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What was "Bayesian vision”
pback then”

 mathematics of inference given uncertainty
 common language to integrate disciplines

* tools to model image and scene regularities



What was "Bayesian vision”
pback then”

 mathematics of inference given uncertainty
 common language to integrate disciplines

* tools to model image and scene regularities

...beginning to hint as a set of conceptual and
analytical tools to understand how humans infer
causes (scenes, objects) from data (images)

In those “early days”, it was strongly motivated by
the idea of perception as inverse optics



forward optics
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VISION as Inverse optics

Image data '

- Obiject identities
Lights Obiject relations

Viewer-object
' S relations

Material Action

Objects

Given image pattern |, what combinations
of lights, material, object properties (S) caused it?



VISION as Inverse optics

Image data '

- Obiject identities
Lights Obiject relations

. Viewer-object
S ' S relations
E E nﬁ Material Action

Objects

Given image pattern |, what combinations
of lights, material, object properties (S) caused it?

Bayes theorem — p(S | 1) =< p(l | S) p(S)

likelihood prior assumead
modeled using or measured
forward optics properties of

sScenes



Brown University 1985-1990




shape from shading

1986-87: Dave, student “glue”

Jim Anderson Dan Kersten



the “shape from shading”
problem

> perceived geometry?

Image intensities



the “shape from shading”
problem

> perceived geometry?

Image intensities

p(S|1) = p(]S)p(S)
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single light source,
fixed view fractal



the “shape from shading”
problem

> perceived geometry?

exploit the generative
aspect of Bayes

image intensities /

p(S|1) > [ p(l[S)p(S) |

lambertian, \

single light source,
fixed view fractal




generate |lots of surfaces in render the surfaces to make
3D lots of images

fractal
prior




Use supervised learning to construct an estimator for 3D surface shapes

Knill, D. C., & Kersten, D. (1990). Learning a near-optimal estimator for surface shape from shading.
Computer Vision, Graphics, and Image Processing, 50(1), 75—100.



Use supervised learning to construct an estimator for 3D surface shapes

Height

36.0

Height

Height

.36.0

.36.0

X

True shape

Estimated shape

Knill, D. C., & Kersten, D. (1990). Learning a near-optimal estimator for surface shape from shading.
Computer Vision, Graphics, and Image Processing, 50(1), 75—100.



an interesting method...but how to take this
forward to explain human perception of shape,
object properties?

perhaps there were bigger Issues...

the causes of image patterns were more complicated
e.g. discontinuities are important, but causes of discontinuities
are not all the same



ightness as reflectance
estimation

1988-91: Dave, precocious experimentalist and “closer”



Land, E. H., & McCann, J. J. (1971). Lightness and retinex theory. Journal of the Optical
Society of America, 61(1), 1-11.
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Land, E. H., & McCann, J. J. (1971). Lightness and retinex theory. Journal of the Optical
Society of America, 61(1), 1-11.
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Inferring causes
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causal view
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“harumph!” rb’

(anonymous senior professor)



V4 S

“harumph!” e

(anonymous senior professor)

“An expression of disdain, disbelief, protest, refusal or dismissal” - en.wiktionary.org



http://en.wiktionary.org

Dave’s response
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Use 3D graphics to DO psychophysics with an
make the stimuli indirect matching task of
ightness

Knill, D. C. & Kersten, D. (1991) Apparent surface curvature affects
lightness perception. Nature, 351, 228-230












contours, shape (and material)
1988: Dave goes solo




contours, shape (and material)
1988: Dave goes solo
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Knill, D. C. (1992) The perception of surface contours and surface shape: from
computation to psychophysics. Journal of the Optical Society of America A., 9 (9),
1449- 1464.



Knill, D. C. (1992) The perception of surface contours and surface shape: from
computation to psychophysics. Journal of the Optical Society of America A., 9 (9),
1449- 1464.



Sen, M. G., Yonas, A., & Knill, D. C.
(2001). Development of infants'
sensitivity to surface contour
information for spatial layout.
Perception, 30(2), 167-176



same Iinterior shading pattern
different contour shapes

matte appears more specular



same Iinterior shading pattern
different contour shapes

matte appears more specular

Braje, W. L. and Knill, D. C. (1994) Apparent surface shape influences perceived
specular reflectance of curved surfaces. Poster presented at the annual meeting of the
Association for Vision and Ophthalmology; Sarasota, FL.



same Iinterior shading pattern
different contour shapes

matte appears more specular

Braje, W. L. and Knill, D. C. (1994) Apparent surface shape influences perceived
specular reflectance of curved surfaces. Poster presented at the annual meeting of the
Association for Vision and Ophthalmology; Sarasota, FL.

Marlow, P. J., TodoroviC, D., & Anderson, B. L. (2015). Coupled computations of
three-dimensional shape and material. Current Biology, 25(6), R221-R222.



Minnesota: 1990-1994

Zill Liu, Pascal Mamassian,
Wendy Braje, Suthep
Madarasmi, Bosco Tjan..

Al Yonas, Irv Biederman,
Gordon Legge

Visiting protfessors:
Heinrich Bulthoff, Alan
Yuille, Mel Goodale



1991: Dave the seer

"Maybe the brain represents probability distributions,
not just estimates™ — Dave Knill, ca. 1991




1991: Dave the seer

"Maybe the brain represents probability distributions,
not just estimates™ — Dave Knill, ca. 1991
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1991: Dave the seer

"Maybe the brain represents probability distributions,
not just estimates™ — Dave Knill, ca. 1991

huh 7

Zemel, R. S., Dayan, P, &
Pouget, A. (1998). Probabilistic
Interpretation of population

codes. Neural Computation,
10(2), 403—-430

Knill, D. C., & Pouget, A.
(2004). The Bayesian brain: the
role of uncertainty in neural

coding and computation. TINs,
27(12), 712-719.



The Chatham meeting and book

Ted Adelson, Horace
Barlow, Peter
Belhumeur, Bennett,
Andrew Blake, Heinrich
Bulthoff, Jacob
Feldman, Bill Freeman,
Stu Geman, Don
Hoffman, Alan Jepson,
Dan Kersten, Dave
Knill, Pascal
Mamassian, David
Mumford, Ken
Nakayama, Alex
Pentland, Chetan
Prakash, Whitman
Richards, Scott
Richman, Ron Rensink,
Dave Sheinberg, Shin
Shimojo, Alan Yuille

John Tangney, AFOSR

1993 Dave the organizer, integrator,
and conversant
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1991-94: Dave the mentor, co-advisor, collaborator

Pascal Mamassian Zili Liu

Which 2D image best matches 3D prototype?

e — J—
Prolectlon and
random swﬂch

orot tTarget t | Distractor:
rototype + positiona Prototype + more
noise (N) < positional noise (N+)

3D rotation ()

Noiseless

3D l
prototype (O) #

Knill, D. C., Mamassian, P., & Kersten, D. (1997). Geometry of shadows. JOSA A, 14(12),
3216-3232.

Kersten, D., Knill, D. C., Mamassian, P., & Bulthoff, |. (1996). lllusory motion from shadows. Nature,
379(6560), 31.

Liu, Z., Knill, D. C., & Kersten, D. (1995). Object classification for human and ideal observers. Vision
Research, 35(4), 549-568.



..In closing

Dave the problem solver, not an ideologue

Fig. 7.3 Schemartic including the mmage-to-sketch map, x:
Ap=+Ap. 1 is oflen mamy-to-one, and i3 pnverse, ome-to-many,
as shown here,

by 1995, studies

leading to some 17 S
articles, 10 as OO/@

first or sole author %




What is Bayesian vision today”
..oy 1998

No longer as simple as
‘Inverse optics”




Narragansett Bay, Rhode Island — late 1980s



David Knill and the Rational
Analysis of mid-level vision

Paul Schrater

Graduate student with Dave, 1994-
1998



20 Years ago today

1995 University of Pennsylvania Psych Building
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As ajoke only we though was fuhny, all
lab members wore that hat for lab profile pics.



Knill became almost synonym
for the Bayesian Brain

* Ecological perception complex
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* Ambiguity generates uncertainty
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Traditional Levels of Analysis

Computational y 5 maximize:
Why do things work the way they do? *4, - .
What is the goal of the computation? {/ Rt i Tlhpt ot

What are the unifying principles?

Algorthmic

What representations can implement
such computations?

How does the choice of representations
determine the algorithm?

Big reward
cue

Predicted
big reward

Implementational

How can such a system be built in
hardware?

R T TV Y TS T
G Bt R B R L WO A

Small reward Predicted
How can neurons carry out the small reward
computations? w0

X PN R A N O T O Yo
v BRI NS N Sy s o



Reductionist Explanations

Craik O'Brien Cornsweet illusion

lllusion results
from byproduct

of early sensory e N ,
. Position
processing

Intensity




Computational Epistomology

Illusion results from rational analysis of
the scene




Dave was not Anti-Reductionist

* But some complain that a Bayesian approach is
“vague” and of “questionable merit”

i
‘While Marr’s original
attack on . mfeawm'obml —
reductionism was e —
justified it is no longer A (M .

tenable’

sensory firing

74
.N

recognition model (posterior)



Slide from Dave’s talk at Battaglia and Schrater’s 1998 VSS symposium

Some properties of a useful psychophysical
framework

e Support building predictive models of perceptual
performance.

e Support bridging statements between models and
descriptions of behavior.

* Explain “why~ perception / sensorimotor
control works the way it does.

* Help guide psychophysical research

— Suggests new and interesting theoretical questions.

— Supports scaling down perceptual / sensorimotor
problems to bring them into the lab.

— Scales up naturally
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Slide from Dave’s talk at Battaglia and Schrater’s 1998 VSS symposium
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Slide from Dave’s talk at Battaglia and Schrater’s 1998 VSS symposium
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Slide from Dave’s talk at Battaglia and Schrater’s 1998 VSS symposium
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Slide from Dave’s talk at Battaglia and Schrater’s 1998 VSS symposium
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Slide from Dave’s talk at Battaglia and Schrater’s 1998 VSS symposium

‘ Ideal observer models ‘

I

| Rational observer models |

The domain of o o
. erceptual
Bayesian models Fochavior




Threefold Knowledge
Q\Object class

1) Image physics
Environment fcl)bj:j‘:t_t Object
reflectivity

' 2) Environmental regularities

l\@ O
l/l 3) Human task requirements
o 00

Global Local image Haptic
features features

Making an image from a scene Local

' Stage
Q Lights é::}

Q Material

Objects

Information about object
properties is encrypted
inthe image




Generative model

« Sample a scene type
« Sample N object classes

« Sample Objects from each class (locations and attributes for
each object)

« Sample rendering variables (lights, viewpoint)
« Sample image features from rendered scene

Making an image from a scene

' Stage Image
2 ‘

. Lights (\
S
Scene type . ' g’l | ___: U

Material

" Object location, shape

Object
class

Information about object
properties is encrypted
inthe image

Number
of objects N




Rational Analysis for Mid-level vision

 What are the evolutionary pressures and
environmental features that shape perception?
* These lead to a family of computational problems

— Natural visual tasks and behavior
» Getting reliable estimates of object geometry and material

— Statistical structure of the environment

* What regularities can be exploited? . '

AL)







|deal observer analysis

How well can any observer compute surface
orientation from texture?

“Surface orientation from texture: ideal observers, generic observers and the information content of texture
cues” Vision Research, 1998 ”
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Defining “Cues”

Elliptical Approximation

WL




Defining “Cues”

Elliptical Approximation 3 parameters

0 degrees
Y
.. center_y
@

Dury




Defining “Cues”

Elliptical Approximation 3 parameters




Defining “Cues”

Elliptical Approximation 3 parameters

0 degrees

Voila! Cues!

(a) Compression @
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© Do @30 @D & ¢
o ® @ 0

(e) Perspective %
convergence
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gradient




Threshold Aslant

ldeal observer vs. Human

100

—&— Subject EE
— & - Subject SS
- - ©- - Subject HH
- & - - Subject LL
Scaling ideal

| = = =|sotropic foreshortening ideal

----- Anisotropic foreshortening ideal
--------- Position ideal
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50 60 70 80

Slant (degrees)

People kind of suck, but that’s expected! -
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Natural “reverse correlation”

Natural Cue fluctuations

Bayesian

Estimation a
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Cue weights

Ws
slant f_rom W5+Wf+Wp =1
scaling
Comparison
Stimulus
slant from

foreshortening

position
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e 0o 0 / '

/ )
{ Y
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Fig. 3. The signal detection model we used for our analysis (see text for description). \
Voronoi



(in tilt direction) Project
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regularities
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What are cue weights?



What are cue weights?

 Summary descriptions of perceptual
performance.



What are cue weights?

 Summary descriptions of perceptual
performance.

 Summary descriptions of the information
available for a task.



What are cue weights?

 Summary descriptions of perceptual
performance.

 Summary descriptions of the information
available for a task.

e Support logical links between behavior and
rational / normative models of
performance.



Texture information

Least Reliable

Most Reliable

‘Haad®s
3:::0:&
'l'. XA

Binocular information

Equally reliable




Humans weight sensory cues

11 . 7
optimally
* Discrimination thresholds in single cue conditions
predict weights measured in multi-cue experiments.

— Ernst and Banks, 2002; Knill and Saunders, 2003; Alais
and Burr (2004); etc., etc., etc.
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Texture data
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Humans weight sensory cues

11 . 7
optimally
* Discrimination thresholds in single cue conditions
predict weights measured in multi-cue experiments.

— Ernst and Banks, 2002; Knill and Saunders, 2003; Alais
and Burr (2004); etc., etc., etc.

Texture data
(L)

Stereo data



Why depth?
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Depth cues: Vision vs. Motor Control

Computer monitor

/

Stereo glasses
Mirror é
Infrared markers Starting platform
? -— g p!
—
\ Monocularly defined slant
«—
\\
Binocularly defined slant
\ Robot arm

J

(a) 3 Visuomotor versus perceptual cue weights (b) Effect of visual feedback (c) ; Effect of experience
1
]
0.8 4 0.8 2=t 0.8
g 1] ‘l" §2)
X L
Tos6l .i/x‘s 206 3 0.6}
E ;=0 =
% v (_‘5 / 5
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) L% aE) —g==\otor task (1st session)
O ey ooy 0:2{— ——e--Mobr sk 2 session)—————
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0 L 0 I 1 0 | |

Circle
Figure
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My Work: Complex inference in reaching to depth

This model represents the decomposition:
P(X), X5, X5, Xy) = PX, | X)) P(XG [ X}, X5) P(X)P(X))

Nodes: random variables
X], ,X4 P(x;) P(x,)

W
\/\!

Data: observations of X; and X, ‘
P(x; | X, x,) P(xy | x,)

Each node has a conditional
probability distribution

Links: direct dependencies

EXAMPLE
X, object size
X, object distance
X; Image size
X, “felt” distance




Main Lesson: Theory Matters

It’s not a theory of vision unless it can handle real stimuli
and tasks

— Functional analysis
 Why and what come before How
* Develop whatever theory you need

— Design airtight psychophysical experiments

 BUT Embed experiments in near-ecological contexts



Dave’s Impact

 Professional

— Key champion of computational level modeling

 Why do we have vision at all?
* What'’s the brain for?
* Only given it’s purpose can you make sense of details

— Key champion of Bayesian analysis

— Combined rigor, depth and hard problems like very few in the
field can. Tough act to follow.

e Personal

— Taught me how to balance high standards with the joy of
discovery

— How to concoct a story on the spot
— Never prepare a talk before the night before!



With enough details, all are credulous

* Chinese influence on the origins of Appalachian folk
music




IRCS Progress Report 1995

Knill has recently completed a series of studies that examines the
role of texture in the perception of orientation. Texture cues
indicate surface orientation vis-a-vis the change in shape associated
with more distant vs. nearer elements. For example, the grade of a
cobblestone road is cued in part by changes in the size and shape of
the road elements.

Knill’s work indicates that changes in both size and shape of the
texture elements contribute to the sense of surface tilt, and that the
contributions are approximately equal.

In collaboration with Tjeerd Dijkstra (IRCS postdoctoral fellow), an
evaluation of the contribution of highly oriented textures, or
texture flow, for the perception of orientation has begun. In the past
year, Simoncelli and Knill have begun collaboration on
experiments that evaluate the role of temporal deformations in the
perception of the shape of texture patterns.



Theoretical Approaches
to Multisensory Perception

Robert Jacobs
Department of Brain & Cognitive Sciences
Center for Visual Science
University of Rochester
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Multisensory Perception

e (Collaborating with Dave was productive and fun:

— Experiment: Cue reliability and cue recalibration

« Dave loved talking about science. Not only his own
science, but your science too:

— Experiment: Generalization from perception to motor
production

— =2 Implications for perceptual learning



Cue Reliability and Cue Recalibration

« C(Collaborators
— Joseph Atkins (Colby College)
— David Knill

e Atkins, J. E., Jacobs, R. A., & Knill, D. C. (2003).
Experience-dependent visual cue recalibration based on

discrepancies between visual and haptic percepts. Vision
Research, 43, 2603-2613.



“Touch Educates Vision”

« Bishop George Berkeley
— An Essay Towards a New Theory of Vision (1709)

« Perception of visual space results from associations
between visual sensations and sensations of touch and
motor movement

— “Touch educates vision”



Research Question

Question:

Can observers adapt their interpretations of a stereo cue on
the basis of consistencies (and inconsistencies) between
depth-from-stereo and depth-from-haptics percepts?



Visual Stimuli

Scenes consisted of two fronto-parallel surfaces

Narrow surface was closer to subject, and 1t occluded the
middle portion of the wide surface

Subjects viewed scene head-on (orthogonal view)

Stereo only reliable visual cue to depth between two
surfaces



Visual Stimuli




Virtual Reality Environment




Procedure

e Judgment: Is width of front surface greater or less than the
depth between the two surfaces?

— Based on visual cues
— Based on visual and haptic cues

— No corrective feedback

* Four stages:

— Consistent-cue training trials
— Pre-test trials (visual information only)
— Inconsistent-cue training trials

— Post-test trials (visual information only)



Cue Conflict

» Independent control of:
— Depth indicated by visual stereo
— Depth indicated by haptics

* Trials with inconsistent cues:
— Reaching distance greater than viewing distance by 60mm

— Binocular disparities consistent with both reaching and
viewing distances

—> Scaled depth between front and rear surfaces so that
depth indicated by haptics > depth indicated by stereo



Prediction

« Based on inconsistent-cue training trials, subjects will
adapt their depth-from-stereo estimates so that these
estimates become more similar to their depth-from-haptics
estimates



Experimental Results

e Subject TL:
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Experimental Results

post-test PSE - pre-test PSE
o

H exp-hear Oexp-far H control-near Ocontrol-far

* Bishop Berkeley was right!



Multisensory Perception

« Dave loved talking about science. Not only his own
science, but your science too:

— Experiment: Generalization from perception to motor
production

— =2 Implications for perceptual learning



Generalization from Perception
to Motor Production

e (Collaborators:
— Daniel Meegan (University of Guelph)
— Richard Aslin (University of Rochester)

 Meegan, D. V., Aslin, R. N., & Jacobs, R. A. (2000).
Motor timing learned without motor training. Nature
Neuroscience, 3, 860-862.



Generalization From Perception
to Motor Production

« Experiment:
— Motor production tests (Tasks 1 and 2)
— Perceptual training

— Motor production tests (Tasks 1 and 2)



Generalization From Perception
to Motor Production

e Motor production tasks:

— Produce two finger taps separated by a target temporal
interval
« Task 1: target interval = 300 ms
 Task 2: target interval = 500 ms

— Feedback: actual temporal interval



Generalization From Perception
to Motor Production

* Perceptual training:

— Auditory temporal interval duration discrimination task

« Temporal intervals indicated by 2 auditory tones

— On each trial, subjects heard two intervals (standard and
comparison) and judged which one was longer
* Group 1: standard interval = 300 ms
* Group 2: standard interval = 500 ms



Generalization From Perception
to Motor Production

* Prediction:

— Subjects will show more motor improvement when the
temporal requirements of the perceptual and motor
tasks are 1dentical

 Subjects trained to perceptually discriminate 300 ms (500 ms)
intervals from other intervals will show the most improvement
on producing 300 ms (500 ms) intervals



20

|

30

20 -

Target motor interval
(transfer)
B 300 ms
] 500 ms

10 -

(pre-training to post-training)

300 ms 500 ms

Standard perceptual interval
Rraining)

Percent reduction in motor timing variability

—> Subjects showed more motor improvement when the temporal

requirements of the perceptual and motor tasks were 1dentical



Implications for Perceptual Learning

 (Cross-modal transfer

— Acquire knowledge about the environment through one
sensory modality

— Apply acquired knowledge when the environment 1s
sensed through a different sensory modality

« Example: If you learn to visually categorize a novel set of
objects, you can also often categorize the same (and

similar) objects when they are grasped but not seen
(Yildirim & Jacobs, 2013)




Implications for Perceptual Learning

* To us, cross-modal transfer and transfer from perception to
motor production are closely related phenomenon

— Both suggest the existence of amodal representations

— If so, then experiment on transfer from perception to
motor production has implications for perceptual
learning



Narrow vs. Broad Generalization

* Perceptual learning

— Many studies report that perceptual learning is often

stimulus-specific (narrow generalization)

» Fiorentini & Berardi (1980, 1981), Shiu & Pashler (1992), Fahle,
Edelman, & Poggio (1995), Liu & Vaina (1998)

— However...cross-modal transfer of knowledge 1s, by
definition, not stimulus-specific

* Q: When is generalization narrow and when 1s 1t broad?



Are People Biased Toward
Cross-Modal Transfer?

 In our experiment, subjects simultaneously generalized both
narrowly and broadly

— Narrow

 Transfer of learning better for trained temporal interval

— Broad

 Transfer of learning from perception to motor production

« Hypothesis: Cross-modal transfer has a privileged status

— People are biased toward generalizing cross-modally even
under circumstances in which they simultaneously fail to
generalize (or generalize narrowly) along other dimensions



Thank you!!!
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Looking back and moving tforward:

Dave Knill's contributions to visual memory and motor control

Chris R. Sims

DREXEL UNIVERSITY
Applied Cognitive &
Brain Sciences
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What I learned from Dave Knill

: N an
./3}441 77

1. Think harder

2. Don’t be satisfied with
inelegant solutions

3. Enjoy the journey
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Outline (aka, this is an impossible task)

. Sensorimotor control and coordination

Saunders, J. A., & Knill, D. C. (2003). Humans use continuous visual feedback from the hand to control fast reaching
movements. Experimental Brain Research, 152(3), 341-352.

Saunders, J. A., & Knill, D. C. (2004). Visual feedback control of hand movements. The Journal of neuroscience,
24(13), 3223-3234.

Saunders, J. A., & Knill, D. C. (2005). Humans use continuous visual feedback from the hand to control both the
direction and distance of pointing movements. Experimental Brain Research, 162(4), 458-473.

Greenwald, H. S., Knill, D. C., & Saunders, J. A. (2005). Integrating visual cues for motor control: A matter of time.
Vision research, 45(15), 1975-1989.

Knill, D. C., Bondada, A., & Chhabra, M. (2011). Flexible, task-dependent use of sensory feedback to control hand
movements. The Journal of Neuroscience, 31(4), 1219-1237.

Sims, C. R., Jacobs, R. A., & Knill, D. C. (2011). Adaptive allocation of vision under competing task demands. The
Journal of Neuroscience, 31(3), 928-943.

. Visual memory

Brouwer, A. M., & Knill, D. C. (2007). The role of memory in visually guided reaching. Journal of Vision, 7(5), 6.

Brouwer, A. M., & Knill, D. C. (2009). Humans use visual and remembered information about object location to plan
pointing movements. Journal of vision, 9(1), 24.

Issen, L. A., & Knill, D. C. (2012). Decoupling eye and hand movement control: visual short-term memory influences
reach planning more than saccade planning. Journal of vision, 12(1), 3.

Sims, C. R., Jacobs, R. A., & Knill, D. C. (2012). An ideal observer analysis of visual working memory. Psychological
review, 119(4), 807.

Orhan, A. E., Sims, C. R., Jacobs, R. A., & Knill, D. C. (2014). The adaptive nature of visual working memory. Current
Directions in Psychological Science, 23(3), 164-170.

Sims, C. R. (2015). The cost of misremembering: Inferring the loss function in visual working memory. Journal of vision,
15(3), 2.
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Sensorimotor control
T = f(xops) State estimation
u = g(x) Feedback control law
L =h(x,u) Costfunction

Goal: Minimize £ w.rt. [, @
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Stochastic optimal feedback control
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Stochastic optimal feedback control

o Uncertainty
------ Estimated
— Actual

o d
.
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Stochastic optimal feedback control

virtual

M fingertip O

d ™ = “The results of the current experiment provide
— hand the first direct evidence for continuous, on-line
visual control of the moving hand that extends
throughout the course of reaching movements.
o We hope that these results will help to settle
the long-running debate concerning the role of
visual feedback in the control of reaching

(b) movements. The technique of perturbing a
virtual hand during reaching movements
provides a promising tool for further exploring
the nature of the visual feedback that the brain

uses to control reaching movements.”

(a)

(C)

(Saunders & Knill, 2003)*

* Research also presented at first VSS meeting in 2001
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Sensorimotor coordination

@  Uncertainty
------ Estimated
—— Actual

N
.
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Sensorimotor coordination

o Observed
o Unobserved
------ Estimated
B —— Actual

S
V 4
hO
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Sensorimotor coordination

o Observed
o Unobserved
------ Estimated
B —— Actual

S
V 4
hO
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Exp eriment

Task: Sort a bunch of objects into two piles

\

cRTmonitor  +  Demands on vision:
Eyetracker | @ — Motor guidance
? o 6 0,0 o
{|C / — Information acquisition/planning
//'ror
Chinrest |K{5 ETA
/ bite bar Z ]

Manipulate:
— Difhculty of motor task

\ — Difhculty of perceptual discrimination
7

Finger sleeve w/
Optotrak markers

Examine adaptive timing of eye movements

(Sims, Jacobs, & Knill, 2011)
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Saccade timing as utility maximization

Knill Memorial Symposium
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How to understand sensorimotor behavior

Motor control is decision-making
Daniel M Wolpert' and Michael S Landy?

Motor behavior may be viewed as a problem of maximizing the
utility of movement outcome in the face of sensory, motor and
task uncertainty. Viewed in this way, and allowing for the
availability of prior knowledge in the form of a probability
distribution over possible states of the world, the choice of a
movement plan and strategy for motor control becomes an
application of statistical decision theory. This point of view has
proven successful in recent years in accounting for movement
under risk, inferring the loss function used in motor tasks, and
explaining motor behavior in a wide variety of circumstances.

(Wolpert & Landy, 2012)
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[1. Perceptual memory

Illlisll:ﬂlliillll Vemory
HﬂYﬂﬁlﬂ" —> as Bayesian
I“[ﬂ"}"ﬂ A inference?

Wy
David  Knll
Whitman Richard
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Memory as Bayesian inference?

Stimulus

SR

Probability density
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Memory as Bayesian inference?

Stimulus ,
> Ry N
'® Memory
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Memory as Bayesian inference?

Stimulus

x ~ Normal (,u, O‘i)

z ~ Normal (x, o2
Internal ! (#7)

representation

Memory = p(z | y) ?
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Memory as Bayesian inference?

60

40 |

Recall SD

O 1 1 1 1 1 1
1 2 3 4 5 6
Number of items

(Ma, Husain, & Bays, 2014)
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Memory as Bayesian-inferernce

efficient communication

€T ——> — 1

p(x) : Visual statistics

L(z,y) : Cost function
C': Channel capacity

Goal: Minimize L(x,y) w.rt. p(y | x)
subjectto I(z,y) <C
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Memory as efficient communication

p(z) = Normal(u, o)
L=(y—a)
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What is the cost of misremembering?

Loss Function Memory Error Distribution

T S - Memory capacity
@ 1 bit
| @ 3 bits

I 1 1 I | o -
\/ o -

P(Error)

0.1

. Difterent cost functions imply

P(Error)

different optimal distributions

N of memory error, given the
} ‘ same channel capacity

0.1

P(Error)

|| | | 1
\/ ‘- 4—7
14 1 1 T 1 o -

-7 0 m - 0 n
Angular Error (radians) Angular Error (radians)
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What is the cost of misremembering?

Measured,

. . Predicted, natural task
inverse decision theory

1.0
1.0

Cost
Cost

(Sims, 2015; JOV)



Looking back and moving forward

(a) (b)

(Trommershaulser, Maloney, & Landy, 2008)



Vision lost and regained
Impact on direction of heading estimates from optic flow

Laurel Issen, Krystel Huxlin and David Knill




Vision lost after V1 damage

Optic nerve

Optic chiasm

dLGN

Optic radiation \

Striate cortex (V1)

Extra-striate visual
cortical areas

(V2, V3, V4, V5, V7, etc)

Rg ¥
% N
\\ Ne //

Visual field defects

Left eye Right eye

~
Partial Cortical
Blindness
>

@ @ Hemianopia
/

Loss of conscious vision



Damaging V1 — hemianopia

Causes:

Stroke — PCA, MCA
Tumors

Trauma, incl. TBI

Incidence:

0.8% population > 49 yrs old
(Blue Mountains Eye Study, Australia)

Up to 50% of stroke victims

Prognosis:

Spontaneous improvements in first 2-3 months
Deficit stable and permanent after that
Dogma: blindness cannot be recovered



Why damaging V1 causes blindness?

dorsal 1

Tootell & Hadjikhani, 2001

dLGN

Modified from Larsson and Heeger, J. Neurosci. (2006)



Residual visual processing after V1 damage

Blindsight (Weiskrantzetal.,  Unconscious ability to detect, match, discriminate
1974; Weiskrantz, 1986) orientation, wavelength, speed (Morland et al., 1999)

But “blindsight” is not seeing

In spite of blindsight, even unilateral V1 damage dramatically
alters visually-guided functions in daily life:

—Difficulties reading

—Inability to drive

WHY?

—Bumping into objects
—Difficulties navigating
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Optic flow

4
\‘.
Warren & Kurtz, 1992
Crowell & Banks, 1996
Contributes to walking May not contribute to walking
Warren et al., Nat Neuro 2001 Rushton et al., Curr Bio 1998

Harris and Bonas, Vis Res 2002

Contributes to walking depending on fidelity of info
Li & Niehorster, J Neurophys 2014
Li et al., JOV 2014



How impaired are hemianopes at estimating
direction of heading (DOH) from optic flow?
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* How well do normal observers estimate DOH
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Experimental paradigm for direction of
heading estimation task

» possible FOE
locations
# (invisible) #§

"o

e o»

Issen, Huxlin & Knill, JOV 2015




Experimental paradigm for direction of
heading task

Anchor trial with DOH at 6° Anchor trial with DOH at 3°

Perturbation trial

Issen, Huxlin & Knill, JOV 2015



Intact humans are almost ideal observers

They give weight to different visual field quadrants according to
relevance of information content for DOH task

0.5 T
— DOH
[ | —— Same—hemi ® —— Humans (N=6)
0.4} | — Cross—hemi Rl _ --=-: |deal Observer
Diagonal L

0.3

o
N

Influence on Y direction estimate
=
[y

0 0.1 0.2 0.3 0.4 0.5
Influence on X direction estimate

Issen, Huxlin & Knill, JOV 2015



How impaired are hemianopes at estimating
DOH from optic flow?

20

10 ~

0
4
-10 -

Deg visual angle

-20 T T ] T T
-30 -20 -10 0 10 20 30

Deg visual angle

Characterize and model behavior
e Can the effects of hemianopia be modeled by simulating field loss?
* Are heading estimates in the intact visual field affected by hemianopia?

 We know hemianopes can “sense” some motion in their blind field — is
it used for DOH tasks?



Estimating impact of hemifield loss




Estimating impact of hemifield loss

Subjects: visually-intact controls (8 young, 8 older) and 7 hemianopes (older)
800 trials: perturbation (in left or right hemifields), anchor and feedback trials
Conditions: full field or simulated hemianopia (for older controls)



Older adults’ DOH estimates are more
compressed towards fixation

8 young adults: 18-21 yrs, mean 19 yrs
4—&6—? A b A e vo . '&FA'—"'

8 older adults: 54-75 yrs, mean 68 yrs

O Real target position
/\ Perceived target position



Analyzing DOH estimates
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All adults give more weight to hemifield
containing DOH
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Simulating hemianopia changes bias and

comprESSIon Simulated
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Real hemianopia alters compression and bias
in BOTH hemifields
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Some hemianopes give weight to blind
field information when it contains DOH
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Summary

Hemianopes are impaired at estimating
direction of heading from optic flow

 Simulated hemianopia underestimates real
behavior

e Deficit affects intact hemifield performance
* Weight is given to blind hemifield information

Deg visual angle

T T I T T

-30 -20 -10 0 10 20 30
Deg visual angle

Implications?

Real hemianopia is more exaggerated than simulated deficit
Adaptation over time since stroke, additional factors?

DOH judgments impaired across whole hemifield
May explain persistent problems navigating

Some hemianopes give significant weight to blind field information - automatically
Improving motion processing in the blind field could help DOH estimation
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Dave's work on mixture
priors and causal inference

Wel JI Ma
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Mixture models and the probabilistic structure of depth cues

David C. Knill

Center for Visual Sciences, University of Rochester, 274 M eliora Hall, Rochester, NY 14627, USA
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Project

Stretch
(stretch factor < 1.0)

Stretch

(stretch factor > 1.0) .
Project

Fig. 10. Stimuli for the experiments were created in three stages. First, a random, isotropic texture pattern was generated. This was then stretched by
some amount in the vertical direction. The resulting texture was projected into the image at a slant of 65° and a vertical tilt. A subject that assumes
surface textures are isotropic would overestimate the slant of the top stimulus and underestimate the slant of the bottom one.



texture type ]

homogeneous [
and isotropic /\ homogeneous only
[ slant ] [ slant ][ stretch J

\

texture texture
measurements measurements

Two (or more) categorically different scenarios that
could have given rise to the sensory observations.



The role of memory in visually guided reaching

. Center for Visual Science, University of Rochester,
Anne-Marie Brouwer Rochester, NY, USA 119 <

. . Center for Visual Science, University of Rochester,
David C. Knill Rochester, NY, USA 109

Journal of Vision, 2007
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"l was a postdoc of Dave's. | had my job
interview at VSS 20095, in the sun. Dave
iImmediately struck me as a very friendly,
thoughtful person. Even though in
Rochester the environmental
circumstances were quite different (no
windows in the whole department!), Dave
indeed turned out to be the friendly,
thoughtful person consistent with my first
impression, and so much more. To me he
represents the true scientist, who
wholeheartedly wants to get at the bofttom
of it, rather than being distracted by status
and petty politics. | very much value the
time spent in his lab, and will not forget our
discussions and the occasional TGIF,
having a beer with Ross, Hal, Brian, Bo and
Dave amidst the experimental setups (-: "

Anne-Marie Brouwer
(Dave's postdoc from Sep 2005 - May
2007)



2007-8: Extending to large jumps



Feb 2009

Hi Dave,

| hope all is well. | would like to discuss with you if you would prefer
me to step down from the project we have been doing together. | am
well aware that between setting up my lab, writing grants, and
preparing a course from scratch, | have neglected working on our
project. Although | greatly enjoy it and would still be interested in
carrying it through to a conclusion, unfortunately | do not anticipate
having more than a few days a month to devote to it, as has been the
case in the past half year. | can imagine that you need the results
faster, or that you have students or postdocs who would be interested
In this project. If that is the case, | do not want to be an obstacle. |
could easily transfer my analysis files to someone else. Let me know!

Best,
Weulji



Hi Wei Ji, February 24, 2009

Thanks for your thoughtful note. I'm afraid that I've been as bad as you about
putting time into this - maybe we should both step down :). At the moment | do not
have someone to step right into the breach, so it's ok with me if you want to stay with
it. Right now, we seem to be in a place where we might have to re-design the
experiments and collect more data. | understand, though, if you want to step down.
Sometimes these side projects end up being more of a psychological burden than
anything else. If you are feeling that way, | completely understand and I'm ok with you
stepping away. You don't need to feel badly about it. If you are interested, though, in
continuing, even if it is at a slow pace for now, I'm also ok with that. | have a new
post-doc starting sometime this summer who is interested in some of these issues. If
you decide to stay on, it's possible that you could shift your role at that point to a
more conceptual one and he would take on more of the detailed data analysis and
modeling. I'm not sure what he's going to end up working on, so | guess what I'm
really saying is that if | find someone to take on more of the project, you could still
stay involved (pretty much in the way | am currently).

Let me know what you decide.

BTW, how are things going there? How do you like life as a faculty member?

Best,
Dave
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- motion-induced shifts In perceived position
- peripheral slowing
- curveball illusion



"Dave was my postdoctoral mentor. He was
brilliant yeft strict in research, but generous in
life. It was always enlightening to have a
meeting with him. He could see through to the
core of my vague ideas, which | might have
been thinking about for weeks. Usually before
my full description finished, he would come up
with several better ones in mathematically
organized form. | adored his ability. He
encouraged me to explore fundamental
principles governing human behaviors rather
than to search for eye-catching effects, while
urging every bit of research to be crystal clear.
| am greatly indebted to him."

Oh-Sang Kwon
(postdoc 2009-2014)

Talk 21.14, tomorrow morning
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