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Abstract and Keywords
This chapter lays out a theoretical framework for how optimal cue integration 
can be implemented by neural populations. The main significance of this 
framework does not merely lie in understanding multisensory perception in a 
principled manner, but in the fact that it provides a blueprint for finding neural 
implementations of other forms of Bayes-optimal computation. Evidence for 
Bayesian optimality of human behavior has been found in many perceptual tasks, 
including decision making, visual search, oddity detection, and multiple-
trajectory tracking. Probabilistic population coding provides a roadmap for 
identifying a neural implementation of each of these computations: First the 
Bayesian model at the behavioral level needs to be worked out, then it needs to 
be assumed that probability distributions in this model are encoded in neural 
populations with Poisson-like variability, and finally the neural operations that 
map onto the desired operations on probability distributions should be 
identified.

Keywords:   cue integration, neural populations, multisensory perception, Bayesian cue combination, 
probabilistic population coding

INTRODUCTION
This chapter discusses a theoretical framework for how optimal cue integration 
can be performed by populations of neurons. Cue integration is an interesting 
behavior from the perspective of neural computation for at least two reasons. 
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First, it is one of the simplest tasks that demonstrate that humans take 
uncertainty into account when perceiving the world; in other words, the brain 
keeps track of “error bars” on its estimates. How neurons encode and 
manipulate uncertainty (or more generally, probability distributions) has 
traditionally not been a topic of study in systems neuroscience. Therefore, 
explaining cue integration from a neural point of view can yield new insights into 
the format in which neurons represent information and the mechanisms by 
which they process it. The second, related reason is that cue integration is a 
textbook example of how a large body of psychophysical data can be used to not 
only constrain but also construct neural models. Many studies in computational 
neuroscience focus on constructing neural models that are biophysically realistic 
and reproduce dynamics observed in physiological experiments. Even when 
behavioral data are used to constrain such models, there are often many 
parameter settings that satisfy those constraints. Following an alternative 
approach, we start from a normative theory of behavior (in this case, optimal cue 
integration) and use theories of neural coding to link behavioral to neural 
quantities. This results in a theory stating which neural operations should be 
performed if the brain is to execute certain behaviors optimally. In this 
approach, biophysical realism is important but only a last step, serving merely to 
make concrete an implementation that has been found in terms of more abstract 
neural operations.

This chapter is based on a recent paper by the authors (Ma, Beck, Latham, & 
Pouget, 2006). Here, however, we will attempt a more didactic approach and 
highlight the broader context of the work. In previous chapters, we have seen 
that the problem of cue integration can be formulated in terms of the 
multiplication of probabilities,

(21.1)
(see Eq. 1.7), where s is the stimulus, and  and  are the noisy observations 
from two cues (for concreteness, we use the subscripts V for visual and A for 
auditory). Our first goal is to establish how a neural population can encode a 
probability distribution over the stimulus. After that, we will examine how the 
multiplication is implemented.

Before delving into specifics, it is important to comment on the use of the word 

optimality, which has different meanings depending on context and author. In 
this chapter, we discuss optimality in a very specific sense, namely one in which 
an observer computes the posterior probability distribution over the task 
variable of interest (as defined later). This is not (p.394) necessarily the same 
meaning as that of the term “ideal observer, ” which commonly indicates an 
observer who extracts all information that is present in a physical stimulus. In 
contrast, a Bayes-optimal observer is optimal in the sense that during a 
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particular computation, such as cue integration, no information is lost. However, 
it is possible that input information is lost before the computation, that is, that 
the probability distributions that enter the computation are broader than the 
ones that could be extracted from the stimulus.

NEURAL VARIABILITY
Our first task is to understand how populations of neurons encode a stimulus. 
Our starting point is a variable s that is of interest to the organism. This can be 
the slant of a surface, the width of an object, the spatial location of an event, the 
speed of a moving object, the identity of a spoken syllable, and so forth. We 
assume that each presentation of a particular value of this stimulus variable (this 
particular value is also denoted s) elicits activity in a large population of 
neurons. Activity is characterized as the total number of evoked action potentials 
(spikes). An important feature of this response is that when the same value s is 
presented repeatedly, this spike count typically varies (Tolhurst, Movshon, & 
Dean, 1982). This variability has been measured in many areas of cortex. In an 
attempt to model it, people often assume that it obeys a Poisson distribution. 
This reflects the absence of temporal correlations between the spikes and 
implies that the probability of a spike count r in response to a stimulus s is

(21.2)
In this equation, λ stands for the mean spike count, which in a Poisson process is 
identical to the variance of the spike count. Observed variability is not exactly 
Poisson—we will address this issue later. The mean spike count λ depends on 
two things: the stimulus presented, s, and which neuron in the population is 
considered, i. Therefore, it can be written as , where g is an overall 

scaling factor (the gain). As a function of s,  is called the tuning curve of the 

i' th neuron; it is typically bell shaped or monotonic. If s is a spatial variable, 
then  is a receptive field. An example of a set of tuning curves (for different 
i) is shown in Figure 21.1A.

Since there are multiple neurons in the population, their responses to s have to 
be considered jointly. A population pattern of activity is a set of spike counts 

, where N is the number of neurons in the population. An example 
is shown in Figure 21.1B.

 (p.395) The simplest 
assumption regarding the 
neurons' joint activity is that all 
neurons are uncorrelated. In 
other words, for a given s, the 
responses  taken across all possible i are independent of each other. That 
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Figure 21.1  Schematic illustration of 
probabilistic population coding. (A) Bell-
shaped tuning curves of six neurons in a 
hypothetical population. (In real data, 
these do not look nearly as smooth and 
identical.) Notation: s is the stimulus 
value, i labels the neuron, and  is the 
average activity of the i' th neuron in 
response to s. (B) Population pattern of 
activity elicited by a stimulus (e.g., the 
orientation of a line segment) on a single 
trial. Neurons are ordered by their 
preferred stimuli. (C) Based on this 
pattern of activity r, Bayes' rule computes 
the probability distribution  over the 
stimulus (right), providing not only the 
most likely value of the stimulus 
(indicated by the arrow) but also its 
uncertainty (indicated by the double 
arrow). One can think of the probability 
distribution in (C) as being encoded in the 
pattern of activity in (B).

means that the probability of 
observing pattern 

 is equal to the 
product of the probabilities of 
all individual responses  under 
their respective distributions 

: (21.3)

From now on, we will use 
shorthand notation r for the 
vector 

for a product. Combining Eqs. 
21.2 and 21.3, and 

 we find for 
neural population variability:

(21.4)
If you know g and  this equation allows you to calculate for each possible 
pattern of activity r (and there are a lot of them) the probability that it will occur 
when the stimulus was s. These probabilities will normally be different for 
different s. Therefore, the activity pattern r is informative about s. The 
observer’s brain does not have knowledge of s, and its task is exactly to make a 
guess about s based on r—in other words, to decode s from r. There are many 
recipes in the literature to make such a guess, such as winner take all, 
population vector, and maximum likelihood. Some of these decoding methods are 
better than others, but they have in common that they all return a single value of
s on a single trial.

PROBABILISTIC POPULATION CODES
For optimal cue integration, it is critical that a population of neurons encodes a 

probability distribution over the stimulus on a single trial, not just a best guess 
about the stimulus. This is where Bayes' rule comes in. In Eq. 21.4, we fixed s
and considered the probabilities of different r. Now, we do the reverse: We fix r
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(interpreted as the observed pattern of activity on a single trial) and we consider 
the probabilities of different s. This is the “inverse problem” that the brain has to 
solve. Bayes' rule explains the latter probability,  in terms of the former, 

(21.5)
This type of coding is called probabilistic population coding. The left-hand side is 
called the posterior distribution, while  is called the likelihood function 
when considered as a function of s. (This is somewhat confusing: Even though r
is the first argument in  one can still regard it as a function of s by fixing r
and considering different possible values of s. Some people use a notation like 

 to denote a likelihood over s.) In this equation, the distribution p(s) 
reflects prior knowledge that the observer has about the stimulus, that is, beliefs 
held about s before any data (r) are observed. In this chapter, we will choose this 
prior distribution to be uniform (flat); that is, the observer is completely agnostic 
(if this distribution is not flat, it is still possible to perform optimal cue 
integration using neural populations, essentially by regarding the prior 
information as another cue). Moreover, since the left-hand side is a probability 
distribution over s, factors on the right-hand side that do not depend on s are 
irrelevant except for the fact that they serve as a normalization. Therefore, we 
will from now on use the formulation

(21.6)
Combining Eqs. 21.4 and 21.6 allows us to write down the posterior distribution 
for a population pattern of activity drawn from an independent Poisson 
distribution:

(21.7)
where we have absorbed factors independent of s into the proportionality sign.

 (p.396) Note that  is not a probability distribution in the classical, 
frequentist sense of “expected frequencies of possible outcomes of a random 
variable, ” since we are considering only a single trial. Based on a single r, 
frequentists would only reconstruct a single value of s, the “best guess” we 
mentioned earlier. Instead,  is to be interpreted as the degree of belief in a 
hypothesized value of the stimulus. Given a single observation r, one asks to 
what extent one believes that stimulus value s caused r. It should be emphasized 
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that in this view, Bayesian inference is not characterized by the presence of a 
nontrivial prior distribution. The framework allows for incorporation of prior 
beliefs, but the mere fact that we consider  a legitimate distribution over s
makes our approach Bayesian.

Although Bayes' rule follows directly from the basic properties of probability 
distributions, its implications in our context are profound.

It means that based on a single pattern r, one cannot only reconstruct the value 
of s most likely to have caused r (which is what a maximum-likelihood decoder 
would do) but also the probability that any value of s caused r. This was first 
proposed in the 1990s (Földiák, 1993; Sanger, 1996). An example is shown in 
Figure 21.1C. The width of this probability distribution over s is interpreted as 
the uncertainty about the stimulus (the terms certainty, reliability, or fidelity are 
sometimes used for the inverse quantity). Note that this width is in general 
different from the width of the tuning curve. Even though the probability 
distribution and the population pattern of activity are related and can both be 
bell shaped, their relationship is indirect, as indicated by Eq. 21.7.

As a consequence, if the task is to estimate s from r, the observer has knowledge 
of the confidence in the decision without the need of a confidence-estimation 
mechanism separate from the stimulus representation. However, the merits of 
this type of coding are not limited to representing the confidence about a 
decision. Since any neural population that encodes a stimulus variable 
simultaneously also encodes uncertainty about this variable, this code allows for 
the easy propagation of uncertainty through all brain areas involved in a 
perceptual computation. The population activity r that encodes a probability 
distribution over the stimulus will carry uncertainty information with it 
whenever it is manipulated. This is the main argument we will lay out in the rest 
of this chapter.

Other schemes have been proposed to encode probability distributions in neural 
activity. In some, neural activity (either on a single trial or averaged over many 
trials) is linearly related to probability (“explicit” coding) or to the log of 
probability. In those schemes, the width of the tuning curve (when bell shaped) 
is equal to the width of the probability distribution. Probabilistic population 
coding stands out by being the only scheme that bases beliefs about the stimulus 
on the observed neural variability. When tuning curves are not bell shaped but 
monotonic, the difference between probabilistic population codes and “explicit” 
coding becomes very clear (see Ma, Beck, & Pouget, 2008, for a review).

CAN ONE “MEASURE” THE POSTERIOR DISTRIBUTION?
Before we consider cue integration using probabilistic population codes, we first 
address the common question of how the posterior distribution relates to 
behavior as measured through a psychophysical experiment. It is tempting to 
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identify the posterior distributions with the distribution of stimulus estimates 
across many trials, but this is a mistake. The posterior distribution, , 
reflects the observer’s beliefs about the stimulus on a single trial. When a 
decision needs to be made, a single value μ is extracted from the posterior 
distribution (for example, its mode, mean, or median, depending on the cost 
function one uses). This value is the model observer’s response,  These 
responses can be collected over many trials, keeping the true stimulus, , the 
same. This creates a response distribution, . There is no reason why 

 should have the same shape or functional form as  The reason that 
this is nevertheless often believed is because only the Gaussian case is 
considered. In behavioral modeling, the internal representation of a stimulus is 
typically taken to be , not r, and  (p.397) from the outset, a Gaussian 
distribution  is assumed. Under uniform priors, this choice makes both 

 and  Gaussian with the same variance. Operations performed on 

 are then directly mirrored in operations on , just like we will see in 
this chapter. However, in the presence of nonuniform priors (Stocker & 
Simoncelli, 2006), or when the posterior is non-Gaussian (Körding et al., 2007), 
this is no longer true and identifying the posterior with the response distribution 
leads to wrong predictions. It is important to keep this caveat in mind.

Now we can turn to the problem of cue integration. Suppose there are two cues 
to the same stimulus attribute, which we will call auditory (A) and visual (V) for 
convenience. Each cue is represented by a neural population of N neurons; we 
will denote their patterns of activity by  and  We assume that these patterns 
are both drawn from independent Poisson distributions, and even that they have 
identical tuning curves  (there are a lot of assumptions here, and we will 
relax all of them eventually). They only differ in their gains: The mean activities 
of the auditory neurons are equal to  whereas the mean activities of the 

visual neurons are  A higher gain implies narrower posteriors and less 
uncertainty. Choosing different gains for the auditory and the visual cues reflects 
that they come with different degrees of uncertainty. Moreover, gain can change 
from trial to trial.

We are now interested in the optimal posterior distribution that is encoded by 

 and  together, because the psychophysics of cue integration suggests that 
this distribution is computed in the brain. Using Bayes' rule, the posterior takes 
the following form:

(21.8)
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In going from the second to the third expression, we have assumed that the cues 
are conditionally independent given the stimulus, just as in the behavioral 
theory. We substitute Eq. 21.4 and absorb all factors independent of s into the 
proportionality sign. This gives

(21.9)
This can be rewritten as:

(21.10)
This is the posterior distribution encoded by and  together. However,  and 

 are separate populations—what we want instead is a single multisensory 
population. To implement optimal cue integration neurally means to ask what 
operation we can perform on  and  such that the resulting multisensory 
population encodes the optimal posterior distribution, Eq. 21.10. In that way, we 
would not lose any information about s. The right-hand side of Eq. 21.10 
suggests the answer: addition. We construct a new population pattern of activity,

, by summing the activities of corresponding pairs of neurons in the auditory 
and visual populations:

(21.11)
The output population pattern, , will still obey independent Poisson 
variability across many trials, since the sum of two Poisson processes is again 
Poisson. The mean activity of the i' th neuron in the output population in 
response to s is  Therefore, it encodes a posterior distribution 
that is given by:

(21.12)
This distribution is identical to the one in Eq. 21.10. We conclude that adding 

 (p.398) independent Poisson population patterns of activity implements a 
multiplication of the probability distributions over the stimulus that are encoded 
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in those patterns. We will now attempt to generalize this framework to other 
forms of neural variability.

POISSON-LIKE VARIABILITY
We assumed earlier that neurons fire with Poisson statistics and that their noise 
is independent. Both assumptions are often not completely satisfied. In cortical 
neurons, spike count variance is often proportional to, but not equal to, spike 
count mean. The ratio variance/mean is called the Fano factor, and its measured 
values range from 0.3 to 1.8 (Gur & Snodderly, 2006; Tolhurst et al., 1982). 
Moreover, neurons are not independent (when conditioned on the stimulus) but 
exhibit correlations (Averbeck, Latham, & Pouget, 2006). Therefore, a more 
general treatment is needed. Fortunately, there is a family of distributions that is 
more general than independent Poisson variability but leaves the mechanism for 
implementing optimal cue integration intact. This family is the exponential 
family with linear sufficient statistics, also called Poisson-like variability. It takes 
the following form:

(21.13)
where  is an arbitrary function of r, h(s)is a vector-valued function of s that 
we will specify later, and η(s) serves as a normalization (since this is a 
probability distribution over r). The exponent contains the inner product of h(s) 
with the population pattern of activity. To gain some intuition for Eq. 21.13, it 
helps to see what  and η are for independent Poisson variability:

(21.14)
Thus, h and η both depend on the tuning curve, whereas  contains all factors 
that only depend on r. In general, when variability is Poisson-like but not 
necessarily independent Poisson, there is a relationship between h(s) and the 
tuning curve. By using the definition, Eq. 21.13, it is possible to show that the 
derivative of h satisfies:

(21.15)
where  is the inverse of the covariance matrix of the population and f(s) 

is the mean activity. For independent neurons, the covariance matrix is a 
diagonal matrix, with the variances of the neural activities on the diagonal. In 
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the case of independent Poisson variability, it is

Therefore, Eq. 21.15 implies that  which is, up to a constant, 

equivalent to the second part of Eq. 21.14. This confirms that independent 
Poisson variability is indeed a special case of Poisson-like variability.

DEALING WITH “IRRELEVANT” VARIABLES
When a task involves estimating a stimulus, such as a spatial location of an 
event, the size of a visual object, or the direction of motion of a moving object, 
neural activity is often affected by parameters that are not of interest to the 
observer. For example, the visual object might come with greater or lesser 
contrast, or the motion might be more or less coherent. Such variables, which 
affect the difficulty of the task but are irrelevant when estimating the stimulus, 
are called nuisance parameters. Nuisance parameters are extremely common in 
any real-world perceptual task, for example, in object recognition (Kersten, 
Mamassian, & Yuille, 2004). The brain is faced with this problem of estimating 
the (p.399) stimulus while not knowing the value of the nuisance parameters. 
In this section, we describe under what conditions Poisson-like variability solves 
this problem. This section is more technical than the rest of this chapter and can 
be skipped without affecting the understanding of the overall line of reasoning. 
The main results of this section are Eqs. 21.21 and 21.22.

We will examine the specific situation in which nuisance parameters affect the 
gain of the population. For example, if r is a visual population, then the gain g
could be determined by the contrast of the stimulus. In the formulation of the 
Poisson-like family, Eq. 21.13, we did not include the gain. Yet each of the factors 
in Eq. 21.13 could in principle depend on it. For example, in Eq. 21.14, the 
expression for η (s) contains the gain. This does not pose a problem if the gain is 
known, but in general this is not the case. There are two types of solutions to 
this problem. The first is to use an external mechanism to estimate the gain and 
substitute its estimated value. However, this requires extra computational 
resources and it is not an optimal solution. The second solution is the Bayes-
optimal one: When a parameter whose value is unknown influences the 
observations, it is averaged out (also called “integrated out” or “marginalized 
out”). This is done as follows:

(21.17)
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where p(g ) is some prior distribution over g.In writing this integral, we have 
assumed that g does not depend on s. To avoid the complications of 
marginalizing out gain, we will restrict ourselves to the situation where the s and
g dependencies of  can be separated, that is, where  can be 
written as the product of a factor that only depends on s and r and one that only 
depends on g and r. Looking back at Eq. 21.13, this means that it would take the 
following form:

(21.18)
How does this help? If we substitute Eq. 21.18 into the integral of Eq. 21.17, 
then we find:

(21.19)
where we can go from the second to the third line because the integral does not 
depend on s, no matter what p(g ) is.

It turns out that another constraint must be satisfied. To derive this constraint, 
we first compute the derivative of η(s) with respect to s, keeping in mind that 
η(s) is a normalization factor:

(21.20)
Now, differentiating both sides with respect to g gives 

Substituting this back into Eq. 21.20 implies that  Surprisingly, this 
condition is not very hard to meet. For example, in the independent Poisson 
case, Eq. 21.14, it seems as though η depends both on s and on g. However, if 
tuning curves are translation invariant and many of them span the stimulus 
space, as in Figure 21.1A, then the sum  will be nearly independent of s. 

This means that η only depends on g and can therefore be absorbed into 
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To allow Eq. 21.19 to be true, it is also important that h(s) does not depend on g. 
Both the mean activity and the covariance matrix can depend on the gain g, and 
in general they will, but the combination  (from Eq. 21.15) 

cannot. Since  this means that the covariance matrix must be of 

the form  On the diagonal, this  (p.400) means that the 

variance scales with the gain, in other words, that the Fano factor is constant 
but not necessarily equal to 1 (as it is in a Poisson process). Off diagonal, it 
means that the entries  should be proportional to as well. In 
conclusion, we find that neural variability must be of the form

(21.21)
and the posterior distribution over s is simply

(21.22)
In the more general case in which nuisance parameters c exist that affect the 
tuning curves and the covariance matrix, but not through a simple gain 
modulation, then Poisson-like variability requires that  be 

independent of c.

Whether cortical variability is approximately Poisson-like is an open question 
that can in principle be addressed by analyzing population recordings. We just 
stated that Poisson-like variability requires that the elements of the covariance 
matrix, including the variance, scale with the gain of the population. This 
condition seems to be roughly satisfied in cortical neurons (Gur & Snodderly, 
2006; Tolhurst et al., 1982), but further study is needed. Furthermore, if 
variability is Poisson-like, the locally optimal linear decoder (Seriès, Latham, & 
Pouget, 2004) should extract all available information. This property can be 
falsified by trying other decoders, such as support vector machines (Bishop, 
2006). Moreover, the optimal decoder of Poisson-like activity is completely 
determined by h(s) and should therefore be independent of nuisance 
parameters.

OPTIMAL CUE INTEGRATION WITH POISSON-LIKE POPULATIONS
We claim that the same addition operation that implements optimal cue 
integration in the independent Poisson case,  does the same in the 
more general Poisson-like case. We verify this by first calculating the distribution 
of the sum random variable,  for a given stimulus s and input gains  and 

 That is done in the same way one would calculate the distribution of the total 
number rolled with two dice, namely by summing (or integrating) over all 
possible values of one of the terms in the sum:
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(21.23)
Note that in the transition from the second to the third line, it is essential that 
h(s) is the same in both populations. As a consequence of Eq. 21.23, the 
posterior encoded in a multisensory population pattern of activity can be 
computed in analogy to Eq. 21.22. We find

(21.24)
When we substitute  (i.e., giving the random variable  the value

, it follows that

(21.25)
where we again assumed that h(s) is the same function for auditory and visual 
inputs. Thus, just like for independent Poisson variability, optimal cue 
integration is achieved in Poisson-like populations by adding input population 
activities.

Our assumption that h(s) is the same in both input populations is violated if 
tuning curves or (p.401) covariance matrices differ between auditory and visual 
areas. However, different h(s) can be dealt with as long as they can be linearly 
mapped onto a common basis of functions, that is,  and 

 where  and  are stimulus-independent matrices and 

H(s) is the common basis. Then, it can be shown that the linear combination

(21.26)
(where the superscript “T” denotes a transpose) implements optimal cue 
integration (for details, see the Supplement of Ma et al., 2006). This more 
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Figure 21.2  Optimal cue integration with 
probabilistic population codes. The cues 
elicit activity in input populations  and 

, indicated by green and blue dots. The 
dialogue boxes show the probability 
distributions over the stimulus encoded in 
each population on a single trial. A simple 
linear combination of the population 
patterns of activity, 

 guarantees 
optimal cue integration, if neural 
variability is Poisson-like. Optimal cue 
integration means that the probability 

general operation is depicted in Figure 21.2. Notably, the weights do not depend 
on neural gain or on uncertainty. Having to adjust the weights every time gain or 
uncertainty changes would make a neural implementation much more difficult. 
By using Poisson-like variability, the brain can avoid this problem, since the 
weights are learned once and for all.

A PHYSIOLOGICAL PREDICTION
Our most general prediction for physiology is that the activity in a multisensory 
area involved in optimal cue integration is equal to a linear combination of the 
activities in the input populations (Eq. 21.26). If one would present only one of 
both inputs, then only one of the terms in  (either  or  ) would be 
nonzero. It follows that the activity evoked in a multisensory area by both cues 
presented simultaneously is predicted to be approximately equal to the sum of 
the activities evoked by each individual cue separately. This property is called 

additivity. Recent physiological studies have begun to test this prediction (see 
Chapter 16). Earlier work had claimed that multisensory interactions are 
characterized by superadditivity of multisensory responses (Stein & Meredith, 
1993), that is, that the multisensory activity evoked  (p.402) by both cues is 
more than the sum of the activities evoked by the individual cues. However, this 
notion has become largely discredited, based on new physiological data (see Ma 
& Pouget, 2008, for a review).
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distribution over the stimulus encoded in 
the multisensory population is a product 
of the distributions encoded in the 
unisensory populations, i.e. 

 The synaptic 

weight matrices  and  depend on 
the tuning curves and covariance 
matrices of the input populations, but 
they do not have to be adjusted over 
trials.

RELATING BACK TO 
BEHAVIOR
We will now examine how the 
neural operation 

relates to the behavioral 
equations for multisensory 
mean and variance that we 
encountered in Chapter 1. In 
behavioral modeling of cue 
integration discussed in this 
book, it is assumed that the 
posterior distribution  is 
Gaussian. Therefore, it is exponential with a quadratic function of s in the 
exponent:

(21.27)
where  and  are functions of r. Comparing with Eq. 21.22, we see that 

these functions must be of the form  and  where now a and

b are constant vectors. From Eq. 21.27, we can find the mean  and variance 

of the Gaussian, since the exponent of a Gaussian is of the form 

constant. They are given by

(21.28)
and

(21.29)
Since  for optimal cue integration, applying the inner product with 

a gives (from Eq. 21.28):

(21.30)
which is the single-trial version of our well-known equation for optimal 
combination of variances. For the mean, Eq. 21.29 gives

(21.31)
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(the extra assumption here is that the trial-to-trial fluctuations in the inverse 
variance are small). This is the single-trial version of the optimal combination of 
means. Now, we can look at the effect across many trials. This requires a way to 
turn  into a single estimate of the stimulus,  on each trial. The optimal 
estimator is the maximum-likelihood estimator, which chooses the s that makes 

 maximal. Since we have assumed that the prior is uniform, this is also the 

estimator that maximizes  For a Gaussian  this is simply the mean 
of the Gaussian. We can now calculate the variance of this estimate using the so-
called Cramèr-Rao bound, which states that the inverse variance (sampled 
across many trials) of an optimal estimator is given by the Fisher information:

(21.32)
where the average  is over r drawn from  Fisher information and the 
Cramèr-Rao can be applied to any distribution. For Poisson-like variability, there 
are several ways to express Fisher information:

(21.33)
This offers a particularly easy way to check optimality of  Taking 
the average on both sides, we find  and since  is proportional 
to g according to Eq. 21.33, it follows from Eq. 21.32 the estimate’s inverse 
variances sum:

(21.34)
This is the relationship found in behavior. Similarly, for the mean estimate, we 
have from Eq. 21.29:

(21.35)
and therefore,  implies

 (p.403)

(21.36)
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which is the behavioral result for the mean multisensory estimate.

OPTIMAL CUE INTEGRATION WITH BIOPHYSICAL POPULATIONS
So far, we have used abstract neurons completely characterized by their firing 
rates and therefore without any dynamics. As a proof of principle, it is important 
to show that the same scheme can be implemented with a population of 
biologically more realistic neurons. We did this by tuning the parameters of a 
network of conductance-based integrate-and-fire neurons such that the network 
would mimic the linear combination operation (Eq. 21.26). The output of this 
network satisfied the same equations that describe human observers (Eqs. 21.34 
and 21.36). It is not known how to capture, in general, the network behavior of 
conductance-based integrate-andfire neurons in equations only involving firing 
rates, and therefore a direct mapping between this network and the firing-rate 
neurons cannot be made. However, our approach provides an example of top-
down driven neural modeling: The computational model at the behavioral level is 
used to construct the neural theory at an abstract level, and this in turn is used 
to guide a more physiologically realistic implementation. The more realistic 
implementation thus serves as a feasibility check, not as the centerpiece of the 
computational approach.

WHAT IS OPTIMAL ABOUT CUE INTEGRATION?
One might wonder whether an optimal perceptual strategy would not lead to 
separate, veridical percepts of the auditory and the visual stimuli. This is not 
necessarily the case. Although in cue-integration experiments, small conflicts 
between the presented stimuli are introduced by the researcher, small conflicts 
between the best estimates of the auditory and visual stimuli exist even in the 
absence of artificial conflict. This is due to the variability in the neural response, 
which leads to variability in the perceived auditory and visual stimuli (  and 

in Eq. 21.31). Thus, even when the true auditory and visual stimuli are physically 
completely in agreement, the brain still has to solve the cue-integration problem. 
Of course, it is important that in experimental settings, the artificial conflicts are 
kept sufficiently small and infrequent, so that they can be mistaken for naturally 
occurring ones. If conflicts are too large or too frequent, subjects may notice 
that the stimuli have different sources and develop a tendency to separate their 
percepts. Such perception can still be modeled using Bayesian models (Körding 
et al., 2007; Sato, Toyoizumi, & Aihara, 2007; also Chapters 1 and 2 in this 
volume).

THE BIG PICTURE
In this chapter, we have laid out a theoretical framework for how optimal cue 
integration can be implemented by neural populations. The main significance of 
this framework does not merely lie in understanding multisensory perception in 
a principled manner, but in the fact that it provides a blueprint for finding neural 
implementations of other forms of Bayes-optimal computation. Evidence for 
Bayesian optimality of human behavior has been found in many perceptual tasks, 
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Figure 21.3  Schematic of perceptual 
computation using probabilistic 
population codes. One or multiple stimuli 
elicit population patterns of activity. Each 
pattern encodes a probability distribution 
over the stimulus through Bayes' rule. In 
perceptual tasks, these probability 
distributions have to be manipulated in 
specific ways to achieve optimality (e.g., 
multiplication in cue integration). The key 
problem is to establish a “dictionary” 
between such probabilistic computations 
(e.g., multiplication) and neural 
operations on population patterns of 
activity (e.g., addition), assuming a form 
of neural variability (e.g., Poisson-like). 
Using those neural operations, the brain 
will retain full probabilistic information 
about the variable(s) of interest at all 
stages of computation. Eventually, a 
motor action is generated or a high-level 

including decision making (Beck et al., 2008), visual search (Ma, Navalpakkam, 
Beck, & Pouget, 2008; Vincent, Baddeley, Troscianko, & Gilchrist, 2009), causal 
inference (Körding et al., 2007), oddity detection (Hospedales & Vijayakumar, 
2009), and multiple-trajectory tracking (Ma & Huang, 2009). Probabilistic 
population coding provides a roadmap for identifying a neural implementation of 
each of these computations: First work out the Bayesian model at the behavioral 
level, then assume that probability distributions in this model are encoded in 
neural populations with Poisson-like variability, and finally identify the neural 
operations that  (p.404) map onto the desired operations on probability 
distributions. This general scheme for neural computation is illustrated in Figure
21.3. We believe that this approach to neural computation provides 
unprecedented power for relating mental functions to their underlying neural 
mechanisms.
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judgment is made. (From Ma, Beck, & 
Pouget 2008).
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