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Does precision decrease with set size?
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The brain encodes visual information with limited precision. Contradictory evidence exists as to whether the precision with
which an item is encoded depends on the number of stimuli in a display (set size). Some studies have found evidence that
precision decreases with set size, but others have reported constant precision. These groups of studies differed in two
ways. The studies that reported a decrease used displays with heterogeneous stimuli and tasks with a short-term memory
component, while the ones that reported constancy used homogeneous stimuli and tasks that did not require short-term
memory. To disentangle the effects of heterogeneity and short-memory involvement, we conducted two main experiments.
In Experiment 1, stimuli were heterogeneous, and we compared a condition in which target identity was revealed before the
stimulus display with one in which it was revealed afterward. In Experiment 2, target identity was fixed, and we compared
heterogeneous and homogeneous distractor conditions. In both experiments, we compared an optimal-observer model in
which precision is constant with set size with one in which it depends on set size. We found that precision decreases with set
size when the distractors are heterogeneous, regardless of whether short-term memory is involved, but not when it is
homogeneous. This suggests that heterogeneity, not short-term memory, is the critical factor. In addition, we found that

precision exhibits variability across items and trials, which may partly be caused by attentional fluctuations.
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The internal representation of visual information is
noisy. As a consequence, the observer’s measurement
(best guess) of a task-relevant stimulus variable is also
noisy. The precision of this measurement depends on
many factors, such as stimulus contrast, presentation
time, and retinal eccentricity. In this paper, we examine
its dependence on the number of items in a visual scene.
If the brain has a fixed amount of resource (e.g.,
measurements, energy, or spikes) to spend on encoding
a scene, one would expect that precision decreases with
the number of relevant items (set size). Specifically, if
one were to distribute M measurements over N items
(M typically being a very large number), and each
individual measurement came with variance o2, then
the variance by which an item is encoded would be
No?/M, and thus encoding precision or inverse variance
would be inversely proportional to set size (Shaw,
1980). (A more continuous version of this argument
relies on Fisher information; see Models.) An under-
standing of whether and how encoding precision
depends on the number of relevant items in a scene
would have direct implications for many areas of vision
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research, including multiple-object tracking, visual
working memory, peripheral vision, and selective
attention, and might be applied to real-world atten-
tionally demanding tasks.

In a series of pioneering experiments in the 1990s,
John Palmer and colleagues discovered that precision
indeed decreases with set size in some tasks (Palmer,
1990), but is constant in others (Palmer, 1994; Palmer,
Ames, & Lindsey, 1993; Palmer, Verghese, & Pavel,
2000). Later, Wilken and Ma found that precision
decreases with set size in change detection and delayed
estimation (Wilken & Ma, 2004). Relevant studies are
summarized in Table 1. We restrict ourselves here to
tasks with a single relevant stimulus feature and a single
target object.

We observe that the studies that have reported an
effect of set size on precision all used heterogeneous
distractors (distractors that differ amongst each other
in the stimulus feature of interest) and a task that
required subjects to encode a set of items in short-term
memory. For example, Palmer (Palmer, 1990) found an
effect of set size on precision in a paradigm in which
observers were presented with a brief display consisting
of horizontal lines of various lengths, followed, after a
2-second blank, by a display containing one line in one
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Study Task Distractor distribution Memory task Effect of set size on precision
Palmer, 1990 Discrimination Heterogeneous Yes Yes
Palmer et al., 1993 Visual search Homogeneous No No
Palmer, 1994 Visual search Homogeneous No No
Baldassi & Burr, 2000 Classification Homogeneous No No ()
Localization Homogenous No No
Wilken & Ma, 2004 Change detection Heterogeneous Yes Yes
Delayed estimation Heterogeneous Yes Yes
Baldassi & Burr, 2006 Estimation Homogeneous No No
Busey & Palmer, 2008 Visual search Homogeneous No No
Localization Homogeneous No No (**)
Ma & Huang, 2009 Change discrimination Heterogeneous Yes (***) Yes

Table 1. Comparison of visual search and visual short-term memory studies with simple stimuli and a single target. Notes: (*) Also
reported in Baldassi & Verghese, 2002. (**) This result should be interpreted with care, because none of the models provided a good fit.
(***) This was a multiple-object tracking task. The degree of memory involvement is unclear.

of the previous locations. Observers reported whether
that line was longer or shorter than the corresponding
line in the memorized display. The studies that reported
constancy used homogeneous distractors (distractors
identical to each other in the stimulus feature of
interest) and tasks that did not involve a memory
component. For example, Palmer (Palmer, 1994) found
constancy when observers judged whether or not one of
several discs had a higher contrast than the others. The
purpose of the present paper is to determine whether
heterogeneity or short-term memory involvement is the
critical factor in producing a dependence of precision
on set size. Wilken and Ma (Wilken & Ma, 2004)
suggested that heterogeneity is critical, whereas Palmer
(Palmer et al., 1993; Palmer, 1990) proposed that
memory requirements are a likely source of set size
effects. Resolving this debate will contribute to
answering the question to what extent visual processing
is resource-limited.

The tasks used in this paper all require the observer to
detect, based on orientation only, whether or not a single
target object is present among a set of objects. It is very
difficult to design such a target detection task with
homogeneous distractors requiring short-term memory,
as the target would stand out by its oddity, rendering
memory involvement unnecessary. However, search
with heterogeneous distractors and without a short-term
memory requirement is easily realized and will be the
critical condition of this paper. If short-term memory
involvement causes precision to decrease with set size, we
expect no effect of set size. If heterogeneity causes
precision to decrease with set size, we expect a decrease.

Of course, we are not the first to test human visual
search with heterogeneous distractors. However, previ-
ous studies on this topic cannot answer our central
question. One study focused on the effect of the type of
heterogeneity, not that of set size (Rosenholtz, 2001).
Precision was estimated at only two set sizes and with a
different group of (very few) subjects at each. Other
studies that used heterogeneous distractors did not vary

set size within the same subjects (Ma, Navalpakkam,
Beck, Van den Berg, & Pouget, 2011; Vincent, Baddeley,
Troscianko, & Gilchrist, 2009), did not fit any models
(Duncan & Humphreys, 1989), or did not test for an
effect of set size on precision (Baldassi & Verghese, 2002).

We conducted three experiments. In Experiment 1,
subjects performed target detection with heterogeneous
distractors under two conditions. In the precue
condition, the target identity was revealed to the
subject 1 second prior to the onset of the search
display; in the postcue condition, the target identity was
revealed 1 second after viewing the display, requiring
subjects to memorize the entire display. If memory is
the determining factor, we expect to find that precision
decreases with set size in the postcue but not in the
precue condition. If, on the other hand, display
heterogeneity is crucial, we expect that precision
decreases with set size in both conditions. In Experi-
ment 2, we compared heterogeneous and homogeneous
distractor conditions in a search task that did not
require memorization of items. If memory is the
determining factor, we expect to find that precision is
constant with set size in both conditions. If display
heterogeneity is crucial, we expect that precision
decreases with set size in the heterogeneous but not in
the homogeneous condition. Experiment 3 was a
control experiment using homogeneous distractors.

A closely related question that our experiments can
shed light on is whether precision is equal across
locations and trials. Models of perception routinely
assume that this is the case, i.e., that the precision with
which a stimulus is encoded is constant as long as the
experimental conditions are kept fixed (Green & Swets,
1966). However, there are many factors that could
make precision variable over space and time, such as
stimulus dependencies (Girshick, Landy, & Simoncelli,
2011), fluctuations in intrinsic alertness (Matthias et al.,
2009), higher-order configural effects (Brady & Ten-
enbaum, 2010), and covert shifts of attention (Pestilli &
Carrasco, 2005; Posner, 1980). Considering these
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Figure 1. Experiment 1. (a) Time course of a trial in the precue (left) and postcue (right) conditions. (b) Hit and false-alarm rates as
functions of set size in the precue (left) and postcue (right) conditions.

factors, it may be more proper to model precision itself
as a random variable rather than assuming it to be fixed
(Van den Berg, Shin, Chou, George, & Ma, 2012). To
determine whether precision is subject to fluctuations,
we also tested models in which mean precision is
constant with set size or dependent on set size, but the
actual precision for each stimulus is drawn from a
probability distribution around that mean. To antici-
pate our results, we find that search under heteroge-
neous distractors is best described by the model in
which precision fluctuates, and mean precision decreas-
es with set size.

Task

The observer reports whether a target is present
among a set of distractors (Figure la). Stimuli are
characterized by their orientations, the target orienta-
tion is st, and the probability that the target is present
equals 0.5. The target orientation is specified through a
precue (Figure la, left) or a postcue (Figure 1a, right).

When the target is present, its location is chosen
randomly. Set size varies from trial to trial.

Optimal-observer theory

The optimal-observer theory of visual search is well
known both for homogeneous distractors (Peterson,
Birdsall, & Fox, 1954) and for heterogeneous distrac-
tors drawn from a uniform distribution (Ma et al.,
2011). We summarize it briefly here. The generative
model of the task is illustrated in Figure 2. Target
presence is denoted C and takes values 0 and 1. Target
presence at the /™™ location is denoted 7’ and also takes
values 0 and 1. The observer has access to noisy
measurements, X = (xy, ..., xy), of the stimuli, s =
(s1, ..., sy), and infers whether or not a target was
present. For convenience, we remap all orientations
from (—=/2, /2) to (—mx, ©) in our models and analyses.
The measurement of the i™* stimulus, x;, follows a Von
Mises (circular normal) distribution centered at the true
stimulus orientation, s;:

1 icOS(X;—5;)
ils;) = Ki Xi—=Si ; 1
plels) = 5 se (1)
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A

Figure 2. Optimal-observer model. (a) Generative model. Arrows
indicate dependencies between variables. C indicates whether
the target is present (0 or 1), T target presence at each location (a
vector of Os with possibly one 1), s the vector of stimulus
orientations, and x the vector of internal measurements. (b)
Inference process. The optimal observer estimates C from x by
comparing p(C=0|x) to p(C=1|x). This consists of first computing
local evidence about the presence of a target at each location, d;,
and then combining the resulting N numbers into a global decision
variable, d. The sign of d determines ¢, the estimate of C.

where the concentration parameter, x; is related to
precision (see following), and [, is the modified Bessel
function of the first kind of order 0. For large «, a Von
Mises distribution is accurately approximated by a
Gaussian distribution with ¢ = 1/k. We will use
Gaussian distributions in the case of homogeneous
distractors because, there, stimuli and measurements
are all concentrated in such a small part of the circular
space that the space can be treated as a line.

On each trial, the optimal observer computes the
posterior probability that the target is present given the
measurements, denoted p(C = 1|x), and reports “target
present” if this probability is greater than 0.5. This is
equivalent to reporting “target present” when the log
posterior ratio, denoted d, is positive. To compute the
log posterior ratio, we first apply Bayes’ rule:

p(C=1]x)
d=1
% =0 oK
( ’ ) Ppresent
+log7,
( |C 0) 1_ppresent

where ppresent 1S the observer’s prior probability that the
target is present. (This does not have to be equal to 0.5,
the true frequency of target presence.) The likelihood
function of C, p(x|C), is computed by marginalizing
over both s and T = (T, ..., Ty). After some basic
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math, we find

1 < p
d=1log— e + log——Rresent . 2
gN; £ 1 - Ppresent ( )
where d; is defined as
pxilTi=1) p(xilsi = s1)
di =log————==log .
p(xi|Ti = 0) [p(xilsi)p(si| T; = 0)ds;

3)

The relationship between d and d; in Equation 2 would
be different if distractor orientations were not drawn
independently or if more than a single target could be
present. When distractors are heterogeneous and drawn
from a uniform distribution, the distractor distribution
is p(s;|T; = 0) = 1/(2n). Using this expression as well as
Equation 1, Equation 3 becomes (Ma et al., 2011)

(Heterogeneous:)
d; = —logly(k;) + kicos(x; — s1).
When distractors are homogeneous with an orientation

equal to sp, we use Gaussian distributions, and
Equation 3 becomes (Peterson et al., 1954)

(Homogeneous:)

ST — SD ST + SD
di=——-—(x;— .

0',2 2

We obtained the predictions of the model for an
individual trial by drawing 10,000 sets of N measure-
ments each from Von Mises (or Gaussian) distributions
centered on the respective stimuli on that trial and
applying the decision rule to each set of measurements.
This results in a predicted probability that the subject
will report “target present” on that trial, p(Cls,9),
where 0 denotes the model parameters.

Relationship between x and precision

To specify the relation between encoding precision
and k, we identify encoding precision with Fisher
information, J(s), which measures the best possible
decoder performance based on the neural activity
encoding the stimulus (Paradiso, 1988; Seung &
Sompolinsky, 1993). Fisher information is under the
general condition of Poisson-like variability propor-
tional to the amplitude of the population activity
encoding s (Ma, Beck, Latham, & Pouget, 2006). Fisher
information for a noise distribution p(x|s) is defined as

32

9(9) = ~{ 5108 plxl) ) @

where the expected value (s) is over the noise
distribution p(x|s). Substituting Equation 1, we find
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that J(s) is independent of s and equal to

J =), (5)

Io(x)

where /; is the modified Bessel function of the first kind
of order 1. Equation 5 states a general relationship
between the precision with which a stimulus is encoded,
J, and the concentration parameter, x. Note that Jis a
monotonically increasing function of k and therefore
invertible. The equivalent relationship for Gaussian
noise is J = 1/ (Palmer, 1990; Shaw, 1980).

Flat versus nonparametric models

To determine whether encoding precision depends
on set size, we will compare a model in which encoding
precision is constant (“flat”) against one in which
precision is allowed to vary across set sizes. In the latter
model, to avoid making a potentially wrong assump-
tion about the relationship between encoding precision
and set size, we will fit encoding precision separately for
each set size (“nonparametrically”).

Equal-precision versus variable-precision
models

The two models previously described assume that
encoding precision is equal across items in a display
and across trials with the same set size. We therefore
call them “equal-precision” (EP) models. However,
considering factors such as attentional fluctuations, one
might expect that encoding precision varies across
items and trials. To allow for this possibility, we also
include “variable-precision” (VP) variants of the flat
and nonparametric models (Van den Berg et al., 2012).
In the VP models, the precision with which an item is
encoded is a random variable. Its expected value,
denoted J, follows a flat or nonparametric relationship
with set size. We model fluctuations by drawing
precision, independently for each item and each trial,
from a gamma distribution with mean J and scale
parameter 7.

Summary of models

We end up with four models:

e FlatEP (flat, equal precision): Precision does not
fluctuate or depend on set size. This model has two
free parameters (ppresent and J).

¢ FlatVP (flat, variable precision): Precision fluctuates
but does not depend on set size. This model has three
free parameters (Ppresent> /> and 7).
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e npEP (nonparametric, equal precision): Precision
does not fluctuate but may depend on set size. This
model has five free parameters (ppresent and one value
of J for each set size).

* npVP (nonparametric, variable precision): Precision
fluctuates and may depend on set size. This model
has six free parameters (Ppresent> 7, and one value of J
for each set size).

Experiment 1
Subjects

Initially, 14 subjects, including the three authors,
performed the experiment (11 female, 3 male). All
subjects had normal or corrected-to-normal acuity.
After the first session, subjects with an overall
performance of less than 65% were excluded from
further participation. Two subjects met this criterion
with performances of 63% and 59%. The remaining 12
subjects had a first-session performance of 71.9 = 0.8%
and completed the entire experiment.

Apparatus and stimuli

Stimuli were presented on a 21” LCD monitor with a
refresh rate of 60 Hz. Subjects viewed the displays from
a distance of approximately 60 cm. Background
luminance was 33.6 cd/m?. Each stimulus was a Gabor
patch with a spatial frequency of 1.05 cycles/degree, a
standard deviation of 0.52°, and a peak luminance of
132 cd/m?. The relevant stimulus feature was orienta-
tion.

On each trial, target and distractor orientations were
drawn independently from a uniform distribution on
(=90°, 90°), and there was a 50% chance that the target
was present in the search display. Subjects were
informed of this probability in advance. The number
of stimuli in a search display was one, two, three, or
four (randomly interleaved). Stimuli were spaced at 90°
angular intervals on an imaginary circle of radius 5°
around the center of the screen with a random overall
rotation.

Procedure for precue condition

Each trial began with subjects fixating on a central
cross (200 ms) followed by a single stimulus with the
orientation of the target (117 ms), a blank screen (1 s),
and a search display (117 ms) (Figure la, left). On a
target-present trial, the location of the target was
chosen randomly from the stimulus locations. Subjects
reported whether they believed the target was present in
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the search display through a key press. Correctness
feedback was given by turning the fixation cross green
(correct) or red (incorrect) during the 500-ms intertrial
period.

Postcue condition

The postcue condition was identical to the precue
condition except that the temporal order of the cue and
the search display was reversed (Figure 1a, right).

Blocks and sessions

The experiment was conducted over four sessions on
different days. Each session consisted of three precue
and three postcue blocks presented in random order.
Each block consisted of 125 trials. After each block, the
percentage correct in that block was shown to the
subject along with a high-score ranking. Each subject
completed 3,000 trials in total.

Experiment 2

Experiment 2 tested, in the absence of memory
involvement, whether homogeneity or heterogeneity of
the distractors would affect the dependence of precision
on set size. Differences with Experiment 1 were as
follows. Initially, 12 subjects, including the three
authors, performed the experiment (3 female, 9 male).
Three subjects met the exclusion criterion with first-
session performances of 61%, 61%, and 59%. The
remaining 9 subjects had a first-session performance of
79.5 = 1.3% and completed the entire experiment. The
heterogeneous condition was identical to the precue
condition of Experiment 1 except that the target was
always vertical instead of being drawn from a uniform
distribution. To remind the subject, the target orienta-
tion was still shown as a precue on each trial. Fixing the
target orientation was not possible in Experiment 1 as
the postcue condition would then not have required
memory. Set size was 2, 4, 6, or 8. Stimuli were spaced
at 45° angular intervals on an imaginary circle of radius
5° around the center of the screen. The homogeneous
condition was identical to the heterogeneous condition
except that distractors had a fixed orientation of 5°
clockwise with respect to vertical. Each session
consisted of three heterogeneous and three homoge-
neous blocks, randomly interleaved.

Experiment 3
Experiment 3 served as a control experiment for the

homogeneous condition of Experiment 2 to ensure that
fixing target and distractor orientations throughout the
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experiment was not critical. Experiment 3 was identical
to the precue condition of Experiment 1 (importantly,
the target varied from trial to trial) except for the
following differences. Five subjects, including one
author, performed the experiment (3 female, 2 male).
Distractors were homogeneous with an orientation 10°
clockwise with respect to the target orientation.
Subjects completed two sessions, each consisting of
six blocks, each consisting of 125 trials, for a total of
1,500 trials.

Experiment 1

In both the precue and postcue conditions, perfor-
mance decreases as a function of set size (Figure 1b).
Specifically, hit rates decrease (one-way repeated-
measures ANOVA for precue: F(3, 33) =240, p <
0.001; postcue: F(3, 33) = 56.0, p < 0.001) and false-
alarm rates increase (precue: F(3, 33) = 189.1, p <
0.001; postcue: F(3, 33) =79.4, p < 0.001).

We used maximume-likelihood estimation (Appendix
A) to fit the four models to the data. Parameter
estimates are given in Appendix B. The fits to the hit
and false-alarm rates are shown in Figure 3. Differenc-
es between the models are subtle but noticeable with the
npVP model fitting best. The root mean squared error
between model and data across all subjects, all set sizes,
and both target presence conditions (RMSE) was 0.037
for precue and 0.049 for postcue.

To examine the data in greater detail, we plotted the
proportion of “target present” responses as a function
of the smallest circular difference between the target
orientation and any of the distractor orientations,
separately for target-present and target-absent trials, in
both the precue (Figure 4) and postcue (Figure 5)
conditions. As one would expect, the proportion of
“target present” responses increases as the closest
distractor becomes more similar to the target. Fits of
the four models to these psychometric curves are shown
in Figures 4 and 5 as well. The npVP model provides
the best fits (RMSE was 0.11 for precue and 0.12 for
postcue).

To compare the models more rigorously, we per-
formed Bayesian model comparison (see Appendix A for
details). Rather than being based on summary statistics,
this method takes into account the specific orientations
presented on each individual trial by computing the
probability of the subject response given the model and
those orientations. It automatically accounts for differ-
ences between the numbers of free parameters in the
models (MacKay, 2003). In Bayesian model compari-
son, the npVP model outperforms the flatEP, flatVP,
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Figure 3. Hit and false-alarm rates in Experiment 1 for the four models (rows). Throughout the paper, error bars and shaded areas
represent one standard error of the mean for subject data and model fits, respectively, and values in plots indicate RMSEs.

and npEP models by 14.2 = 3.7, 7.2 = 3.6, and 14.2 =
2.6 log likelihood points in the precue condition, and by
38.7 £ 5.8, 19.1 = 3.9, and 31.7 = 4.2 log likelihood
points in the postcue condition (Figure 6). A difference
of 7.2 log likelihood points means that the model is
exp(7.2) = 1,339 times more likely.

The finding that the npVP model outperforms the
other models by large margins indicates that encoding
precision depends on set size and is subject to
variability. The relationship between mean encoding
precision and set size is well captured by a power law
function in both conditions (Figure 7a). In the precue
condition, we find a power of —0.74 = 0.12; in the
postcue condition, we find a power of —0.98 * 0.10.
These powers are significantly different from 0 (precue:
t(11) =—6.07, p < 0.001; postcue: #(11) =—-10.20, p <
0.001), confirming that mean encoding precision
decreases with set size, both in the precue and in the
postcue conditions. Put differently, the standard
deviation of the noise increases with set size (Figure
7b). Standard deviation was computed as

1180
O'—zﬁn.

Experiment 2

The results of Experiment 1 suggest that precision
decreases with set size when distractors are heteroge-
neous, regardless of whether short-term memory is
required in the task. In Experiment 2, we test the
hypothesis that precision decreases with set size when
distractors are heterogeneous but not when they are
homogeneous. No short-term memory is involved in
either the heterogeneous- or the homogeneous-distrac-
tor condition of Experiment 2. A difference between the
precue condition in Experiment 1 and the heteroge-
neous-distractor condition in Experiment 2 is that, in
the latter, the target was always vertical, thus further
reducing the influence of memory.

Hit rates in the heterogeneous condition decreases
(F(3, 24) = 29.1, p < 0.001) and false-alarm rates
increases (F(3, 24)=156.8, p < 0.001) as a function of set
size (Figure 8a). The npVP model provides a slightly
better fit than the other models. RMSE values are
0.055, 0.057, 0.046, and 0.040 for the flatEP, flatVP,
npEP, and npVP models, respectively.

The npVP model provides a good fit to the
psychometric curves (Figure 8b) and outperforms other
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Figure 4. Psychometric curves and model fits in the precue condition of Experiment 1. Proportion “target present” responses as a function
of the minimum circular difference between the target orientation and any of the distractor orientations, separately for target-present (blue)
and target-absent (red) trials, for each set size (columns) and model (rows). For set size 1, this difference does not exist on target-present

trials.

models (RMSE values are 0.14, 0.12, 0.13, and 0.11 for
the flatEP, flatVP, npEP, and npVP models, respec-
tively). Bayesian model comparison shows that the data
are most likely under the npVP model (Figure 8c); the
log likelihood differences between the npVP model and
the flatEP, flatVP, and npEP models were 50 * 15, 13.8
+ 5.1, and 48 = 14, respectively. The relationship
between mean precision and set size in the npVP model
is captured well by a power law function (Figure
9a),with a power of —0.73 * 0.14. This is consistent
with the precue condition of Experiment 1. The scale is
different though; this might be due to the fact that the
target orientation is fixed across trials.

Hit rate in the homogeneous condition decreases
with set size (F(3, 24) =20.58, p < 0.001) but there is no
significant effect of set size on the false-alarm rate (F(3,
24) = 1.54, p = 0.23; Figure 10). Unlike Experiment 1
and the heterogeneous condition of Experiment 2,
where the random drawing of the target and/or
distractor orientations produced a unique set of stimuli
on each trial, the homogeneous condition of Experi-

ment 2 had only eight different trial types (target
present or absent at four set sizes). Because the npEP
and npVP models have five and six free parameters,
respectively, fitting these models to the data from the
homogeneous condition would likely result in over-
fitting. Therefore, we replaced these models with
variants in which (mean) encoding precision was
related to set size by a power law function: J(N) = J,
N* (plEP model) or J(N) = J;N* (pIVP model). For
each subject, the value of o was taken from the analysis
in Figure 9a (heterogeneous condition). Also, we fixed
the prior to 0.5.

The “flat” models fitted the hit and false-alarm rates
better than the power law models (Figure 10).
Furthermore, Bayesian model comparison revealed
that the flatVP model provides the most likely
description of the data; the differences in log likelihood
with the flatEP, plEP, and pIVP models were 1.8 = 1.3,
13.8 £ 3.2, and 12.0 £ 3.4, respectively. This means
that, in the homogencous condition, we cannot
distinguish between equal and variable precision, but
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Figure 5. Psychometric curves and model fits in the postcue condition of Experiment 1. See caption of Figure 4 for details.
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(mean) precision tends to be independent of set size. We
also fitted a general power law as discussed previously
but with o being a free parameter instead of being
determined by the heterogeneous condition. In the
pIEP model, we found a power of —0.08 £ 0.09 and in
the pIlVP model a power of —0.10 = 0.08. Neither is
significantly different from zero (#(8) =—0.87, p=0.41;
1(8)=—1.28, p=0.24, respectively). Our results indicate
that the mean encoding precision decreases with set size
in the heterogeneous condition but is constant with set
size in the homogeneous condition (Figure 9a).

Experiment 3

An alternative explanation for the difference in the
dependence of mean precision on set size between
conditions could be that, in the homogeneous condi-
tion, the distractor orientation was identical for every
trial and could therefore be learned. To determine
whether this explanation was valid, we performed a
control experiment (Experiment 3) in which, on each
trial, the target was drawn from a uniform distribution
and distractors were homogeneous with an orientation
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rm rates. The shaded areas show the fits of the npVP model. (b)
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distractor orientations, separately for target-present (blue) and target-absent (red) trials, for each set size (panels). The shaded areas
show the fits of the npVP model. (c) Bayesian model comparison results for each subject (left) and average over subjects (right).
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10° clockwise with respect to the target. We compared
“flat” models (EP and VP) against power law models
(EP and VP) with power equal to —0.74 (mean power
from npVP model in the precue condition in Experi-
ment 1). As in the homogeneous condition of
Experiment 2, the “flat” models fitted the hit and
false-alarm rates better than the power law models
(Figure 11). Bayesian model comparison revealed that
the flatVP model provides the most likely description of
the data. The differences in log likelihood with the
flatEP, plEP, and plVP models were 1.4 = 1.5, 12.1 =
4.2, and 11.5 = 4.1, respectively.
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We also fitted a general power law with the power «
being a free parameter instead of being determined by
the precue condition of Experiment 1. In the plEP
model, we found a power of —0.16 = 0.10 and in the
pIVP model a power of —0.20 = 0.07. Although not
significantly different from zero (#(4) =—1.57, p=0.19;
1(4)=-2.83, p=0.048, respectively), these powers seem
slightly more negative than in the heterogeneous
condition of Experiment 2.

In summary, the standard deviation of the noise
increases with set size in the heterogeneous condition,
but is constant in the homogeneous condition (Figure
9b). This supports the hypothesis that stimulus
heterogeneity is the key factor determining whether
encoding precision decreases with set size.

Apparent guessing

Our results suggest that encoding precision in the
heterogeneous condition is subject to random fluctua-
tions. While the EP models perform reasonably well in
terms of fitting the summary statistics (Figures 4 and 5),
they lose by large margins in the model comparison
(Figures 6 and 8c). An important difference between
the EP and VP models is that, in the latter, items are
frequently encoded with such a low precision that it
may appear as if the subject is making a random guess
about the orientation of the stimulus. The distribution
of precision, shown in Figure 12a with the fitted
parameters of one subjects, contains considerable
probability mass near zero, especially at higher set
sizes. To test whether the absence of such “apparent
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Figure 10. Hit and false-alarm rates in Experiment 2, homogeneous condition with model fits. In the PL models, the (mean) precision per
set size followed a power law with the power obtained per subject from the heterogeneous condition (Figure 9a, blue).
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guessing” in the EP models can explain why they
perform so poorly, we fitted the subject data using a
variant of the npEP model with a set-size-dependent
guessing rate, i.e., an npEP model in which the subjects
gave a random response on a certain proportion of
trials. We found that the estimated guessing rate is
significantly higher than zero at all set sizes (z(11) > 2.7,
p < 0.02 and «(11) > 2.3, p < 0.05 for precue and
postcue conditions of Experiment 1, respectively, and
t(11) > 2.33, p < 0.05 for heterogeneous condition of
Experiment 2) and increases with set size (F(3, 33) =
11.33, p < 0.001, F(3, 33) =34.42, p < 0.001, and F(3,
24) = 7.22, p < 0.001, respectively). This increase is
reminiscent of that found in visual short-term memory
studies (Bays, Catalao, & Husain, 2009; Zhang & Luck,
2008; Van den Berg et al., 2012). Here, we argue that

this guessing is only apparent and accounted for by the
npVP model.

For each subject, we computed the apparent
guessing rate predicted by the npVP model by
generating synthetic npVP data using that subject’s
maximume-likelihood estimates of the model parameters
obtained earlier and then applying the apparent-
guessing rate analysis to these synthetic data. The
npVP model reproduces the increase of the apparent
guessing rate with set size qualitatively across all three
relevant experimental conditions but slightly underes-
timates its magnitude (Figure 12b). The npVP model
can account for the increasing trend because, as set size
increases, the distribution of precision gets pushed
more and more toward zero (Figure 12a). The npEP
model with a set-size-dependent guessing rate in essence
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Figure 12. The distribution of precision in the VP models can explain apparent guessing rates. (a) Example precision distribution based on
the ML parameter estimates of subject TS in Experiment 1, precue condition. (b) Apparent guessing rates were obtained by fitting an
npEP model extended with a set size-dependent guessing rate to subject data (circles) and to simulated npVP (blue) and simulated
npVPG (red) observers with parameters estimated from subject data (shaded areas). In an EP model, the apparent guessing rate would

be zero at every set size.
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approximates the continuous distributions over preci-
sion in the npVP model by a discrete distribution on
two values of precision: zero (guessing) and one
nonzero value (the constant precision). Near-zero
values in the npVP distribution end up being lumped
into the guessing component.

We also tested whether an addition of a constant
guessing rate to the npVP model would improve its
prediction for the apparent guessing rate. We call this
model the npVPG model. The npVPG model accounts
for the apparent guessing rate slightly better (Figure
12b), and performs about as well in Bayesian model
comparison (log likelihood differences relative to
npVP: 2.4 = 1.7 in Experiment 1 precue, 1.5 = 1.1 in
Experiment postcue, and 2.12 £ 0.93 in Experiment 2).
These results provide weak evidence for the presence of
a constant guessing rate. Guessing rate was estimated
to be 0.048 = 0.016 in Experiment 1 precue, 0.054 =+
0.015 in Experiment 1 postcue, and 0.049 = 0.015 in
Experiment 2.

The npEP model with set-size-dependent guessing
still performs worse than the npVP model in accounting
for subject data. The differences in log likelihood
difference are 4.3 = 2.8 and 7.7 = 3.0 in the precue and
postcue conditions of Experiment 1 and 2.9 £ 2.6 in
the heterogeneous condition of Experiment 2. This
suggests that the distribution over precision is contin-
uous as in Figure 12a instead of a mixture of constant
precision and set-size-dependent guessing.

Using three visual search experiments, we examined
whether stimulus heterogeneity or short-term memory
involvement determines the dependence of the precision
with which visual stimuli are encoded on set size. In
Experiment 1, we found that precision decreases with
set size when the distractors are heterogeneous regard-
less of whether or not the search display had to be
memorized. This finding suggests that short-term
memory is not the factor determining whether encoding
precision depends on set size. In Experiment 2, using a
task that did not involve short-term memory, we found
that precision is constant across set sizes when
distractors are homogenecous but decreases when
distractors are heterogeneous. Constancy under dis-
tractor homogeneity was confirmed in Experiment 3.
Combining the results from the three experiments, we
conclude that stimulus heterogeneity, not short-term
memory involvement, is likely to be the key factor
determining the relationship between encoding preci-
sion and set size. This confirms a speculation by Wilken
and Ma (Wilken & Ma, 2004). By contrast, we do not
find evidence for Palmer’s suggestion that, for simple
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stimuli, memory requirements determine whether or
not precision depends on set size (Palmer, 1990; Palmer
et al., 1993). In none of our experiments did we needed
to assume a limited item capacity (Cowan, 2001) to
describe the data well.

It is intriguing that precision seems to depend on set
size only when distractors are heterogeneous. This
could be because homogeneous displays are special;
they contain high-level structure in the form of the
sameness of all distractors. It might be that specialized
neurons—for instance, ones tuned to texture or
parallelism—detect such sameness and compute in a
manner that does not require scrutiny of every
individual item. This would allow the brain to bypass
resource limitations associated with focused attention.
By contrast, the heterogeneous condition does not
contain any structural cues and would require scrutiny.
At a more mechanistic level, this view is broadly
consistent with Hochstein and Ahissar’s Reverse
Hierarchy Theory (Hochstein & Ahissar, 2002) in
which rapid feedforward processing serves to extract
categorical or gist information from a scene, while
feedback processing recovers details. This theory might
predict that search with homogeneous distractors, but
not with heterogeneous, would benefit from feed-
forward processing. Further work should examine
whether the degree of heterogeneity affects the rela-
tionship between encoding precision and set size.

Another finding of the present study is that, apart
from depending on set size, encoding precision is also
subject to random fluctuations, at least when the
distractors are heterogeneous. Bayesian model com-
parison showed that the models in which precision
varies across items and trials provide more likely
descriptions of the heterogeneous-distractor data than
the models in which precision is fixed. (For homoge-
neous distractors, this analysis was inconclusive.) We
also showed that the variable-precision model accounts
for both the presence of what seems to be guessing and
the increase of the apparent guessing rate with set size
(Figure 12b). These results are consistent with recent
ones in short-term memory tasks (Van den Berg et al.,
2012). According to the variable-precision model, the
finding of a nonzero guessing rate is a side effect arising
from wrongly assuming equal precision. We speculate
that fluctuations in precision partly reflect temporal
and spatial fluctuations in attention. Variability in
encoding precision has implications for models of
perception, which routinely assume that precision is
fixed.

When plotting the proportion of “target present”
responses as a function of the minimum circular
difference between the target and any of the distractors
(Figures 4, 5, and 8b), we observe a dip in the curve for
the “target present” trials (most notably for N=28 in the
heterogeneous condition of Experiment 2; Figure 8b).
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None of the models was able to account for this dip. A
speculative account of this effect could be that search
proceeds in two stages, again somewhat in the vein of
Reverse Hierarchy Theory. In the first stage, orienta-
tions close to the target orientation are identified, while
in the second stage, attentional resources are deployed
to those selected orientations. Then, as the distractors
collectively become more dissimilar to the target, the
number of items that needs to be scrutinized decreases,
thereby increasing performance.

Several other directions suggest themselves. In the
homogeneous condition of Experiment 2, we charac-
terized human behavior using only eight numbers. This
limits the complexity of the models one can test. The
data set can be enriched in several ways. Furthermore,
one could conduct the present study with more complex
stimuli (such as those used in [Palmer, 1994]), replicate
it in different feature dimensions, use discrimination
instead of detection tasks, allow for the presence of
multiple targets (such as [Wilken & Ma, 2004]), or
exogenously manipulate attention.
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Model fitting and model comparison

Our model fitting and model comparison methods
use each individual response instead of relying on
summary statistics. Each model m produces a predic-
tion about the response on each trial, p(Cilsi.0), where
C, indicates the observer’s response on trial k, s, the
presented set of stimuli, and 0 the model parameters.
The parameter likelihood function is the probability of
finding a subject’s actual responses under the model as
a function of 0,

Nisials

H p(Cilsk, 0)

where we assume that responses are conditionally
independent across trials. Maximum-likelihood estima-
tion consists of finding the parameters 0 that max-
imize L.

Bayesian model comparison (MacKay, 2003; Was-
serman, 2000) is a principled method to compute the
goodness of a model while penalizing extra free
parameters. It consists of averaging the parameter
likelihood over parameter space to find the probability
of the data given the model:

L(m) [p(data|m, 0)p(0]m)dd

L(0) = p(data|m,0

= p(data|m) =
Niials

= J(T] p(Clsi.0) ) p(6}m)do0
k=1
It is convenient to compute the log likelihood and write
it as
log L(m) = Lax(m) + log [eX(®m)~Luwx(m) (@] m)d0

(6)
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where
Nlrials .
L(0,m) =) logp(Cxlsx, 0)
k=1

and Ly (m) = maxg L(0,m). This form prevents nu-
merical problems, because the exponential in the
integrand of Equation 6 is now of order 1 near the
maximum-likelihood value of 0. For the j parameter,
we assume a uniform distribution on an interval whose
size we denote R;. Then Equation 6 becomes

dim@
logL(m) = Lmax(m) - Z logRj
=

+ logfeL(G,;h)_—me(m)de’

Mazyar, van den Berg, & Ma

16

were (0.3, 0.7) for ppresent> (0.5,100) for J in Experiment
1, (10, 200) for 7 in Experiment 1, (5, 400) for J in
Experiment 2, and (25, 500) for t in Experiment 2. We
approximated the integrals over parameters numerical-
ly by using the trapezoidal rule with 25 steps for ppresent
and 30 steps for all other parameters. Finally, log L(m)
is compared between different models .

Appendix B

The following tables show the mean and standard
error (across subjects) of the maximum-likelihood
estimates of the parameters of each model for each

where dim 0 is the number of parameters. Intervals experiment.

Experiment J Ppresent Experiment J Ppresent T

1, Precue 6.52 = 0.96 0.48 + 0.01 1, Precue 13.0 £ 1.7 0.53 = 0.01 13.08 + 0.82
1, Postcue 6.5+ 1.1 0.44 = 0.01 1, Postcue 148 + 28 049 = 0.01 26.21 = 5.0
2, Heterogeneous 47 = 11 0.42 = 0.02 2, Heterogeneous 135 £ 14 050 £ 0.03 277.58 = 59
2, Homogeneous 235 = 36 N/A (%) 2, Homogeneous 256 * 33 N/A (%) 40 = 11

Table A1. Parameter estimates in the flatEP model. Notes: (*)
This value was set to 0.5.

Table A2. Parameter estimates in the flatvVP model. Notes: (*)
This value was set to 0.5.

Experiment J1 J2 J3 J4 Ppresent
1, Precue 13.03 = 2.37 6.84 = 1.54 5.56 = 0.94 5.64 = 0.90 0.49 = 0.01
1, Postcue 13.6 = 2.6 6.2 +20 50=*1.2 49 +14 0.45 = 0.01
2, Heterogeneous 88 + 15 42 + 12 44 = 11 42 =10 0.42 = 0.02
Table A3. Parameter estimates in the npEP model.

Experiment J1 Jo Ja Ja Ppresent T

1, Precue 259 + 34 16.0 = 2.7 11.8 = 2.0 106 = 2.0 0.54 = 0.01 18.7 = 2.9
1, Postcue 404 = 71 219 =52 179 = 4.2 12.2 + 3.5 0.51 = 0.01 51 £ 12
2, Heterogeneous 246 * 27 138 = 12 112 = 11 92 = 15 0.51 = 0.03 296 * 62

Table A4. Parameter estimates in the npVP model.
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