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SUMMARY

When making a decision, one must first accumulate
evidence, often over time, and then select the appro-
priate action. Here, we present a neural model of
decision making that can perform both evidence
accumulation and action selection optimally. More
specifically, we show that, given a Poisson-like distri-
bution of spike counts, biological neural networks
can accumulate evidence without loss of information
through linear integration of neural activity and can
select the most likely action through attractor
dynamics. This holds for arbitrary correlations, any
tuning curves, continuous and discrete variables,
and sensory evidence whose reliability varies over
time. Our model predicts that the neurons in the
lateral intraparietal cortex involved in evidence accu-
mulation encode, on every trial, a probability distribu-
tion which predicts the animal’s performance. We
present experimental evidence consistent with this
prediction and discuss other predictions applicable
to more general settings.

INTRODUCTION

Decision making affects all aspects of human behavior, on time

scales varying from seconds to hours to days. For instance,

imagine you are driving your car toward a busy intersection

and your brakes fail. Within a few hundred milliseconds, you

have to decide where to steer your car. Although this is a task

we handle relatively easily, in fact it involves three separate,

and nontrivial, stages. First, sensory evidence must be accumu-

lated over time. Here, the sensory evidence consists of the image

of cars and people in the intersection. Second, the accumulation

must be stopped at some point (waiting too long can have disas-

trous consequences in this situation). Third, an action must be

selected. This task is difficult because the sensory evidence

and the response are continuous variables, the reliability of the

sensory evidence is a priori unknown, and it can vary greatly
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over time. For instance, as you get closer to the intersection,

your ability to distinguish different objects improves. The reli-

ability of the visual information can also vary from day to day: it

is much easier to analyze the scene on a sunny day than on

a foggy one.

There is currently no neural model that can deal with this type

of decision optimally, where by optimal, we mean that the accu-

mulation of evidence is done without loss of information and that

the chosen option is the most likely one given the sensory

evidence (we do not address the issue of when to make the deci-

sion; see Discussion). Yet, it is essential to understand optimal

decision making in the face of multiple choices and unknown

and time-varying reliability, since most decisions we make fall

into this category. Most models are concerned only with binary

decision making, and even with this limitation, cannot deal opti-

mally with sensory evidence of unknown and continuously

changing reliability. This problem is conceptual: these models

have no clear probabilistic interpretation or, when they do, are

limited to situations in which the evidence has a constant and

known reliability over time and over trials. As a result, it is unclear

how, or even if, they are related to the general case we consider

in this paper.

Here, we present the first neural model of decision making

that performs sensory evidence accumulation and response

selection optimally when there are multiple or a continuum of

possible decisions and the reliability of the sensory input varies

over time or across trials. This model is built around the obser-

vation that spike counts in the brain are close to what we call

‘‘Poisson-like’’ (Ma et al., 2006; Shadlen and Newsome, 1998;

Tolhurst et al., 1983). Given this observation, our main contribu-

tions are twofold. First, we show that for Poisson-like distribu-

tions, optimal evidence accumulation can be performed through

simple integration of neural activities, while optimal response

selection can be implemented through attractor dynamics.

Second, we show (again for Poisson-like distributions of neural

activity) that neurons encode the posterior probability distribu-

tion over the variables of interest at all times. This latter contri-

bution has far-reaching implications, since it suggests that

neurons implicated in simple perceptual decisions represent

quantities that are directly relevant to inference, confidence,

and belief.
.
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When accompanied by a termination rule, our model, like

a number of others (Ditterich et al., 2003; Gold and Shadlen,

2007; Laming, 1968; Link, 1992; Link and Heath, 1975; Mazurek

et al., 2003; Ratcliff and Rouder, 1998; Reddi and Carpenter,

2000; Smith and Ratcliff, 2004; Stone, 1960; Usher and McClel-

land, 2001; Wald, 1947; Wald and Wolfowitz, 1948) accounts for

the speed-accuracy tradeoff reported in humans and monkeys

for binary choices. However, it goes beyond previous neural

models in three ways. First, it captures the speed-accuracy

trade-off and the physiology of LIP cells in experiments involving

four choices. Second, as previously indicated, it predicts that

neural activity in LIP encodes a probability distribution over

actions. This is a new prediction about the response of LIP

neurons, which we have tested and verified using data from area

LIP recorded while monkeys engaged in a decision among two

or four alternatives. Third, it makes predictions for the responses

ofcells inLIP andSC when there aremultiple choices, a continuum

of choices, and when the reliability of the cue varies over time.

RESULTS

Task and Model Architecture
For concreteness, we consider a motion direction task that has

been extensively used to study decision making in humans

and animals. In this task, an observer sees a random-dot kine-

matogram in which a fraction of the dots move coherently in

a particular direction while all the other dots move randomly (Fig-

ure 1A). The task of the observer is to report the direction of

motion with a saccadic eye movement to a choice target that

is associated with that direction of motion. The reliability of the

sensory evidence can be controlled by changing the percentage

of dots moving coherently. In most experiments, this task is

restricted to binary decision making (right versus left) and

constant coherence over the course of a trial. We also consider

a more general setting in which the mean direction of moving

dots and the direction of the saccade can take any value

(Figure 1B) and the reliability of the motion information (the

coherence) can vary not only across trials, but also during a trial.

A minimal model of this task (and, in fact, any decision-making

task that involves integrating evidence over time) requires three

distinct populations of neurons: an input layer, an evidence

accumulation layer, and a readout layer where motor output is

generated (Figure 1C). Here, we label these MT (middle

temporal), LIP (lateral intraparietal), and SCb (superior colliculus,

in particular those cells that exhibit a motor burst; hence the

index ‘‘b’’), based on what is known about the functions of these

regions. These labels are used for convenience only: it is quite

likely that the sensory integration involves many other cells

beside the ones in LIP, and that the motor burst is not generated

solely in the SC.

Bayesian Formulation
We denote the population activity of M neurons in area MT at

time tn by a vector rMT(tn) (see Figure 1C for an example), where

rMT h {r1
MT,., rM

MT} and ri
MT(tn) is the spike count of neuron i in

the time interval [(n-1)dt, ndt]. In our simulations we set dt to

50ms, although our results are insensitive to that choice.

The stimulus is characterized by a direction of motion, s, and

task-irrelevant variables such as contrast and motion coherence,

which we refer to as nuisance parameters and collectively

denote c (where c = {c(t1),c(t2),.,c(tN)}). When a stimulus (s,c)

is presented, MT generates a series of patterns of activity over

time, denoted rMT(t1:tN) h {rMT(t1),., rMT(tN)}. Because of neural

variability, rMT(t1:tN) is not the same on every presentation of

Figure 1. Task and Network Architecture

(A) Binary decision making. The subject must

decide whether the dots are moving to the right

or to the left. Only a fraction of the dots are moving

to the right or the left coherently (black arrows).

The other dots move in random directions. The

animal indicates its response by moving its eyes

in the perceived direction (green arrow).

(B) Continuous decision making, for which the

dots can move in any direction. The animal

responds by making a saccade to the outside

circle in the perceived direction.

(C) Network architecture. The network consists of

three interconnected layers of neurons with

Gaussian tuning curves. In MT, the tuning curves

are for direction of motion, while in LIP and SCb,

the tuning curves are for saccade direction. The

layers differ by their connectivity and dynamics.

The LIP neurons have a long time constant (1 s),

allowing them to integrate their input, and lateral

connections, allowing them to implement short-

range excitation and long-range inhibition. The

SCb layer forms an attractor network, for which

smooth hills of activity are stable regardless of

their position. The blue dots indicate representa-

tive patterns of activity 200 ms into a trial for the

MT and LIP layer and at the end of the trial for

the SCb layer.
Neuron 60, 1142–1152, December 26, 2008 ª2008 Elsevier Inc. 1143
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(s,c), but follows a probability distribution p(rMT(t1:tN)js,c). If we

assume that the activity is uncorrelated on timescales of

50 ms, this distribution can be written as a product over time,

p
�
rMTðt1 : tNÞ

��s;c�=
YN

n = 1

p
�
rMTðtnÞ

��s; cðtnÞ
�
:

Given a series of activity patterns rMT(t1:tN) and assuming that

one knows c, the optimal strategy for inferring the direction of

motion is to apply Bayes’ rule to compute a probability distribu-

tion over s, given rMT(t1:tN). If the prior on s is flat, this so-called

posterior distribution is given by

p
�
s
��rMTðt1 : tNÞ;c

�
f
YN

n = 1

pðrMTðtnÞjs;cÞ
pðrMTðtnÞjcÞ

: (1)

This distribution captures everything there is to know about s

given all the data from MT since the beginning of the trial, and

as such, it retains all the information in the MT activity. Therefore,

if the brain uses a Bayesian approach to decision making, the

goal of the accumulation layer (LIP) should be to generate

a pattern of activity at time tn that encodes this distribution

(Equation 1). An even better solution would be to encode a poste-

rior distribution p(sjrMT(t1:tN)) that does not depend on c, the

nuisance parameters (or in the jargon of probabilistic inference,

a posterior in which c has been marginalized out; pðsjrMTÞ=R
dcpðsjrMT; cÞpðcjrMTÞ). This would allow downstream areas to

perform optimal computations over LIP activity without having

to estimate the nuisance parameters. In other words, we should

seek a set of feedforward connections between MT and LIP, and

lateral connections within LIP, such that

p
�
s
��rLIPðtNÞ

�
= p
�
s
��rMTðt1 : tNÞ

�
: (2)

It is critical to note that the approach we have just outlined

requires that neural responses in MT and LIP represent proba-

bility distributions. In MT, rMT(tn) represents p(sjrMT(tn)), which

is obtained from the response distribution, p(rMT(tn)js) (some-

times called the noise distribution) through Bayes’ rule:

p(sjrMT(tn)) f p(rMT(tn)js), (we are assuming a flat prior over s

for this encoding step; nonflat priors can be incorporated into

our approach but are not central to the current argument). The

same idea also applies to LIP. We refer to populations that repre-

sent probability distributions in this way as probabilistic popula-

tion codes (Ma et al., 2006). The existence of such codes is

central to our approach: neurons represent probability distribu-

tions via Bayes’ rule and, as a result, neural computations,

such as accumulation of evidence, can be optimized by tailoring

neural operations to the encoded distributions.

Once the accumulation is stopped, an action must be

selected. The optimal strategy under many reasonable cost

functions is to choose the action corresponding to the most likely

stimulus. This value, denoted bs, is given by

bs = argmax
s

p
�
s
��rMTðt1 : tstopÞ

�
; (3)

where tstop is the stopping time. Note that, for simplicity, we use

the same variable s to refer to both the direction of motion and

the direction of a saccade, since they are indistinguishable in

this experiment.
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In a minimal optimal network, the third layer should encode the

estimate, bs, as a stereotyped motor command. This is a task for

which attractor networks are ideally suited, because they can

take a noisy hill of activity as input and produce a smooth hill

of stereotyped shape and height as output (Zhang, 1996) (see

top layer in Figure 1C). Stereotyped hills like these are observed,

for instance, in the motor layer of the superior colliculus (SC),

where the position of the peak of a hill determines the direction

and amplitude of the upcoming saccade (Lee et al., 1988). The

fact that the hill is smooth in Figure 1C might appear unrealistic,

but see the Supplemental Data available online for why this is in

fact not a significant concern.

The question we address in the rest of the paper is how to

implement optimal accumulation (Equation 2) and optimal

response selection (Equation 3) in neural hardware.

Optimal Network
Not surprisingly, the network connectivity needed to achieve

optimality depends strongly on how the information about the

stimulus is represented in MT, which in turn depends on the

structure of the neuronal variability. Here, we assume that

the variability in MT conditioned on the value of a stimulus

belongs to the exponential family with linear sufficient statistics

(Ma et al., 2006). This choice is a natural one, since it is consistent

with experimental measurements in a wide range of cortical

areas (Ma et al., 2006). Specifically, we assume that p(rMT(tn)js,

c(tn)) has the form

p
�
rMTðtnÞ

��s; cðtnÞ
�

= F
�
rMTðtnÞ; cðtnÞ

�
exp

�
hðsÞ,rMTðtnÞ

�
(4)

where F(rMT(tn), c(tn)) is an arbitrary function of rMT(tn) and c(tn),

and ‘‘$’’ is the standard dot product: h(s)$rMT(tn) = Sihi(s)ri
MT(tn).

Note that the nuisance parameter, c(tn), does not appear in the

kernel h. In the rest of the paper, we refer to distributions with

the property that h depends only on s as Poisson-like.

Independent Poisson variability is a special case of the Pois-

son-like family, with hi(s) being the log of the tuning curve of

neuron i. Importantly, correlated neuronal responses (as

observed in the brain) are also in the Poisson-like family,

although there are restrictions on the nuisance parameters (Ma

et al., 2006). These restrictions arise because h(s) is not indepen-

dent of the tuning curves and the covariance matrix, but is

related via

h0ðsÞ= S
�1ðs; cðtnÞÞf0ðs; cðtnÞÞ (5)

where f(s,c(tn)) is the tuning curve (the mean of r as a function

of s), a prime denotes a derivative with respect to s, and

S(s,c(tn)) is the covariance matrix of r. Since the right-hand

side of Equation 5 depends on c(tn) and the left-hand side

does not, satisfying this equation is not trivial. There is, however,

a rather natural condition under which it is satisfied: c(tn) is

contrast (Sclar and Freeman, 1982). This is because contrast

has a multiplicative effect on both tuning curves (Anderson

et al., 2000; Sclar and Freeman, 1982) and covariance (Gershon

et al., 1998; Kohn and Smith, 2005; Tolhurst et al., 1983), so

f0(s,c(tn)) is proportional to some monotonic function g(c(tn)),

S�1(s,c(tn)) is proportional to 1/g(c(tn)), and thus the c(tn) depen-

dence disappears from the right-hand side. (This is also the case
.
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when c(tn) is stimulus intensity for tactile stimuli.) Whether or not

Equation 5 is satisfied for other nuisance parameters must be

checked on a case-by-case basis.

If the activity in MT satisfies Equation 4, then we can insert

Equation 4 into Equation 1, and we see that the right-hand side

is independent of c. Thus, the probability of the stimulus given

the entire history of MT activity is given by

p
�
s
��rMTðt1 : tNÞ

�
fexp

 
hðsÞ,

XN

n = 1

rMTðtnÞ
!

(6)

where the constant of proportionality depends on MT activity

but not on s. Consequently, when the prior is flat, we see that

Equation 2 is satisfied if the LIP activity is constructed by simply

adding the MT activity,

rLIPðtNÞ=
X

n = 1

N
rMTðtnÞ: (7)

The problem with this simple summing operation, however, is

that LIP activity would saturate very quickly. Fortunately, it is

possible to show that global inhibition can be used to alleviate

this problem while preserving optimality (see Supplemental

Note).

Finally, to guarantee that the SCb activity peaks at the optimal

location (at bs in Equation 3 and in Figure 1C), we must introduce

recurrent connectivity so that the SCb layer can support a hill of

activity without input. In addition, input to the SCb must be

gated, so that it receives no input until decision time. Once

a decision is made, the instantaneous activity in the LIP layer is

used to initialize the SCb activity. After initialization, the LIP

activity is removed, and the SCb layer evolves under its own

dynamics. As shown in the Supplemental Note, if the neuronal

variability is Poisson-like in LIP, the SCb layer peaks at bs when

vySCðsÞfh0ðsÞ (8)

where vySCðsÞ is the left null eigenvector of the Jacobian evalu-

ated on the attractor implemented by the SCb and h0(s) is the

same function that appears in Equation 5. Importantly, vySCðsÞ
can be tuned to satisfy Equation 8 by adjusting network param-

eters such as the weights of lateral connections in SCb. Conse-

quently, when the neuronal variability is Poisson-like in LIP, there

exists a set of parameters for which the superior colliculus gener-

ates a maximum-likelihood estimate.

Note that if the variability in LIP is not Poisson-like, attractor

dynamics is no longer guaranteed to be optimal. In fact, there

is no known optimal network for most distributions. It is therefore

quite remarkable that, of all distributions, the cortex appears to

exhibit those for which attractor dynamics can be tuned to be

optimal.

Implications of Optimality
There are several important features of our network that are

somewhat hidden by the above analysis. First, if the neurons

are Poisson-like, Equation 7 leads to optimal accumulation of

evidence (i.e., Equation 2 is satisfied) even when the reliability

of the sensory information varies from trial to trial or over the

course of a single trial. This might sound counterintuitive at first.

Consider, for example, an image whose contrast increases over
N

time. Since the data become progressively more reliable, the

decision should be based more strongly on the information

acquired at later times. A way to implement this would be to

boost the weights from MT onto LIP as the contrast increases.

However, this reweighting would have to be done on very short

timescales and would require a constantly updated and reliable

estimate of contrast. With Poisson-like variability, there is no

need to reweight the input over time, because both MT and

LIP represent probability distributions at all times and in a manner

which is invariant to the value of contrast. This is easy to see in

the case of contrast: as contrast increases, the reliability of the

sensory evidence increases, but so does the amplitude of the

population activity in MT. Since the MT activity is added on top

of LIP activity, its impact scales with its amplitude, and therefore,

in proportion to its reliability.

A second feature of our network is that the reliability of the data

(encoded in the nuisance parameters, c) plays no role in esti-

mating the stimulus, in the sense that even if we knew c our esti-

mate of the posterior over the stimulus would not improve. This is

a strong result, and one that is highly unusual in Bayesian infer-

ence. Much more typical is that the nuisance parameters are

either estimated, or integrated out of the posterior, both of which

introduce additional uncertainty in the inference process. The

ramification of this is that, assuming no loss of information in pro-

cessing after the SCb layer, the posterior in LIP exactly reflects

the behavioral performance. For instance, if the posterior in LIP

on a given trial is Gaussian with a standard deviation of 10� at

decision time, and the decision involves computing the

maximum-likelihood estimate, the discrimination threshold of

the animal should be around 10� as well, across multiple trials

of the same type. As we will discuss later, this prediction can

be tested with existing data. Importantly, this prediction does

not apply to the SCb layer in our model: instead, variability in

this region, estimated on a trial-by-trial basis, would encode

the motor error for the saccadic eye movement.

Evidence Accumulation: Simulation Results
We have shown so far that if the responses of MT neurons have

Poisson-like statistics, optimal evidence accumulation can be

performed by adding spikes over time, and optimal action selec-

tion can be performed with a single attractor network. Impor-

tantly, the attractor network can extract the maximum-likelihood

estimate of the stimulus, s, without any need to know either the

nuisance parameters, c, or how much time has elapsed since

the start of the trial (M.N. Shadlen et al., 2006, Soc. Neurosci.,

abstract).

These results are important but they are based on assump-

tions that are not necessarily exactly true in vivo. For instance,

real neurons do not simply add spikes over time. Moreover,

the response of MT neurons to random-dot kinematograms

may not be exactly Poisson-like (in fact, it is not exactly Pois-

son-like according to the current models of MT; see Experi-

mental Procedures). It is therefore essential that we test our

theory in biologically realistic networks. In particular, we want

to address two critical questions in the simulated network: (1)

Does the LIP layer accumulate evidence optimally? (2) Can

a single attractor network extract the maximum-likelihood esti-

mate from LIP activity, for all coherences and at all times?
euron 60, 1142–1152, December 26, 2008 ª2008 Elsevier Inc. 1145
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Figure 2. Binary Decision Making (as Illustrated in Figure 1A)

(A–C) model; (D) data.

(A) Firing rate in LIP at four different times for a coherence of 51.2%. The direction of the moving dots is 180�.

(B) Probability distributions encoded by the firing rates shown in a averaged over 1000 trials. As expected, the probability of the 180� direction goes up while the

probability of the 0� direction goes down.

(C) Firing rate over time for two units tuned to 180� (solid line) and 0� (dotted lines) for six different levels of coherence. These averages were obtained over trials for

which the model’s choice was 180�.

(D) Same as in (B) but for actual neurons in LIP (n = 45). Data from Roitman and Shadlen (2002). The model and the data show similar trends.
For these simulations, we use a network similar to the one de-

picted in Figure 1C. For the LIP layer, we use linear-nonlinear-

Poisson (LNP) neurons (Plesser and Gerstner, 2000) with

a long time constant (1 s) (Renart et al., 2003) (see Experimental

Procedures for details). We use LNP neurons because they

provide a good approximation to real neurons, while producing

spikes with realistic count statistics close to the exponential

family (Paninski, 2004; Plesser and Gerstner, 2000). The LIP layer

receives spatially correlated spike trains from area MT (Britten

et al., 1993; Zohary et al., 1994). The feedforward connections

from MT to LIP, which are purely excitatory, connect neurons

with similar direction preferences using a Gaussian weighting

profile. The LIP layer also has lateral connections with short-

range excitation and long-range inhibition; i.e., the weights are

excitatory between neurons with similar preferred directions

and inhibitory otherwise. The inhibition is used to prevent satura-

tion. Finally, rather than constructing the SCb network, we make

use of the fact that the line attractor implements a local linear

estimator which can be tuned to be optimal (Deneve et al.,

1999; Latham et al., 2003; see Supplemental Note).

We focus first on the binary case, for which dots move at either

0� or 180�. Figure 2A shows the average activity in the LIP layer

over time for a stimulus moving at 180�. The average posterior

distribution encoded by these activity patterns is illustrated in Fig-

ure 2B. As expected, the probability corresponding to 180� grows
1146 Neuron 60, 1142–1152, December 26, 2008 ª2008 Elsevier Inc
over time while the probability corresponding to 0� decreases. In

Figure 2C, we show firing rate versus time for all coherences and

for the neurons optimally tuned to 180� and 0�. The neurons in the

model behave quantitatively like actual LIP neurons, as can be

seen in Figure 2D (data from Roitman and Shadlen (2002)).

To determine whether the LIP layer accumulates evidence

optimally, we first consider experiments in which coherence is

fixed within a trial. Here, we take ‘‘optimal’’ to mean that when

LIP updates its estimate of the direction of motion of the moving

dots, it takes into account both its own uncertainty about direc-

tion and the uncertainty in MT. From a quantitative point of view,

this implies that the expected log odds of making a correct

choice (log[pcorrect/(1-pcorrect)] where pcorrect is the probability of

making a correct choice) grows linearly with time, because the

evidence is provided at a constant rate (see Experimental Proce-

dures). Moreover, the slope should increase with coherence, and

if the coherence changes during the trial, so should the slope.

Figure 3A shows that the log odds do indeed grow linearly with

time, and the larger the coherence, the faster it increases.

Furthermore, if we double or quadruple the coherence at time

t = 100 ms, the slope of the log odds changes to the correct slope

within 100 ms (Figure 3A, dotted lines).

We repeated these simulations for the continuous case, where

the stimulus can move in any direction. Figure 4A shows the time

evolution of the firing rate in LIP and Figure 4B shows the average
.
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Figure 3. Log Odds and Fisher Information as

a Function of Time

The origin (t = 0) on all plots corresponds to the start of

the integration of evidence, which about 220 ms after

stimulus onset in the experimental data. (A–C) model;

(D) data.

(A) Log odds for a binary decision as a function of time

for four different levels of coherence (solid lines). Blue

and black dotted lines: the coherence increases to

51.2% at t = 100 ms. After 100 ms, the slope matches

the 51.2% coherence trials, as expected if the model is

Bayes optimal.

(B) Fisher information as a function of time for contin-

uous decision making (as in Figure 1B). Fisher informa-

tion rises linearly with time, with higher slopes for

higher coherences, as expected for Bayesian opti-

mality. Dotted line: trial in which the coherence

increases from 25.6% to 51.2%. In both (A) and (B),

the kink at t = 50 ms is due to the discretization of time.

(C) Squares: Fisher information estimated by a single

local linear estimator across all times and all coher-

ences. Circles: Fisher information estimated by a local

optimal estimator trained separately for each time and

each coherence. Dotted lines: for each coherence, the

upper line corresponds to the information estimated

from the training set, while the lower trace is the infor-

mation obtained from the testing set. The solid line is

the average of the upper and lower dotted lines. The

fact that both estimators return similar values of Fisher

information shows that decoding LIP can be done nearly optimally without any knowledge of time or coherence. Green line: trials in which the coherence starts at

25.6% and then switches to 51.2% at 100 ms.

(D) Same as in (A) but for actual LIP neurons (n = 45; data from Roitman and Shadlen, 2002). The results are quantitatively similar to the model. The y axis is

arbitrary up to a multiplicative factor and a DC offset.
posterior distributions encoded by this activity. As evidence

accumulates in favor of 180�, the activity at 180� increases and

the probability distribution becomes narrower. To determine

whether this accumulation process is optimal, we can run the

same test as in the binary case, except this time we use the

average of the inverse of the variance of the posterior distribu-

tions (the Fisher information [Papoulis, 1991]) rather than the

log odds. Figure 3B shows that, indeed, Fisher information

increases linearly with time and the slope is an increasing func-

tion of coherence. Furthermore, when the coherence increases

during the trial, so does the slope.

We now turn to the second question: can the maximum-likeli-

hood estimate be computed from LIP activity, for all coherences

and at all times, with a single attractor network? Because attrac-

tor networks are mathematically equivalent to local linear esti-

mators (Deneve et al., 1999), this question can be rephrased

as: is the performance of a single local linear estimator similar

to the performances of a family of estimators, each specialized

for one time and one coherence? Figure 3C shows that the Fisher

information recovered by the specialized linear estimators is

indeed very similar to the information recovered by a single

one, hence demonstrating that a single attractor network can

optimally decode LIP for all coherences and at all times.

Finally, we performed another test, now at decision time. With

our framework, the network encodes a probability distribution at

all times and in particular at decision time. This distribution

reflects the quality of the data that have been accumulated

and, consequently, the performance of the animal. Hence, for
N

both two- and four-choice experiments, the log odds estimated

in the LIP layer should be higher at high coherence than at low

coherence, since the performance of the animal is better in the

former case. Figures 5A and 5B show that our model behaves

as predicted. Note the important distinction with single-race

bounded accumulation models (Bogacz et al., 2006; Huk and

Shadlen, 2005; Link, 1992; Link and Heath, 1975; Ratcliff and

Rouder, 1998). In such models, the state of the system is charac-

terized by the value of the accumulation process. When the

bound is hit, this value is always the same (Gold and Shadlen,

2001; Link, 1992; Shadlen et al., 2006a). Thus, there is no princi-

pled way to recover the probability that the decision is

correct. An ad hoc solution has been proposed for two race

models (Vickers, 1979), but it was not derived from probabilistic

principles, and does not readily generalize to more than two

choices.

Speed-Accuracy Tradeoff
When monkeys are tested on our decision making task in which

they are free to choose when to respond, their psychometric and

chronometric functions follow the profiles shown in Figures 6A

and 6B. To obtain these curves with our model, we used a stop-

ping rule similar to the one used in most models: a fixed bound

on the maximum activity in the network (see Experimental Proce-

dures). As can be seen, our model readily captures the perfor-

mance and reaction time reported in monkeys whether the

task involves two or four choices (data from Churchland et al.,

2008). Moreover, the rate at which activity builds up on average
euron 60, 1142–1152, December 26, 2008 ª2008 Elsevier Inc. 1147
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in the LIP layer of the model as a function of coherence and

number of choices is similar to what has been reported in vivo

(see Figure 7).

Experimental Predictions
Our model makes two experimentally testable predictions. The

first is that the population response in LIP encodes a probability

distribution over the stimulus and, more importantly, that this

distribution reflects both the reliability of the evidence and the

performance of the animal. Therefore, we predict that if the pop-

ulation activity in LIP is decoded with the same method used in

our simulations, the results will match those shown in Figures

3A and 3B and Figure 5A. Rigorously testing this prediction

requires multiunit recordings in LIP, which are not currently avail-

able. However, we can test it qualitatively with the spike trains

obtained from single cell recordings (Roitman and Shadlen,

2002). If the spikes trains in LIP reflect the quality of the sensory

data, the expected log odds computed from these spike trains

should grow linearly with time, and the rate of growth should

be proportional to coherence. We have performed this analysis,

and this is indeed what we found, as illustrated in Figure 3D.

Furthermore, if these odds reflect the performance of the animal,

we should find that the log odds in LIP at decision time grows

with coherence for both the two- and four-choice experiment

(since performance improves with coherence). Again, this is

what we observed (Figure 5B).

Recent experiments suggest that a similar property may hold

for buildup cells in the superior colliculus (Kim and Basso, 2008;

Ratcliff et al., 2006). For instance, Kim and Basso (2008) have re-

corded simultaneously from neurons responding to the selected

Figure 4. Continuous Decision Making (as Illustrated in Figure 1B)

(A) Firing rates of model neurons in LIP at four different times for a coherence of 51.2%. The direction of the moving dots is 180�.

(B) Probability distributions encoded by the firing rates shown in (A) averaged over 1000 trials. As expected, the peak of the distribution is close to 180� and the

variance of the distribution decreases over time.

Figure 5. Average Log Odds at Decision Time

Computed from the Model and Data for the

Two- and Four-Choice Experiments

(A) Average log odds at decision time for a two-choice

experiment estimated from two neurons in the LIP

layer of the model tuned to 0� and 180� on trials for

which the model selected 180�. The average log

odds is defined as the log of the ratio of the probability

that the direction is equal to 180� to the probability that

it is equal to 0� averaged over trials.

(B) Same as in (A) but for the four-choice experiment

(for consistency with the two-choice experiment, we

use log odds in the four-choice experiment).

(C) Same as in (A) but for actual LIP neurons (n = 45) in

the two-choice experiment (dotted line, data from

Roitman and Shadlen, 2002; solid line, data from

Churchland et al., 2008).

(D)Same as in (B)but foractualLIPneurons (n= 51–70) in

the four-choice experiment (data from Churchland et al.,

2008). In both (C) and (D), the log odds increases with

coherence. Since higher coherence also implies higher

performance, logodds also increaseswithperformance.

This is indeed what is expected if the posterior encoded

in LIP reflects the quality of the data and, at decision

time, the performance of the animal. On these plots, the

y axis is arbitrary up to a multiplicative factor.

The method used to obtain the error bars is described in

the Supplemental Data.
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target and neurons responding to the distractors in a four-choice

experiment. They reported that the difference in activity between

these neurons increases with performance. Under the assump-

tion of Poisson-like neural variability, this difference would lead

to an increase in the posterior probability assigned to the target

as a function of performance.

As additional multiunit data become available, it will be inter-

esting to test our predictions more quantitatively. In particular,

it will be important to determine whether the population of firing

rates representing evidence for competing directions affects

confidence judgments. It will also be important to determine

whether a decoder that has knowledge of time and coherence

performs better than a decoder that does not have such knowl-

edge, and whether or not this additional information is accessible

to the animal. As shown in Figure 3C, our model predicts that

there should be little difference.

The second experimental prediction concerns the time

evolution of the population activity in LIP. As can be seen in

Figure 4A, the width of the population activity does not change

over time (once the curves are normalized for height and the

baseline is removed), in contrast to the decoded probability

distribution, which gets narrower as time progresses (Figure 4B).

This prediction is slightly weaker, since a population code with

an invariant width is a sufficient but not a necessary condition

for our proposed model. Nonetheless, the finding that the width

of the population activity is invariant over time would be consis-

tent with our model, while ruling out codes in which neural activ-

ities are proportional to probability (Barber et al., 2003; Eliasmith

and Anderson, 2003).

DISCUSSION

We have shown that when the variability in spike count is Pois-

son-like, integration of evidence and action selection can be per-

formed optimally in networks of spiking neurons, even when the

variables involved are continuous and the reliability of the data

changes over time. This result might explain why spike counts

appear to follow Poisson-like distributions throughout most of

the cortex: this particular format greatly simplifies optimal

Bayesian inference for decision making.

We have also shown that performance is near-optimal even

when the distribution of spike counts is not exactly Poisson-

like (see Figure 3C) but instead follows the experimentally

observed distribution in MT in response to random-dot kinema-

tograms. It would be interesting to explore how far one has to be

from the Poisson-like family before there is significant departure

from optimal Bayesian inference. If a stimulus could trigger

such non-Poisson statistics in the brain, we could test

whether subjects’ performance degrades as predicted by our

model.

At first glance, it might appear that our model does not differ

much from previous neural models of decision making (Machens

et al., 2005; Mazurek et al., 2003; Ratcliff and Rouder, 1998;

Reddi and Carpenter, 2000; Smith and Ratcliff, 2004; Usher

and McClelland, 2001; Wang, 2002; Wong and Wang, 2006).

Previous neural models have indeed shown that a neural inte-

grator can capture the behavior of subjects in a binary decision

task, as can a point attractor network. They have even provided

a probabilistic interpretation of the neural integration in terms of

accumulation of log odds. It is important to emphasize, however,

that these models, and their probabilistic interpretations, apply

under very restrictive conditions and do not generalize to real-

world problems. In particular, in the context of estimating motion

direction, they cannot handle decision making over continuous

choices, or time- or trial-varying coherence. For example, the

notion that LIP neurons are effectively accumulating log odds

when they integrate the difference in activity of MT neurons

with opposite preferences is true only for binary decisions and

fixed coherence (Gold and Shadlen, 2001). This notion does

not generalize easily to multiple directions (Bogacz and Gurney,

2007; McMillen and Holmes, 2006) and does not generalize at all

to time- and trial-varying coherence.

The general case requires that we deal with the difficult

problem of hidden variables: how do we extract information

about a variable (e.g., direction) from neural activity which is

influenced by other, hidden variables (e.g., coherence) whose

value is unknown and varies over time? This is one of the hardest

problems faced by the brain, and no general solution has been

provided in the context of decision making. Here, however, we

have found a solution that can be implemented with biologically

plausible mechanisms. Moreover, this solution led to a strong

prediction which is that the log odds (or the posterior distribution

in the case of multiple or continuous choice) are available on

a trial-by-trial basis in LIP at all times and in particular at decision

time (without any knowledge of coherence or time). As shown in

Figure 5, the responses of LIP neurons in vivo are consistent with

this prediction.

Our probabilistic framework also helps to clarify the benefits

and limitations of using point attractor (Machens et al., 2005;

Wang, 2002; Wong and Wang, 2006) or line attractor dynamics

(Furman and Wang, 2008) for accumulation of evidence in deci-

sion making. Line attractor dynamics are a good way to perform

Figure 6. Performance and Reaction Time for the Model versus

Monkeys

(A) Probability of correct responses as a function of coherence. Blue: two-

choice experiment. Red: four-choice experiment. Solid lines: model.

Closed circles: data from Churchland et al. (2008).

(B) Reaction time as a function of coherence. Legend as in (A).
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Tin: neurons tuned to the direction of the stimulus.

Tout: neurons tuned to a direction 180� away from

the stimulus direction. T90: neuron tuned to a direc-

tion 90� away from the stimulus direction. Blue:

two-choice experiment. Red: four-choice experi-

ment.

(A) LIP data from Churchland et al., 2008.

(B) Model.
optimal action selection (as we do in the SCb layer), but not

optimal evidence integration (which is why we do not use it in

the LIP layer). Moreover, attractor dynamics can provide an

optimal solution for action selection, but, importantly, only for

a limited family of distributions, one of which is Poisson-like.

This is a critical point, as it emphasizes the strong link between

the response distribution and optimal inference.

Our framework is sufficiently powerful that it can be extended

in several directions, including incorporating prior information,

dealing with time-varying stimuli, and taking into account

nontrivial reward functions when selecting actions. This last

extension is critical. We have shown how the evidence accumu-

lation and the response selection can be optimized in neural

circuits, but we have not shown how to optimize reward rates.

Optimizing reward rate is a complex problem that depends

crucially on the cost function and the stopping process (Kiani

et al., 2008). This lies beyond the scope of the present paper,

but it is an important issue, which we intend to explore in future

studies. It remains to be seen if it can be incorporated in the PPC

framework. We believe that a promising idea is to explore

whether LIP encodes the expected reward as a function of

saccade direction and amplitude. Recent experimental data

suggest that LIP might indeed represent either expected reward

for all actions or the probability that an action will maximize

reward (Platt and Glimcher, 1999; Sugrue et al., 2004). Either

way, our framework should be applicable, since these quantities

are similar to probability distributions over stimulus values.

EXPERIMENTAL PROCEDURES

Network Simulations with LNP Neurons

The MT layer contained 100 stochastic spiking neurons with bell-shaped

tuning curves to direction of motion. At each time step, the probability of

a spike in neuron i was determined according to

p
�
rMT
i ðtnÞ= 1

�
= ½dtðcDd exp ðKMTðcosðs0 � siÞ � 1ÞÞ+ dnullc + rspontÞ+ ni �+

where ri
MT(tn) is the response of neuron i within the interval [tn-dt, tn], s0 is the

direction of motion of the random dots, si is the preferred direction of neuron

i, c is the percentage of dots moving in direction s0 (the coherence level), Dd

is the difference in drive between the preferred and null directions (dpref-dnull),

dnull is the drive in the null direction, rspont is the spontaneous firing rate, ni is

a random variable used to induce correlations, and [$]+ is the threshold-linear

operator: [x]+ = max(0, x). The parameters of the model were: dpref = 0.4, dnull =

�0.2, rspont = 20, KMT = 4 (as reported in MT [Britten et al., 1993]), dt = 1 ms.

Note that in the equation above, the coherence c cannot be factored out of

the equation. As a result, the spike statistics in MT are not exactly in the Pois-
1150 Neuron 60, 1142–1152, December 26, 2008 ª2008 Elsevier Inc
son-like family as defined in Equation 4, because the kernel h(,) depends on

both s and c.

The noise ni consisted of independent Gaussian noise convolved with

a circular Gaussian kernel,

ni =
X

j

Ah exp ðKhðcosðsi � sjÞ � 1ÞÞhj ;

with all hj drawn independently from a zero-mean Gaussian distribution and

Kh and Ah set to 2 and 10�5, respectively. These were chosen so that the

average correlation coefficients in spike trains were approximately 0.2

between neurons whose preferred directions differed by less than 90�, and

approximately 0 for neurons whose preferred directions differed by more

than 90�. These values are close to the ones that have been reported

in vivo (Zohary et al., 1994).

In the LIP layers, we used 100 Linear-Nonlinear-Poisson (LNP) neurons. In

the linear step, the membrane potential proxy of neuron i, denoted mi(tn), is

obtained from

miðtn + 1Þ=
�

1� dt

t

�
miðtnÞ+

1

t

 X
j

W ff
ij r

MT
j ðtnÞ+

X
j

Wrec
ij rLIP

j ðtnÞ
!

+ uðtnÞ (9)

where W ff
ij and Wrec

ij are the matrices for the feedforward and recurrent weights,

respectively, and u(t) is an urgency signal (see below). The time constant, t,

was set to 1 s. The linear step is followed by a nonlinear one in which the

membrane potential proxy, mi(tn), is used to determine the probability that

neuron i emits a spike between times tn and tn+dt,

p
�
rLIP
i ðtnÞ= 1

�
= ½miðtnÞ�+ : (10)

We used translation-invariant weights for both the feedforward and lateral

connections (Wff
ij and Wrec

ij ),

Wij = Wðsi � sjÞ= a expðKðcosðsi � sjÞ � 1ÞÞ+ b:

For the feedforward weights, W ff
ij , we used a = 0.25, K = 5 and b = 0, and for

the lateral weights, Wrec
ij , we used a = 0.35, K = 10, and b = �0.11.

In the experiment of Shadlen and Newsome (2001), each trial starts with the

appearance of M visual targets, where M is the number of choices. This trig-

gers a response in the subset of LIP neurons whose receptive fields overlap

with the visual targets. To model this activity, we initialize the firing rate of

the neurons in the LIP layer according to

p
�
rLIP
i ðt1Þ

�
=

2

ðM=2 + 0:5Þ
XM

m = 1

p0 expðK0ðcosðsm � siÞ � 1ÞÞ

where M is the number of possible directions for the moving dots and {s1, .,

sM} are the positions of the targets corresponding to the M choices. The

parameters were set to p0 = 0.042 (corresponding to a firing rate of

42 spikes/s for dt = 1msec) and K0 = 4. Given the width of these tuning curves

(determined by the parameter K0), the resulting population activity is almost

perfectly flat for MR8. Accordingly, we used M = 8 when simulating ‘‘contin-

uous’’ decision making. This visually induced activity served as a starting point

for the accumulation of evidence.
.
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The urgency signal (denoted u(t)) in Equation 9 was estimated directly from

neural responses as described in Churchland et al. (2008) and was parameter-

ized by a hyperbolic function

uðtÞ= uN

t

t + t1=2

In the simulations of the two-choice experiment, we used uN = 34:7 spike s�1

and t1=2 = 133:3 ms, and in the four-choice experiment, we used

uN = 39 spike s�1 and t1=2 = 343:2 ms. These values were directly obtained

from in vivo recordings in LIP as described in Churchland et al. (2008).

Stopping Bound and Action Selection

The psychometric and chronometric curves shown in Figure 6 were obtained

by stopping the accumulation of evidence when the firing rate of any of the

neurons in LIP, determined from the probability of firing (Equation 10), reached

55 spikes/s for the four-choice experiment and 66 spikes/s for the two-choice

experiment. In the two-choice experiment, we determine the action selected

by the network using the preferred direction of the neuron that reached the

bound first. If this preferred direction was within the interval [�90�, 90�], the

network decision was set to 0�; otherwise, it was set to 180�. A similar strategy

was used for the four-choice experiment, except that we used four quadrants.

Note that the implementation of the bound (as well as saccade selection) is

not based on the output spike trains of individual neurons. Indeed, this would

not be a robust way to proceed: estimating the rate of a single neuron on

a single trial is subject to a very large variability. A more robust approach

consists of using spike counts filtered across direction and time. This is effec-

tively what we have done here, since we are using the probability of firing. That

probability, which is mi in Equation 10, is a filtered version of the spike trains

both from MT and LIP.

Decoding Probability Distributions from Population Activity

To generate Figures 2B and 4B, we need to compute the posterior, p(sjrLIP(tn))

where here tn is shorthand for spike count between times tn and tn-Dt (where

Dt = 50 ms). For this we use Bayes’ rule (assuming a flat prior), which gives us

p
�
s
��rLIPðtnÞ

�
fp
�
rLIPðtnÞ

��s�: (11)

To model the likelihood in LIP, p(rLIP(tn)j s), we use a distribution that lies in

the exponential family with linear sufficient statistics,

p
�
rLIPðtnÞ

��s�= F
�
rLIPðtnÞ;cðtnÞ

�
exp

�
hLIPðsÞ,rLIPðtnÞ

�
: (12)

Note that this is an approximation: as discussed in the main text, the true

distribution in LIP does not lie in this class. However, the approximation

appears to be a good one, since we fail to find any significant Fisher informa-

tion in LIP spike count beyond what can be recovered with a local optimal

linear estimator, even when that estimator is independent of both coherence

and time (see section Estimating Fisher Information).

To estimate hLIP(s), we took advantage of the fact that hLIP(s) must satisfy

Equation 5 (Ma et al., 2006). Importantly, the right hand-side of Equation 5 is

the local optimal linear estimator (LOLE) of LIP activity (Series et al., 2004).

Therefore, we can approximate hLIP(s) by estimating the LOLE of LIP activity

and integrating it as a function of s. To obtain the LOLE, we ran the network

for 10,000 trials at 51.2% coherence, with each trial lasting 200 ms. We divided

each trial into four time windows of 50 ms each and extracted the spike count

over each time window. We then trained four LOLEs over each of the four time

windows (see Series et al. [2004] for details). This gave us four sets of weights,

Wi
LOLE(s), with i = {1,2,3,4} referring to the 50 ms time interval. We then inte-

grated the Wi
LOLE(s) with respect to s to obtain an estimate of the kernels,

hLIP(s,ti), at the four time intervals. The resulting kernels were then averaged

to obtain the overall kernel, hLIP(s). This kernel was used in Equation 12 and

11 to obtain posterior distributions at all times and across all coherences, as

illustrated in Figures 2B and 4B.

Estimating Fisher Information

To estimate the Fisher information, we used the kernels computed in the

previous section to obtain the maximum-likelihood estimate of the stimulus

on 5000 trials, and then computed the variance of those estimates. The Fisher
N

information is the inverse of the variance. The maximum likelihood estimates

were given by

bs = argmax
s

�
exp

�
hLIPðsÞ,rLIPðtnÞ

��
:

The activity, rLIP(tn), is the spike count in a 50 ms bins between times tn and

tn-50 ms. We computed the Fisher information both for hLIP(s), the average

kernel, and for hi
LIP(s), the individual kernels (see previous section). The results

are shown in Figure 3B.

We also tried a variety of nonlinear methods to estimate Fisher information

(see Series et al. [2004] for details), but we found no significant information

beyond what is recovered by the method described above.

Slopes of Integration In Vivo and in Simulations

Figure 7 shows the slope of integration of LIP neurons in vivo (from Churchland

et al., 2008) and in the model as a function of coherence for the two-choice and

four-choice experiments. The slopes of integration in the model were obtained

by fitting a line in the average probability of firing miðtn + 1Þ of LIP neurons

(Equation 10) over the first 50 ms of the integration period (i.e., 50 ms after

the start of the response to the moving dots).

In both the model and in vivo, the slope of the integration for Tin (the neuron

whose response field corresponds to the chosen target) increases linearly with

coherence. Conversely, the slope of integration for Tout (the neuron whose

response field corresponds to a saccade 180� away from the chosen target)

decreases linearly with coherence. In addition, in the four-choice experiment,

the slope of integration for T90 (the neuron whose response field is 90� away

from the chosen target) decreases but less so than for the Tout neuron. Finally,

for a given coherence, the slope of integration for two choices is always larger

than the slope for four choices.

In the case of the model, the slope of integration for T90 neurons is deter-

mined by the shape of the tuning curves to saccade direction. For very narrow

tuning curves, the slope of integration for T90 and Tout neurons are very similar,

while for wide tuning curves, the slope of integration for T90 can in fact increase

with coherence although always less so than for the Tin neurons (not shown).

This is a noteworthy result because some LIP neurons show an increase in

integration slope as a function of coherence (see for instance Figure 4E in

Churchland et al., 2008).

SUPPLEMENTAL DATA

The Supplemental Data include two figures and a Supplemental Note and can

be found with this article online at http://www.neuron.org/supplemental/

S0896-6273(08)00803-9.
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