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Spiking networks for Bayesian inference and choice
Wei Ji Ma1,3, Jeffrey M Beck1 and Alexandre Pouget1,2
Systems neuroscience traditionally conceptualizes a

population of spiking neurons as merely encoding the value of a

stimulus. Yet, psychophysics has revealed that people take

into account stimulus uncertainty when performing sensory or

motor computations and do so in a nearly Bayes-optimal way.

This suggests that neural populations do not encode just a

single value but an entire probability distribution over the

stimulus. Several such probabilistic codes have been

proposed, including one that utilizes the structure of neural

variability to enable simple neural implementations of

probabilistic computations such as optimal cue integration.

This approach provides a quantitative link between Bayes-

optimal behaviors and specific neural operations. It allows for

novel ways to evaluate probabilistic codes and for predictions

for physiological population recordings.
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Introduction
When performing even mundane actions such as chan-

ging lanes on the highway, sensory information is manipu-

lated in many ways: Features are assigned to objects,

objects are segregated from the background, auditory and

visual cues are integrated, current and remembered infor-

mation about locations of other cars are combined, reward

and cost information are taken into account, and task-

relevant variables are extracted (e.g. whether changing

lanes is safe). Understanding the neural basis of all of

these computations constitutes a key problem in neuro-

science.

In the past decade, models of neural representation and

computation have started to explore the possibility that

neurons encode probability distributions and that neural
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computation is equivalent to probabilistic inference [1,2].

This work was inspired by psychophysical findings show-

ing that human perception [3–11] and motor control

[12,13] are nearly optimal in a Bayesian sense. Bayesian

optimality means that pieces of uncertain information

about task-relevant stimuli are combined with each other

or with prior information in a way that takes into account

their uncertainty. This requires a neural code that sim-

ultaneously represents both the value and the uncertainty

of a stimulus and uses this representation in its compu-

tations. Since the most general way to represent uncer-

tainty is with a probability distribution, guiding questions

in the field have been how spiking neurons might

represent probability distributions, and how probabilistic

inference can be implemented using biologically plaus-

ible neural operations.

Neural coding of probability distributions
Consider a stimulus s evoking activity in a population of N
neurons, which we denote by a vector r = (r1, . . ., rN). In

the standard view of population coding, r encodes a

particular value of the stimulus s, and much work has

focused on methods for decoding (also called estimating

or reading out) this value (e.g. [14–18]). Downstream

neural computations are often described in terms of

computations on this estimate [19].

However, there is an alternative way to think about

population coding and neural computation. If the form

of the neural variability is known (that is, if the probability

distribution p(rjs) is known), an entire probability distri-

bution over the stimulus (known as the posterior distri-

bution, p(sjr)) can be decoded on each trial, through the

use of Bayes’ rule (see Box 1) [20,21]:

pðsjrÞ/ pðrjsÞ pðsÞ: (1)

We will call a code that utilizes this fact a probabilistic

population code (PPC) [22��]. It is by no means the only

neural code that has been suggested for probability distri-

butions ([23–30]; see Box 2 and Figure 1), but it has the

advantage that it is consistent with the variability in the

nervous system. This is because it is the very presence of

variability in r, modeled by p(rjs), that induces uncer-

tainty about s, given by p(sjr), and Bayes’ rule describes

the exact relationship between these two quantities.

Since a PPC uses the neural variability, that is p(rjs), to

infer the uncertainty about the stimulus, it is essential

with such a code to characterize precisely the form of this

neural variability. A common assumption is that neural

activity can be described as a set of independent Poisson

processes. Neurons, however, are not exactly Poisson and
oice, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.07.004
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Box 1 Bayes’ rule

Bayes’ rule is a mathematical identity relating two conditional

probabilities to each other. In neural coding theory, it describes how

a population of neurons, of which the activity is denoted by a vector

r, encodes a probability distribution (the posterior) p(sjr) over the

stimulus s: pðsjrÞ ¼ pðrjsÞpðsÞ
pðrÞ :Bayes’ rule requires that the form of

neural variability, p(rjs), is known, either to the experimenter who

tries to decode p(sjr) from r, or to downstream neurons that use r for

further computation. Because p(r) is merely a normalization factor

that ensures that p(sjr) is a proper probability distribution over s,

Bayes’ rule is often written in the form of Eq. (1). Contrary to

widespread belief, the key aspect of Bayes’ rule for systems

neuroscience is not the prior distribution, p(s), but the fact that a

population encodes an entire probability distribution over s, and

therefore also uncertainty. This is true even if the prior distribution is

flat (uniform). It is necessary to consider a population rather than a

single neuron (or a scalar ‘internal representation’, as in signal

detection theory [50]), because the set of distributions that can be

encoded by a single neuron is very limited. For example, a normal

distribution already has two independent parameters, mean and

variance, and thus requires at least two neurons to represent it.
are correlated. Recently, a more general family of distri-

butions was proposed: the exponential family with linear

sufficient statistics, which has been called Poisson-like

variability [22��]. This not only includes the Poisson

distribution but also can model neural activity for which

the Fano factor (the ratio of the variance over the mean)

differs from 1 (which is important because the Fano

factors of neurons vary from 0.3 to 1.8 [31,32]), as well

as stimulus-dependent noise correlations between

neurons. This family is parameterized by

pðrjsÞ ¼ FðrÞehðsÞ�r; (2)

where F (r) is an arbitrary function of r, � is the dot

product, and the vector-valued function h(s) is related to

the neurons’ tuning curves f(s) and their covariance matrix

S (s) through h0(s) = S�1(s)f0(s). The PPC obtained using

Poisson-like variability is related to other forms of prob-
Please cite this article in press as: Ma WJ, et al., Spiking networks for Bayesian inference and ch

Box 2 A glossary of probabilistic codes

Many schemes for coding probability distributions in populations have been

linearly related to the probability that the stimulus is the preferred stimulus

related to the logarithm of the same probability. Convolution codes consid

with that neuron. Explicit probability codes and PPCs are compared in Fig

Code Encoding

Explicit probability code hrii / p(s = si) + constant

Log probability code ri ¼ ½alog pðs ¼ siÞ þ b�þ
Log likelihood ratio code r1 ¼ a log

pðs¼s1Þ
pðs¼s2Þ

þ b
h i

þ
Convolution code ri /

R
’iðsÞpðsÞds

Probabilistic population code Observed variability, p(rjs)

Here, [�]_+ denotes rectification, that is, nonzero values of the argument ar

other probabilistic codes. Applying Bayes’ rule and assuming a flat prior,

integrates to 1. This PPC is therefore similar to a convolution code, excep

population and can be estimated through logistic regression. The log proba

delta functions, hi(s) = d(s – si). This kernel would, however, not be compati
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abilistic coding (see Box 2). For instance, if elements of

the vector h(s) are Dirac functions, the PPC becomes

what is known as a log probability code, a code that has

been explored by several investigators [25,27,33,34].

Bayes-optimal computation with probabilistic
codes
The notion that populations encode probability distri-

butions suggests a new perspective on neural compu-

tation. Traditionally, neural computation is thought to be

a form of nonlinear function approximation [19]. In a

probabilistic setting, computations are better formalized

as probabilistic inferences. This means that when a

function is computed, the output population should

encode a probability distribution over function values.

Probabilistic inference also allows one to deal with

important computations that cannot be cast as function

approximations, such as cue combination. Psychophysical

experiments have revealed that the nervous system

indeed performs probabilistic inference and does so in

a nearly optimal way in a variety of tasks [3–13]. The

challenge now is to determine how these computations

are implemented at the neural level.

The answer to that question depends on the nature of the

neural code. For instance, let us consider a task in which

human subjects must combine tactile and visual infor-

mation to determine the width of an object, as in [4]. The

optimal solution to this task involves multiplying the

probability distribution over the width given by vision,

with the one specified by touch. If the brain uses the

Poisson-like PPC described above, one can show that this

multiplication of distributions can be implemented by

linearly combining the patterns of neural activity corre-

sponding to vision and touch [22��], see Figure 2. This

operation can be approximated well by a network

of spiking integrate-and-fire neurons. This framework
oice, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.07.004

proposed. In explicit probability codes, the mean activity of a neuron is

of that neuron. In log probability codes, single-trial activity is linearly

er the activity of a neuron as a vote for a particular function associated

ure 1. The following table compares several types of codes.

Decoding Refs.

Unclear; requires prior over distributions p(s) [23,24]

Winner-take-all [25,27]

Winner-take-all; limited to binary variables s [28,30]

p̂ðsÞ ¼
P

i
rici ðsÞP

i
ri

[26,51]

p(sjr) / p(rjs) p(s) [20,21]

e set to zero. A PPC with Poisson-like variability, Eq. (2), is related to

we find log pðsjrÞ ¼ hðsÞ � rþ F̃ðrÞ, where F̃ðrÞ is such that p(sjr)
t for the logarithm. The kernel h(s) is specified by the statistics of the

bility code is a special case, for which the components of the kernel are

ble with tuning curves and covariance structures found in real neurons.
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Figure 1

Comparison of explicit probability coding (EPC) and probabilistic population coding (PPC) for populations with bell-shaped (a–c) or monotonic (d–f)

tuning curves and independent Poisson noise. (a, d) Population patterns of activity (averaged over 10 trials for clarity) when the actual stimulus had

value 50 (arbitrary units). Example tuning curves are shown in the insets, and neurons are ordered by their tuning curves (in d, the ‘preferred stimulus’ is

the stimulus for which the tuning curve has the highest slope). The same population is shown for low (blue) and high (red) gain. (b, c, e, f) Distributions

over the stimulus encoded in the populations on a single trial, using EPC (b, e) or PPC (c, f), when gain is low (blue) or high (red). All distributions will

vary somewhat from trial to trial. In PPC, higher neural gain yields a sharper distribution, thus higher certainty (see c, f). In EPC, gain has no effect on

certainty (see b, e) and the distributions do not peak close to the actual value of the stimulus when tuning curves are monotonic (compare e, f).
predicts that the response of a multisensory population to

a multisensory stimulus is equal to the sum of its

responses to each of the corresponding unisensory stimuli

(plus or minus a constant, because, in a PPC, constant

terms have no effect on the posterior encoded in a

population [35]). Recent experiments in multisensory

integration have revealed that the majority of multisen-

sory neurons do indeed exhibit this form of additivity

[36]. If this finding holds in awake animals performing

optimal cue integration, this would provide strong support

for a Poisson-like PPC.

Cue integration is only one of many probabilistic com-

putations that the brain has to perform. Others include

integrating information over time in perceptual decision

making [37], deciding whether multisensory stimuli come

from the same physical object [38], running a Kalman

filter in sensorimotor control [39�], and combining infor-

mation from many locations in visual search. Recent

studies have even considered situations in which the

stimulus varies on a time scale comparable to the time
Please cite this article in press as: Ma WJ, et al., Spiking networks for Bayesian inference and ch
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scale of interspike intervals. In this case, the timing of

individual spikes becomes crucial [28,40�]. (Even for

constant stimuli, ignoring individual spike timing can

incur information loss [41].) More complex neural net-

work schemes have also been designed for (hierarchical)

Bayesian inference [27,29,42,52,53], but these were not

meant to describe actual neurons, or there is little exper-

imental data to test their validity.

Binary choice
As we have just pointed out, Bayesian inference can be

applied to a wide variety of problems, and this is particu-

larly true for decision making. When deciding between

two (or more) alternatives, the relevant quantity is the

probability that each of the alternatives is the correct

decision given the available evidence. Studies with awake

monkeys have revealed that the responses of LIP neurons

might indeed encode this probability [30]. In the most

recent of these, monkeys were sequentially presented

with four shapes, each of which provided probabilistic

evidence that choosing one of two targets would lead to
oice, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.07.004
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Figure 2

Optimal cue integration with probabilistic population codes [22��]. The cues elicit activity in input populations r1 and r2, indicated by green and blue dots

(neurons are ordered by their preferred stimulus). A simple linear combination of the population patterns of activity, r3 = W1r1 + W2r2, guarantees optimal

cue integration, if neural variability is Poisson-like. The dialog boxes show the probability distributions over the stimulus encoded in each population

on a single trial. Optimal cue integration is characterized by a multiplication of probability distributions over the stimulus, p(sjr3) / p(sjr1)p(sjr2). The

synaptic weight matrices W1 and W2 depend on the statistics of the input populations, but do not have to be adjusted over trials.
reward [43��]. The weight of the evidence and the

favored target were different for different shapes. It

was found that monkeys assigned subjective weights to

the shapes that were close to the shapes’ true weights.

Moreover, firing rates of LIP neurons varied linearly with

the log likelihood ratio in each epoch of a trial.
Please cite this article in press as: Ma WJ, et al., Spiking networks for Bayesian inference and ch

Figure 3

Schematic of probabilistic population coding for perceptual computation. O

encodes a probability distribution over the stimulus through Bayes’ rule. In p

these probability distributions have to be manipulated in specific ways to ac

between such probabilistic computations and neural operations on populatio

neural operations, the brain will retain full probabilistic information about the v

a motor action is generated or a high-level judgment is made (for example,

Current Opinion in Neurobiology 2008, 18:1–6
At first sight, these experiments suggest that neurons

respond in proportion to log likelihood ratios, or log

probabilities (see Box 2). There are, however, a variety

of arguments suggesting that this is unlikely to be the case

[22��,44]; for instance, it is not always possible to recover

the log odds of a decision solely from LIP activity under
oice, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.07.004

ne or multiple stimuli elicit population patterns of activity. Each pattern

erceptual tasks like cue combination, decision making, or visual search,

hieve optimality. Now the key problem is to establish a ‘dictionary’

n patterns of activity, assuming a form of neural variability. Using those

ariable(s) of interest at all intermediate stages of computation. Eventually,

about target presence in a visual search task).
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the assumption of a log probability code [44]. Moreover, the

data available so far are compatible with the PPC approach

we have just described [37]. Therefore, it is indeed quite

likely that LIP, and other cortical areas, encode probability

distributions for decisions, but the coding scheme may not

be as simple as a log probability code.

Conclusions
We have outlined recent work that shows that populations

of neurons can represent probability distributions (instead

of only single values) and perform Bayes-optimal com-

putations on them. Such computations, including cue

combination and decision making, provide important

quantitative tests for probabilistic codes (see Figure 3).

A good code should allow each computation to be imple-

mented using biologically realistic neural operations and

make physiological predictions for Bayes-optimal beha-

viors.

Although studies on the neural basis of Bayesian infer-

ence have focused on purely sensory processing, further

work should investigate generalizations to other domains,

such as motor control [12,45] and decision making with a

utility function [46]. Sensory and reward-based decisions

are often studied separately [47], but a complete theory of

Bayes-optimal neural computation should account for

tasks with both sensory uncertainty and nontrivial reward

schedules. Bayes-optimal behavior can also occur in high-

level cognitive tasks, such as generalizing from sparse

data [48��,49]. While little is known about the physio-

logical substrates of such behaviors, it is likely that they

are already amenable to theoretical approaches.
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