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What is your background? 

Why are you here?



“The purpose of models is not to fit the data but to sharpen the 
questions.”

“If a principled model with a few parameters fits a rich behavioral 
data set, I feel that I have really understood something about the 
world” — Wei Ji Ma, Cosyne Tutorial, 2019

— Samuel Karlin, R.A. Fisher Memorial Lecture, 1983
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Two kinds of models
• Descriptive model: describe the data using a function 

with parameters 
• E.g. neural networks 
• Danger: arbitrarily throwing parameters at it, 

problems with understanding and generalization 
• Process model: model based on psychological 

hypotheses about the process by which a mind makes 
a decision 
• Usually few parameters 
• Interpretable! 
• Potentially not as powerful



Process models
• Signal detection theory

David Heeger lecture notes



Ratcliff 1978 

• Drift-diffusion model



A special kind of process model: Bayesian 
• State of the world unknown to decision-maker

• Uncertainty! 
• Decision-maker maximizes an objective function 

• In categorical perception: accuracy 
• But could be hitting error, point rewards, survival 

• Stronger claim: brain represents probability distributions



Drugowitsch et al., 2016

Stocker and Simoncelli, 2006

Keshvari et al., 2012



Why Bayesian models?

• Evolutionary/normative: Bayesian inference optimizes 
performance or minimizes cost. The brain might have near-
optimized processes crucial for survival.

• Empirical: in many tasks, people are close to Bayesian.

• Bill Geisler’s couch argument:

“It is harder to come up with a good model sitting on 
your couch than to work out the Bayesian model.”



• Basis for suboptimal models: Other models can often be 
constructed by modifying the assumptions in the Bayesian 
model. Thus, the Bayesian model is a good starting point 
for model generation.



Where does uncertainty come from?

• Noise 
• Ambiguity
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Hollow-face illusion

David Mack

Why do we see the dragon/the hollow face as convex?



This hypothesis becomes 
your percept! 

Posterior 
probability 

convex concave convex concave 

Likelihood 
how probable are the 
retinal image is if the 
hypothesis were true 

convex concave 

Prior x 

how much do you expect 
the hypothesis based on 

your experiences 

∝
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Anamorphic illusion by Kurt Wenner

• Where is the ambiguity? 
• What role do priors play? 
• What happens if you view with 

two eyes, and why?





Prior	over	objects	
p(s)	

Likelihood	over	objects	given	2D	image	
L(s)	=	p(I|s)	

Kersten	and	Yuille,	2003	
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Examples of priors: 
• Convex faces are more common than concave ones 
• Priors at the object level (Kersten and Yuille) 
• Light usually comes from above (Adams and Ernst) 
• Slower speeds are more common (Simoncelli and Stocker) 
• Cardinal orientations are more common (Landy and 

Simoncelli)



Take-home messages from these illusions: 
• Illusions are not just “bugs in the system”, they may be the 

product of an inference machine trying to do the right thing. 
• “Wrong” percepts can often be traced back to a prior.



Bayesian models are about priors

Bayesian models are about: 
• the decision-maker making the best possible decision 

(given an objective function) 
• the brain representing probability distributions

Fake news
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OKGo, The writing’s on the wall. Music video by Aaron Duffy and 1stAveMachine



How would a perceptual psychologist describe 
this kind of percept?



“Spatial or temporal proximity of elements may 
induce the mind to perceive a collective entity.” 

Law of proximity

“Spatial or temporal proximity of elements may induce the 
mind to perceive a collective entity.”



“Elements that are aligned tend to be grouped together.”

Field, Hayes, Hess

Law of continuity



Law of common fate

“When elements move in the same direction, we tend to 
perceive them as a collective entity.”



Bayesian account of Gestalt percepts?

Open Case 1 on page 3 



The four steps of Bayesian modeling 

STEP 1: GENERATIVE MODEL 

a)  Draw a diagram with each node a variable and each arrow a 
statistical dependency. Observation is at the bottom.  

b)  For each variable, write down an equation for its probability 
distribution. For the observation, assume a noise model. For 
others, get the distribution from your experimental design. If 
there are incoming arrows, the distribution is a conditional one. 

STEP 2: BAYESIAN INFERENCE (DECISION RULE) 

a)  Compute the posterior over the world state of interest given an observation. The optimal observer 
does this using the distributions in the generative model. Alternatively, the observer might assume 
different distributions (natural statistics, wrong beliefs). Marginalize (integrate) over variables other 
than the observation and the world state of interest. 

b)  Specify the read-out of the posterior. Assume a utility function, then maximize expected utility under 
posterior. (Alternative: sample from the posterior.) Result: decision rule (mapping from observation to 
decision). When utility is accuracy, the read-out is to maximize the posterior (MAP decision rule).  

STEP 3: RESPONSE PROBABILITIES 

For every unique trial in the experiment, compute the probability that the observer will choose each 
decision option given the stimuli on that trial using the distribution of the observation given those stimuli 
(from Step 1) and the decision rule (from Step 2).  
 

•  Good method: sample observation according to Step 1; for each, apply decision rule; tabulate 
responses. Better: integrate numerically over observation. Best (when possible): integrate analytically. 

•  Optional: add response noise or lapses.  
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p Ĉ = 1| x( ) = Prx|s;σ N x;µ1,σ

2 +σ 1
2( ) > N x;µ2 ,σ 2 +σ 2

2( )( )

STEP 4: MODEL FITTING AND MODEL COMPARISON 

a)  Compute the parameter log likelihood, the log probability of the subject’s 
actual responses across all trials for a hypothesized parameter 
combination. 

b)  Maximize the parameter log likelihood. Result: parameter estimates and 
maximum log likelihood. Test for parameter recovery and summary 
statistics recovery using synthetic data. 

c)  Obtain fits to summary statistics by rerunning the fitted model. 
d)  Formulate alternative models (e.g. vary Step 2). Compare maximum log 

likelihood across models. Correct for number of parameters (e.g. AIC). 
(Advanced: Bayesian model comparison, uses log marginal likelihood of 
model.) Test for model recovery using synthetic data.  

e)  Check model comparison results using summary statistics. 

( ) ( )
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Take-home message from Case 1: 
With likelihoods like these, who needs priors?
Bayesian models are about the best possible decision, 
not necessarily about priors.



MacKay (2003), Information theory, inference, and learning 
algorithms, Sections 28.1-2
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Michel Treisman, Science, 1977



Take-home messages from Case 2: 
• Likelihoods and priors can compete with each other. 
• Where priors come from is an interesting question. 
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Fundamental problem of color perception

Color of surface Color of illumination

Retinal observations

Usually not of interest 
(nuisance parameter)Usually of interest



David Brainard





Light patch in 
dim illumination 

Dark patch in 
bright illumination Ted Adelson



Take-home messages from Case 3: 
• Uncertainty often arises from nuisance parameters. 
• A Bayesian observer computes a joint posterior over 

all variables including nuisance parameters. 
• Priors over nuisance parameters matter!



“The Dress”
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Demo of sound localization



Step 1: Generative model 
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Step 2: Inference, deriving the decision rule

Prior Likelihood



Does the model deterministically predict the posterior for a 
given stimulus and given parameters?





Step 3: Response probabilities (predictions for 
your behavioral experiment)

p ŝ s( )

Decision rule: mapping x→ ŝ
But x is itself a random variable for given s

Therefore     is a random variable for given sŝ
Set	size	1	

Es*ma*on	error	
0	-π	 π	

Set	size	8	

0	-π	 π	 ŝ
Can compare this to data!!



Take-home messages from Case 4: 
• Uncertainty can also arise from measurement noise  
• Such noise is often modeled using a Gaussian 
• Bayesian inference proceeds in 3 steps. 
• The final result is a predicted response distribution.
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Cue combinationBayesian integration (prior x simple likelihood)

Less well known but often more interesting
• Complex categorization 
• Combining information across multiple items (visual search) 
• Combining information across multiple items and across a 

memory delay (change detection) 
• Inferring a changing world state (tracking, sequential 

effects) 
• Evidence accumulation and learning

Well known



A simple change point detection task



Take-home messages from Case 5: 
• Inference is often hierarchical. 
• In such situations, the Bayesian observer marginalizes 

over the “intermediate” variables (compare this to Case 
3)



Topics not addressed
• Lapse rates and response noise 
• Utility and reward 
• Partially observable Markov decision processes 
• Wrong beliefs (model mismatch) 
• Learning 
• Approximate inference (e.g. sampling, variational 

approximations) 
• How the brain represents probability distributions



Bayesian models are about: 
• the decision-maker making the best possible decision 

(given an objective function) 
• the brain representing probability distributions



• This may underlie drivers’ tendency to speed up in the 
fog (Snowden, Stimpson, Ruddle 1998) 

• Possible explanation: lower contrast → greater 
uncertainty → greater effect of prior beliefs (which might 
favor low speeds) (Weiss, Adelson, Simoncelli 2002)

• Lower-contrast patterns appear to move slower than 
higher-contrast patterns at the same speed (Stone and 
Thompson 1990)



Probabilistic computation
Decisions in which the brain takes into account trial-to-
trial knowledge of uncertainty (or even entire probability 
distributions), instead of only point estimates

What does probabilistic computation “feel like”?

Point estimate 
of stimulus

Uncertainty 
about stimulus

Decision



Maloney and Mamassian, 2009

Bayesian transfer

Ma and Jazayeri, 2014

Different degrees of 
probabilistic computation

Does the brain represent probability distributions?



2006 
theory, networks

2015 
behavior, 
human fMRI

2017 
trained networks

2018 
behavior, 
monkey physiology

2013 
behavior, networks
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a. What to minimize/maximize when fitting parameters? 
b. What fitting algorithm to use? 
c. Validating your model fitting method



What to minimize/maximize when fitting a model?



Try #1: Minimize sum squared error

Only principled if your model has independent, 
fixed-variance Gaussian noise 
Otherwise arbitrary and suboptimal 



Try #2: Maximize likelihood

Output of Step 3:  
p(response | stimulus, parameter combination)

Likelihood of parameter combination 
= p(data | parameter combination)

= p responsei stimulusi ,  parameter combination( )
trials i
∏



What fitting algorithm to use?

• Search on a fine grid





Parameter trade-offs

Shen and Ma 2017
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What fitting algorithm to use?

• Search on a fine grid 
• fmincon or fminsearch in Matlab





What fitting algorithm to use?
• Search on a fine grid 
• fmincon or fminsearch in Matlab 
• Bayesian Adaptive Direct Search (Acerbi and Ma 2016)





Validating your method: Parameter recovery



Jenn Laura Lee



Take-home messages model fitting
• If you can, maximize the likelihood (probability of 

individual-trial responses) if you can.  
• Do not minimize squared error! 
• Do not fit summary statistics (instead fit the raw data) 

• Use more than one algorithm 
• Consider BADS when you don’t trust fmincon/fminsearch 
• Multistart 
• Do parameter recovery



Model comparison



a. Choosing a model comparison metric 
b. Validating your model comparison method 
c. Factorial model comparison 
d. Absolute goodness of fit 
e. Heterogeneous populations



a. Choosing a model comparison metric



Try #1: Visual similarity to the data

Shen and Ma, 2016

Fine, but not very quantitative



Try #2: R2

• Just don’t do it 
• Unless you have only linear models 

• Which almost never happens



From Ma lab survey by Bas van Opheusden, 201703

Try #3: Likelihood-based metrics

Good! 
Problem: there are many!



Metrics based on the full likelihood function (often 
sampled using Markov Chain Monte Carlo): 
• Marginal likelihood (model evidence, Bayes’ factor)  
• Watanabe-Akaike Information criterion

Metrics based on maximum likelihood: 
• Akaike Information Criterion (AIC or AICc) 
• Bayesian Information Criterion (BIC)

Cross-validation can be either



Metrics based on prediction: 
• Akaike Information Criterion (AIC or AICc) 
• Watanabe-Akaike Information criterion 
• Most forms of cross-validation

Metrics based on explanation: 
• Bayesian Information Criterion (BIC) 
• Marginal likelihoods (model evidence, Bayes’ factors)



Practical considerations: 
• No metric is always unbiased for finite data.  
• AIC tends to underpenalize free parameters, BIC 

tends to overpenalize. 
• Do not trust conclusions that are metric-

dependent. Report multiple metrics if you can.



Devkar, Wright, Ma 2015



b. Model recovery

Challenge: your model comparison metric and how you 
compute it might have issues. How to validate it?



Devkar, Wright, Ma, Journal of Vision, in press
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Devkar, Wright, Ma, Journal of Vision, in press
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c. Factorial model comparison

Challenge: how to avoid “handpicking” 
models?



• Models often have many “moving parts”, components 
that can be in or out 

• Similar to factorial design of experiments, one can mix 
and match these moving parts. 

• Similar to stepwise regression 
• References: 

• Acerbi, Vijayakumar, Wolpert 2014 
• Van den Berg, Awh, Ma 2014 
• Shen and Ma, 2017

c. Factorial model comparison





Van den Berg, Awh, Ma 2014



d. Absolute goodness of fit

Challenge: the best model is not 
necessarily a good model.



Absolute goodness of fit
• How close is the best model to the data? 
• Method 1: Visual inspection (model checking)

Shen and Ma, 2016



d. Absolute goodness of fit
• Method 2: Deviance / negative entropy 

• There is irreducible, unexplainable variation in the data 
• This sets an upper limit on the goodness of fit of any 

model: negative entropy 
• How far away is a model from this upper bound? 
• Wichmann and Hill (2001) 
• Shen and Ma (2016)



e. Hierarchical model selection

Challenge: what if different subjects 
follow different models? 

(heterogeneity in the population)



• Returns probability that each model is the 
most common one in a population 

• Returns posterior probability for each model 
• Matlab code available online!

Consider all possible partitions of your population

Neuroimage, 2009

Neuroimage, 2014



Take-home messages model comparison

• There are many metrics for model comparison. 
• Specialized lab meetings / reading club? 
• Do due diligence to prevent your conclusions from being 

metric-dependent. 
• Do model recovery  
• Consider doing factorial model comparison 
• Quantify absolute goodness of fit if possible 
• Heterogeneity in population? Hierarchical model selection
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Critique of Bayesian models: 
• Prior is hard to get
• Inference intractable
• Behavior might not be Bayesian 
• Hard to apply to neural data / make connection to 

neural representation 
• Parametric assumptions in distributions 
• Learning the structure of the Bayesian model
• Scaling to large data sets
• Weirdness in distribution (non-Gaussian) 
• Dynamics



Please help me thank our amazing teaching assistants!
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Good job everyone!!


