (or false rate decrease) in

case of homogeneous distractors is due to the effect of increased correlations that

facilitate the target detection.

A similar trend is also visible in the right panel of Figure 4.1(A). The average

performance of subjects is plotted in each experimental condition. The mean per-

formance in first three conditions is very close to 60%, while in the case of ρs = 1,
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Figure 4.1: Psychometric curves based on the experimental data. Throughout
the chapter, the error bars indicate unit standard error mean (s.e.m). (A) Hit and
false-alarm rates (left), and performance (right). (Left) Hit (black), and false-
alarm (red) rates as a function of correlation strength ρs used in the experimental
conditions. Hit rate has similar behavior in the first three experimental conditions,
while it shows a large increase in the case of homogeneous distractors. Similar
trend is seen for false-alarm rate with a significant decrease only when ρs = 1.
(Right) Mean subject performance in the four experimental conditions. (B) Min-
imum target-distractor orientation difference. Proportion of ”target present” re-
sponses is plotted as a function of minimum difference between the target, and
any distractor, separately for target-present (left), and target-absent (right) trials
in the four experimental conditions. The difference is measured in degrees. Each
curve corresponds to an experimental condition with ρs ∈ {0, 1

3 , 2
3 , 1}. The data in

first three conditions (ρs = 0, 1
3 , or 2

3 ) show a very similar trend, while the curve
for ρs = 1 is distinguishable from other three conditions in both target-present,
and target-absent cases. (C) Sample standard deviation between distractor ori-
entations. Proportion ”target present” responses on different experimental condi-
tions as a function of sample standard deviation between distractor orientations,
in target-present (left), and target-absent (right) trials. The behavior is similar to
the curves in (B) except for ρs = 1 in target-absent trials (right). Since all distrac-
tors are identical, there is a single value for the sample standard deviation, and
hence a single data point. 90
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it shows a large increase to 72.7%. This suggests that subjects might be using the

enhanced structure present in visual displays to improve their decisions. How-

ever, we will investigate further to test this possibility.

4.1.2 Minimum target-distractor orientation difference

A more detailed view of the data can be seen in Figure 4.1(B). The mean pro-

portion of ”target present” responses in all four experimental conditions are plot-

ted as a function of minimum difference between the target, and any distractor

in both target-present (left), and target-absent (right) trials. These plots show

that the proportion of subjects responding ”target present” decreases as the min-

imum target-distractor orientation difference increases, both for target-present,

and target-absent trials. Such a behavior is expected, since a large difference be-

tween the target, and any distractor reflects more dissimilarity of the distractors

from the target, and hence it would be easier to perform the task. The curves

corresponding to ρs = 0, 1
3 , and 2

3 overlap, while the responses of subjects have

a different behavior in the case of ρs = 1. This behavior is consistent with the

trend seen in hit, and false-alarm rates in (A). Also, the decrease in the proportion

of ”target present” responses at larger minimum target-distractor differences is

higher in target-absent trials for ρs = 1 in comparison to other experimental con-

ditions. This is because the distractors are identical when ρs = 1, and when the

difference between the target, and distractors increases, it would become easier to

determine whether all stimuli are same, or there is an odd-ball (target) stimulus.
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4.1.3 Sample standard deviation of distractor orientations

Another view of the data on different experimental conditions is presented in

terms of proportion ”target present” responses as a function of sample standard

deviation of distractor orientations in Figure 4.1(C). Again, these are plotted sep-

arately for target-present (left), and target-absent (right) trials. These curves con-

tain similar information as minimum target-distractor orientation difference plots

in (B). Thus, the behavior on target-present trials is very similar to the left panel

figure in (B). The proportion of ”target present” responses decreases as the sam-

ple standard deviation of distractors increases, and hence the distractors get more

dissimilar. On target-absent trials, the sample standard deviation reduces to a sin-

gle value in the case of homogeneous distractors, and thus the curve has only one

data point.

Thus, Figure 4.1 presents different psychometric curves to visualize the exper-

imental data, and each curve provides a different insight about the behavior of

subjects. The different plots suggest that the subjects’ behavior is similar in ex-

perimental conditions with ρs < 1, while they do behave differently in the case of

homogeneous distractors. We next describe different plausible models that could

explain these observations, and provide a good fit for the experimentally obtained

psychometric curves.
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4.2 Models

In the optimal-observer model derived in Section 2.2, we assume that the observer

is aware of the correct generative model (Figure 2.1), and the associated parame-

ters such as N,σ2
s ,ρs, and prior over T. However, we need to test whether human

observers learn, and use the correct generative model in making decision. If they

do not, their inferences are suboptimal. For instance, an observer may not use

equal odds prior, or the correct value of ρs. Therefore, we want to analyze how

subjects made their decisions, and what parameter values they used to make their

responses. Specifically, we are interested in determining what values of ρs subjects

used to make their responses, and how certain they are in making their measure-

ments. We note that we can only determine this by fitting models to the data,

and making conclusions based on the best fitting model. It is always possible that

there are better models, and better explanations, however.

The subjects were pre-informed about the number of stimuli being N = 4 in

the experiment. Further, we assume that subjects were able to infer the correct

value of σs as 15◦ in the experiment, and used it to make their decisions. Though

this may not necessarily be true. It is possible that subjects did not infer the value

of σs correctly in the experiment, and might have used an incorrect assumption

about it. In that case, we would need models that incorporate the plausible as-

sumptions about σs that observers could have used. Such models will have σs

as a free parameter, and we would need to test possible assumptions on it. For

instance, subjects could use different values of σs across experimental sessions, or
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possibly they could use a distribution over the values ofσs. We can easily see that

this would add another dimension of complexity to our existing complex models,

and would further make our computations intractable. Thus, we save some order

of complexity in our models by assuming that subjects were able to correctly infer

the true value of σs in the experiment.

We are mainly interested in determining whether subjects use the correct or

incorrect assumption about ρs in making decisions on different experimental con-

ditions. We denote the true experimental value of ρs by ρstrue , and a subject’s as-

sumed value of ρs by ρsassumed . Therefore, we want to determine whether ρsassumed =

ρstrue , or ρsassumed 6= ρstrue for a subject in each experimental condition. If the subject

uses ρsassumed = ρstrue in all experimental conditions, the subject is optimal on the

task. Otherwise, we refer to the condition ρsassumed 6= ρstrue as suboptimal condition.

To answer this question, we consider several suboptimal models. We catego-

rize these models based on the assumptions about ρs, and the encoding precision:

1. Assumption about ρs: we explored whether subjects use the correct (ρsassumed =

ρstrue) or incorrect (ρsassumed 6= ρstrue) assumption about ρs in the generative

model.

2. Encoding precision: we do not know how subjects made their measure-

ments. In particular, what precision values they used for encoding stimuli.

We need to determine whether subjects encode all stimuli with equal pre-

cision, or they use varying precision for stimuli across trials. Therefore, we

test models that have the assumptions about subjects encoding stimuli with
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equal or variable precision.

In the following sections, we discuss the above two categories of models in details,

and also their further division into sub-categories.

4.2.1 Assumption about ρs

An ideal observer uses the correct value of ρs when inferring target presence.

However, it is possible that the observer may not be aware of the correct corre-

lation strength. To test which case is more likely, we consider models with ρs as a

free parameter. Specifically, we tested three main assumptions about ρs:

(a) ρsassumed = ρstrue : we assume that the observer uses the correct value of corre-

lation strength in all experimental conditions to infer target presence, that is,

ρsassumed = ρstrue ∈ {0, 1
3 , 2

3 , 1}.

(b) ρsassumed = ρsconstant : in this condition, we consider that the observer assumes

that the level of correlation among distractor orientations is constant across all

conditions. In particular, we check whether

(i) the observer completely ignores the information about correlation in all

experimental conditions, and uses ρsconstant = 0. This would mean that

observer uses (0, 0, 0, 0) as correlation values in making decision on all

experimental conditions.

(ii) the observer may also use any other value between 0, and 1 as ρsconstant in

making decision. We thus let ρsassumed = ρsconstant to be a free parameter in
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the model.

(c) ρsassumed 6= ρstrue : we further allow the possibility that the observer may use

different, possibly incorrect correlation strengths across experimental condi-

tions. We let ρsassumed to be a free parameter in the model, and check for the

following possibilities:

(i) the observer considers the first three conditions identically, and thus uses

an equal correlation strength in making decision on these conditions,

while assume a different level of correlation in the fourth experimen-

tal condition. In such a case, we fit ρsassumed as a constant free parameter

in the first three conditions, and as another free parameter in the fourth

experimental condition i.e., (α,α,α,β).

(ii) the observer uses an incorrect assumption about ρs in all experimental

conditions. We thus fit ρsassumed per condition in this model, i.e., ρsassumed

has following form (α,β,γ, δ). We note that this is the most general as-

sumption about ρs, and all above models are special cases of this model.

Hereα,β,γ, and δ represent free parameters of the model, and they are fitted per

model for each subject. We also note that ρsassumed = ρsconstant , and ρsassumed 6= ρstrue

are suboptimal conditions on the task.
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4.2.2 Encoding precision

Along with the assumption about ρs, we also consider different assumptions about

encoding precision in our models. Since the precision of measurements greatly

impacts the accuracy of decisions, we want to determine which assumption is

most consistent with the responses of the subjects. Signal detection models have

typically assumed that encoding precision is constant across stimuli, and trials at

a given set size [106, 127, 153, 149]. However, recent experimental studies show

that the observers’ measurements are of variable precision. That is, the encoding

precision varies across stimuli, and trials [141, 43, 94, 95, 71, 72, 129, 131]. This

variability could be attributed to the attentional fluctuations, or other factors.

We thus consider both possible models of the precision of measurements: in

the first type of model, we assume that the measurements of all stimuli have equal

precision. We denote the precision of the ith measurement by Ji =
1
σ2

i
. Under the

equal precision assumption, we assume that Ji is constant across stimuli, that is,

Ji = J for all i = 1, 2, · · · , N. The constant J is a free parameter in the model.

These models are known as equal precision (EP) models. We assume that the

precision is constant across trials in the same experimental condition, however,

it may vary across trials in different experimental conditions. We thus test both

possibilities in our models by assuming J is constant, and variable across exper-

imental conditions. We, therefore, consider two types of EP models with J as a

single constant parameter in all conditions, and as a varying parameter across the

four experimental conditions.
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In the second model type of precision, we assume encoding precision varies

randomly across stimuli, and trials. These models are known as variable preci-

sion (VP) models. We denote the precision variable by a vector J = (J1, J2, · · · , JN),

where Ji corresponds to the precision of the ith measurement. In the VP models,

we assume that the precision variable J with which stimuli are encoded is a ran-

dom variable. To model such variability, we assume J follows a gamma distribu-

tion with mean J̄, and scale parameter, τ . We sample the precision randomly for

each stimulus on each trial. Therefore, the measurement is described by a dou-

bly stochastic process, ( J̄, τ) → J → x [141]. Thus, the precision determines the

distribution of stimulus estimate, but is itself also a random variable.

Why do we choose the gamma distribution to model the variability in preci-

sion? The proper choice of a distribution for modeling variable precision would

require the marginalization over all possible ways to implement this variability.

Though a full marginalization seems impossible, but the success of the VP con-

cept can be assessed how well it performs under various specific alternative dis-

tributions. Van den Berg et al. [140] have implemented, and tested VP models

with many other alternatives such as log-normal, Weibull, and log-uniform distri-

butions. They have found that the results are consistent under changes in the as-

sumed distribution over precision. Therefore, we consider that our results would

be robust under the choice of a distribution. The gamma distribution is a two-

parameter family of continuous, unimodal distributions on the positive real line,

and has been successfully used for modeling variable precision. We thus consider

the same choice for our models.
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In our VP models, both J̄, and τ are free parameters. We assumed the scale τ to

be constant across experimental conditions. But similar to EP models, we consider

models with J̄ constant, or varying across experimental conditions.

4.2.3 Summary of models

We test the following two assumptions about encoding precision in EP (with pre-

cision parameter J), and VP (mean precision parameter J̄) models:

• precision J (or J̄ in VP) is independent of experimental conditions (ρs-independent),

• precision J (or J̄ in VP) vary across experimental conditions, and is thus ρs-

dependent.

In addition, we also have the following model variants based on the assumption

about ρs for each category of EP, and VP models:

(i) ρsassumed = ρstrue = (0, 1
3 , 2

3 , 1), the optimal model

(ii) ρsassumed = (0, 0, 0, 0), i.e., no correlations model

(iii) ρsassumed = (α,α,α,α), constant correlations model

(iv) ρsassumed = (α,α,α,β), constant in first three conditions, and different in ρs =

1 condition

(v) ρsassumed = (α,β,γ, δ), the most flexible model in terms of ρs.
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We test each of the above assumption about ρs for each possible combination of

EP, and VP models. Therefore, in total, we consider 2 × 2 × 5 = 20 models. In

addition to the assumptions about ρs, and encoding precision, we also consider

prior for T as a free parameter in our models. We assume this parameter to be

constant across experimental conditions.

Table 4.1 gives a detailed summary of the category of models we consider, and

their number of parameters. For reference convenience, we number models in

each precision category, from EP1 to EP10, and VP1 to VP10. We note that most

of the models are high-dimensional (with parameters > 3), and these parameters

are associated with different correlation conditions.
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Precision Assumption

on J or J̄

Model

No.

Assumption on ρs No. of

free pa-

rameters

EP1 ρsassumed = (0, 1
3 , 2

3 , 1) 2

EP2 ρsassumed = (0, 0, 0, 0) 2

EP J condition-

independent

EP3 ρsassumed = (α,α,α,α) 3

EP4 ρsassumed = (α,α,α,β) 4

EP5 ρsassumed = (α,β,γ, δ) 6

EP6 ρsassumed = (0, 1
3 , 2

3 , 1) 5

EP7 ρsassumed = (0, 0, 0, 0) 5

EP J condition-

dependent

EP8 ρsassumed = (α,α,α,α) 6

EP9 ρsassumed = (α,α,α,β) 7

EP10 ρsassumed = (α,β,γ, δ) 9

VP1 ρsassumed = (0, 1
3 , 2

3 , 1) 3

VP2 ρsassumed = (0, 0, 0, 0) 3

VP J̄ condition-

independent

VP3 ρsassumed = (α,α,α,α) 4

VP4 ρsassumed = (α,α,α,β) 5

VP5 ρsassumed = (α,β,γ, δ) 7

VP6 ρsassumed = (0, 1
3 , 2

3 , 1) 6

Continued on next page
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Table 4.1 – Continued from previous page

Precision Assumption

on J or J̄

Model

No.

Assumption on ρs No. of

free pa-

rameters

VP7 ρsassumed = (0, 0, 0, 0) 6

VP J̄ condition-

dependent

VP8 ρsassumed = (α,α,α,α) 7

VP9 ρsassumed = (α,α,α,β) 8

VP10 ρsassumed = (α,β,γ, δ) 10

Table 4.1: List of models considered to explain the data obtained on the tar-

get detection experiment. Description of models fitted to the experimental data

with different assumptions about encoding precision parameter, and correlation

strength. The number of free parameters per model is also listed.

Apart from these models, there could be many other possible assumptions

about ρs such as ρsassumed = (1, 1, 1, 1), ρsassumed = (0, 0, 0, 1), ρsassumed = (0, 0, 0,α),

and ρsassumed = (α,α,α, 1). We also test these possibilities in our models, however,

the model fits are either worse, or comparable to other general models we have

considered above. Thus, we do not include these models in our analysis below.

We now present the model fits of the data for each of the model listed in Ta-

ble 4.1. Each model fit is obtained by generating synthetic data based on the

maximum-likelihood estimates of the model parameters for each subject, using
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the same number of trials as in the subject data (averaged over 100 runs). The pre-

dictions for different psychometric curves are obtained based on these synthetic

data.

4.3 Equal precision models

We first examine the fits of the EP models to the subjects’ data. We present the

predictions of all EP models for the psychometric curves, and discuss the conse-

quences.

4.3.1 Condition-independent precision J

We consider the precision to be constant across experimental conditions, and test

different assumptions about ρs. We check the model fits of EP1 to EP5 here. These

models have a common assumption about precision, but they differ in the as-

sumption about ρsassumed , and hence have varying number of free parameters. In

addition, they have a common assumption about the prior of T. In the figures

below, the shaded areas represent the fits of the model to the data. The model pre-

dictions for each subject are individually obtained, and averaged over subjects.

Figure 4.2 shows the fit of EP1 model for the data. This model assumes that

subjects use correct assumption about the correlation strength ρs in making their

decisions. The fits for the hit rate, false-alarm rate, and performance illustrate a

good match (RMS error 0.036, and 0.011, and R2 of 0.94, and 0.96, respectively)
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Figure 4.2: EP model 1 (J condition-independent, and ρsassumed = ρstrue) fits for the
data. Throughout the chapter, the shaded areas show the fit of the model, and the
circles are averaged subject responses. The error bars, and shaded areas represent
unit standard error of the mean for subjects data, and model fits, respectively. The
values in the plots indicate the RMSE, and R2 errors between the data, and model
fit. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm rates as a function of
correlation strength ρs used in the experimental conditions. (Right) Performance
as a function of correlation strength ρs. (B) Minimum target-distractor orien-
tation difference. Proportion ”target present” responses as a function of mini-
mum target-distractor orientation difference, separately for target-present (gray),
and target-absent (red) trials in each experimental condition (columns). (C) Sam-
ple standard deviation of distractor orientations. Proportion ”target present”
responses as a function of sample standard deviation of distractor orientations,
separately for target-present (gray), and target-absent (red) trials in each experi-
mental condition (columns).
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between the model predictions, and the data. Also, the model predictions have

a close agreement to the data for the psychometric curves in Figure 4.2(B) with

small errors (RMSE equal to 0.05, 0.05, 0.06, and 0.06 in the four experimental con-

ditions, while R2 equal to 0.94, 0.92, 0.89, and 0.91, respectively). However, when

compared based on the measure of sample standard deviation between distrac-

tors, the model predictions fail badly, and show large deviations (Figure 4.2(C)).

Specifically, the predictions are worse in the cases of ρs = 0, and ρs = 1
3 (RMSE

equal to 0.095, and 0.075; R2 equal to 0.3, and 0.46, respectively). These curves

clearly suggest that subjects do not use the assumptions of this model in their

inference process.

We see a far more worse trend (RMS errors of more than 0.6, and R2 values

are even negative for some curves) in the fits of EP2 model in Figure 4.3. None

of the curves are predicted by the assumption of zero correlations in this model.

The model predictions are worse in the case of homogeneous distractors, ρs = 1

(Figure 4.3(C)) with the RMS errors of 0.2, and R2 a large negative value. The

worse fit of this model in all conditions clearly indicates that subjects might be

using correlations in making their decisions. However, we still need to investigate

what values they use in such a case.

Next, we compare the fits of EP3 model in Figure 4.4 that has the assumption

of constant ρsassumed across experimental conditions. The model has better predic-

tions for the data in the first three experimental conditions (RMSE < 0.07, and

R2 > 0.64, respectively) as compared to the condition of ρs = 1. Though the fits
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Figure 4.3: EP model 2 (J condition-independent, and ρsassumed = (0, 0, 0, 0))
fits for the data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm
rates as a function of correlation strength ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray), and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray), and target-absent (red) trials
in each experimental condition (columns).
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Correlation coefficient ρ
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Figure 4.4: EP model 3 (J condition-independent, and ρsassumed = (α,α,α,α))
fits for the data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm
rates as a function of correlation strength ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray), and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray), and target-absent (red) trials
in each experimental condition (columns).
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are not perfect even when ρs =
1
3 , and ρs =

2
3 , particularly, the predictions in Fig-

ure 4.4(C) show disagreement between model fits, and the data at large values of

sample standard deviation between distractor orientations. However, the model

completely fails to explain the behavior of subjects on the homogeneous distrac-

tors condition, and has RMS errors of 0.1, and R2 of 0.64 in the minimum target-

distractor orientation plots (Figure 4.4(B)), and RMS errors of 0.15, and R2 of -0.21

in the case of sample standard deviation plots (Figure 4.4(C)). These fittings of the

model with the constant assumption of ρs suggest that perhaps subjects treat the

case of ρs = 1 differently from the other experimental conditions, and they might

be using different inference processes when correlations are not perfect, and when

they are. This seems to be consistent with the responses of subjects observed in

Figure 4.1. However, since this model could not completely explain the behav-

ior even in the cases of ρs < 1, it is difficult to support this hypothesis using the

predictions of the EP3 model.

To test our hypothesis of whether subjects treat the homogeneous condition

differently from other experimental conditions, we check the predictions of the

EP4 model in Figure 4.5. EP4 model allows the possibility of having ρsassumed as a

free parameter in the first three conditions, and separately in the fourth condition

along with the assumption of constant precision parameter J. That is, ρsassumed has

the form of (α,α,α,β), and assumes that the observer uses a constant value of

ρsassumed in the first three experimental conditions, but treat the fourth condition

differently (when β 6= α for the observer). If for an observer, β is equal to α, the

fits of the EP4 model reduce to those of EP3 (with ρsassumed = (α,α,α,α)) for that
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Figure 4.5: EP model 4 (J condition-independent, and ρsassumed = (α,α,α,β))
fits for the data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm
rates as a function of correlation strength ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray), and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray), and target-absent (red) trials
in each experimental condition (columns).
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observer’s data.

The EP4 model does extremely well in predicting the subjects’ behavior on

conditions with ρs < 1. Specifically, the hit, and false-alarm rates (left panel),

and performance curve (right panel) are closely fitted in Figure 4.5(A) with RMS

errors of 0.031, and 0.023 (R2 of 0.95, and 0.83), respectively. Further, the shaded

curves of model are well aligned (RMS errors of 0.04, and R2 ≥ 0.94) with the data

points in the minimum target-distractor orientation plots in Figure 4.5(B) except in

the case of ρs = 1 which shows some deviations in the target-present trials (fourth

panel). But, the comparison based on the sample standard deviation figures (Fig-

ure 4.5(C)) indicate that this model also fails to capture the responses of subjects

on the perfect correlation condition. The model does have better fit as compared

to EP3 model in Figure 4.4(C, fourth panel) however, they still have large RMS

errors of 0.076, and low R2 value of 0.63. In addition, the model predictions fail at

couple of data points in the first three experimental conditions in Figure 4.5(C).

Therefore, the models EP1 to EP4 still lack the assumptions to explain the be-

havior of subjects on the target detection task. In order to further explore how

subjects made their decisions, we test the most flexible assumption about ρsassumed

with constant precision J across experimental conditions in EP models. We let

ρsassumed to be a free parameter, and fit it per condition, thus it is of the form of

(α,β,γ, δ) form. This is our model EP5, and it represents a general model for the

assumption on ρsassumed . The model fitting curves are shown in Figure 4.6. Analyz-

ing the model fits for each psychometric curve, we find that the predictions of this

model are very close to those of EP4 model in Figure 4.5. Further, the magnitude
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Figure 4.6: EP model 5 (J condition-independent, and ρsassumed = (α,β,γ, δ))
fits for the data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm
rates as a function of correlation strength ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray), and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray), and target-absent (red) trials
in each experimental condition (columns).
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of RMS errors, and the goodness of fit R2 is similar in both cases. This suggest that

the two models are close in their predictions for the data, however, none of them

provide a better explanation in the perfect correlation experimental condition.

Since none of the models EP1 to EP5 could provide a good fit for the exper-

imental data, it is difficult to conclude anything about the behavior of subjects

based on these models. However, these models were based on different assump-

tions about ρsassumed , including the most general one but with the common hypoth-

esis of constant J across experimental conditions. The mis-fit of all these models

to the data suggests that in addition to ρsassumed , the assumption of precision J is

also important, and that plays a crucial role in determining the predictions of the

model for the data. Thus, we consider models to test the assumption whether

subjects have varying precision J across experimental conditions. To be consis-

tent, we test the similar assumptions about ρsassumed as in models EP1 to EP5 in the

following section.

4.3.2 Condition-dependent precision J

We now consider models EP6 to EP10 which have a common assumption about

the precision J constant in a particular experimental condition, but varying across

conditions. We begin with testing the hypothesis of ρsassumed = ρstrue = (0, 1
3 , 2

3 , 1)

in EP model 6.

We find in Figure 4.7(A), and (B) that the model has relatively good fit (R2 ≥
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Figure 4.7: EP model 6 (J condition-dependent, and ρsassumed = ρstrue) fits for the
data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm rates as a func-
tion of correlation strength ρs used in the experimental conditions. (Right) Perfor-
mance as a function of correlation strength ρs. (B) Minimum target-distractor ori-
entation difference. Proportion ”target present” responses as a function of mini-
mum target-distractor orientation difference, separately for target-present (gray),
and target-absent (red) trials in each experimental condition (columns). (C) Sam-
ple standard deviation of distractor orientations. Proportion ”target present”
responses as a function of sample standard deviation of distractor orientations,
separately for target-present (gray), and target-absent (red) trials in each experi-
mental condition (columns).
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0.89 ) for the data as compared to models EP1 to EP5 that assume J to be con-

stant across experimental conditions. But, the model predictions are worse for all

conditions in the sample standard deviation plots (Figure 4.7(C)). The RMS errors

range from a minimum of 0.059 (ρs = 1
3 ) to 0.082 (ρs = 0), while R2 values are

of the orders of 0.51(when ρs = 0) to 0.57 (ρs = 1). Therefore, sample standard

deviation plots provide us additional information about the model fits in addition

to the minimum target-distractor orientation plots which were used for analysis

in studies done by Mazyar et al.[94, 95]. Based on the poor performance of this

model in Figure 4.7(C), we reject this model, and test other assumptions about the

ρsassumed to predict subjects’ responses.

We next consider the fits of EP7 model in Figure 4.8. This model assumes that

observers do not learn any structural correlations present in visual scenes, and

consider all conditions as heterogeneous displays (ρsassumed = (0, 0, 0, 0)). Consid-

ering only the curves in Figure 4.8(A), the model seems to be predicting well for

the data with small RMS errors of 0.035 (left panel), and 0.025 (right panel). How-

ever, when we consider the fits for the minimum target-distractor orientations in

Figure 4.8(B), and the sample standard deviation plots in Figure 4.8(C), we see

huge errors (RMSE of the order of 0.06 or more) between the model predictions,

and the data. This clearly indicates that this model is a bad choice to predict the

responses of the subjects in this experiment. Perhaps subjects do take correlations

into account while making their decisions. But, we are unaware of the process

they follow.

Thus, we test the assumption of constant correlations in the experiment in EP

114



4.3. EQUAL PRECISION MODELS

Correlation coefficient ρ
s

Minimum target−distractor orientation difference (°)

Sample standard deviation between distractor orientations (°)

P
ro

p
o
rt

io
n
 "

ta
rg

e
t 
p
re

se
n
t"

 r
e
sp

o
n
se

s

0 4 8 12
0

0.2

0.4

0.6

0.8

1

ρ
s
 =1

RMSE=0.2

R2=0.51

(B)

0 4 8 12
0

0.2

0.4

0.6

0.8

1

ρ
s
 =0.67

RMSE=0.1

R2=0.73

0 4 8 12
0

0.2

0.4

0.6

0.8

1

ρ
s
 =0.33

RMSE=0.08

R2=0.82

Target absent, model

Target present, model

Target absent, data

Target present, data

0 4 8 12
0

0.2

0.4

0.6

0.8

1

ρ
s
 =0

 

 

RMSE=0.06

R2=0.89

0 1/3 2/3 1
0

0.2

0.4

0.6

0.8

1
Hit and False−alarm rates

RMSE=0.035

R2=0.94

0 1/3 2/3 1

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f 
co

rr
e
ct

 r
e
sp

o
n
se

s Performance

RMSE=0.025

R2=0.8

(A)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

ρ
s
 =0

RMSE=0.085

R2=0.49

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

ρ
s
 =0.33

RMSE=0.094

R2=0.29

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

ρ
s
 =0.67

RMSE=0.089

R2=0.5

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

ρ
s
 =1

RMSE=0.13

R2=−0.77

(C)

Figure 4.8: EP model 7 (J condition-dependent, and ρsassumed = (0, 0, 0, 0)) fits for
the data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm rates as a func-
tion of correlation strength ρs used in the experimental conditions. (Right) Perfor-
mance as a function of correlation strength ρs. (B) Minimum target-distractor ori-
entation difference. Proportion ”target present” responses as a function of mini-
mum target-distractor orientation difference, separately for target-present (gray),
and target-absent (red) trials in each experimental condition (columns). (C) Sam-
ple standard deviation of distractor orientations. Proportion ”target present”
responses as a function of sample standard deviation of distractor orientations,
separately for target-present (gray), and target-absent (red) trials in each experi-
mental condition (columns).
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Figure 4.9: EP model 8 (J condition-dependent, and ρsassumed = (α,α,α,α)) fits for
the data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm rates as a func-
tion of correlation strength ρs used in the experimental conditions. (Right) Perfor-
mance as a function of correlation strength ρs. (B) Minimum target-distractor ori-
entation difference. Proportion ”target present” responses as a function of mini-
mum target-distractor orientation difference, separately for target-present (gray),
and target-absent (red) trials in each experimental condition (columns). (C) Sam-
ple standard deviation of distractor orientations. Proportion ”target present”
responses as a function of sample standard deviation of distractor orientations,
separately for target-present (gray), and target-absent (red) trials in each experi-
mental condition (columns).
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model 8. The model predictions, and fits are shown in Figure 4.9. Analyzing the

curves in (B), and (C), we find that the model does not reproduce the subjects’ be-

havior on the experiment. It particularly fails in the condition of ρs = 1 with RMS

error of more than 0.1, and relatively poor R2 value. We also find that the fitting of

psychometric curve in the experimental condition of ρs = 1
3 in Figure 4.9(B, sec-

ond panel) is worse as compared to EP7 model in Figure 4.8(B, second panel). This

seems odd since EP7 model is a special case of EP8 model with α = 0 in all con-

ditions. This might be explained using the computational inefficiency we faced in

obtaining the fits of our models. We obtained the maximum-likelihood model pa-

rameters using the exhaustive grid search method (Section 3.4.1), and such an es-

timation depends on the convergence of the likelihood function. If the likelihood

function does not converge, the estimates may not represent the global maximum-

likelihood parameter estimates. But, overall the model has good predictions as

compared to EP7 model, particularly comparing the fits in Figure 4.9(C) to the

ones in Figure 4.8(C).

We continue our analysis with EP9 model with condition-dependent preci-

sion parameter J. The model provides a better picture of the data as seen in Fig-

ure 4.10. We find better fits for the psychometric curves in (A), and (B). However,

we continue to find model deviations for the sample standard deviation plots in

Figure 4.10(C). In particular, the model fails to account for the data in the homo-

geneous condition. Though compared to other EP models (EP1 to EP8) discussed

so far, the RMS error is found to be small in this case at 0.058 (comparable in case

of EP1), and hence the model does make close predictions for the data but it still
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Figure 4.10: EP model 9 (J condition-dependent, and ρsassumed = (α,α,α,β))
fits for the data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm
rates as a function of correlation strength ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray), and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray), and target-absent (red) trials
in each experimental condition (columns).
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does not explain the data based on the sample standard deviation plots.

Finally, we test our last EP model listed in Table 4.1, which is EP10 model. This

is the EP model with the most flexible assumption about ρsassumed , and precision

J. We compare the fits for this model in Figure 4.11. Like many other EP models,

the model does extremely well in the first three conditions, but fails to explain the

behavior on the homogeneous condition. Specifically, the poor model fit is con-

tinuously seen in the sample standard deviation plot for ρs = 1 (Figure 4.11(C)

here). The hit, and false-alarm rates (Figure 4.11(A)), along with the psychometric

curves of minimum target-distractor orientations (Figure 4.11(B)) are well pre-

dicted by the model assumptions, and have R2 values of more than 0.9. Further,

the model fits to the data are acceptable in the first three experimental conditions

in Figure 4.11(C) with small RMS errors of up to 0.044. But, a worse model fit

(RMSE equal to 0.064) in the condition of ρs = 1 allows us to reject this model,

and explore variable precision models.

The motivation to test VP models is to find a model that could possibly ex-

plain the subjects’ behavior equally well across all experimental conditions, and

in terms of all psychometric curves. We thus now analyze the fits of VP models

for the experimental data.
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Figure 4.11: EP model 10 (J condition-dependent, and ρsassumed = (α,β,γ, δ))
fits for the data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm
rates as a function of correlation strength ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray), and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray), and target-absent (red) trials
in each experimental condition (columns).
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4.4 Variable precision models

Since equal precision models failed to explain the behavior of subjects’ on the

experiment, we further investigate if models with variable precision can provide

an insight into how subjects inferred their responses. Variable precision models

have been successfully used to explain human decisions on visual search task [94,

95] with homogeneous, and heterogeneous distractors. We thus test if varying

precision can be a key factor in interpreting the decisions of subjects in the target

detection experiment here. Similar to EP models, we consider both possibilities of

the mean precision J̄ of the gamma distribution to be constant, or varying across

experimental conditions. We discuss the fits for both categories of models below.

4.4.1 Condition-independent mean precision J̄

We first examine the variable precision models with mean J̄ assumed to be con-

stant across experimental conditions. We also assume the scale parameter τ of the

gamma distribution to be constant across experimental conditions, and hence is

another free parameter for the precision in the model. We check for the five possi-

bilities for the ρsassumed in VP1 to VP5 models (described in Table 4.1), and analyze

the resulting fits to find the best model if there is any.

Figure 4.12 shows the fitting of VP1 model to the data. We see the model

explains the subjects’ responses in the first three experimental conditions except

for minor deviations in the target-present trials when ρs = 1
3 in Figure 4.12(B).
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Figure 4.12: VP model 1 ( J̄ condition-independent, and ρsassumed = ρstrue) fits for
the data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm rates as a func-
tion of correlation strength ρs used in the experimental conditions. (Right) Perfor-
mance as a function of correlation strength ρs. (B) Minimum target-distractor ori-
entation difference. Proportion ”target present” responses as a function of mini-
mum target-distractor orientation difference, separately for target-present (gray),
and target-absent (red) trials in each experimental condition (columns). (C) Sam-
ple standard deviation of distractor orientations. Proportion ”target present”
responses as a function of sample standard deviation of distractor orientations,
separately for target-present (gray), and target-absent (red) trials in each experi-
mental condition (columns).
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However, like many EP models, the model fails to account for the behavior in

the perfect correlation condition. Specifically, the model predicts a lower propor-

tion of ”target-present” responses as compared to the subjects’ data in the sample

standard deviation plot in Figure 4.12(C, fourth panel). The RMS error is equal

to 0.077, while the goodness of fit, R2 is measured at 0.56 in this case. Therefore,

with this variable precision model having correct assumption about the genera-

tive model, the data could not be explained well in the homogeneous condition.

We further check the predictions of VP2 model for the data in Figure 4.13. Very

similar to VP1 model in Figure 4.12, the predictions of VP2 model completely fail

to interpret the behavior in the experimental condition with ρs = 1. Moreover,

the predictions are worse in this case as compared to VP1 model, as the RMS

error increases to 0.15 (in Figure 4.13(C, fourth panel)) as compared to 0.077 in

VP1 model (Figure 4.12(C, fourth panel)), and 0.1 (Figure 4.13(B, fourth panel))

from 0.08 (Figure 4.12(B, fourth panel)) in the minimum target-distractor orien-

tation plots. However, except for the condition of ρs = 1, the data points are

well matched with the model predictions. For instance, the goodness of fit varies

from 0.93 to 0.98 in the case of minimum target-distractor orientation plots in Fig-

ure 4.13(B, first, second, and third panels), and 0.9 to 0.97 in sample standard

deviation plots in Figure 4.13(C, first, second, and third panels). This suggests

that there is something really particular about the homogeneous condition that

the above discussed models are missing, and subjects do treat the condition with

higher statistical structure differently as compared to the partial correlation con-

ditions.
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Figure 4.13: VP model 2 ( J̄ condition-independent, and ρsassumed = (0, 0, 0, 0))
fits for the data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm
rates as a function of correlation strength ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray), and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray), and target-absent (red) trials
in each experimental condition (columns).
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Figure 4.14: VP model 3 ( J̄ condition-independent, and ρsassumed = (α,α,α,α)
fits for the data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm
rates as a function of correlation strength ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray), and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray), and target-absent (red) trials
in each experimental condition (columns).
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Further, we analyze the fits of models VP3, VP4, and VP5 in Figures 4.14, 4.15,

and 4.16, respectively. We find that all these models have a similar trend in the

first three conditions, and completely fail to predict the behavior on the homoge-

neous condition (ρs = 1). Though these models differ in their assumptions about

ρsassumed , the predictions are quite similar in terms of model generated psychome-

tric curves. Model VP5 has the most flexible assumption about ρsassumed in this

category of models, and we notice that this model also shows large RMS errors of

0.091 in Figure 4.16(C, fourth panel), and a poor fit of R2 equal to 0.43.

Thus, none of the VP models in this category could provide the explanation

for subjects’ responses. All models VP1 to VP5 show good agreement with the

data in the first three experimental conditions (with small RMS errors), while fail

to incorporate the decision strategies of subjects when the distractors are perfectly

correlated. The assumption of variable precision with constant J̄ across conditions

did not improve the predictions of the models. This suggests that perhaps sub-

jects’ precision not only vary across stimuli, and trials, but may also be varying

across experimental conditions. Or, in the worst case, subjects may be using some

other assumptions about the generative model that our discussed models (EP1 to

EP10, and VP1 to VP5) fail to incorporate.

Therefore, we finally test whether adding the assumption about varying J̄

across conditions in variable precision models could provide a better explanation

for the subjects’ behavior on the experiment, specifically in the case of homoge-

neous condition.
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Figure 4.15: VP model 4 ( J̄ condition-independent, and ρsassumed = (α,α,α,β)
fits for the data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm
rates as a function of correlation strength ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray), and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray), and target-absent (red) trials
in each experimental condition (columns).
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Figure 4.16: VP model 5 ( J̄ condition-independent, and ρsassumed = (α,β,γ, δ)
fits for the data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm
rates as a function of correlation strength ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray), and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray), and target-absent (red) trials
in each experimental condition (columns).
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4.4.2 Condition-dependent mean precision J̄

In this section, we analyze the predictions of variable precision models that as-

sume mean precision parameter J̄ to be variable across experimental conditions,

and hence we fit J̄ per condition as a free parameter in the model for each subject.

Models VP6 to VP10 described in Table 4.1 include this assumption about J̄.

We examine the fits of VP6 model in Figure 4.17. We find that model predic-

tions in this case are in close agreement to the data in all the conditions, and for

all types of psychometric curves. The goodness of fit measured in terms of R2

is above 0.9 for all curves, except for the minimum target-distractor plot in Fig-

ure 4.17(B, fourth panel) where it is 0.88 as the model misses few data points. But

overall, we see a well match between the model predictions, and our data.

Thus, the question arises: do the subjects follow this model in their inference

process? We note that VP6 model assumes that ρsassumed = ρstrue with varying J̄

across experimental conditions. The good fits of this model indicate that subjects

were able to infer the correct information about the generative model, and use it

to make their responses. But, we must investigate other models with alternative

assumptions about ρsassumed before making a conclusion here. We need to examine

how other models perform under the assumption of varying J̄ between experi-

mental conditions.

To this end, we study the fitting of models VP7, VP8, VP9, and VP10 in Fig-

ures 4.18, 4.19, 4.20, and 4.21, respectively. We find that except for model VP7,

all other models are equally good in their fits to the data. Model VP7 assumes
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Figure 4.17: VP model 6 ( J̄ condition-dependent, and ρsassumed = ρstrue) fits for the
data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm rates as a func-
tion of correlation strength ρs used in the experimental conditions. (Right) Perfor-
mance as a function of correlation strength ρs. (B) Minimum target-distractor ori-
entation difference. Proportion ”target present” responses as a function of mini-
mum target-distractor orientation difference, separately for target-present (gray),
and target-absent (red) trials in each experimental condition (columns). (C) Sam-
ple standard deviation of distractor orientations. Proportion ”target present”
responses as a function of sample standard deviation of distractor orientations,
separately for target-present (gray), and target-absent (red) trials in each experi-
mental condition (columns).
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Figure 4.18: VP model 7 ( J̄ condition-dependent, and ρsassumed = (0, 0, 0, 0))
fits for the data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm
rates as a function of correlation strength ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray), and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray), and target-absent (red) trials
in each experimental condition (columns).
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that observers do not use any structural information in their decisions, and Fig-

ure 4.18(C, fourth panel) shows poor fits of the predictions of this model for the

data having RMS error of 0.11. Based on this model, we can assert that subjects do

use stimulus correlations in making their responses, and specifically the behavior

of subjects is remarkably different in the homogeneous condition as compared to

the partial correlation conditions.

This hypothesis is well tested with model VP9 that assumes such a structural

form of ρsassumed = (α,α,α,β). Figure 4.20 illustrates a good match between the

model generated curves, and the psychometric curves based on subjects’ data.

The goodness of fit R2 ranges from 0.91 to 1 for different curves, and establishes

that the model is successful in reproducing the responses of subjects on the exper-

iment.

Further, the most general model VP10 perform equally well as models VP6,

VP8, and VP9 in generating the predictions for the subjects’ data. However, this

model has more number of free parameters as we allow the possibility of ρsassumed

fitted per condition. The magnitude of RMS errors for this model are comparable

with other models in this category (except model VP7). This indicates that this is

the best possible fitting we can obtain for our data given these models.

However, we still have minor deviation between model, and the data at one

particular data point, the last data point in target-absent trials (red curve) in the

sample standard deviation plot for ρs = 1
3 in Figure 4.21(C, third panel). This

point is nearly missed by predictions of other VP models in this category (com-

pare third panel in row (C) of Figures 4.17, 4.19, 4.20, and 4.21). It indicates that
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Figure 4.19: VP model 8 ( J̄ condition-dependent, and ρsassumed = (α,α,α,α)
fits for the data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm
rates as a function of correlation strength ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray), and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray), and target-absent (red) trials
in each experimental condition (columns).
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Figure 4.20: VP model 9 ( J̄ condition-dependent, and ρsassumed = (α,α,α,β)
fits for the data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm
rates as a function of correlation strength ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray), and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray), and target-absent (red) trials
in each experimental condition (columns).
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Figure 4.21: VP model 10 ( J̄ condition-dependent, and ρsassumed = (α,β,γ, δ)
fits for the data. (A) Hit and false-alarm rates. (Left) Hit, and false-alarm
rates as a function of correlation strength ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray), and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray), and target-absent (red) trials
in each experimental condition (columns).
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probably this is the best possible fitting we could obtain for the experimental data

using these models. There may be something special about the characteristic of

that point, and we may be missing some particular assumptions in our models

that result in the deviation of models at that point. We may need to put addi-

tional assumptions in the model to incorporate the fit at that particular point in

Figure 4.21(C, third panel). However, we are unaware of the mathematical com-

plexities it will introduce in our existing high-dimensional models. Further, model

VP9 at least does a better job in predicting the behavior at this last data point on

target-absent trials in Figure 4.20(C, third panel). Therefore, for our purposes, we

limit ourselves to this level of fitting for the data, and only focus on analyzing,

and comparing these models here.

4.5 Need for model comparison

In earlier sections we analyzed the fits of equal, and variable precision models

listed in Table 4.1. We find that none of the EP models could account for the be-

havior of subjects on the target detection experiment (described in Chapter 2). The

variable precision models with the assumption of mean precision J̄ constant across

experimental conditions were also unsuccessful in reproducing the responses in

the data. But VP models with variable J̄ (except model VP7) provided good pre-

dictions for the data in terms of low RMS errors, and high R2 values. However,

we obtain more than one model that has equally well fits for the data. Specifically,

models VP6, VP8, VP9, and VP10 all provide equally well predictions for the data.
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4.5. NEED FOR MODEL COMPARISON

But all these models have different underlying assumptions about ρsassumed .

Therefore, we encounter the issue of discriminating multiple models that gen-

erate equally well predictions for the data. The question is how do we compare

the models since each model has different number of free parameters, and dif-

ferent assumptions about those parameters. Further, how do we find the model

that provides the best explanation for the data. We thus use the model compari-

son techniques discussed in Section 3.6 to compare different models, and find the

best fitting model. We present the model comparison results for our models in the

following chapter.
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Chapter 5
Data analysis II: model comparison

The purpose of the experimental study described in Chapter 2, was to determine

whether human observers take stimulus correlations into account in a target de-

tection task. We investigate if observers are optimal in integrating the structural

information in their decisions. If not, we wish to examine the alternative decision-

making strategies observers use in their inference process.

To this end, we analyzed our collected experimental data in Chapter 4 using

various models that could possibly explain how subjects made responses on the

experiment. We found that the assumption of equal precision fails to account for

the subjects’ behavior. We further considered the variable precision models that

test the possibility of observers using varying precision across trials, and stimuli.

When we allowed the mean precision parameter of the gamma distribution used

for modeling the random precision variable to be vary across experimental condi-

tions, we discover several models that fit the data well. Particularly, models VP6,
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5.1. FACTORS IN THE MODELS

VP8, VP9, and VP10 (Table 4.1) provided equally well matched predictions for the

psychometric curves of the subjects’ data. Given multiple models that generate

equally well predictions of the data, we want to find the model that explains the

data most parsimoniously.

This chapter is a continuation of the analysis done in Chapter 4, and the main

focus here is to compare multiple models that may share a common characteristic

or factor. We compare the models based on the Bayesian information, and Akaike

information criteria, and find the model that best fits the data. We also use these

criteria to provide an evidence why a certain category of models is preferred over

others. For instance, we compare equal, and variable precision models, and show

that all VP models are better than EP models. We also discriminate our models

based on other factors described in the chapter. We conclude by analyzing the

maximum-likelihood parameter estimates of the best fitting model, and interpret

the behavior of subjects based on the best fitted model assumptions, and its fitted

parameters.

5.1 Factors in the models

We note that our models listed in Table 4.1 have different number of parameters,

and different assumptions about those parameters. Most of these models share

an assumption about a particular parameter but, they have different assumptions

about other parameters. For example, all models (EP1 to EP10, and VP1 to VP10)

share an assumption about the prior over T (target presence variable), but they
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differ in terms of assumptions about the encoding precision, and the correlation

structure. We refer to a common characteristic (a parameter) as a factor, and we

categorize our models based on different characteristics or factors.

We combine models sharing a common characteristic or factor in a group.

There is more than one choice for each characteristic. We thus sub-divide each

factor into levels or family of models. Each family has a common choice of model

characteristic. We recognize the following three factors in our models: (1) preci-

sion, (2) dependence of precision parameter, and the (3) assumption about ρsassumed .

The first factor characterizes the nature of precision as either equal or variable.

This factor includes two levels of EP, and VP models. The second factor describes

how precision depends on experimental conditions. In particular, the parameters

governing the precision can be condition-independent, or dependent. Lastly, we

discriminate models based on the assumption of ρsassumed . We have following five

choices for ρsassumed in our models: (0, 1
3 , 2

3 , 1), (0, 0, 0, 0), (α,α,α,α), (α,α,α,β),

and (α,β,γ, δ). Such a grouping of models into different families helps us in com-

paring multiple models together that share a common characteristic.

Therefore, we categorize our models based on three different factors, and each

factor has different families of models given the possible choices for a factor. Ta-

ble 5.1 presents a detailed classification of the models listed in Table 4.1 in different

factors, and their respective levels.
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Factor Level Models in the level Number

of models

Precision EP EP1 to EP10 10

VP VP1 to VP10 10

J or J̄ condition-independent EP1 to EP5, VP1 to VP5 10

condition-dependent EP6 to EP10, VP6 to VP10 10

(0, 1
3 , 2

3 , 1) EP1, EP6, VP1, VP6 4

(0, 0, 0, 0) EP2, EP7, VP2, VP7 4

ρsassumed (α,α,α,α) EP3, EP8, VP3, VP8 4

(α,α,α,β) EP4, EP9, VP4, VP9 4

(α,β,γ, δ) EP5, EP10, VP5, VP10 4

Table 5.1: Factors based model list. List of models belonging to different factors,

and respective levels in each factor. Each factor has different number of levels, but

all levels in the factor have equal number of models.

We compare the family of models across levels belonging to the same factor.

For example, we compare the family of models belonging to equal, and variable

precision models in the precision factor to determine the best level (either equal

or variable precision) in the factor. We use both Bayesian information criterion

(BIC), and Akaike information criterion (AIC) to compare our models. These cri-

teria are based on the maximum log-likelihood of a model, and penalize the model

for the additional free parameters. The penalizing term scales with the size of the

data in BIC, while it is a multiple of 2 in the case of AIC. The model with lower
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5.2. EQUAL VERSUS VARIABLE PRECISION

value of BIC (or AIC) wins over a model having a higher value of BIC (or AIC) in

model selection based on Bayesian information criterion (or Akaike information

criterion). These techniques are described in Section 3.6. We generally display

the relative difference between a model, and possibly a best fitting model in our

figures in this chapter. Therefore, a positive value of the relative difference for a

model indicates that the model performs poorly in comparison to the hypothe-

sized best fitting model. The magnitude of BIC (or AIC) difference between two

models determines how closely the two models predict the behavior of observers

on the experiment.

In the following sections, we discuss the comparison of models belonging to

the same factor based on both BIC, and AIC. We present both individual based,

and average subject based comparisons. We find that the two forms of compar-

isons (individual, and average) may lead to different winning models, thus we

discuss the resulting consequences based on these comparisons.

We first examine the comparison between equal, and variable precision models

corresponding to the first factor of precision.

5.2 Equal versus variable precision

We first compare models based on the precision factor. There are two model fam-

ilies (or levels) in this factor: equal, and variable precision. Each family has 10
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5.2. EQUAL VERSUS VARIABLE PRECISION

models, namely EP1 to EP10 in equal precision, and VP1 to VP10 in variable pre-

cision model family.

We analyzed the model fits of both EP, and VP models in Chapter 4. We find

that most of the EP models fit the data poorly compared to their variable precision

counterparts. However, some of the EP models were still close to some VP models

in their predictions for the psychometric curves. For instance, the predictions

of model EP10 in Figure 4.11 are comparable to VP1 (Figure 4.12) model, while

they are better as compared to VP2 (Figure 4.13) model. We want to determine

which model is preferred for the individual subjects, and which model wins in

the average (over subjects) comparison.

Figure 5.1 displays the comparison results of EP models relative to their VP

versions based on both BIC (top), and AIC (bottom). Each bar in the figure rep-

resents the BIC (or AIC) difference of an EP model from its VP counterpart. For

instance, we consider the difference of EP1, and VP1 models, and similarly EP2,

and VP2 model. Figure 5.1(A, left) shows the BIC differences of EP models from

VP for individual subjects. Similarly, left panel in (B) shows the AIC differences

between the two level of models. We note that both BIC, and AIC differences are

large positive values for each subject. This signifies that VP models outperform

their equivalent models with equal precision. Moreover, the difference is huge

(more than 500 points) for most of the models for majority of subjects indicating

the poor predictions of EP models as compared to variable precision models.

We also consider the average BIC (right panel, Figure 5.1(A)), and AIC differ-

ence (right panel, Figure 5.1(B)) between EP, and VP models. Clearly, we see that
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5.2. EQUAL VERSUS VARIABLE PRECISION

all EP models have large positive (more than 200 points) BIC, and AIC differences

as compared to their VP equivalents. Therefore, the comparison in Figure 5.1 pro-

vides strong evidence for the preference of VP models over EP models.
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Figure 5.1: BIC and AIC model comparisons: equal and variable precision mod-
els. (A) BIC model comparison. (Left) The relative BIC differences of equal pre-
cision models with respect to variable precision models are shown for all 11 sub-
jects participated in the experiment. Each bar represents the BIC difference of an
EP model from its equivalent VP model for a subject. (Right) The averaged BIC
differences across subjects in the experiment. (B) AIC model comparison. AIC
relative difference of EP models with respect to VP models for each subject (left),
and average over subjects (right). A positive BIC or AIC difference indicate that
the EP model is worse than its equivalent VP model. Throughout the chapter, the
error bars indicate the unit standard error mean (s.e.m).
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5.3 Condition-independent J̄ versus condition- depen-

dent J̄

We have observed in Section 4.4 that variable precision models better explained

the data than equal precision models (Section 4.3). Also, Figure 5.1 demonstrates

the strong preference of VP models over their EP equivalents based on Bayesian

information, and Akaike information criteria. Therefore, for our further model

comparisons we only present results with variable precision models since EP mod-

els have significantly higher values of BIC, and AIC than VP models.

We are now interested in determining which of the two models are preferred in

model comparison: VP models with mean precision J̄ condition-independent, or

with J̄ condition-dependent. We have seen in Section 4.4 that condition-dependent

models (VP6, VP8, VP9, and VP10) fit the data well, while condition-independent

models (VP1 to VP5) mis-fit in the case of homogeneous condition. Thus, in

terms of model predictions, models with condition-dependent J̄ outperform mod-

els with condition-dependent precision parameter. However, VP models with

condition-independent J̄ have many additional parameters (see Table 4.1), and

that could be one of the reason for their better fits.

Therefore, we compare the two levels of variable precision models: with condition-

independent J̄ (models VP1 to VP5), and condition-dependent J̄ (models VP6 to

VP10) using BIC, and AIC in Figure 5.2. The figure displays the BIC, and AIC dif-

ferences of condition-independent models relative to their condition-dependent
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counterparts in the assumption of ρs. For example, the first bar corresponding to

the first subject in Figure 5.2(A, left panel) represents the BIC difference of VP1

model with respect to VP6 model (they both have assumption about ρsassumed =

ρstrue). Hence, the different color bars represent the following differences: VP1-

VP6, VP2-VP7, VP3-VP8, VP4-VP9, and VP5-VP10. Clearly, a positive value of the

difference indicates that condition-dependent model has preferable BIC value.
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Figure 5.2: BIC and AIC model comparisons: VP models with experimental
condition-independent mean precision J̄, and condition-dependent J̄. (A) BIC
model comparison. The relative BIC differences of VP models with condition-
independent mean precision with respect to the VP models that assume variable
mean precision experimental conditions, are shown for each subject (left), and
average over subjects (right). (B) AIC model comparison. AIC differences of VP
models with J̄ condition-independent relative to VP models with J̄ experimental
condition-dependent for each subject (left), and average over subjects (right).
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We observe in Figure 5.2(A, left panel) that there is no clear winning trend of

a particular level for individuals in the BIC comparison of models. Five subjects

(out of 11) show preference for models with condition-dependent J̄, while 4 sub-

jects prefer condition-independent models. The other two subjects have mixed

preference depending on the assumption of ρs in the different models. Similarly,

the AIC comparison in the left panel of Figure 5.2(B) does not lead to conclusive

results for a few subjects. However, in this case, majority of subjects’ data is better

fitted with condition-dependent J̄, and even the differences are large between the

two levels. The variation between BIC, and AIC comparisons is mainly because

of differently scaled penalty terms in the two criteria. Bayesian information crite-

rion more strongly penalizes a model for its parameter size, as compared to the

Akaike information criterion. We note that the models with condition-dependent

precision parameter have 3 extra parameters as compared to models belonging to

the condition-independent level (see Table 4.1). Therefore, BIC strongly penalizes

these models, and we see the results are inconclusive in Figure 5.2(A, left panel).

We also compared the models in the two levels by taking an average of the BIC,

and AIC values of individual subjects. The results are presented in the right panels

of Figure 5.2(A), and (B). The average comparisons show a definite preference of

condition-dependent models over models with condition-independent precision.

The large magnitude of difference between both levels is mainly guided by the

fact that some of the subjects show a strong preference for model with condition-

dependent mean precision in variable precision models. However, the standard
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errors are considerable, and reflect the inconsistent choice of a family model be-

tween subjects.

Therefore, we find that condition-dependent J̄ models outperform models with

condition-independent J̄ in average BIC, and AIC model selection. We also ob-

served in Section 4.4 that predictions of these models fit well to the psychomet-

ric curves of the subjects. But, we note that the choice of a model family differ

across individuals, and hence it would be difficult to conclude that VP models

with condition-dependent J̄ represent the best family of models for all subjects.

However, to find the model with the favorable assumption of ρs, we only con-

sider variable precision models with condition-dependent mean precision param-

eter. This is because only the models in this category successfully fit the data.

Moreover, these models show a winning margin in the average comparison over

other models in the condition-independent level as seen in Figure 5.2(A), and (B).

5.4 Comparison based on ρsassumed

Thus far, we find that variable precision models outperform equal precision mod-

els by a huge margin (Figure 5.1). Further, we observe that VP models with

condition-dependent mean precision are better in generating predictions for the

data as compared to the models with condition-independent J̄ (Figure 5.2). Both

these results are focused on the precision factor. We are now interested in finding

the favorable model having an assumption about ρs that best predicts the behavior
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of subjects on our target detection experiment.

Our models described in Section 4.2.1 have distinct assumptions about ρs, and

in particular, we have considered five levels of models ρsassumed = ρstrue , ρsassumed =

(0, 0, 0, 0), ρsassumed = (α,α,α,α), ρsassumed = (α,α,α,β), and ρsassumed = (α,β,γ, δ).

Analyzing the model predictions in Sections 4.3, and 4.4, we find that there are

multiple models that fit the data equally well (see Figures 4.17, 4.19, 4.20, and 4.21).

Namely, the models are VP6 (ρsassumed = ρstrue), VP8 (ρsassumed = (α,α,α,α)), VP9

(ρsassumed = (α,α,α,β)), and VP10 (ρsassumed = (α,β,γ, δ)). Thus, there are multiple

assumptions of ρs that equally well predict the behavior of subjects. The question

thus arises: which one of these models best represents the subjects’ responses? To

answer this question, we compare models VP6 to VP10 using BIC, and AIC. We

note that all these models have a common assumption about encoding precision,

and only differ in the hypothesis about ρs.

Figure 5.3 displays the BIC (top), and AIC (bottom) differences for individual

subjects (left panels), and the average subject comparison (right panels). The av-

erage BIC, and AIC model comparisons in Figure 5.3(A, right panel), and (B, right

panel) show that each criterion chooses a different favorable model. Model VP9

has the least BIC value in the group, while VP10 is the preferable model based on

AIC comparison. But the two models only differ by a few points. The relative BIC

difference between VP9, and VP10 models is 6.91, while the difference between

the two is about 5.46 points in the case of AIC. This difference is really small to

distinguish the two models apart, and suggests that both models make similar

predictions for the subject’s responses on the experiment.
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Figure 5.3: BIC and AIC model comparisons: VP models with condition-
dependent J̄, and different assumptions about ρsassumed . (A) BIC model com-
parison. The relative BIC differences of VP models having different assumptions
about ρsassumed with respect to VP9 model (with ρsassumed = (α,α,α,β)) for each
subject (left), and average over subjects (right). (B) AIC model comparison. AIC
differences of condition-dependent mean precision VP models relative to VP10
model with ρsassumed = (α,β,γ, δ)) for each subject (left), and average over sub-
jects (right).
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Thus, BIC, and AIC are inconsistent in the choice of the favorable model. This

is mainly due to the different penalty terms involved in the criteria. We note that

model VP10 has 10 parameters, while VP9 has 8 free parameters (Table 4.1). We

recall that each subject performed 3600 trials in the experiment (Section 2.5.3),

hence, the penalty term in BIC (Eq. (3.6)) scales each additional parameter in the

model by log(3600) ≈ 8.19. This amounts to log(3600) × 10 ≈ 81.9 penalty

points for a subject in the case of VP10 model. On the other hand, the penalty

term is about 65.5 points for VP9 model. Therefore, the model comparison based

on BIC would prefer the VP9 model in case the maximum log-likelihoods of the

two models are comparable. The comparison in the right panel of Figure 5.3(A)

illustrates such a preference of VP9 model as compared to the higher dimensional

VP10 model.

Similarly, we can understand the average AIC comparison in Figure 5.3(B,

right panel). The two models only differ by 4 points in AIC penalty term, and

hence in AIC model comparison, the most general model VP10 is preferred over

others.

We also find that VP7, and VP8 models with the assumptions of zero, and con-

stant correlations perform poorly in both BIC, and AIC average model compar-

isons. The large relative differences of these models with respect to the winning

models indicate the poor performance of these models for the data. We observe

that the VP6 model having the assumption of ρsassumed = ρstrue also fails in BIC,

and AIC average comparisons by 24.4, and 42.3 points, respectively. Therefore,

models VP9, and VP10 provide better description of the data than the other three
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models. This indicates that subjects make suboptimal inferences on the experi-

ment, and use incorrect assumptions about the generative model (described in

Figure 2.1) in detecting a target on the task.

However, we observe a large variation in model preference among individuals

as seen in the left panels of Figure 5.3(A), and (B). The figure shows the relative

BIC differences of other models with respect to the VP9 model, while on AIC com-

parison, the differences are relative to model VP10. We find that there is no unique

winning model for all individuals. Models VP6, VP9, and VP10 are really close

in predictions for most of the subjects, and only differ by a few points. This sug-

gest that these models are hardly distinguishable on the BIC, and AIC measures

based on individual model comparisons. Perhaps subjects use different strategies

to make decisions on the experiment. However, it is difficult to characterize such a

possibility given the limitations of the model comparison techniques we use here.

Therefore, based on the model selection results for models VP7, and VP8 for

most of the subjects, we conclude that subjects do take into account the statistical

structure present in visual scenes to make decisions. Further, they also discrimi-

nate the different experimental conditions, and use different strengths of correla-

tions. However, it is difficult to find the best model between VP9, and VP10 mod-

els since they are relatively close in both AIC, and BIC comparisons (Figure 5.3).

Hence, it is hard to say whether subjects use different strengths of correlations

per experimental condition (based on VP10 model), or they treat the first three

experimental conditions similarly, and the homogeneous condition differently as

hypothesized by VP9 model.
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In order to choose the best model, we further perform a rejection analysis on

our models below.

5.5 Rejection analysis

The model comparisons in previous sections suggest that the variable precision,

and assumption about ρs are most important ingredients of successful models.

However, we are unable to determine the best model in absolute sense based on

BIC, and AIC comparisons. Therefore, we now wish to determine what levels of

each of the three factors best describe the subjects’ behavior on the experiment. Ta-

ble 5.1 describes the three different factors present among our 20 models. Further,

each factor has different levels or model families that share a common assumption

in the factor. Model families are subset of all models that share a particular level

of a particular factor, regardless of their levels of the other factors.

We define the rejection criterion as the BIC (or AIC) difference of a model with

respect to the winning model for each subject. For each model family in a factor,

we compute the number of subjects that reject all its members as a function of the

rejection criterion. That is, we first find the best model (among all models) for

each subject, and then for each level in a factor, we count the number of subjects

that reject all models belonging to that particular level for a given criterion. We

repeat this process at all values of the (BIC, or AIC) rejection criterion, and plot

the number of subjects that rejected a particular model family as a function of the

criterion in Figure 5.4.
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Figure 5.4: Rejection curves: model comparison between model families for
each model factor. Each column corresponds to a factor, and a color represents a
particular model family or level belonging to a factor. The model comparison is
based on all 20 models for each factor. (A) Factor 1: precision. Number of subjects
for whom all models belonging to a certain family or level (EP or VP) are rejected
as a function of the rejection criterion based on BIC(top), and AIC (bottom) values.
A model is rejected if it has a higher BIC, or AIC than that of the winning model
for a subject. For example, when both BIC, and AIC rejection criteria is 100, all
models of the EP family are rejected, while none of the subjects reject VP models.
(B) Factor 2: dependence of precision parameters on experimental conditions.
Similar to (A). (C) Factor 3: assumption about correlation strength ρsassumed . Sim-
ilar to (A).
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Figure 5.4(A) shows the results for the first model factor, the assumption of

encoding precision. Regardless of the rejection criterion, the entire family of equal

precision models is rejected for majority of subjects in terms of both BIC (top),

and AIC (bottom). Moreover, all subjects reject EP models for a large criterion

difference of up to 200 points. While, none of the subjects reject the variable pre-

cision model family indicating that all individuals have their best models in this

model family. This provides a strong evidence that variable precision models are

indeed better in describing the behavior of subjects on visual search tasks as found

recently in many studies [94, 141, 95, 129, 140].

Figure 5.4(B) shows the rejection analysis for the second factor, the depen-

dence or independence of the encoding precision on experimental conditions. At

any given rejection criterion for both BIC (top), and AIC (bottom), most of the

subjects select the model family with condition-independent precision parame-

ter. The number of subjects under a rejection criterion of 0 determine the num-

ber of subjects for which the winning model belongs to the model family being

considered. For example, in the top panel of Figure 5.4(B), there are 4 subjects

that rejected condition-dependent encoding precision models, while 7 rejected the

other family of models. This implies that based on BIC model selection, major-

ity of subjects’ responses (63.6%) are best explained by models belonging to the

condition-dependent family. On the other hand, 9 subjects have winning model

in this family based on AIC differences (bottom panel of Figure 5.4(B)). Further,

all subjects prefer model family with condition-dependent precision as the rejec-

tion criterion becomes large. Overall, there is a clear separation between the two
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5.5. REJECTION ANALYSIS

model families, and subjects more frequently reject the models that assume the

encoding precision to be constant across experimental conditions.

Finally, the rejection plots based on the correlation factor are displayed in Fig-

ure 5.4(C). There are five levels in this factor corresponding to the different as-

sumptions about ρs. These levels are described in Table 5.1. We observe that the

distinction between models is less clear in terms of BIC differences (top). But the

models with the assumption of ρsassumed = (0, 0, 0, 0), and ρsassumed = (α,α,α,α)

are more frequently rejected by subjects at any given rejection criterion for both

BIC (top), and AIC (bottom) differences. Next, we note that most of the subjects

reject the model with ρsassumed = ρstrue = (0, 1
3 , 2

3 , 1) than with the assumptions of

ρsassumed = (α,α,α,β), and ρsassumed = (α,β,γ, δ). This suggest that subjects are

suboptimal in inferring the true values of correlation coefficient ρs among stimuli

in the experiment. However, it is difficult to determine which of the two strategies

they follow. We see a mixed result in terms of BIC (top), and AIC (bottom) differ-

ences. The models with ρsassumed fitted per condition is less frequently rejected by

individuals as compared to the model family that assumes constant correlations

across first three experimental conditions, and a different in the case of homoge-

neous distractors. While, we see a reverse trend for the choice of model on AIC

rejection criterion (bottom). Therefore, there is a conflict between the choice of the

best model based on the two criteria. It may be the case that the mixed result here

reflects individual differences: some subjects may be using different correlations

across experimental conditions, while some may be treating the conditions with

partial correlations identically, and the homogeneous condition differently.
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These results also agree with our earlier observations about the model pre-

dictions for VP9, and VP10 models in Figures 4.20, and 4.21, respectively. The

two variable precision models equally well predict the subjects’ data, and also

model families with these assumptions on ρsassumed show a comparable preference

in model comparison(Figure 5.3), and on rejection plots (Figure 5.4).

Next, we compare the maximum-likelihood parameter estimates of the VP9,

and VP10 models. The parameter estimates may reflect the similarity between the

two models.

5.6 Parameter estimates

Parameter estimates for the models VP9, and VP10 are given in Table 5.2. Here

J̄i denotes the estimated mean precision for the gamma distribution over preci-

sion in the ith condition. Similarly, ρi represents the estimated parameter value

of ρsassumed in the ith condition of the experiment. The parameters τ , the scale pa-

rameter of the gamma distribution over precision, and pT, the observer’s prior

probability that the target is present, are estimated as a constant parameter across

all conditions in the experiment.

Model Parameter Mean ± SEM Median

J̄1 0.1097 ± 0.0184 0.1036

J̄2 0.1077 ± 0.0206 0.1036

J̄3 0.1148 ± 0.0227 0.1225

Continued on next page
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Table 5.2 – Continued from previous page

Model Parameter Mean ± SEM Median

J̄4 0.2651 ± 0.0816 0.1447

VP9 ρ123 0.4030 ± 0.0793 0.5

ρ4 0.7515 ± 0.1010 0.9333

τ 0.7433 ± 0.2877 0.3683

pT 0.5048 ± 0.0046 0.5

J̄1 0.0981 ± 0.0158 0.0877

J̄2 0.0937 ± 0.0167 0.0742

J̄3 0.1022 ± 0.0185 0.0877

J̄4 0.2376 ± 0.0623 0.1447

ρ1 0.4333 ± 0.0737 0.5

VP10 ρ2 0.3939 ± 0.0818 0.4667

ρ3 0.4818 ± 0.0896 0.4667

ρ4 0.7939 ± 0.0856 0.9333

τ 0.5691 ± 0.1718 0.3683

pT 0.5036 ± 0.0043 0.5

Table 5.2: Maximum-likelihood parameter estimates of VP9 and VP10 models.

The estimates of the mean precision, and scale parameter of the gamma distri-

bution over precision are given along with the estimates of correlation strength

ρsassumed in each experimental condition (where applicable), and of pT, the ob-

server’s prior probability that the target is present.
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We observe that the mean estimated values of J̄i are close for i = 1, 2, 3, while

the magnitude order of the mean value of J̄4 differs significantly in both models.

This suggests that subjects probably use similar levels of precision in case of ex-

perimental conditions with partially correlated stimuli, while they have higher

precision in detecting a target on the homogeneous condition.

The trend in the values of J̄ matches our expectation since finding a target

among identically oriented distractors would be easier compared to the randomly

oriented stimuli. Therefore, an observer would be more precise in the experimen-

tal condition with ρs = 1. Also, we note that subjects use near 0.5 prior for the

target present probability in both models. Further, the maximum-likelihood esti-

mates of the two models suggest that subjects over estimate the low correlation

strengths, but perform nearly optimally when distractors are perfectly correlated.

Figure 5.5 shows the behavior of individual parameter estimates for model

VP9 in (A), and VP10 in (B). We note that the estimates for both VP9, and VP10

models have a similar trend. The parameters closely follow a similar behavior

for most subjects, and the mean parameter estimates behave nearly identically.

The prior over target presence (first column), and τ (second column) show simi-

lar estimates in the two models for majority of individuals. Also, the values of J̄

(third column) looks nearly identical in both models for most of the subjects, ex-

cept for minor deviations. The mean estimated values of J̄ show a near constant

trend in the first three experimental conditions for the model VP10 (Figure 5.5(B,

third column)). Further, the estimates of ρsassumed are close in the partial correlation

conditions.
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Figure 5.5: Individual parameter estimates of VP9 and VP10 models. (A) Param-
eter estimates VP9 model. Maximum-likelihood estimates of pT, the observer’s
prior probability of target presence (first column), and the scale parameter τ (sec-
ond column) for each subject. Individual (gray lines), and average (over subjects)
(black circles) estimates of mean precision J̄ in different experimental conditions
(third column). Estimated values of correlation coefficient ρs for each subject (gray
lines), and average (over subjects) ρs estimates (black circles) as a function of true
correlation strength (diagonal) in the experimental conditions.
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A similar trend in parameter estimates of the two models provides an expla-

nation for the equally well model predictions of both models for the data, and the

conflicting choice of models on BIC, and AIC model comparisons.

5.7 Conclusions and discussion

Based on the results of model predictions (Sections 4.3, and 4.4), and model com-

parisons discussed above, we conclude that subjects use the information about

the statistical structure present in visual scenes to make decisions. That is, they

take correlations of the distractors into account in detecting a target on the visual

search experiment. However, they are suboptimal in inferring the true correla-

tion strengths that were used to generate the stimuli in different experimental

conditions. The model comparison results based on Bayesian information crite-

rion (Figures 5.3(A, and 5.4(C, top panel)) suggest that perhaps subjects treat the

partial correlation conditions identically, and find it difficult to distinguish the

distinct level of weak correlations present in the scenes. However, they behave

differently when the distractors are homogeneous, and show an improved perfor-

mance in the average results.

While the results based on Akaike information criterion (Figures 5.3(B), and

5.4(C, bottom panel)) provide evidence that perhaps subjects infer different levels

of correlation strengths in different experimental conditions. But they infer incor-

rect values leading to the suboptimal behavior. Further, we explore that subjects
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use variable precision in making decisions ((Figures 5.1, and 5.4(A)). This preci-

sion not only varies over trials, and stimuli, but also vary across experimental

conditions (Figures 5.2, and 5.4(B)). Thus, we find that distribution of encoding

precision depends on the strength of correlation used in an experimental condi-

tion.

We obtain inconclusive results here about how subjects actually infer the dif-

ferent correlation strengths. This could be because of many underlying reasons.

It may be that the individuals’ differences lead to mixed results: subjects proba-

bly use different strategies to make decisions on the task. This would be difficult

to examine using the measures we used, and would probably involve a detailed

analysis of each subject’s responses. It could also be possible that the models we

considered here lack some assumptions about a parameter that could be driving

subjects’ decisions but we are unaware of it. For instance, we assume that subjects

learn the parameter value of the standard deviation of distractors in the generative

model (Figure 2.1). However, this may not necessarily be true, and in that case, it

would require models that assume σs as a free parameter, and the model decision

variable would need to computed by marginalizing over all possible values of this

parameter. Further, it could be possible that subjects do not make point estimates

of the correlation strengths, instead they use some unknown distribution over the

true values. Even worse, another possibility would be if subjects do not at all use

any information about the correlations, but instead use some suboptimal decision

strategies, for example, a threshold rule (similar to the one described in Chapter 1

Example 1.4.1).
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All these alternatives are possible, and may provide more explanation about

subjects’ behavior on the experiment. However, all these models are more likely to

be more complex, and multi-dimensional. The decision variables for these models

would be even more complex (compared to Eq. (2.21)) except in the case of thresh-

old models. Therefore, it is bit uncertain that observers would use even more

complex decision variables in their decisions. And if they really do, a mathemat-

ical treatment of such models would be highly intricate, and may not be possible

in many cases. To explore such possibilities, an advance treatment, and model

comparisons based on hierarchal modeling would probably be required.
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Chapter 6
Noise correlations in a single target

detection task

In many mid- to high-level visual tasks with multiple stimuli, the brain has to

make categorical, global judgements. This involves extracting the relevant infor-

mation from sensory input. Given the nature of a task, the brain needs to follow

different mechanisms relevant to the objective of the task. For instance, in a target

detection task where the goal is to detect whether a predefined object is present

in a visual scene having multiple objects, the identity of any individual stimu-

lus may not be of direct relevance in making a decision. But, in an estimation task

where an observer needs to estimate the mean orientation of the stimuli in a visual

display, orientation of each stimulus is equally important. Therefore, the objective

of a task could play a crucial role in guiding our inference process, and how the

brain extracts the meaningful information from sensory input. We explore the
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importance of the objective of a task in some details in Chapter 7.

In addition to a task relevant feature, our judgements also critically depend

on the accuracy of our sensory measurements. The sensory information our brain

receives is usually uncertain since noise corrupts our measurements, especially

when observation time is short, and multiple objects are present. The magnitude

of noise in the measurements governs the accuracy of our decisions on a task,

and further complicates the our inference process. Thus, measurement noise can

considerably affect our decisions on a task.

Extensive work has been done both at theoretical, and experimental levels to

understand the decision processes of the brain. Specifically, several models have

been proposed to study the mechanisms by which the brain converts noisy sen-

sory measurements of a set of stimuli to infer the state of the world. For exam-

ple, how the brain infers a target presence or absence in a scene, or how to dis-

criminate the mean orientation of a set of stimuli. These models generally con-

sider decision rules that are applied to the measurements. On the other hand, the

measurements themselves are usually modeled in a rather conventional fashion.

They are often considered as independent (between stimuli), and normally dis-

tributed [90, 142, 94, 95]. We also use these assumptions to model an observer’s

measurements in Chapter 2. But, both these assumptions can be questioned.

It has been found that neural correlations can extend to distances as long as

4mm in monkey cortex [28, 36]. This indicates that the sensory measurements

can be strongly correlated [118, 27]. These correlations must be accounted in the

modeling of decision processes. Therefore, we are interested in examining the
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effects of correlated sensory measurements on the inference process of our brain,

and the accuracy of decisions.

In order to make categorical, global judgements, the brain not only needs to

take into account the correlations present in the measurements, but also the sta-

tistical structure of the stimuli on a task. For instance, a target could be easily de-

tected in the case of homogeneous distractors than when the distractors possess

random orientations. In such a case, correlations between sensory measurements

can further influence decisions. For instance, we consider the situation discussed

by Mazyar et al. [94]. Strong measurement correlations result in more similarity

between the measurements, and introduce structure. This structure could be help-

ful in presence of identical distractors, as similar measurements corresponding to

the distractors can be grouped, and a target can be easily detected if present. By

contrast, when distractors are independently drawn, there is no external stimulus

structure that could be preserved, and hence, we do not necessarily expect strong

measurement correlations to be beneficial. This illustrates that measurement, and

stimulus correlations should not be considered in isolation.

We expect that correlations between measurements, and those between stim-

uli will interact to jointly influence the decisions of an observer. In this chapter,

we examine how the correlations between measurements, and stimuli interplay

to affect the performance of an ideal Bayesian observer in a visual search task.

Specifically, we consider a target detection task similar to the one described in

Section 2.1 but with the assumption of correlated measurements.

We first introduce the set up of the model for a target detection task that we use
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to study the effects of measurement correlations along with correlations between

distractors. We then derive the decision rule for an optimal Bayesian observer to

make decisions on such a task. Our goal here is to understand how external struc-

ture together with the structure of the measurements impacts the performance

of an ideal observer. Thus, we vary different parameters that determine external

stimulus, and internal measurements structure, and examine the resulting behav-

ior in the performance.

6.1 Model description

To examine how decisions of an ideal observer are determined by the statistical

structure of sensory measurements, and stimuli we consider a single target de-

tection task; where the observer is required to detect a vertical target in a set of

N stimuli. The framework of the task, and mathematical notations are similar to

Section 2.1. The binary variable, T, indicates target presence for T = 1, and target

absence when T = 0. In half of the trials, the target is present at one of the N

possible locations. Stimulus orientations, denoted by s = (s1, s2, · · · , sN) are the

relevant characteristics of the task. The target stimulus orientation is denoted by

sT = 0, and the orientations of the distractors are drawn from multivariate normal

distributions specified in Eqs. (2.1), and (2.6) when T = 0, and T = 1, respectively.

We note that the external structure in a scene is determined by the number of

stimuli, N, the variance of the distractor orientations, σ2
s , and the pairwise corre-

lation coefficient, ρs. For the purpose of this task, we consider that the number of
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stimuli, and the external noise σs are fixed parameters. We control the amount of

structure in a scene by varying the amount of correlation between distractors, that

is, by varying ρs.

We further assume that an observer makes a noisy measurement of each stimu-

lus, denoted by xi. This measurement can be thought of as the maximum likeli-

hood estimate obtained from the activity in a population of neurons with recep-

tive fields including location i. We denote by x = (x1, x2, · · · , xN) the vector of N

measurements. It is commonly assumed that the components of x are unbiased,

independent and normally distributed

xi|si ∼ N (si,σ2
x ).

We consider here the more general situation where the measurements are unbi-

ased, but correlated so that

x|s ∼ N (s, Σx). (6.1)

The N × N covariance matrix Σx is assumed to have a similar structure as co-

variance matrix Σs (Eq. (2.3)) with constant diagonal entries, σ2
x , and off-diagonal

entries, ρxσ
2
x . The assumption that the measurements follow a Gaussian distri-

bution is almost certainly an oversimplification. However, since this distribution

is not well characterized, Gaussianity is a reasonable first guess that allows us to

describe responses with a minimal number of parameters, and leads to analyti-

cally tractable formulations. This assumption is natural when the uncertainty of

the measurement is characterized by the variance of each xi [53, 87]. The struc-

ture in the measurements is characterized by the measurement noise, σx, and the

covariance matrix, Σx. The generative model of the task is shown in Figure 6.1.

168



6.1. MODEL DESCRIPTION

sσ

s

x

 ρsT x

T̂

   d(x)

(A) (B) 

Figure 6.1: Statistical structure of relevant task variables in the optimal-
observer model for a (single) target detection task with stimulus, and measure-
ment noise correlations. (A) Generative model. The binary variable, T indicates
the target presence for T = 1, and absence when T = 0. The stimulus orientations,
s = (s1, s2, · · · , sN) are drawn from a multivariate normal distribution with mean
vector, sD, and covariance matrix, Σs. The standard deviation, σs, and the corre-
lation coefficient, ρs of distractor orientations determine the statistical structure of
a visual display. An observer makes measurements, x = (x1, x2, · · · , xN) of the
presented set of stimuli. These measurements are assumed to be unbiased, and
drawn from a multivariate normal distribution having a covariance matrix, Σx.
The correlation coefficient, ρx determines the strength of correlation between these
measurements. (B) Inference process. An optimal observer computes a decision
variable, d(x) based on the measurements x to make an estimate, T̂ of the true
state variable, T. The decision variable d(x) is the log-posterior ratio between the
two possibilities of making a response ”target-present”, or ”target-absent” given
the measurements, and is given by log p(T=1|x)

p(T=0|x) . The sign of d(x) determines the

estimate T̂ = 1, or T̂ = 0.
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Figure 6.2: The stimulus and measurement distributions in the single target de-
tection with N = 2 stimuli when σ2

s = 15◦, and σ2
x = 4◦. (A) Stimulus and mea-

surement distributions at ρs = 0.5.The stimulus orientations (top) in the case of
target present (left), and target absent (right) trials. The corresponding measure-
ment distributions (bottom) in response to the stimulus distributions are shown
for measurement correlations, ρx = 0 in both target present (left) and target absent
(right) trials. (B) Overlap of measurement distributions at ρs = 0.99. The tar-
get present (black), and absent (dark gray) distributions are shown in the case of
ρx = 0 (top), and ρx = 0.95 (bottom). The overlap between the two measurement
distributions, x|T = 1, and x|T = 0 reduces as the strength of measurement corre-
lation increases, and hence the two distributions are distinguishable. Throughout
the chapter, the axes are measured in terms of the standard deviation, σ , which is
defined by σ2 = σ2

s +σ2
x .
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We now derive the mathematical model that an optimal observer follows to

make decisions on the task. In particular, we compute the Bayesian decision vari-

able as a function of different statistical parameters that govern the structure in

external scenes, and the observer’s measurements.

6.2 Optimal observer theory

In order to understand how noise correlations in the measurements impact the

decisions of an ideal Bayesian observer, we derive an analytical expression for the

decision variable based on a similar mechanism discussed in Section 2.2.

An optimal Bayesian observer makes a decision based on the log posterior

ratio given in Eq. (2.9). The observer infers target presence when the decision

variable, denoted by dNST(x), is positive, and target absence otherwise. That is,

dNST(x) = log
P(T = 1|x)
P(T = 0|x) = log

P(x|T = 1)
P(x|T = 0)︸ ︷︷ ︸
LNST(x)

+ log
P(T = 1)
P(T = 0)

> 0. (6.2)

6.2.1 The log-likelihood ratio

We compute the log-likelihood ratio, LNST(x) by marginalizing the information

over intermediate variables; the spatial location, and the stimulus orientations,

s. We readily observe that it is identical to obtaining Eq. (2.11) in Section 2.2.
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Therefore,

LNST(x) = log
P(x|T = 1)
P(x|T = 0)

= log
1
N

N

∑
j=1

ˆ
P(x|s)P(s|T = 1)ds

ˆ
P(x|s)P(s|T = 0)ds

. (6.3)

However, we note that the computation of P(x|T = 1) is not simple, and straight

in this case as compared to the one in Section 2.2. It is because P(x|s) can no longer

be written as a product of one-dimensional normal density functions. Therefore,

to evaluate the integral in case of T = 1, we construct a new N×N matrix Σ
η
s, j for

η > 0 as:

(Σηs, j)k,l =



σ2
s , if k = l 6= j,

ρsσ
2
s , if k, l 6= j,

η, if k = l = j,

0, if k = j, l 6= j or k 6= j, l = j.

(6.4)

Here j ∈ {1, 2, · · · , N} represents the spatial location of a target. By denoting ˜sD

as an N-dimensional vector with all components sD, but the jth as sT, we can write

s|(T = 1, j) ∼ lim
η→0+

N ( ˜sD, Σηs, j). (6.5)

We introduced the auxiliary covariance Σ
η
s, j because Σ0

s, j is not invertible, since

the density is singular in the variable with index j.
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In the limit of η→ 0+, we compute the log-likelihood ratio

LNST(x) = log
1
N

N

∑
j=1

ˆ
P(x|s)P(s|T = 1)ds

ˆ
P(x|s)P(s|T = 0)ds

= log
1
N

N

∑
j=1

lim
η→0+

ˆ
f (x; s, Σx) f (s; ˜sD, Σηs, j)ds

ˆ
f (x; s, Σx) f (s; sD, Σs)ds

.

We use Eqs. (B.3), and (B.4) about product, and integral properties of multivariate

normal distributions, and denote

C = Σs + Σx, and Cj = Σ0
s, j + Σx, (6.6)

to obtain

LNST(x) = log
1
N

N

∑
j=1

f (x; ˜sD, Cj)

f (x; sD, C)

= log
1
N

√
|C|
|Cj|

N

∑
j=1

exp
(
−1

2
(x− ˜sD)

TCj
−1(x− ˜sD) +

1
2
(x− sD)

TC−1(x− sD)

)
.

(6.7)

The determinant of the matrix Cj does not depend on the spatial location param-

eter j since all matrices of type Cj can be obtained from each other by permuting

appropriate rows, and columns. Moreover, to describe the distributions of the

Gaussian variables x|(T = 0), and x|(T = 1), we note that their respective covari-

ances are determined by the matrices C, and Cj.
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6.2.1.1 Determinants and inverses of matrices C and Cj

We further simplify Eq. (6.7) by computing the determinants, and inverses of the

covariance matrices C, and Cj when ρs,ρx 6= 1, otherwise these matrices are sin-

gular. We first decompose these matrices as:

C = D + (ρsσ
2
s + ρxσ

2
x )J, and Cj = Aj + UjEVj

where D is a diagonal matrix with constant diagonal entries, σ2
s (1− ρs) +σ2

x (1−

ρx), J is a matrix of ones, E is a 2× 2 identity matrix,

and (Aj)k,l =



η+σ2
x (1− ρx), if k = l = j,

σ2
s (1− ρs) +σ2

x (1− ρx), if k = l 6= j,

0, otherwise .

Furthermore, the columns of N× 2 matrix Uj, and rows of 2×N matrix Vj are

given by

Uj(k,1) =


σ2

s (1− ρs) +σ2
x (1− ρx), if k 6= j,

σ2
x (1− ρx), if k = j,

and Uj(k,2) = σ
2
x (1− ρx) ∀ k,

Vj(1,k) =


1, if k 6= j,

0, if k = j,
and Vj(2,k) =


0, if k 6= j,

1, if k = j.

Additionally, we define the following variables

v =
1

σ2
s (1− ρs) +σ2

x (1− ρx)
, ṽ =

1
σ2

x (1− ρx)
, a = ρsσ

2
s + ρxσ

2
x , (6.8)

V = Nv, V\ j = (N − 1)v, β =
a

1 + aV
, q = a + ρsσ

2
s ρxσ

2
x ṽ, (6.9)

r = 1 + ρsσ
2
s V\ j, and γ = 1 + aV\ j + ρxσ

2
x ṽr. (6.10)
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We apply the generalized Matrix Determinant Lemma (see Lemma 2 in Appendix B.3)

to obtain the following determinants:

|C| = 1 + aV
vN , and |Cj| =

γ

vN−1 ṽ
.

We also apply the Woodbury matrix identity described in Theorem 2 in Appendix B.3

to compute the following inverses of both covariance matrices

(C−1)k,l =


v−βv2 if k = l,

−βv2 if k 6= l,

and (Cj
−1)k,l =



ṽ− ρxσ
2
x ṽ2r
γ if k = l = j,

v− v2q
γ if k = l 6= j,

− v2q
γ if k 6= l, and k, l 6= j,

−ρxσ
2
x vṽ
γ if k = j, l 6= j, or l = j, k 6= j.

We now substitute the above obtained determinants, and inverses of the covari-

ance matrices to compute the following expressions:

(x− sD)
TC−1(x− sD) = (v−βv2)

N

∑
k=1

(xk − sD)
2 −βv2

N

∑
k 6=l

(xk − sD)(xl − sD)

(x− ˜sD)
TCj

−1(x− ˜sD) =

(
ṽ− ρxσ

2
x ṽ2r
γ

)
(x j − sT)

2 + v
N

∑
k 6= j

(xk − sD)
2

− 2ρxσ
2
x vṽ
γ

(x j − sT)
N

∑
k 6= j

(xk − sD)−
v2q
γ

N

∑
k,l 6= j

(xk − sD)(xl − sD).

Substituting the above obtained expressions in Eq. (6.7) gives us the following

simplified equation for the log-likelihood ratio of a single target detection task
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with correlated measurements:

LNST = log
1
N

√
ṽ(1 + aV)

v γ

N

∑
j=1

exp
(
−1

2

(
ṽ− ρxσ

2
x ṽ2r
γ

)
(x j − sT)

2

− 1
2

(
βv2 − v

)
(x j − sD)

2 −
(
βv2 − ρxσ

2
x vṽ
γ

)
(x j − sD)

N

∑
k 6= j

(xk − sD)

−1
2

(
βv2 − v2q

γ

) N

∑
k,l 6= j

(xk − sD)(xl − sD)

)
. (6.11)

6.2.2 Bayesian decision variable

The decision variable dNST(x) defined in Eq. (6.2) completely characterizes the

decision-making strategy of an ideal Bayesian observer on a single trial. It also

quantifies the impact of different (stimulus, and measurement structure) parame-

ters on the decisions of the optimal observer.

Since a target is present with a 1/2 probability on each trial of the task, the ideal

observer uses a uniform prior on T. Thus, the decision variable to report ”target

present” on the task is given by the log-likelihood ratio obtained in Eq. (6.11)
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dNST = log
1
N

√
ṽ(1 + aV)

v γ

N

∑
j=1

exp

− 1
2

(
ṽ− ρxσ

2
x ṽ2r
γ

)
(x j − sT)

2︸ ︷︷ ︸
I

− 1
2

(
βv2 − v

)
(x j − sD)

2︸ ︷︷ ︸
I I

−
(
βv2 − ρxσ

2
x vṽ
γ

)
(x j − sD)

N

∑
k 6= j

(xk − sD)︸ ︷︷ ︸
I I I

− 1
2

(
βv2 − v2q

γ

) N

∑
k,l 6= j

(xk − sD)(xl − sD)︸ ︷︷ ︸
IV

 . (6.12)

The above equation gives the decision variable in terms of the model parameters,

and the measurements, x. While the total number of stimuli N, the variability, and

co-variability between the distractors orientation determined respectively by σ2
s ,

and ρs, regulate the structure of visual stimuli. The variability σ2
x , and correlation

ρx describe the structure of the observer’s measurements.

6.2.3 Interpretation of the decision variable

Eq. (6.12) defines a nonlinear decision boundary in the space of measurements

x. Although the expression is explicit, the decision variable depends in a compli-

cated way on the different parameters that describe the structure of the stimulus,

and the response. The variables v, and ṽ represent scaled inverse variances cor-

responding to distractor, and target stimulus, while V, and V\ j denote the popu-

lation sums of v in target present, and absent cases, respectively. The parameters
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β, r, q, and γ (Eq. (6.8)) are defined in terms of σ2
s ,ρs,σ2

x ,ρx, and it is difficult to

quantify their explicit impact on decisions, and performance of an observer.

However, we note that the formulation of Eq. (6.12) is similar to the deci-

sion variable derived in Eq. (2.21) except for different scaling parameters. Thus,

Eq. (6.12) can be interpreted in a similar way as in Section 2.2.2. Specifically, we

interpret each term in the exponent of Eq. (6.12) as an evidence towards the jth

stimulus being a target: (I) if the jth measurement is close to the target orienta-

tion, this term increases the likelihood of the jth stimulus being a target; (II) on the

other hand, if the jth measurement is similar to the mean distractor orientation,

this term decreases such a likelihood; (III) the third term compares the sample

mean of distractor measurements, with the difference of jth measurement from

the mean distractor orientation; if the term is large, it is less likely that the jth

stimulus is the target; (IV) the fourth term can be rewritten as the sample covari-

ance of distractor measurements; if this term is large it is more likely that the jth

stimulus is the target. Thus, each term is relevant in making a decision whether

the jth measurement corresponds to a target stimulus or not. The coefficient of

each exponent term carries the information about parameters of stimulus, and

measurement structure. The influence of these parameters such as σ2
s ,ρs,σ2

x ,ρx

on different terms of the decision variable dNST(x) is difficult to understand since

their dependence is much more intricate.

We next consider a simple, and special case of the decision variable in Eq. (6.12).

Specifically, we evaluate the equation in the absence of correlations between mea-

surements.
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6.2.4 No noise correlations, ρx = 0

We note that in the case of no noise correlations in the measurements, i.e., when

ρx = 0, the mathematical model of the task reduces to the one described in Sec-

tion 2.1. Thus, on substituting ρx = 0 in Eq. (6.12), the variables defined in Eq. (6.8)

reduces to the ones earlier defined in Chapter 2 (Eqs. (2.15) and (2.19))

a = ρsσ
2
s , v = w̃, ṽ = w, V = W̃,β = α,

q
γ
= α\ j.

Subsequently, the decision variable dNST(x) given by Eq. (6.12) reduces to the

variable dST(x) derived in Eq. (2.21). Thus, the target detection task discussed

in Chapter 2 is a special case of the one here with a generalized assumption on the

measurement noise.

We now consider how variations in the external structure parameters together

with the parameters governing the structure in the measurements impact the per-

formance of an ideal Bayesian observer. External structure is characterized by the

number of stimuli, and the pairwise correlations between them, while the struc-

ture of the measurements is characterized by the covariance matrix Σx. In general,

we cannot assume that these parameters can be varied independently. For exam-

ple, neural mechanisms that impact σ2
x almost certainly impact ρx [28, 33, 117].

However, the dependence between these parameters is not fully characterized,

and we therefore explore a range of possible parameter values below.
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6.3 Analysis and Results

Our goal is to describe how stimulus structure, along with the structure of the

corresponding measurements affect the decisions of an optimal observer in a tar-

get detection task. We examine how performance changes as both correlations

between distractors, and between measurements are varied.

We first note that the stimulus variable s, follows two different distributions

depending on whether T = 0, or T = 1. In general, measurement noise increases

the overlap between these distributions. The higher the overlap between the two

distributions, the more difficult the decision. However, structured noise in the

measurements can reduce such overlap. Therefore, performance of an ideal ob-

server depends not only on the level, but also on the structure of measurement

noise [6, 4].

We examine Eq. (6.12) numerically in different regimes of stimulus, and mea-

surement statistical parameters. Specifically, we consider the following two regimes

determined by the dominance of either external noise, σ2
s , or measurement noise,

σ2
x :

(a) weak measurement noise, σ2
x � σ2

s ,

(b) strong measurement noise, σ2
x = σ2

s .

In the following sections, we elaborate how noise correlations in the measure-

ments affect the decision variable dNST(x) (Eq. (6.12)), and subsequently the per-

formance of an ideal Bayesian observer. We obtain analytical expressions for the

180



6.3. ANALYSIS AND RESULTS

decision variable in these cases, and provide supporting numerical results along

with the best possible intuitive interpretation.

6.3.1 Weak measurement noise, σ2
x � σ2

s

The external structure in a scene is determined by the noise level σs, and also

by the pairwise correlation coefficient ρs. For a fixed noise level σs, the structure

is introduced in the visual stimuli by varying the amount of correlations among

pairs of distractor orientations. A strong external structure is introduced when

ρs = 1 as all distractors are identical, and the target is an odd-ball stimulus. While

in the cases of ρs < 1, the external structure is weaker, and hence detecting a

target may not necessarily be easier. Therefore, we individually treat the cases of

weak, and strong external structure in the regime of weak noise in the observer’s

measurement.

We denote ε = σ2
x
σ2

s
, and expand different terms of Eq. (6.12) about ε � 1. We

only consider terms with larger contribution, i.e., terms of the orders of O( 1
ε ), to

obtain approximations for the decision variable dNST(x) in different regimes of

parameters.
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6.3.1.1 Strong external structure, ρs = 1

In the case of ρs = 1, and ε � 1 , the coefficients of the different exponent terms

in Eq. (6.12) reduces to the following simplified expressions:

I : ṽ− ρxσ
2
x ṽ2r
γ

≈ 1
σ2

x

I I : βv2 − v ≈ −(N − 1)
Nσ2

x (1− ρx)

I I I : βv2 − ρxσ
2
x vṽ
γ

≈ 1
Nσ2

x (1− ρx)
+O(1)

IV : βv2 − v2q
γ
≈ − 1

N(N − 1)σ2
x (1− ρx)

,

and the leading determinant coefficient becomes√
ṽ(1 + aV)

v γ
≈

√
N(1− ρx)

N − 1
.

Therefore, we obtain the following approximation of the Bayesian decision vari-

able dNST(x) in this case

dNST(x) ≈ log
1
N

√
N(1− ρx)

N − 1

N

∑
j=1

exp
(
− 1

2Nσ2
x (1− ρx)

(
(1− Nρx)(x j − sT)

2

−(N − 1)(x j − sD)
2 + 2(x j − sD)

N

∑
k 6= j

(xk − sD)−
1

N − 1

N

∑
k,l 6= j

(xk − sD)(xl − sD)

))
.

(6.13)
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Furthermore, in the particular case of sT = sD = 0, the above equation reduces to

a much simpler expression that is easier to interpret:

dNST(x) ≈ log
1
N

√
N(1− ρx)

N − 1

N

∑
j=1

exp

− 1
2Nσ2

x (1− ρx)

(1− Nρx)x2
j + 2x j

N

∑
k 6= j

xk −
1

N − 1

(
N

∑
k 6= j

xk

)2


︸ ︷︷ ︸
E j

.

(6.14)

Clearly, the above expression indicates that an ideal observer uses the strength of

measurement correlations ρx in a decision. Specifically, in the limit of perfect noise

correlations, i.e., ρx ≈ 1, the exponential term in Eq. (6.14) is approximately

E j ≈

 N − 1
2Nσ2

x (1− ρx)

(
x j −

1
N − 1 ∑

k 6= j
xk

)2
 . (6.15)

Therefore, the optimal observer simply subtracts the mean of the N − 1 measure-

ments of putative distractors from that of the putative target. In the case of per-

fect noise correlations, the measurements of the distractor stimuli are identical.

Thus, on ”target absent” trials, the term E j’s in Eq. (6.15) are zero, and therefore,

dNST(x)→ −∞. While on a target present trial, E j is positive, and the exponential

diverges to infinity as ρx → 1. The prefactor in Eq. (6.14) approaches zero, how-

ever, the divergence of exponential is stronger. Therefore, dNST(x) → ∞, and an

ideal observer performs perfectly in this case.

We confirm the above analytical observation through numerical simulations

in the case of N = 4 stimuli. We vary the strength of stimulus, and measurement
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noise correlations (ρs, and ρx, respectively), and examine the trend in the perfor-

mance of an optimal Bayesian observer shown in Figure 6.3(A). For simulation

purposes, we used σs = 15◦, and σx = 4◦ to obtain the weak measurement noise

(σ2
x � σ2

s ) regime.

We observe in Figure. 6.3(A) that the performance of an ideal observer in weak

measurement noise case is nearly independent of ρs, and ρx for weak external

structure (ρs < 1). However, it depends strongly on ρx when the external struc-

ture is relatively stronger, i.e., ρs ≈ 1. In particular, any amount of noise cor-

relations strongly drives the performance in such a case (seen in Figure. 6.3(A),

and (C)). Moreover, we note that perfect performance is observed at ρs = ρx = 1

(Figure 6.3(C)). Hence, in the presence of strong external structure (all distractors

having identical orientations), strong noise correlations enhance the performance

of an optimal Bayesian observer.

The increased performance with increasing external correlations ρs, accords

with intuition that strong external structure makes detecting a target easier. How-

ever, measurement structure can play an equally important role. In the presence of

strong external structure (homogeneous distractors), noise correlations can signif-

icantly improve performance as seen in Figure 6.3(B).

Perfect performance is achieved at ρs = ρx = 1, and we can understand it

intuitively. In this case measurements xi, of the stimuli are obtained by adding

the same realization of a random variable (noise) to each stimulus characteristic,

si. In target absent trials, all measurements are hence identical. If the target is

present, the measurements contain a single outlier, and an ideal observer can thus
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(A) 

(B) 

(C) 

ρs = 0.5 ρs = 1

Target Present Target Absent 

ρx = 0 ρx = 0

ρx = 0.95 ρx = 0.95

Figure 6.3: Impact of measurement noise correlations on the perfor-
mance of an ideal Bayesian observer on the single target detection task
when the measurement noise is weak as compared to the external noise,
σ2

x � σ2
s (σs = 15◦,σx = 4◦). (A) Performance of an ideal observer as a function

of external correlation strength, ρs, and measurement noise correlations, ρx on the
task with N = 4 stimuli. (B) The proportion of correct responses as a function of
ρx in the case of weak external structure, ρs = 0.5 (left), and strong external struc-
ture, ρs = 1 (right) when N = 4. (C) The decision boundary, dNST(x) = 0, with
target present (left), and target absent (right) distributions in the case of ρs = 0.5,
and N = 2 stimuli. Here purple dots correspond to incorrect inferences while
orange dots represents correct responses. The green lines (target present) or el-
lipses (target absent cases) show 2 units of standard deviation for the stimulus
distribution.
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distinguish the two cases perfectly.

6.3.1.2 Weak external structure, ρs < 1

We also observe that noise correlations have little effect on performance when ex-

ternal structure is weaker, i.e. when ρs < 1 (Figure. 6.3(A)). To intuitively under-

stand such a behavior, we again consider the case of ρx ≈ 1 so that measurements

are obtained by equal rotation of each stimulus orientation. An ideal observer can

use the structure of measurement noise in making a decision. However, the ob-

server cannot use knowledge about a particular realization of noise. In other words,

the observer can use the fact that the measurements are obtained by rotating the

stimulus by approximately the same angle, but not the exact angle of the rotation.

If there is only weak external structure, it is now difficult to tell whether one of

the stimuli is an outlier. An ideal observer must therefore infer whether a target is

present from the individual measurements of stimuli. Hence measurement noise

correlations provide little help in the absence of external structure.

These observations are also reflected in the structure of the decision boundaries

(dNST(x) = 0), and distributions of the measurements illustrated in Figure 6.3(C).

In the target absent (left column, Figure 6.3(C)), and present trials (right column)

the distribution of measurements is determined predominantly by variability in

the stimulus. Noise correlations present in the observer’s measurements have lit-

tle effect on these distributions. As a result, the decision boundary also changes

little with an increase in ρx. This is in contrast to the case when ρs ≈ 1, where
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internal variability can be important in increasing the overlap between the distri-

butions of x|T = 1 and x|T = 0 (see Figure 6.4).

We confirm this intuition about the role of noise correlations by approximating

the decision variable in this case, and expanding the coefficients of exponent terms

in Eq. (6.12) as follows

I : ṽ− ρxσ
2
x ṽ2r
γ

≈ 1
σ2

x

I I : v−βv2 ≈ 1 + (N − 2)ρs

σ2
s (1− ρs)(1 + (N − 1)ρs)

= O(1)

I I I : βv2 − ρxσ
2
x vṽ
γ

≈ O(1)

IV : βv2 − v2q
γ
≈ O(1).

We further approximate the leading determinant coefficient in Eq. (6.12) as√
ṽ(1 + aV)

v γ
≈

√
σ2

s (1− ρs)(1 + (N − 1)ρs)

σ2
x (1 + (N − 2)ρs)

.

Combining the above terms gives us the following approximation of the decision

variable when σ2
x � σ2

s , and ρs < 1,

dNST(x) ≈ log
1
N

√
σ2

s (1− ρs)(1 + (N − 1)ρs)

σ2
x (1 + (N − 2)ρs)

N

∑
j=1

exp

(
−
(x j − sT)

2

2σ2
x

)
. (6.16)

This approximation is relatively simpler, and easier to understand. We easily see

that the strength of noise correlations ρx does not affect the decisions of an ideal

observer at highest order in (σ2
x/σ

2
s ). Therefore noise correlations only weakly

impact the decision, and hence performance. Additionally, the terms in the expo-

nent are x2
j/2σ2

x . Hence, the orientation at each location is considered separately,

and weighted by the precision of measurements, 1/σ2
x . The ideal observer hence
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Figure 6.4: The stimulus and response distributions along with the decision
boundary on the single target detection task in presence of weak measurement
noise (σ2

x � σ2
s ) and strong external structure, ρs = 1 as a function of noise

correlations in the measurements. The distributions of the stimuli and corre-
sponding responses on the single target detection task with N = 4 stimuli, weak
measurement noise (σs = 15◦,σx = 4◦), and strong external structure (ρs = 1) for
weak (top panels) and strong noise (bottom panels) correlation. Black solid lines
represent the decision boundary, dNST(x) = 0. The dashed black lines correspond
to the 2 units standard deviation about the stimulus distribution, s|T = 1 (left),
and s|T = 0 (right). The distribution of the responses is represented by the dots.
Light grey dots correspond to the incorrect inferences while dark grey dots to the
correct responses in both target present (left) and absent (right) cases. We note
that noise correlations decrease the overlap between the measurement distribu-
tions, x|T = 1, and x|T = 0, and makes them distinguishable.
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makes a decision primarily based on the evidence from each stimulus separately

in this case.

In sum, external structure of a scene implies that stimulus distributions s|T =

1, and s|T = 0 are concentrated on low dimensional subspaces. Even small noise

can increase the overlap between the distributions of measurements x|T = 1, and

x|T = 0. However, noise in the measurement, and external structure can conspire

to decrease the overlap between the distribution of measurements. This happened

in the present case when ρs, and ρx are both close to 1 (Figure 6.3(B)).

In the absence of external structure, the signal distributions s|T = 1, and

s|T = 0 are not concentrated along low dimensional manifolds. Here external

variability σ2
s always dominates, and low intensity measurement variability σ2

x

has little effect on the performance of an ideal observer.

6.3.2 Strong measurement noise, σ2
x = σ2

s

With a single target, noise correlations have little impact on the performance of an

ideal observer, unless external structure is strong. Although, external variability

is typically expected to be much stronger than measurement variability in most

situations [14], we next consider the case when the two sources of variability are

comparable, σ2
x = σ2

s . The case of σ2
x � σ2

s is insignificant to consider since

the increased measurement noise leads to poor performance, and the observer

essentially makes a guess on each trial.

Increasing measurement noise σ2
x trivially leads to a decrease in performance.
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However, in the limit of perfect external, and measurement noise correlations i.e.,

ρs,ρx ≈ 1, an ideal observer still performs perfectly. It is not clear, however, how

the performance is affected at intermediate values of correlations, and noise. We

thus explore this case numerically, and provide an intuitive reasoning for the ob-

served behavior. However, an analytical approximation of the Eq. (6.12) is difficult

to obtain in this particular case. For simulation purposes, we consider the case of

N = 4 stimuli, and σs = σx = 15◦. Figure 6.5(A) shows the behavior in the per-

formance of an optimal Bayesian observer with varying amounts of external (ρs),

and measurement noise correlations (ρx).

On comparing Figure 6.5(A),(C) with Figure 6.3(A),(C), we observe that noise

correlations have a completely different effect on performance than in the case of

weak measurement noise. Even with no external structure, ρs = 0, performance

increases slightly (approximately 5-6%) with an increase in ρx. Surprisingly, for

intermediate values of external correlations, ρs = 0.5, noise correlations have a

negative impact on performance. The reason for this unexpected behavior is not

clear, as Eq. (6.12) is difficult to analyze in this case. However it is obvious that

structure present in the observer’s measurements play a much greater role in de-

cision making when noise is very large, unlike the weak noise case where we see

little change in structure when ρx is varied (Figure 6.3(A)).

We see this fact reflected in the distributions of the responses, and the decision

boundary in Figure 6.5(B), which are both strongly affected by noise correlations

ρx. Moreover, we see a similarity between this decision boundary, and the one

shown in Figure 6.3(B) in that the mid-section is elongated along the diagonal to
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(A) 

(B) 

(C) 
Target Present Target Absent 

ρs = 0 ρs = 0.5

ρx = 0 ρx = 0

ρx = 0.95 ρx = 0.95

Figure 6.5: Impact of measurement noise correlations on the performance of an
ideal Bayesian observer on the single target detection task when the measure-
ment noise is comparable to the external noise, σ2

x = σ2
s (σs = σx = 15◦). (A)

Performance of an ideal observer as a function of external correlation strength, ρs,
and measurement noise correlations, ρx on the task with N = 4 stimuli. (B) The
proportion of correct responses as a function of ρx in the case of ρs = 0 (left), and
ρs = 0.5 (right) when N = 4. (C) The decision boundary, dNST(x) = 0, with target
present (left), and target absent (right) distributions in the case of ρs = 0.5, and
N = 2 stimuli. Again, purple dots correspond to the incorrect inferences while
orange dots represents the correct responses. The green lines or ellipses show 2
units of standard deviation for the stimulus distribution.
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capture more of the response distribution with an increase in noise correlations.

This transformation makes intuitive sense considering the fact that with increased

noise correlations, noise simply moves the stimulus elements roughly along the

diagonal, and therefore the decision boundary changes accordingly.

6.4 Summary

The performance of an ideal observer on a detection task with a single target is

greatly influenced by the interplay between the statistical structure of the stim-

uli, and the correlations between the observer’s measurements. The decisions are

largely affected by how different parameters that control the stimulus, and mea-

surements structure are varied. Specifically, we find that the performance of the

observer is mostly unaffected at all levels of measurements correlations when the

stimulus structure is not strong, and the measurement noise is weaker than the ex-

ternal noise. However, the observer always make correct decisions when distrac-

tors are homogeneous (ρs = 1), and measurements are perfectly correlated. This is

because identical distractors induces a strong statistical structure in a scene, and

strongly correlated measurements preserves this structure, and help in making

correct decisions. In the case of strong measurement noise which is compara-

ble to the external noise (σ2
x = σ2

s ), the change in performance for weak external

structure is little unpredictable, and largely depends on the interaction between

the stimulus, and measurement noise correlations. While, the observer performs

perfectly when both distractors, and measurements are maximally correlated.
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Chapter 7
Noise correlations in a multiple target

detection task

In a detection task with a single target, the impact of measurement noise correla-

tions on the performance of an ideal Bayesian observer strongly depends on the

relation between the statistics governing the external structure, and the param-

eters associated with the observer’s measurements. Noise correlations influence

the decisions of the ideal observer to varying extents given different parameter

regimes (see Chapter 6).

Specifically, the interaction between these correlations are beneficial when the

amount of structure in visual scenes is sufficiently strong, and pronounced (Fig-

ure 6.3(A)). Any strength of measurement noise correlations results in improved

performance (Figure 6.3(C)). The measurement noise is assumed to be relatively
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weak than the external stimuli noise in such a case. However, in the case of mea-

surement noise being comparable to the external noise, the decisions of an ideal

observer are also affected when external structure is weak (Figure 6.5(A)). There-

fore, the role of measurement noise correlations in the decisions of an optimal

observer heavily depends on the amount of structure present in an external visual

scene.

The external statistical structure in a target detection task is determined by

various factors: the number of stimuli, the number of targets, the mean orienta-

tion of the target, and distractors, the external noise level in the distractors, and

the pairwise correlation coefficient between them. By fixing all other factors at a

constant level, the amount of structure in a scene can be introduced by varying

the amount of correlations between distractor orientations; namely from hetero-

geneous to homogeneous distractors (see Chapter 2). However, we can also vary

any other parameter that drives the framework of a visual scene, and then study

how noise correlations in the observer’s measurements could possibly interact

with the structured input to effect the performance of an ideal observer.

One possibility is to increase the number of stimuli in the task. The increased

number of stimuli, and hence the distractors could possibly help an ideal observer

in the case of homogeneous distractors; however, in general we would expect a

lower performance when the distractors are not sufficiently aligned in a scene,

for instance in the case of heterogeneous distractors. This is because the observer

would be required to integrate more information from additional stimuli, and

their respective locations here.
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Rather, we consider an alternative to introduce more structure in the external

scene. We allow the possibility of more than one target in a visual display. Since

multiple targets are possible here, we refer to such a task as multiple target detection

task. For a fixed number of stimuli in the task, increasing the number of targets

certainly enhances the structure in the visual scene, and can potentially benefits

the decisions of an ideal observer. However, the impact of measurement noise cor-

relations is unknown in the case of such structured inputs. We thus explore how

an optimal observer would behave in presence of external, and the measurement

noise correlations on a multiple target detection task. In particular, we analyze the

responses of the ideal observer in different regimes of parameters determining the

structure in observer’s measurements, and the visual scene.

Furthermore, we inspect whether noise correlations always reinforce the de-

cisions of an observer or could they possibly hurt them? Alternatively, could a

different objective in a same set of stimuli lead to different performance behav-

ior? This is an important question, and we have briefly discussed this in the in-

troduction of Chapter 6. We examine this question in a different task, namely,

a discrimination task. We design the discrimination task with similar structural

characteristics as that of the multiple target detection task, but consider a differ-

ent objective for the observer. The aim is to study how noise correlations effect

the performance of an optimal Bayesian observer in such a case, and how their

influence varies with the objective of a task.

We begin this chapter with the description of the model for the multiple target

detection task, followed by the mathematical derivation of the optimal-observer
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model. We further analyze the influence of varying amounts of noise correlations

on the distributions of the observer’s responses, and the resulting performance.

We conclude by presenting an example of a discrimination task which has similar

structural properties as that of the multiple target detection task; but the noise

correlations show an adverse effect on the performance.

7.1 Model description

The model set up for a multiple target detection task is nearly similar to the sin-

gle target detection task described in Sections 2.1, and 6.1. We present a set of N

stimuli to the observer, and the observer needs to infer whether a target stimulus

is present in the visual display. A target is a stimulus with a particular orienta-

tion, denoted by sT. For simplicity, we assume sT = 0◦, and measure stimulus

orientations relative to that of a target. On half of the trials one or multiple targets

are present among a set of distractors. All n targets have identical orientation. A

distractor stimulus has a non-target orientation. Again, we denote target presence

by T = 1, and absence by T = 0.

When T = 0, there are no targets, and stimulus orientations are drawn from

a multivariate normal distribution described in Eq. (2.1) with mean sD = 0N =

(0, 0, · · · , 0), and covariance matrix, Σs, so that

s|T = 0 ∼ N (0N , Σs).

We again assume Σs with constant diagonal terms, σ2
s , and off-diagonal terms,
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ρsσ
2
s , where the pairwise correlation coefficient, ρs determines the relation be-

tween the components of the distractors.

If T = 1, then n ≥ 1 targets are present. To place the targets, we choose, with

equal probability, n out of the N possible locations. The set of the n target locations

is denoted by L. There are

N

n

 possible choices for this set, and we denote the

collection of all possible choices of sets of target locations by L. We also write

M =

N

n

 which is the cardinality of the set L.

The orientations of the remaining N − n distractors are chosen from a multi-

variate normal distribution with mean 0N−n, and covariance matrix Σs\L of di-

mension (N − n) × (N − n). Once the locations of the targets are chosen, let

sL = (si1 , si2 , · · · , sin), il ∈ L denote the orientations of the target stimuli, and

s\L = (s j1 , s j2 , · · · , s jN−n), jl /∈ L those of the distractors. We can therefore write

sL|T = 1 ∼ ∑
i∈L
δ(si), and s\L|T = 1 ∼ N (0N−n, Σs\L). (7.1)

For η > 0, we introduce the following auxiliary covariance,

(Σηs,L)i, j =



(Σs\L)i, j, if i, j /∈ L,

η, if i = j ∈ L,

0, if i ∈ L, or j ∈ L, and i 6= j,

(7.2)

and write,

s|(T = 1, L) ∼ lim
η→0+

N (0N , Σηs,L).

We note that the matrix Σ
η
s,L reduces to Σ

η
s, j defined in Eq. (6.4) in the case of a

detection task with a single target.
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We further assume that the observer’s measurements, x = (x1, x2, · · · , xN)

are correlated so that it follows the multivariate normal distribution described in

Eq. (6.1) as

x|s ∼ N (s, Σx).

Additionally, the covariance matrix Σx is assumed to have similar structure as Σs

with constant diagonal terms, σ2
x , and off-diagonal terms, ρxσ

2
x . Since the task

variables are similar to the target detection task specified in Section 6.1, the gener-

ative model is same as shown in Figure 6.1.

7.2 Optimal observer theory

We now derive the mathematical model to understand the behavior of an optimal

Bayesian observer on the task. In Sections 2.2, and 6.2, we described that an ideal

observer makes a decision based on the sign of the log-posterior ratio. Here we

denote the Bayesian decision variable by dNMT(x),

dNMT(x) = log
p(T = 1|x)
p(T = 0|x) . (7.3)

Since the optimal observer uses a uniform prior distribution over T, we essentially

compute the log-likelihood ratio

dNMT(x) = log
p(x|T = 1)
p(x|T = 0)

.
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The optimal observer needs to marginalize over the intermediate variables, the

spatial location vector, and the stimulus, s to compute the distribution of the mea-

surements given the target presence variable, i.e., p(x|T). Thus, we have

dNMT(x) = log

ˆ
p(x|s)p(s|T = 1)ds

ˆ
p(x|s)p(s|T = 0)ds

.

We note that

p(s|T = 1) = ∑
L∈L

p(s|T = 1, L)p(L) =
1
M ∑

L∈L
p(s|T = 1, L).

Therefore,

p(x|T = 1) =
1
M

ˆ
p(x|s) ∑

L∈L
p(s|T = 1, L)ds

=
1
M ∑

L∈L

ˆ
p(x|s)p(s|T = 1, L)ds

=
1
M

lim
η→0+

∑
L∈L

ˆ
f (x; s, Σx) f (s; 0N , Σηs,L)ds

=
1
M ∑

L∈L
f (x; 0N , CL).

Here we have defined CL = Σx + Σ0
s,K. The above equation is obtained by apply-

ing the general rule of product, and integral for multivariate normal distributions

described in Appendix B.1.2. Similarly, we define C = Σx + Σs to obtain

p(x|T = 0) =
ˆ

p(x|s)p(s|T = 0)ds

=

ˆ
f (x; s, Σx) f (s; 0N , Σs)ds

= f (x; 0N , C).
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Taking the required ratio of P(x|T = 1), and P(x|T = 0) gives us

dNMT(x) = log
1
M ∑

L∈L

f (x; 0N , CL)

f (x; 0N , C)

= log
1
M

√
|C|
|CL| ∑L∈L

exp
(
−1

2
xT
(

C−1
L − C−1

)
x
)

. (7.4)

We note that the determinant of the matrix CL does not depend on the set L since

all matrices of this form can be obtained from each other by permuting appropri-

ate rows, and columns.

We further simplify the above equation by computing the determinant, and

inverse of matrix, CL. The determinant, and inverse of C has already been com-

puted in Section 6.2.1.1. We note that the covariance matrix CL has the following

form,

(CL)i, j =



η+σ2
x , if i = j ∈ L,

σ2
s +σ2

x , if i = j /∈ L,

ρxσ
2
x , if either i or j ∈ L, and i 6= j,

ρsσ
2
s + ρxσ

2
x , if i, j /∈ L, and i 6= j.

We closely follow the process described in Section 6.2.1.1 for the inverse, and de-

terminant computations. In particular, we decompose CL = AL + ULEVL. The

different matrix components in this decomposition are defined in a similar man-

ner as seen in Section 6.2.1.1. Specifically, E is a 2× 2 identity matrix,

(AL)k,l =



η+σ2
x (1− ρx), if k = l ∈ L,

σ2
s (1− ρs) +σ2

x (1− ρx), if k = l /∈ L,

0, otherwise .

,
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and, the columns of N × 2 matrix UL and rows of 2× N matrix VL are given by

UL(k,1) =


σ2

s (1− ρs) +σ2
x (1− ρx), if k /∈ L,

σ2
x (1− ρx), if k ∈ L,

and UL(k,2) = σ
2
x (1− ρx) ∀ k,

VL(1,k) =


1, if k /∈ L,

0, if k ∈ L,
and VL(2,k) =


0, if k /∈ L,

1, if k ∈ L.

We also recall the definition of the following quantities from Eq. (6.8)

v =
1

σ2
s (1− ρs) +σ2

x (1− ρx)
, ṽ =

1
σ2

x (1− ρx)
,

V = Nv, a = ρsσ
2
s + ρxσ

2
x , β =

a
1 + aV

,

and further define

V\L = (N − n)v, q̃ = a + nρsσ
2
s ρxσ

2
x ṽ, (7.5)

r̃ = 1 + ρsσ
2
s V\L, and γ̃ = 1 + aV\L + nρxσ

2
x ṽr̃. (7.6)

Applying the Generalized Matrix Determinant Lemma, and the Woodbury for-

mula (Appendix B.3), we obtain the following determinant, and inverse of the

matrix CL:

|CL| =
γ̃

ṽn vN−n ,
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and

(C−1
L )i, j =



ṽ− ρxσ
2
x ṽ2 r̃
γ̃ , if i = j ∈ L,

v− v2 q̃
γ̃ , if i = j /∈ L,

−ρxσ
2
x ṽ2 r̃
γ̃ , if i, j ∈ L, and i 6= j,

− v2 q̃
γ̃ , if i, j /∈ L, and i 6= j,

−ρxσ
2
x vṽ
γ̃ , if i 6= j, i ∈ L, j /∈ L or i 6= j, i /∈ L, j ∈ L.

As required in Eq. (7.4), we simplify√
|C|
|CL|

=

√
1 + aV
γ̃

(
ṽ
v

)n
,

and compute

xTC−1x = (v−βv2)
N

∑
i=1

x2
i −βv2

N

∑
i 6= j

xix j,

xTC−1
L x =

(
ṽ− ρxσ

2
x ṽ2r̃
γ̃

)
∑
i∈L

x2
i +

(
v− v2q̃

γ̃

)
∑
i/∈L

x2
i

− ρxσ
2
x ṽ2r̃
γ̃ ∑

i, j∈L
i 6= j

xix j −
2ρxσ

2
x vṽ
γ̃ ∑

i∈L
j/∈L

xix j −
v2q̃
γ̃ ∑

i, j/∈L
i 6= j

xix j.

We substitute the above expressions in Eq. (7.4) to obtain the following expression
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for the optimal Bayesian decision variable on the task:

dNMT(x) = log
1
M

√
1 + aV
γ̃

(
ṽ
v

)n

∑
L∈L

exp

−1
2
σ2

s (1− ρs)vṽ ∑
i∈L

x2
i︸ ︷︷ ︸

I

− 1
2

(
βv2 − ρxσ

2
x ṽ2r̃
γ̃

)
∑

i, j∈L
xix j︸ ︷︷ ︸

I I

−
(
βv2 − ρxσ

2
x vṽ
γ̃

)
∑

i∈L, j/∈L
xix j︸ ︷︷ ︸

I I I

−1
2

(
βv2 − v2q̃

γ̃

)
∑

i, j/∈L
xix j︸ ︷︷ ︸

IV

 . (7.7)

The above equation describes the decision strategy of an optimal observer on the

multiple target detection task. If dNMT(x) > 0, the observer responds the target is

present, and target absent otherwise. Eq. (7.7) shows the intricate dependence of

the decision variable, dNMT(x) on several parameters governing the structure of

the task, such as the total number of stimuli N, number of targets n, variance σ2
s

and correlation ρs of the distractors’ orientations, and the parameters determining

the structure of the measurements,σ2
x , and ρx. We assume that the observer knows

these parameters.

7.2.1 Interpretation of the decision variable

The decision variable derived in Eq. (7.7) is a generalized form of the decision

variable computed in Eq. (6.12). Eq. (7.7) is much more complex, and depends

in a complicated way on different parameters that describe the structure of the
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stimulus, and the response. However, we can interpret it in a similar manner as

in Section 6.2.3. The outer sum is over all putative sets of targets L ∈ L. The

summands correspond to the evidence that the set L contains targets. Each term

in the exponent has an intuitive interpretation: (I) for the putative set of targets, L,

the first term represents the sample second moment of the potential target mea-

surements; if this term is large, the measurements are more likely to be away from

zero, and hence it is less likely that the set L consists of targets; (II) the second

term can be written in terms of sample covariance between putative targets, and

a smaller value of this term corresponds to an increased chance of set L being a

set of targets; (III) this term compares the sample means of measurements in the

putative target set to those outside of it, a small value of this term provides evi-

dence that the set L contains targets; (IV) the last term can be rewritten in terms of

sample covariance of the measurements corresponding to the putative distractor

set, i.e., stimuli outside of set L, if these measurements are correlated, a large co-

variance would signify that this is a set of distractors, and hence it is more likely

that the set L consists of targets. Again, it is more difficult to provide a precise in-

terpretation of the different prefactors involved in Eq. (7.7) since they have more

complicated dependence on various parameters in the generative model of the

task.

We now wish to analyze the impact of different statistical parameters that gov-

ern the structure of the scene, and the measurements, on the performance of an

ideal Bayesian observer. This goal is similar to our analysis performed in Chap-

ter 6, but here in the case of the multiple target detection task. Specifically, we aim
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to understand how the relationship between the parameters that determine the

external structure of the visual display, namely, σ2
x , and ρx; and the measurement

parameters, σ2
x , and ρx affect the decisions of an optimal observer. Since no ex-

plicit dependence is known among these parameters, and we therefore examine a

range of possibilities here.

7.3 Analysis and results

Here we analyze the decision variable dNMT(x) (Eq. (7.7)) in the regime of weak

measurement noise, that is, when σ2
x � σ2

s . In the case of strong measurement

noise, σ2
x � σ2

s , the noise dominates over other statistical parameters, and the ob-

server only makes a guess about target presence. Therefore, we limit our analysis

in the regime of weak measurement noise, and understand the impact of noise

correlations on the performance of an Bayes-optimal observer.

As seen in Section 6.3.1, we again let ε = σ2
x
σ2

s
, and approximate Eq. (7.7) in

the limit of ε → 0. We further split our analysis in the case of weak, and strong

external structure, that is when ρs < 1, and ρs ≈ 1, respectively.
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7.3.1 Weak external structure, ρs < 1

In the absence of structured visual scenes, the coefficients of the exponent terms

in Eq. (7.7) reduces to the following expressions in the limit of ε→ 0

I : σ2
s (1− ρs)vṽ =

1
σ2

x (1− ρx)
+O(1)

I I : βv2 − ρxσ
2
x ṽ2r̃
γ̃

= − ρx

σ2
x (1− ρx)(1 + (n− 1)ρx)

+O(1)

I I I : βv2 − ρxσ
2
x vṽ
γ̃

≈ O(1)

IV : βv2 − v2q̃
γ̃
≈ O(1).

Also, the leading determinant term approximates to√
1 + aV
γ̃

(
ṽ
v

)n
≈

√
(1− ρx)(1 + (N − 1)ρs)

(1 + (N − n− 1)ρs)(1 + (n− 1)ρx)

(
σ2

s (1− ρs)

σ2
x (1− ρx)

)n

.

Therefore, we obtain the following approximation for the decision variable in the

parameter regime of σ2
x � σ2

s , and ρs < 1:

dNMT(x) ≈ log
1
M

√
(1− ρx)(1 + (N − 1)ρs)

(1 + (N − n− 1)ρs)(1 + (n− 1)ρs)

(
σ2

s (1− ρs)

σ2
x (1− ρx)

)n

∑
L∈L

exp

(
− 1

2σ2
x (1− ρx)

(
∑
i∈L

x2
i −

ρx

1 + (n− 1)ρx
∑

i, j∈L
xix j

))
. (7.8)

Special case: n = 1 We note that in the case of a single target, set L has only one

element, and L = {1, 2, · · · , N}. Thus, when sT = sD = 0◦, Eq. (7.8) reduces to

the Eq. (6.16) that has been examined in details in Chapter 6.

We observe that Eq. (7.8) explicitly depends on ρx, unlike the case of a single

target in the same regime (Section 6.3.1.2). Also, these noise correlations clearly
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influence the performance of an ideal observer as seen in Figure 7.1(A). The sim-

ulations were performed with N = 4 stimuli, and n = 3 targets in the task. The

external noise, and measurement noise were fixed atσ2
s = 15◦, andσ2

x = 4◦. Since

the n target stimuli have identical orientation, they are perfectly correlated. This

introduces a relation between a subset of the stimuli on half of the trials, even

when ρs = 0.

In general, for a fixed ρs, we observe in Figure 7.1(A) that the performance

increases with ρx. This is because the stimuli have a strong structure as all the

targets are identically oriented, and thus the distribution s|T = 1 lies on a low

dimensional subspace. Therefore, we expect that measurement noise correlations

can have a significant impact in the presence of such structure. This is in addition

to the trivial increase in performance expected simply from having more targets.

As seen in Figure 7.1(A), and (B), an ideal observer takes into account noise

correlations for all values of ρs even when measurement noise is low. This lends

to an increase in performance as ρx is increased beyond some critical value for

any ρs. This is different from the single target case (Eq. (6.16)) where the decision

variable was independent of measurement noise correlations when ρs < 1.

When ρs < 1, performance gradually increases with ρx. The target stimuli

are a perfectly correlated subset of the stimulus set. The measurements of these

stimuli are identical when noise correlations are perfect. In such a case, an ideal

observer performs perfectly by detecting whether any n of the N measurements

xi are equal.
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Figure 7.1: Impact of measurement noise correlations on the perfor-
mance of an ideal Bayesian observer on the multiple target detection task
when the measurement noise is weak as compared to the external noise,
σ2

x � σ2
s (σs = 15◦,σx = 4◦). (A) Performance of an ideal Bayesian observer

as a function of external correlation strength, ρs, and measurement noise correla-
tions, ρx on the task with N = 4 stimuli, and n = 3 targets. (B) The proportion
of correct responses as a function of ρx in the case of ρs = 0 (left), and ρs = 0.5
(right) when N = 4, and n = 3. (C) The decision boundary, dNMT(x) = 0, with
target present (left), and target absent (right) distributions in the case of ρs = 0.5,
and N = n = 2 stimuli. Here light gray dots correspond to incorrect inferences
while dark gray dots represents correct responses. The black dashed lines show 2
units of standard deviation for the stimulus distribution. The axes are measured
in terms of the standard deviation σ which is defined by σ2 = σ2

s +σ2
x .
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We now analytically understand how different amounts of noise correlations

impact the performance in presence of weak external structure, ρs < 1 as seen in

Figure 7.1(A).

7.3.1.1 No noise correlations, ρx = 0

In the absence of noise correlations i.e., ρx = 0, a decision is based solely on the

sample second moment about the target orientation of the measurements of the n

stimuli in the putative target set.

dNMT(x) ≈ log
1
M

√
(1 + (N − 1)ρs)

(1 + (N − n− 1)ρs)(1 + (n− 1)ρs)

(
σ2

s (1− ρs)

σ2
x

)n

∑
L∈L

exp

(
− 1

2σ2
x

∑
i∈L

x2
i

)
. (7.9)

Since we have assumed the target orientation to be 0◦, this value does not appear

explicitly in the centered second moment in Eq. (7.9). If i is a target, the variance of

the measurement xi isσ2
x , and if i is a distractor the variance isσ2

s +σ
2
x . Therefore,

if a subset, L, of stimuli contains targets, the centered sample second moment will

be smaller, than if it does not. Hence, in the absence of noise correlations, the

ideal observer does not take relations between the measurements into account,

and instead compares the stimulus orientations in the putative set of targets to

the known target orientation.
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7.3.1.2 Perfect noise correlations, ρx → 1

On the other hand, when the measurements are structured, i.e., in the case of ρx >

0, the ideal observer computes the second moment about a point between the

target orientation, and the sample mean,
1
n ∑

i∈L
xi. This can be seen by rewriting

Eq. (7.8) as

dNMT(x) ≈ log
1
M

√
(1− ρx)(1 + (N − 1)ρs)

(1 + (N − n− 1)ρs)(1 + (n− 1)ρs)

(
σ2

s (1− ρs)

σ2
x (1− ρx)

)n

∑
L∈L

exp

− n
2σ2

x (1− ρx)

 1
n ∑

i∈L
x2

i −
nρx

1 + (n− 1)ρx

(
1
n ∑

i∈L
xi

)2

 .

(7.10)

Furthermore, in the limit of ρx → 1, the underlined term in Eq. (7.10) approaches

the sample variance – the sample second moment centered at the sample mean,

1
n ∑

i∈L
x2

i −
nρx

1 + (n− 1)ρx

(
1
n ∑

i∈L
xi

)2

→ EL =
1
n ∑

i∈L
x2

i −
(

1
n ∑

i∈L
xi

)2

. (7.11)

In the case of strong noise correlations, the target stimuli in set L have approxi-

mately equal measurements. Therefore, the optimal observer computes the sam-

ple second moment centered around the sample mean (the sample variance).

We first consider the case of target present trials, T = 1. We note that EL in

Eq. (7.11) approaches zero for a set of targets, LT, and therefore, the exponential

in Eq. (7.10) becomes unity. In the event that L is a set not consisting of all targets,

EL > 0, and

∑
L∈L

exp
(
− nEL

2σ2
x (1− ρx)

)
= 1 + ∑

L∈L\LT

exp
(
− nEL

2σ2
x (1− ρx)

)
→ 1.
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The prefactor in Eq. (7.10) diverges. However, since lim
x→∞ exp(−x)xn = 0 for any

finite n, the product of the prefactor, and the exponential terms (not equal to 1)

still converge to zero. Therefore, on target present trials, we obtain dNMT(x)→ ∞
as ρx → 1.

On target absent trials, T = 0, the expression EL will be greater than zero for

all sets, L. Thus, dNMT(x) → −∞ in the limit of ρx → 1. Hence, regardless of

external correlations ρs, the ideal observer performs perfectly when ρx = 1.

7.3.1.3 Intermediate ρx

When 0 < ρx < 1, the ideal observer makes a decision by adopting an inter-

mediate strategy, and computes a second moment about a point between the tar-

get orientation, and the sample mean (Eq. (7.8)). Moreover, the weight on the

sample mean increases with the number of targets in set L, since the prefactor

nρx/(1 + (n− 1)ρx) grows with n for fixed ρx.

We also observe in Figure 7.1(C) that noise correlations significantly impact the

distribution of measurements. With N = n = 2, the distribution approaches the

diagonal (x1 = x2) as ρx → 1. This decreases the overlap between in the target

present, and absent distributions.

Therefore, with multiple targets, there is always structure in the stimulus set,

and P(s|T = 1) is always concentrated on a low dimensional subspaces. In this

case, the structure present in the observer’s measurements can again decrease the
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overlap between the distribution of measurements, and significantly impact deci-

sions, and hence, the performance.

7.3.2 Strong external structure, ρs = 1

In Figure 7.1(A), we also observe that the performance steadily increases with ρx

when ρs = 1, and a perfect performance is achieved at ρs = ρx = 1. This behavior

is quite similar to the single target case seen in Figure 6.3(A). We thus expect a

similar approximation of the decision variable, dNMT(x) in this case.

In the case of homogeneous distractors, ρs = 1, we obtain the following re-

duced expressions for the different exponent terms in Eq. (7.7):

I : σ2
s (1− ρs)vṽ = 0

I I : βv2 − ρxσ
2
x ṽ2r̃
γ̃

=
1− (N − n + 1)ρx

N(1 + (n− 1)ρx)σ2
x (1− ρx)

+O(1)

I I I : βv2 − ρxσ
2
x vṽ
γ̃

=
1

Nσ2
x (1− ρx)

+O(1)

IV : βv2 − v2q̃
γ̃

=
−n− N(n− 1)ρx

N(N − n)σ2
x (1− ρx)

+O(1).

The determinant prefactor becomes√
1 + aV
γ̃

(
ṽ
v

)n
≈

√
N(1− ρx)

(N − n)(1 + (n− 1)ρx)
.

Combining the above expressions gives us the following approximated decision
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variable:

dNMT(x) ≈ log
1
M

√
N(1− ρx)

(N − n)(1 + (n− 1)ρx)
∑

L∈L
exp

(
−1

2
1

Nσ2
x (1− ρx)

1− (N − n + 1)ρx

(1 + (n− 1)ρx)
∑

i, j∈L
xix j + 2 ∑

i∈L, j/∈L
xix j −

n + N(n− 1)ρx

(N − n) ∑
i, j/∈L

xix j


︸ ︷︷ ︸

FL

 .

(7.12)

Again, the above equation reduces to Eq. (6.14) studied in Chapter 6 in the case of

a single target, n = 1.

It is evident in Eq. (7.12) that ρx impacts the decisions of an optimal observer

when external structure is predominant. When ρx = 1, the expression FL in

Eq. (7.12) becomes

FL =
n− N

n

(
∑
i∈L

xi

)2

+ 2 ∑
i∈L, j/∈L

xix j −
n + N(n− 1)

(N − n)

 ∑
i, j/∈L

xi

2

.

Therefore, the ideal observer computes the decision in this case by comparing the

sample second moment of the elements in the putative target set, L to those not in

the set, and also considering the product of the sample means of the two sets. The

measurements of the target stimuli are equal, and also the distractors measure-

ments are similar when noise correlations are perfect. Thus, on both target absent

and present trials, FL converges to a finite number, but the exponential prefactor

in Eq. (7.12) diverges in the limit of ρx → 1. Therefore, dNMT(x) → +∞ on tar-

get present trials, and it goes to −∞ on target absent trials. Hence, the observer

performs perfectly in such a case. Further, the trend in performance for any ρx
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when ρs = 1 can be explained in similar terms as seen in the case of a single target

(Section 6.3.1.1).

In sum, we found that the impact of noise correlations on the performance of

an optimal Bayesian observer is significant with multiple targets as compared to

the case of a single target (Chapter 6). This is attributed to the presence of more

structured input, and the interplay between the noise correlations present in the

stimuli, and the observer’s measurements. Thus, presence of structured displays

enhance the joint effects of stimulus, and measurement noise correlations.

However, the role of measurement correlations in response to the fixed input

could also depend on the actual objective of the task rather than the true structure

present in a visual scene. For instance, two different tasks can be performed with

the same visual input but the impact of noise correlations can vary extensively

given the aim of the task.

In order to explore the possible dependence of noise correlations on the objec-

tive of a task, we consider an example of a discrimination task in the following

section.

7.4 Mean stimulus orientation discrimination task

As before, we consider the task where an observer is presented with N stimuli

in a visual display. The stimulus orientations denoted by s = (s1, s2, · · · , sN)

are relevant features of the task. We measure orientations relative to the vertical,
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which we denote by 0. The task for the observer is to decide whether the mean

orientation of the stimulus set is to the left (this is denoted by C = −1), or right

(C = 1) of the vertical. The binary variable, C represents the two classes that need

to be discriminated. Hence, this type of a task is known as a discrimination task.

Stimulus orientations are drawn from a multivariate normal distribution with

mean vector, 0N, and covariance matrix, Σs, so that

s ∼ N (0N , Σs). (7.13)

We have defined the matrix Σs in Eq. (2.3). The observer makes a decision based

on the measurements of the presented stimuli orientations, denoted by

x = (x1, x2, · · · , xN). Similar to the target detection tasks discussed in Sections 6.1,

and 7.1, we assume the measurements to be unbiased, and follow multivariate

normal distribution with mean, s and covariance matrix, Σx as

x|s ∼ N (s, Σx).

We observe that the framework of the task, and thus the structure of visual in-

puts is similar to the target detection tasks analyzed in Chapter 6, and here in

Section 7.1. Except that, we do not have any characterization of the target in this

case. The observer is only interested in determining whether C = 1, or C = −1,

instead of detecting any particular orientation of the stimuli.
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7.4.1 Inference process

An optimal Bayesian observer needs to determine whether the mean orientation

of the set of stimuli is oriented to the left, or right of the vertical. We denote the

mean orientation of the set of stimuli on a trial by s̄, so that s̄ =
N

∑
i=1

si. The optimal

observer performs the computation based on the log-posterior ratio of the mean

stimulus orientation being left, or right given the measurements. We denote the

Bayesian decision variable on the task by dMD(x), is given by

dMD(x) = log
p(C = 1|x)

p(C = −1|x) = log
p(s̄ > 0|x)
p(s̄ < 0|x)

= log
p(x|s̄ > 0)
p(x|s̄ < 0)

+ log
p(s̄ > 0)
p(s̄ < 0)

. (7.14)

We denote the observer’s MAP estimate of C by Ĉ. When the decision variable,

dMD(x) > 0, the observer infers Ĉ = 1, and responds the mean stimulus orienta-

tion to the right of the vertical, that is, s̄ > 0. If dMD(x) < 0, the observer reports

Ĉ = −1, and therefore s̄ < 0.

To compute the density function p(x|C) in Eq. (7.14), we marginalize the ob-

server’s information over the variable s, and further apply Bayes’ rule to obtain

p(x|s̄ > 0) =

ˆ
p(x|s)p(s|s̄ > 0)ds

=

ˆ
p(x|s)p(s̄ > 0|s) p(s)

p(s̄ > 0)
ds

=
1

p(s̄ > 0)

ˆ
s̄>0

p(x|s)p(s)ds

=
1

p(s̄ > 0)

ˆ
s̄>0

f (x; s, Σx) f (s; 0N , Σs)ds

=
kx

p(s̄ > 0)

ˆ
s̄>0

f
(

s;
(

I + ΣxΣ
−1
s

)−1
x,
(
Σ−1

s + Σ−1
x

)−1
)

ds.
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Appendix Eq. (B.3) is used above to simplify the product of two multivariate nor-

mal distributions, and here kx = 1√
2π |Σs+Σx|

exp
(
− 1

2 xT(Σs + Σx)−1x
)

is a nor-

malization constant. Similarly, we compute p(x|s̄ < 0), and obtain the following

expression for the Bayesian decision variable, dMD(x) that an optimal observer

uses to make a decision:

dMD(x) = log


ˆ

s̄>0
f
(

s;
(

I + ΣxΣ
−1
s

)−1
x,
(
Σ−1

s + Σ−1
x

)−1
)

ds
ˆ

s̄<0
f
(

s;
(

I + ΣxΣ
−1
s

)−1
x,
(
Σ−1

s + Σ−1
x

)−1
)

ds

 . (7.15)

The above equation characterizes the decisions of the ideal observer on the task

where the observer needs to discriminate whether the mean orientation of the pre-

sented stimuli on a trial is to the left, or right of the vertical. Though the expres-

sion is not explicit, it depends on the various parameters that govern the external

structure of a visual scene, and those that determine the structure in the observer’s

measurements. For instance, the total number of stimuli N, the variance and cor-

relation of stimuli, σ2
s , and ρs shape the structure of the input stimuli, while σ2

x ,

and ρx drive the configuration of the measurements.

We find that Eq. (7.15) is difficult to further simplify analytically, and therefore,

we analyze the decisions of the ideal observer by performing numerical simula-

tions. We present the obtained simulation results below.

7.4.2 Results

We observe that the structure of stimulus input in the task is similar to the multiple

target detection task discussed in Section 7.1. We are interested in determining
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whether the effect of noise correlations changes with the objective of the task here.

We thus compare the performance of an optimal observer on the two tasks, and

analyze the impact of noise correlations in both cases.

For comparison purposes, we simulate the mean orientation discrimination

task with N = 4 stimuli, σ2
s = 15◦, and σ2

x = 4◦. Figure 7.2(A) shows the trend in

the performance of an optimal Bayesian observer on the task as a function of ρx

when ρs = 0.5.

Figure 7.2: Performance of an optimal observer as a function of strength of noise
correlations (A) on the mean left/right discrimination task and, (B) target detec-
tion task with two targets.

We note that the performance gradually decreases as ρx increases. This is in

contrast to the performance behavior on a multiple target detection task in Fig-

ure 7.2(B). The increasing noise correlations improve the performance of the ideal

observer on the multiple target detection task, and indeed perfect performance

is possible when responses are perfectly correlated. However, noise correlations

have a negative impact on the performance when the task is to discriminate the

mean stimulus orientation, instead of finding a target in the same visual struc-

tured scene.
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7.4. MEAN STIMULUS ORIENTATION DISCRIMINATION TASK

Though the input is structured in a similar way in both cases, the observer

needs to use different strategies to make decisions on the two tasks. In the dis-

crimination task, the observer is asked to integrate information from different

sources. The detection task requires extracting information about targets buried

in a sea of distractors. Intuitively, a choice between two possibilities needs to be

made based on the measurement of a set of stimuli. Each choice corresponds to

a distribution of measurements. The difficulty of the task depends on how much

the degree of overlap between these two distributions. The higher the overlap,

the more difficult it is to tell which distribution an measurement belongs to, and

the more difficult the decision. External structure, as well as structured noise in

the measurements impacts the overlap between these distributions. Therefore,

performance of an ideal observer depends not only on the level, but also on the

structure of the measurement noise [6, 4]. Thus the particulars of the task, the

structure of the stimulus, as well as the level, and structure of the measurements

jointly determine performance.

Hence, the role of noise correlations can be subtle, and depend on the nature

of the task. We thus have examined their impact on detecting a single (Chapter 6),

and multiple targets in a group of distractors whose orientations are chosen with

varying degrees of dependence.
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Chapter 8
Discussion

Understanding how correlations between stimuli, and measurements affect our

decisions is important to understand how our visual perceptual system responds

to structured input along with the structured measurements. Here we presented a

thorough analysis of an experimental study designed to investigate how humans

make decisions in response to stimuli having varying degrees of structure on a

visual search task. Further, we theoretically analyzed the joint effects of stimulus,

and measurement correlations on the performance of an ideal observer in a family

of visual search tasks. Below, we discuss our findings, and their limitations along

with potential generalizations.
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Stimulus correlations in visual search

Many recent studies reported that humans performed near optimally on visual

search tasks [90, 142, 94, 95]. That is, humans were able to make best possible

decisions while searching for a predefined target among non-relevant distractors.

These studies only used two types of distractors - homogeneous (identical), and

heterogeneous (independent). Moreover, the orientations of the homogeneous

distractors were completely predictable (same across trials) except in [95]. Maz-

yar et al. [95] were the first to distinguish homogeneity from predictability. They

manipulated the distractors statistics by using trial-to-trial variability in homoge-

neous displays. The distractors were still identical to each other, but the orienta-

tion of the distractor was randomly chosen across trials. Regardless of introducing

variability across trials in homogeneous displays, and changing the degree of het-

erogeneity, their experiments focused on two extreme conditions of distractors -

identical, and independent random orientations.

In our work, we thus explored the intermediate regime of correlations between

distractors. Visual stimuli in natural scenes can be correlated to different extents

with each other, therefore, it is important to understand how our visual decisions

are affected by inputs that have intermediate correlations. Using a target detection

experiment, we examined whether humans take into account stimulus (distrac-

tors) correlations in visual search. We varied the amount of correlations between

stimuli across different experimental sessions. Different correlations introduced
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varying amount of structure in visual displays - from none (heterogeneous dis-

tractors) to mid-level (partial correlated distractors) to high-level (identical dis-

tractors). Due to individual differences, we obtained mixed results in our model

comparisons, and do not have a clear presentation of how subjects inferred differ-

ent correlation strengths. But, based on the assumptions of our best fitted models

on different criteria, we found that subjects accounted for stimulus correlations in

their responses, however, they were suboptimal in inferring the true correlation

strength of distractors in an experimental session.

Specifically, the favorable model based on Bayesian information criterion sug-

gests that perhaps subjects were unable to distinguish the partially correlated

conditions, and they used a constant correlation strength to make decisions on

those experimental sessions. While, subjects inferred a near-to-optimal correlation

strength when distractors were perfectly correlated. This indicates that probably

subjects use different inference process when making decisions on homogeneous

displays than when they are not. Perhaps humans perceive completely structured

input differently while they may be unable to make a clear distinction between

inputs having partial correlations, and those having no structure. Further, we

found that distribution of encoding precision was dependent on the correlation

strength used across experimental sessions. This dependence is difficult to ex-

plain, but suggests that possibly subjects encode stimuli with different level of

precision when they are highly structured, and differently when the statistical

structure in a scene is relatively weak. A similar observation was also made by

Mazyar et al. [95] about different dependence of precision in homogeneous, and
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heterogeneous conditions, however, they analyzed the set-size effects.

Another winning model based on Akaike information criterion suggests that

subjects treated each experimental condition differently, but suboptimally. They

incorrectly inferred the true correlation strength used to generate stimuli in an

experimental session. Based on the parameter estimates of this model, and ex-

perimentally obtained psychometric curves, we concluded that possibly subjects

behave similarly in the conditions when distractors have intermediate strengths

of correlations, and they perform distinctly in the case of identical distractors.

We note that these findings depend on the choice of models, and the model

comparison techniques. It is always possible that there are better models, and

better explanations. For instance, we assumed that subjects correctly inferred the

standard deviation of distractor orientations in the experiment. It might be pos-

sible that subjects used some other possible values of this standard deviation to

make decisions. In that case, we need to use plausible assumptions on this param-

eter in our models, and test whether subjects were able to infer this value correctly.

It is also possible that subjects do not use any information about stimulus corre-

lations, and other parameters in the generative model of the task, and instead

they use alternative suboptimal strategies such as threshold criteria [90], to make

their decisions. Apart from these model assumptions, one of the limitations in

obtaining clear results could be the small number of subjects in our experimental

study. We only have data collected from small finite number of participants in

the experiment. Thus, the individual differences are dominant in average model

comparisons, and lead to mixed results.
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There are many more alternatives that exist, and could possibly provide a bet-

ter explanation for our experimental data. However, due to computational, and

time constraints, not every possibility can be tested. The models we tested en-

compassed a variety of possible assumptions about subject’s behavior, and are

general enough to include large number of alternatives. Also, the question we ex-

amined in our study is relevant for any psychophysical study in general, not only

to visual search. Structured, or correlated information is available in a variety of

stimuli (not just visual scenes) such as audio signals, odors. It is important to

understand how brain integrates correlated inputs to extract relevant information

about the state of the world. Our work is a little step in this direction, and we

hope that our findings may have more general implications.

Interplay between stimulus and measurement correla-

tions

Several theoretical, and experimental studies have modeled decision processes

by which brain converts sensory measurements of a set of stimuli into a judge-

ment about the world. But, many of them relied on stereotypical assumptions

about the measurements being independent (across stimuli), and normally dis-

tributed [90, 94, 95, 142]. We extended our work here by focusing on the effects

of violation of the assumption of independent measurements on performance in

categorical, global perceptual judgements. It has been found that neural corre-

lations can extend to long distances in visual cortex [36, 28] which suggests that
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the sensory measurements can be strongly correlated [118, 27]. But the effects of

measurement correlations can not be studied in isolation, they may be paired with

statistical structure of stimuli [95]. Therefore, in this work, we examined the joint

influence of stimulus, and measurement correlations on the performance of an

ideal observer in a family of visual search tasks, namely target detection tasks.

We found that the relation between correlations of stimuli, and sensory mea-

surements play a significant role in the decision-making strategy of the ideal ob-

server. The measurement correlations help in preserving the statistical structure

of the stimuli on a multiple target detection task, and hence enhances the per-

formance. While, they have no effect on decisions in the case of a single target.

This demonstrates that probably the role of measurement correlations only come

into play when sufficiently strong structure is present in external scenes. In the

case of weak external structure, there is perhaps very little structure present in

visual displays, and correlations between sensory measurements are inefficient

in preserving those weak structures. We observed that an ideal observer always

perform perfectly when the distractors are homogeneous, and measurements are

perfectly correlated in both single, and multiple target detection tasks. Such an

observation clearly reflects the interplay between both correlations, and how pre-

served structure of stimuli by measurement correlations benefits the decisions of

the observer.

We also examined that the interaction between stimulus, and measurement

correlations also depend on the relation between the external noise, and the stan-

dard deviation of the measurements distribution. In the regime of strong external
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noise than measurement noise, the trend in performance is easier to interpret in a

single target detection task. While in the case of dominating measurement noise,

a clear trend was not seen, and it was relatively difficult to understand how the

two correlations interact to increase the performance at a particular level, but not

at others.

Apart from the dependence on different parameters that control the statistical

structure of visual displays, we found that influence of correlations between sen-

sory measurements can also depend on the nature, or objective of a task. The mea-

surement correlations can have different effects in response to same structured

stimuli in tasks with different objectives. We observed that while these correla-

tions enhance the performance of the ideal observer on a multiple target detection

task, they negatively impact the performance on a discrimination task where the

observer needs to decide whether the mean stimulus orientation is to the left or

right of the vertical. The statistical structure of visual scenes in the two tasks were

kept the same, but the observer was asked to make two different decisions - find-

ing a predefined target among distractors, and judging whether mean stimulus

orientation of a set of stimuli orients to the left or right of vertical. This finding

suggests that the role of measurement correlations can be subtle, and the nature

of the task, along with the structure of stimulus jointly determine the influence of

these correlations on performance of the observer in visual perceptual tasks.

We understand that our findings are limited to perceptual decisions in visual

search tasks, and the interaction between stimulus, and measurement correlations

can have a variety of other possible effects on our perceptual system. Therefore,
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it is important to understand how these correlations jointly interact, and govern

our decisions. Further work needs to be done to identify the regimes where the

effects of both these correlations are dominant, and can significantly impact our

decision-making strategies.
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Appendix A
Notation table

Symbol Description

N (µ,σ2) a one-dimensional normal distribution with mean µ, and

variance σ2

f (z;µ,σ2) a one-dimensional normal density function of variable, z

with mean µ, and variance, σ2

N (µ, Σ) an N-dimensional multivariate normal distribution with

N-dimensional mean vector µ, and N × N covariance

matrix Σ

f (z;µ, Σ) an N-dimensional normal density function of variable, z

with mean vector, µ, and covariance, Σ;

1√
(2π)N |Σ|

exp
(
− 1

2(z−µ)TΣ−1(z−µ)
)

z ∼ N (µ, Σ) a random variable z having a normal distribution with

probability density function, f (z;µ, Σ)

Continued on next page
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Table A.1 – Continued from previous page

Symbol Description

z|Y ∼ N (µ, Σ) a random variable z conditioned on Y having a normal

distribution with probability density function, f (z;µ, Σ)

0N an N-dimensional zero vector, (0, 0, · · · , 0)

1 j an N-dimensional vector with jth entry as 1, and rest ze-

ros, (0, 0, · · · , 0, 1, 0, · · · , 0)

z\ j (z1, z2, · · · , z j−1, z j+1, · · · , zN)

Σ\ j an N × N matrix obtained by removing jth row, and col-

umn of matrix Σ

|A| determinant of the matrix A

Table A.1: Mathematical Notation. Description of the mathematical notation

used in the text.
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Appendix B
Some mathematical results

We present some known mathematical results, and theorems here that are used in

the main text to derive several results.

B.1 Product and integral of normal distributions

The product of m (m ≥ 2) normal distributions over a single variable is com-

putable, and is itself a normal distribution. Also, the integral of obtained product

distribution is analytically tractable. We list below few relevant results about the

product, and integral of normal distributions.
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B.1. PRODUCT AND INTEGRAL OF NORMAL DISTRIBUTIONS

B.1.1 Univariate normal distributions

Consider two Gaussian probability distributions over a single random variable,

z. Assume that the means of the two distributions are denoted by µ1, and µ2;

and variances as σ2
1 , and σ2

2 . The product of these two probability distributions

is a normal distribution, and the (normalized) probability density function of the

resulting distribution can be computed as

f (z;µ1,σ2
1 ) · f (z;µ2,σ2

2 ) = f (µ1;µ2,σ2
1 +σ2

2 ) f

z;

µ1
σ2

1
+ µ2
σ2

2
1
σ2

1
+ 1
σ2

2

,
1

1
σ2

1
+ 1
σ2

2

 (B.1)

= kc f (z;µc,σ2
c ).

In general, the product of m such one-dimensional normal distributions over the

same variable z is also a normal distribution. If the mean of the ith distribution is

denoted by µi, and the variance byσ2
i , then the probability density function of the

product of m such normal distributions is provided in [89], and is given by

m

∏
i=1

f (z;µi,σ2
i ) = cp f

z;

m

∑
i=1
µi

m

∑
i=1

1
σ2

i

,
1

m

∑
i=1

1
σ2

i

 , (B.2)

where cp =
1(

m

∏
i=1
σi

)√
m

∑
i=1

1
σ2

i

exp

−
1
2


m

∑
i=1

µ2
i
σ2

i
−

(
m

∑
i=1

µi

σ2
i

)2

m

∑
i=1

1
σ2

i



 is a normaliza-

tion constant.

We now describe the results for the product, and integral of the resulting prod-

uct in the case of multivariate normal distributions.
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B.1. PRODUCT AND INTEGRAL OF NORMAL DISTRIBUTIONS

B.1.2 Multivariate normal distributions

Consider two N-dimensional multivariate normal distributions in a single ran-

dom variable, z with mean vectors µ1, and µ2; and covariance matrices, Σ1, and

Σ2. Given that the covariance matrices are nonsingular, the product of these

two N-dimensional multivariate normal distributions in the random variable z is

another (unnormalized) N-dimensional multivariate normal distribution [2, 111]

given by

f (z;µ1, Σ1) · f (z;µ2, Σ2) = kp f (z;µp, Σp), (B.3)

with

Σp = (Σ−1
1 + Σ−1

2 )−1, µp = Σp(Σ
−1
1 µ1 + Σ−1

2 µ2), and

kp = |2πΣ1Σ2Σ
−1
p |−

1
2 exp

(
−1

2
(µ1 −µ2)

TΣ−1
1 ΣpΣ

−1
2 (µ1 −µ2)

)
= |2π(Σ1 + Σ2)|−

1
2 exp

(
−1

2
(µ1 −µ2)

T(Σ1 + Σ2)
−1(µ1 −µ2)

)
.

In the case of one-dimensional normal distributions, Eq. (B.3) reduces to Eq. (B.1)

with kp reducing to kc = f (µ1;µ2,σ2
1 +σ2

2 ).

Further, since
´

f (z;µ1, Σ1)dz = 1, the above results for the product of normal

distributions implies that

N-dimensional:
ˆ
RN

f (z;µ1, Σ1) · f (z;µ2, Σ2) dz =

ˆ
RN

kp f (z;µp, Σp)dz = kp

one-dimensional:
ˆ
R

f (z;µ1,σ2
1 ) · f (z;µ2,σ2

2 ) dz =

ˆ
R

kc f (z;µc,σ2
c )dz = kc.

(B.4)
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B.2. DETERMINANT AND INVERSE OF A RANK-1 MATRIX

B.2 Determinant and inverse of a rank-1 matrix

The determinant of a rank-1 matrix can be computed using the following matrix

determinant lemma [60, 24].

Lemma 1 (Matrix Determinant Lemma). Suppose A is an invertible square matrix,

and u, v are column vectors. Then

|A + uvT| = (1 + vTA−1u) |A|.

Here uvT is the outer product of two vectors u, and v.

Further, the inverse of a rank-1 matrix can be obtained using the Sherman-

Morrison formula [35, 54, 130, 9, 55, 98, 113]. This is a special case of the general-

ized Woodbury formula given in Theorem 2.

Theorem 1 (Sherman-Morrison formula). Suppose A is an invertible square matrix,

and u, v are vectors. Assume that 1 + vTA−1u 6= 0. Then

(A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Here uvT is the outer product of two vectors u, and v.

B.3 Determinant and inverse of a rank-k matrix

We now present the relevant general theorems for computing the determinant,

and inverse of a rank-k matrix.
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B.3. DETERMINANT AND INVERSE OF A RANK-K MATRIX

Lemma 2 (Generalized Matrix Determinant Lemma). Suppose A is an invertible

n× n matrix, U, V are n×m matrices, and W is an invertible m×m matrix. Then

|A + UWVT| = |W−1 + VTA−1U||W||A|.

The inverse of a rank-k matrix can be computed using the following general-

ized Woodbury matrix identity [152, 55, 62].

Theorem 2 (Sherman-Morrison Woodbury formula or Woodbury matrix identity).

Suppose A is an invertible n × n matrix, U, W, and V are n × m, m × m, and m × n

matrices. Then

(A + UWV)−1 = A−1 −A−1U
(

W−1 + VA−1U
)−1

VA−1.
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Appendix C
Gabor Filter

A Gabor filter is a linear filter having frequency, and orientation similar to that of

human visual system, and is obtained by multiplication of a sinusoidal wave with

Gaussian kernel function [42, 100]. It can be used as a band-pass filter for unidi-

mensional signals (e.g. speech). The filter has a real, and imaginary component

given by

g(x, y; λ,θ,ψ,σ ,γ) = exp
(
−x′2 +γ2y′2

2σ2

)
cos

(
2π

x′

λ
+ψ

)
,

and

g(x, y; λ,θ,ψ,σ ,γ) = exp
(
−x′2 +γ2y′2

2σ2

)
sin
(

2π
x′

λ
+ψ

)
.

Here x′ = x cosθ + y sinθ, and y′ = −x sinθ + y cosθ. In the above equations,

λ represents the wavelength of the sinusoidal wave, θ is the angle of the normal

to the parallel stripes of a Gabor function, ψ is the phase offset, σ is the standard

deviation of the Gaussian envelope, and γ denotes the spatial aspect ratio, and

describes the ellipticity of the support of the Gabor function.
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Experimental studies have shown that simple cells in human visual system

can be modeled by Gabor functions [30, 66]. Thus, Gabor patches are extensively

used as stimuli in psychophysical studies. An example of a Gabor patch is shown

in Figure 2.2(A).
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