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What is your background??

Why are you here”



Why do we fit models?

“The purpose of models is not to fit the data but to sharpen the
qguestions.”

— Samuel Karlin, R.A. Fisher Memorial Lecture, 1983

“If a principled model with a few parameters fits a rich behavioral
data set, | feel that | have really understood something about the

world”™  _ \wei Ji Ma, Cosyne Tutorial, 2019



Why do we fit models?

From Ma lab survey by Bas van Opheusden, 201703



Why do we fit models?

Maslow's hammer

Because we can and we are good at it
To get into a higher impact journal
Because Weiji says so

To drown a conceptually uninteresting question in math

From Ma lab survey by Bas van Opheusden, 201703



Why do we fit models?

To make inferences about latent causes of behavior that we cannot
observe directly

To get closer to a simplified form of people's cognitive processes
Because we want to infer latent variables/mechanisms

To say something about the potential computations involved when
completing a task

Infer what's really happening inside the black box

To create order in the universe

Models let us ask questions that are hard to answer with experiments
To quantify evidence for our theories and hypotheses

To produce good models according to well-considered criteria

From Ma lab survey by Bas van Opheusden, 201703



Schedule for today

Concept

12:10-13:10 | * Why Bayesian modeling

e Bayesian explanations for illusions priors

e Case 1: Gestalt perception likelihoods

e (Case 2: Motion sickness prior/likelihood interplay
13:30-14:40 | » Case 3: Color perception nuisance parameters

e (Case 4. Sound localization measurement noise

e (Case 5: Change point detection hierarchical inference
15:00-16:00 | « Model fitting and model comparison

e Critiques of Bayesian modeling
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Two kinds of models

* Descriptive model: describe the data using a function
with parameters

 E.g. neural networks

 Danger: arbitrarily throwing parameters at i,
problems with understanding and generalization

 Process model: model based on psychological
hypotheses about the process by which a mind makes
a decision

* Usually few parameters
* |nterpretable!
e Potentially not as powertul




Process moagels

* Signal detection theory

d=1

Hits = 97.5%

False alarms = 84%
Hits = 84%

False alarms = 50%
Hits = 50%

False alarms = 16%

David Heeger lecture notes




Drift-diffusion model

THE DIFFUSION PROCESS

( FOR TARGET ITEMS WITH RELATEDNESS DISTRIBUTION MEAN U + VARIANCE 1 )

DISTRIBUTION OF FIRST PASSAGES
/\_ €~ TO THE MATCH BOUNDARY (HITS)
MATCH BOUNDARY

T VARIANCE OF DRIFT s§ ¢
<«——— DRIFT PARAMETER

TIME —>

NON-MATCH BOUNDARY

\—%\olsmlewm OF FIRST

PASSAGES TO THE
NON~MATCH BOUNDARY (MISSES)

Ratcliff 1978



A special kind of process model: Bayesian

- State of the world unknown to decision-maker
* Uncertainty!
- Decision-maker maximizes an objective function
* |n categorical perception: accuracy
* But could be hitting error, point rewards, survival
e Stronger claim: brain represents probability distributions



Stimulus Observer

Measurement Estimate
v o> 77— (M)
Noise!
Retinal
speed Stocker and Simoncelli, 2006

e Noisy internal Local decision i 8
Stmul representations variables Decision
Keshvari et al., 2012
r— evidence samples ﬁ choice
A or B category?

bwbory - - - -
orientations > )
?B

evidence aocumulatio;

inference selection .
Drugowitsch et al., 2016



Why Bayesian models?

* Evolutionary/normative: Bayesian inference optimizes
performance or minimizes cost. The brain might have near-
optimized processes crucial for survival.

 Empirical: iIn many tasks, people are close to Bayesian.

e Bill Geisler’'s couch argument:

‘It Is harder to come up with a good model sitting on
your couch than to work out the Bayesian model.”



« Basis for suboptimal models: Other models can often be
constructed by modifying the assumptions in the Bayesian
model. Thus, the Bayesian model is a good starting point
for model generation.



Where does uncertainty come from?

 Noise
 Ambiguity
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Hollow-face illusion

David Mack

Why do we see the dragon/the hollow face as convex?



Likelihood

how probable are the
refinal image is if the
hypothesis were true

convex concave



Likelihood X Prior

how probable are the  how much do you expect
retinal image is if the the hypothesis based on
hypothesis were frue your experiences

convex concave convex concave



Posterior

Likellhhood X Prior oc .
probabillity
how probable are the  how much do you expect
retinal image is if the the hypothesis based on
hypothesis were frue your experiences
convex concave convex concave convex /concave

This hypothesis becomes
your percept!



 Where is the ambiguity?

% 2 Y. £  * Whatrole do priors play?
Anamorphic illusion by Kurt Wenner ° ant happens If you V|eW Wlth
two eyes, and why?







Prior over objects
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Prior over objects Likelihood over objects given 2D image
p(s) L(s) =p(l]s)

object
descriptions, S

X image, |

Kersten and Yuille, 2003



Examples of priors:

 Convex faces are more common than concave ones
* Priors at the object level (Kersten and Yuille)

* Light usually comes from above (Adams and Ernst)

* Slower speeds are more common (Simoncelli and Stocker)

» Cardinal orientations are more common (Landy and
Simoncelli)




Take-home messages from these illusions:

* [llusions are not just “bugs in the system”, they may be the
product of an inference machine trying to do the right thing.

« "Wrong” percepts can often be traced back to a prior.



Fake news

Bayesian models are about:

* the decision-maker making the best possible decision
(given an objective function)

* the brain representing probability distributions
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OKGo, The writing’s on the wall. Music video by Aaron Duffy and 1stAveMachine




How would a perceptual psychologist describe
this kind of percept?



Law of proximity

‘Spatial or temporal proximity of elements may induce the
mind to percelve a collective entity.”



Law of continuity

Field, Hayes, Hess

"Elements that are aligned tend to be grouped together.”



aw of common fate

“When elements move In the same direction, we tend to
percelive them as a collective entity.”



Bayesian account of Gestalt percepts?

Open Case 1 on page 3



The four steps of Bayesian modeling
Example: categorization task

/STEP 1: GENERATIVE MODEL World state of interest \
a) Draw a diagram with each node a variable and each arrow a P(C) =0.5
statistical dependency. Observation is at the bottom. Stimulus
b) For each variable, write down an equation for its probability p(s | C) _ N(S',u 0'2)
sHMcrY e

distribution. For the observation, assume a noise model. For
others, get the distribution from your experimental design. If
there are incoming arrows, the distribution is a conditional one.

Observation

p(xls)zN(x;s,O'z) /

\

[
STEP 2: BAYESIAN INFERENCE (DECISION RULE)

a) Compute the posterior over the world state of interest given an observation. The optimal observer
does this using the distributions in the generative model. Alternatively, the observer might assume
different distributions (natural statistics, wrong beliefs). Marginalize (integrate) over variables other
than the observation and the world state of interest.

p(Cls)e< p(C)p(x|C)=p(C)_[p(x|s)p(s|C)ds =...=N(x;ﬂc,0'2 +O'é)
b) Specify the read-out of the posterior. Assume a utility function, then maximize expected utility under
posterior. (Alternative: sample from the posterior.) Result: decision rule (mapping from observation to
decision). When utility is accuracy, the read-out is to maximize the posterior (MAP decision rule).
L é:lWhenN(x;M,az+O'12)>N(x;,uz,0'2+0'22) )

4 )
STEP 3: RESPONSE PROBABILITIES

For every unique trial in the experiment, compute the probability that the observer will choose each
decision option given the stimuli on that trial using the distribution of the observation given those stimuli
(from Step 1) and the decision rule (from Step 2).

p(é =1| x) =Pr (N(x;/,tl,O'2 +0'12) > N(x;uz,d2 +0'§))

* Good method: sample observation according to Step 1; for each, apply decision rule; tabulate
responses. Better: integrate numerically over observation. Best (when possible): integrate analytically.

* Optional: add response noise or lapses.

. J

/STEP 4: MODEL FITTING AND MODEL COMPARISON \

a) Compute the parameter log likelihood, the log probability of the subject’s sl
actual responses across all trials for a hypothesized parameter _ B e
combination. ! LL(O-)_ z logp(Ci |Si’0)

b) Maximize the parameter log likelihood. Result: parameter estimates and
maximum log likelihood. Test for parameter recovery and summary
statistics recovery using synthetic data.

c) Obtain fits to summary statistics by rerunning the fitted model.

d) Formulate alternative models (e.g. vary Step 2). Compare maximum log
likelihood across models. Correct for number of parameters (e.g. AlC).
(Advanced: Bayesian model comparison, uses log marginal likelihood of

model.) Test for model recovery using synthetic data.
e) Check model comparison results using summary statistics.

-

i=1




‘ake-nome message from Case 1:
With likelihoods like these, who needs priors?

Bayesian models are about the best possible decision,
not necessarily about priors.



i

MacKay (2003), Information theory, inference, and learning
algorithms, Sections 28.1-2




12:10-13:10

13:30-14:40

15:00-16:00

Schedule for today

Concept
Why Bayesian modeling
Bayesian explanations for illusions priors
Case 1: Gestalt perception likelihoods
Case 2: Motion sickness prior/likelihood interplay
Case 3: Color perception nuisance parameters
Case 4: Sound localization measurement noise
Case 5: Change point detection hierarchical inference

Model fitting and model comparison

Critiques of Bayesian modeling




Motion Sickness: An Evolutionary Hypothesis

Abstract. Since the occurrence of vomiting as a response to motion is both wide-
spread and apparently disadvantageous, it presents a problem for evolutionary theo-
ry. An hypothesis is proposed suggesting that motion sickness is triggered by diffi-
culties which arise in the programming of movements of the eyes or head when the
relations between the spatial frameworks defined by the visual, vestibular, or
proprioceptive inputs are repeatedly and unpredictably perturbed. Such per-
turbations may be produced by certain types of motion, or by disturbances in sensory
input or motor control produced by ingested toxins. The last would be the important
cause in nature, the main function of the emesis being to rid the individual of in-
gested neurotoxins. Its occurrence in response to motion would be an accidental by-

product of this system.

Michel Treisman, Science, 1977



Take-home messages from Case 2;
* Likelihoods and priors can compete with each other.
 Where priors come from is an interesting question.
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Fundamental problem of color perception

Color of surface

\_

Color of illumination

J

Usually of interest

Usually not of interest
(nuisance parameter)

~

-

Retinal observations

~

J




David Brainard



Edward H. Adelson



Light patch in Dark patch in
dim illumination  bright illumination

Ted Adelson



Take-home messages from Case 3:
 Uncertainty often arises from nuisance parameters.

A Bayesian observer computes a joint posterior over
all variables including nuisance parameters.

* Priors over nuisance parameters matter!



he Dress”
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Demo of sound localization



Step 1: Generative model

p(s) Q
p(x|s) @




Probability (frequency)

-10-8 6 4 -2 0 2 4 6 8 10

Stimulus s

Probability (frequency)

-0

Measurement x




Step 2: Inference, deriving the decision rule

Prior Likelihood

Probability
Likelihood

°
10-8 6 -4 2 0 2 4 6 8 10 Xobs

Hypothesized stimulus s Hypothesized stimulus s



posterior) p(S|X, s

likelihood, L(s)=p(X.s|S)

Probability (degree of belief)

10 -8 2gxobg1 6 8 10

Hypothesized stimulus

Does the model deterministically predict the posterior for a
given stimulus and given parameters?



Probability (degree of belief)

2 & X & Xopd 8 10
Hypothesized stimulus



Step 3: Response probabilities (predictions for
your behavioral experiment)

Decision rule: mapping X — §

But x is itselt a random variable for given s

Therefore § is a random variable for given s
p(8]s)

Can compare this to data!! uu‘-n

a)>



Take-home messages from Case 4;

 Uncertainty can also arise from measurement noise
* Such noise is often modeled using a Gaussian
 Bayesian inference proceeds in 3 steps.

 The final result is a predicted response distribution.
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Well known

Bayesian integration (prior x simple likelihood) Cue combination

Serory Cue [nteprat

Bayesian integration in Noise characteristics and prior expectations in human
sensorimotor learning visual speed perception

X IP. K6 fing & Danlel M. Wolpert Alan A Stocker & Eero P Simoncelli

Cardinal rules: visual orientation perception reflects
knowledge of environmental statistics

Ahna R Girshick'?, Michael S Landy'~ & Eero P Simoncelli' *

Less well known but often more interesting

Complex categorization

Combining information across multiple items (visual search)
Combining information across multiple items and across a
memory delay (change detection)

Inferring a changing world state (tracking, sequential
effects)

Evidence accumulation and learning




A simple change point detection task



Take-home messages from Case 5:
e |nference is often hierarchical.

* |n such situations, the Bayesian observer marginalizes
over the “intermediate” variables (compare this to Case
3)




lopics not addressed

_apse rates and response noise

Jtility and reward

Partially observable Markov decision processes
Wrong beliefs (model mismatch)

Learning

Approximate inference (e.g. sampling, variational
approximations)

How the brain represents probability distributions




Bayesian models are about:

* the decision-maker making the best possible decision
(given an objective function)

- the brain representing probability distributions



e Lower-contrast patterns appear to move slower than

higher-contrast patterns at the same speed (Stone and
Thompson 1990)

* This may underlie drivers’ tendency to speed up In the
ng (Snowden, Stimpson, Ruddle 1998)

* Possible explanation: lower contrast = greater
uncertainty — greater effect of prior beliefs (which might
favor low speeds) (Weiss, Adelson, Simoncelli 2002)



Probabilistic computation

Decisions in which the brain takes into account trial-to-
trial knowledge of uncertainty (or even entire probability
distributions), instead of only point estimates

What does probabilistic computation “feel like”?



Does the brain represent probability distributions?

Bayesian transfer Different degrees of
probabilistic computation

Task 1
G (a w) Fully probabilistic computation
1 ’
L (w]x) 5 (x) ‘ AN Pointestimates ~ —___
1 Transfer Task (Gain) ' Reward uncartalnty —— .
T, (W) opeme Sensory uncertainty - > Action
Gy (aw ) Prior uncertainty p—— No parameters

) . QOutcome uncertainty e
Task 2 ‘ L (w]|x) E:> 5, (x)

optimal?

G, ( a, w) Ty (W) ,__,T Probabilistic computation in sensorimotor domain
Lwlx) ) &(x) : -
. - Point estimates —
optimal
T, (W) g’ Sensory uncertainty - | Learned parameters = Action
‘@ Outcome uncertainty —> | * Prior uncertainty
g * Reward uncertainty
2
Maloney and Mamassian, 2009 B
y ’ Fully learned mapping (nonprobabilistic)
F
Learned parameters
Point estimates ——p | * Sensoryuncertainty L, Action

* Prior uncertainty
* Outcome uncertainty
* Reward uncertainty

Ma and Jazayeri, 2014



2006
theory, networks

2013
behavior, networks

2015
behavior,
human MR/

2017
trained networks

2018
behavior,

monkey physiology

l

Bayesian inference with probabilistic population codes

Wei Ji Ma"3, Jeffrey M Beck'?, Peter E Latham? & Alexandre Pouget'

Trial-to-trial, uncertainty-based adjustment of decision
boundaries in visual categorization

Ahmad T. Qamar™’, R. James Cotton™', Ryan G. George™', Jeffrey M. Beck®, Eugenia Prezhdo®, Allison Laudano®,
Andreas S. Tolias*, and Wei Ji Ma**?

Sensory uncertainty decoded
from visual cortex predicts
behavior

Ruben S van Bergen', Wei Ji Ma2, Michael S Pratte® &
Janneke F M Jehee!

Efficient probabilistic inference in generic neural
networks trained with non-probabilistic feedback

A. Emin Orhan' & Wei Ji Ma'?2

A neural basis of probabilistic computation in
visual cortex

Edgar Y. Walker,'?' R. James Cotton,"?*" Wei Ji Ma,*
Andreas S. Tolias!*>#



Schedule for today

Concept

12:10-13:10 | * Why Bayesian modeling

e Bayesian explanations for illusions priors

e Case 1: Gestalt perception likelihoods

e (Case 2: Motion sickness prior/likelihood interplay
13:30-14:40 | » Case 3: Color perception nuisance parameters

e (Case 4. Sound localization measurement noise

e (Case 5: Change point detection hierarchical inference
15:00-16:00 ||+ Model fitting and model comparison

e Critiques of Bayesian modeling



a. What to minimize/

b. What fitting algorit

hm

maxi

mize when fitting parameters?

to use”?

c. Validating your model titting method



What to minimize/maximize when fitting a model?



Try #1: Minimize sum squared error

NI w B
o (- o
0
o

—_—
o
T
&
o]

O
@

Membrane potential change (mV'

-
)

50 100 150 200 250 300
Input current (pA)

Only principled if your model has independent,
fixed-variance Gaussian noise
Otherwise arbitrary and suboptimal



Try #2: Maximize likelihood

Qutput of Step 3:
p(response | stimulus, parameter combination)

Likelihood of parameter combination
= p(data | parameter combination)

= H p(responsei‘stimulusi, parameter combination)

trials i



What fitting algorithm to use”

e Search on a fine grid



Log likelihood

-
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A (guessing rate)
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0.02

0

Parameter trade-offs

005 01 o015 02
J (precision)

Shen and Ma 2017
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Van den Berg and Ma 2018



What fitting algorithm to use”

* Search on a fine grid
e fmincon or fiminsearch in Matlab



OptimViz (Rosenbrock function)
1000

Error

fminsearch L

0.001 - . :

Fcn. evals.




What fitting algorithm to use”

e Search on afine grid
* fmincon or fiminsearch in Matlab
e Bayesian Adaptive Direct Search (Acerbi and Ma 2016)



OptimViz (Rosenbrock function)
1000

Error

BADS

0 50 100 150
Fcn. evals.

https://github.com/lacerbi/bads

#useBADS https://github.com/lacerbi/optimviz



Validating your method: Parameter recovery



recovered
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0.15
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parameter recovery test
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input input

Jenn Laura Lee



Take-nome messages model fitting

It you can, maximize the likelihood (probability of
individual-trial responses) if you can.

* Do not minimize squared error!

* Do notfit summary statistics (instead fit the raw data)
Use more than one algorithm

Consider BADS when you don'’t trust fmincon/fminsearch
Multistart

DO parameter recovery




Model comparison



a. Choosing a model comparison metric

b. Validating your model comparison method
c. Factorial model comparison

d. Absolute goodness of fit

e. Heterogeneous populations



a. Choosing a model comparison metric



Try #1: Visual similarity to the data

- Opt Sum Max Min Var Sign
o5 1 200® 0®p® 0®o® 0o ® Y %2
5; ozwagg 000338 O@ 0808 ¢o:m8$8 ¢mo$98 ¢¢::$$8
R I LS O I I O 5
Qe. §. O‘mool T '§‘§‘Q®®l T ‘mool T ‘ﬁpoml T _§_§‘Q®°' T _&QQ' ¥

= -10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0 10

Target orientation, s (°)

Shen and Ma, 2016

Fine, but not very quantitative



Try #2: R

e Justdontdoit
* Unless you have only linear models
 Which almost never happens



Try #3: Likelinood-based metrics

Good!
Problem: there are many!

AIC

AlCc

BIC

K-fold
cross-validation

leave-one-out
cross-validation

Log marginal
likelihood

WAIC

From Ma lab survey by Bas van Opheusden, 201703



Metrics based on maximum likelihood:
e Akaike Information Criterion (AlC or AlCc)
 Bayesian Information Criterion (BIC)

Metrics based on the full likelihood function (often
sampled using Markov Chain Monte Carlo):

 Marginal likelihood (model evidence, Bayes’ factor)
 Watanabe-Akaike Information criterion

Cross-validation can be either



Metrics based on explanation:
 Bayesian Information Criterion (BIC)
* Marginal likelihoods (model evidence, Bayes’ tactors)

Metrics based on prediction:

« Akaike Information Criterion (AlC or AlCc)
 \Watanabe-Akaike Information criterion
 Most forms of cross-validation




Practical considerations:
 No metric is always unbiased for finite data.

* AIC tends to underpenalize free parameters, BIC
tends to overpenalize.

Do not trust conclusions that are metric-
dependent. Report multiple metrics it you can.




AlCc*(model) — AICc*(VP)

BIC*(model) — BIC*(VP)

LML(model) — LML(VP)

Model Mean Mean Standard error of the mean Mean Standard error of the mean
IL
M1 —125 —122 15 —-121 15
M2 —183 —180 18 —180 18
M3 —167 —164 18 —163 18
Humans —47.2 —45.7 6.8 —47.1 6.6
EP
M1 —47.5 —44.8 9.2 —48.9 9.1
M2 —12.8 —-10.1 4.6 —-12.7 4.8
M3 —30.3 —27.6 7.8 —31.3 8.1
Humans —-12.9 —-11.4 1.5 —14.4 1.7
EPF
M1 —40.2 —40.2 7.9 —39.0 7.8
M2 —-9.3 —-9.3 4.4 —6.7 4.6
M3 —-24.0 —24.0 6.7 —22.6 6.9
Humans —7.6 —7.6 1.5 —6.2 1.6
VPF
M1 -1.3 —4.18 0.83 1.5 1.5
M2 2.2 —4.00 0.91 1.20 0.81
M3 —0.56 —-3.2 1.5 2.0 1.1
Humans —1.46 —3.00 0.32 —0.57 0.31

Devkar, Wright, Ma 2015



Challenge: your model comparison metric and how you
compute it might have issues. How to validate it?

b. Model recovery



Data

generation

model

Synthetic
VP-SP

Synthetic
VP-FP

Synthetic
VP-VP

Proportion correct Proportion correct Proportion correct

Model recovery example

Fitted model

VP-SP VP-FP VP-VP

1 p i1t p it i1
08 i;i?ﬁ;éi “Hi%” ”;Hi;ii
06" ;1" A b V [ bt
04} ' s =

i
020730 60 90/0 30 60 90 0 30 60 90
1 I i i i i i}
08 jiidtd et ettt
o6l PPLiT 1111 || et [} Py e s g g
04| " . 4
0.2
0 30 60 90/0 30 60 90|0 30 60 90
ool gt R [ || e
06 e : USRI IR :
0.4} - ,
0.2
0 30 60 90 0 30 60 90/0 30 60 90

Change magnitude (°)

Devkar, Wright, Ma, Journal of Vision, in press




Data

generation

model

Synthetic
VP-SP
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Devkar, Wright, Ma, Journal of Vision, in press



fitted model

Model recovery

BayesStrong + d noise

BayesWeak + d noise

Bayesumaweak + d noise

Orientation Estimation

Linear Neural

Lin

Quad

Fixed

model used to generate synthetic data

Adler and Ma, PLoS Comp Bio 2018
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Challenge: how to avoid “handpicking”
models?

c. Factorial model comparison



c. Factorial model comparison

* Models often have many "moving parts”, components
that can be in or out

e Similar to factorial design of experiments, one can mix
and match these moving parts.

e Similar to stepwise regression

* References:
* Acerbl, Vijayakumar, Wolpert 2014
* Van den Berg, Awh, Ma 2014
 Shen and Ma, 2017



Factorial Comparison of Working Memory Models

Ronald van den Berg Edward Awh
University of Cambridge and Baylor College of Medicine University of Oregon

Wei Ji Ma
New York University and Baylor College of Medicine
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Challenge: the best model is not
necessarily a good model.

d. Absolute goodness of fit



Absolute goodness of fit

e How close is the best model to the data”
* Method 1: Visual inspection (model checking)

Subject 1 Subject 2 Subject3 Subject4 Subject 5 Subjects Subject7 Subject8 SubjectQ

Proportion of
reporting “right”

S 1
o 3
FR E Ji f} i'"]
TS 7
k) g 9
2 2 1
. Opt ‘g’ o 3
3% 1 o220 8 Opt ;
5;: ¢¢¢¢@°@ Sog 9
55057, 0”4’ 13579
8% *ooo P Quantile of target orientation
L 8 QQ
[ (V] 0 T T T
= -10 0 10

Shen and Ma, 2016



d. Absolute goodness of fit

* Method 2: Deviance / negative entropy

* There is irreducible, unexplainable variation in the data

* This sets an upper limit on the goodness of fit of any
model: negative entropy

 How far away is a model from this upper bound?
 Wichmann and Hill (2001)
 Shen and Ma (2016)




Challenge: what if different subjects
follow different models”
(heterogeneity Iin the population)

e. Hierarchical model selection



Consider all possible partitions of your population

Bayesian model selection for group studies

Klaas Enno Stephan *P*, Will D. Penny ?, Jean Daunizeau 2, Rosalyn ]. Moran 2, Karl J. Friston 2

Neuroimage, 2009
Bayesian model selection for group studies — Revisited

*

L. Rigoux ?, K.E. Stephan ™€, K. Friston ®, ]. Daunizeau Neuroimage, 2014

* Returns probability that each model is the
mMost common one In a population

* Returns posterior probability for each model
 Matlab code available online!




Take-home messages model comparison

There are many metrics for model comparison.
e Specialized lab meetings / reading club?

* Do due diligence to prevent your conclusions from being
metric-dependent.

Do model recovery

Consider doing factorial model comparison

Quantify absolute goodness of fit if possible
Heterogeneity in population? Hierarchical model selection




Schedule for today

Concept

12:10-13:10 | * Why Bayesian modeling

e Bayesian explanations for illusions priors

e Case 1: Gestalt perception likelihoods

e (Case 2: Motion sickness prior/likelihood interplay
13:30-14:40 | » Case 3: Color perception nuisance parameters

e (Case 4. Sound localization measurement noise

e (Case 5: Change point detection hierarchical inference
15:00-16:00 | « Model fitting and model comparison

e Critiques of Bayesian modeling




Critigue of Bayesian models:
Prior is hard to get
Inference intractable
 Behavior might not be Bayesian
 Hard to apply to neural data / make connection to

neural representation
 Parametric assumptions in distributions

Learning the structure of the Bayesian model

Scaling to large data sets
 Weirdness in distribution (non-Gaussian)

Dynamics




Please help me thank our amazing teaching assistants!
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Good job everyone!l



