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When the visual system analyzes distributed patterns of
sensory inputs, what features of those distributions does
it use? It has been previously demonstrated that higher-
order statistical moments of luminance distributions
influence perception of static surfaces and textures.
Here, we tested whether the brain also represents
higher-order moments of dynamic stimuli. We
constructed random dot kinematograms, where dots
moved according to probability distributions that
selectively differed in terms of their mean, variance,
skewness, or kurtosis. When viewing these stimuli,
human observers were sensitive to the mean direction
of coherent motion and to the variance of dot
displacement angles, but they were insensitive to
skewness and kurtosis. Observer behavior accorded with
a model of directional motion energy, suggesting that
information about higher-order moments is discarded
early in the visual processing hierarchy. These results
demonstrate that use of higher-order moments is not a
general property of visual perception.

Introduction

Perception emerges from the statistical analysis of
sensory information (Helmholtz, 1867; Jazayeri &
Movshon, 2006; Pouget, Dayan, & Zemel, 2000). What
statistical features are used in this analysis? When
processing the distribution of luminance across a static
surface, human vision is sensitive to both lower- and
higher-order moments. We perceive mean luminance as
brightness, luminance variance over space as spatial

contrast, and positively skewed luminance as ‘‘gloss’’
(Motoyoshi, Nishida, Sharan, & Adelson, 2007). It is
largely unknown, however, whether higher-order mo-
ments also convey meaningful information in other
visual domains.

One domain that lends itself well to experimentally
measuring the influence of higher-order moments is
visual motion. When viewing a collection of elements
that move independently according to samples from a
probability distribution, as in a random dot kine-
matogram, the visual system can extract a percept of
coherent motion. Random dot kinematograms that are
generated from a uniform or normal distribution
appear to move coherently in the direction of that
distribution’s mean (Watamaniuk, Sekuler, & Wil-
liams, 1989; Williams & Sekuler, 1984). Here, we ask
whether the higher-order moments of the motion
distribution correspond to other percepts. Based on
prior studies of static textures (Kingdom, Hayes, &
Field, 2001; Motoyoshi et al., 2007; Okazawa, Tajima,
& Komatsu, 2015; Portilla & Simoncelli, 2000), it might
be expected that they would.

We presented observers with a large random dot
kinematogram and asked them to identify the location
of an ‘‘odd’’ patch embedded within it. In the odd
patch, dots moved with statistics that systematically
and selectively differed from those in the rest of the
stimulus. We found that human observers could detect
odd motion only when either the mean or variance of
the motion distribution was manipulated; in contrast,
they were insensitive to changes in skewness and
kurtosis. These results indicate that representation of
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higher-order moments is not a general property of the
visual system.

Methods

Observers and experimental setup

Five human observers (one female; ages 19–36)
participated in the experiment. Observers had normal
or corrected-to-normal vision. One of the observers was
author JA; the others were naive to the purposes of the
experiment. Before participating, observers provided
informed written consent; all experimental procedures
were approved by the Institutional Review Board at
New York University.

Observers were seated in an adjustable chair in a
semi-dark room with chin and forehead supported
before a cathode ray tube display monitor (21-inch
Sony; Tokyo, Japan; 75 Hz refresh rate; 1,600 3 1,200
screen resolution; 53.6 cm viewing distance). Viewing
was binocular. Stimulus presentation was controlled
with the Psychophysics Toolbox (Brainard, 1997) in

MATLAB (MathWorks, Natick, MA). Gaze position
was monitored at 1 kHz using a high-speed infrared
camera (Eyelink; SR-Research, Ottawa, Canada).

Odd patch detection task

Figure 1A shows a diagram of the behavioral task
sequence. The observer initiated each trial by looking at
a central fixation point (0.38 diameter). Following a
variable delay (0.4–1 s, truncated exponential), a
random dot kinematogram appeared within a 108 wide
aperture surrounding the fixation point. Dots were
white squares (93.1 cd/m2; 3 pixel 3 3 pixel; 0.0728 3
0.0728) drawn on a black background (0.89 cd/m2) with
an average dot density of 100.2 dots per square degree
per second. These parameters are similar to those used
in other psychophysical and neurophysiological exper-
iments (Britten, Shadlen, Newsome, & Movshon, 1993;
Watamaniuk et al., 1989).

On each screen refresh, dots were displaced coher-
ently with probability 0.9 to create apparent motion at
58/s. The remaining dots were redrawn randomly within
the aperture. Random redrawing limited the half-life of
each dot to 6.5 frames (88 ms), preventing long streaks.
The direction of motion for each of the coherently
moving dots varied from one frame to the next. For the
majority of dots (the ‘‘background’’), the direction of
displacement on a given frame was drawn from a
Gaussian distribution (mean ¼ 08, SD ¼ 208). Dot
motion within a specific circular aperture (the ‘‘odd
patch’’) was generated from one of several different
distributions. The odd patch aperture (38 diameter) was
always located in the top half of the display, and it was
always centered at 3.58 eccentricity from the fixation
point. Its radial position varied between 08 and 1808
from trial to trial. To reduce adaptation, we added 1808
to the mean of both the background and odd
distributions on a random half of the trials.

Dot motion within the odd patch was generated
using distributions that differed from background
motion in terms of their mean, variance, skewness, and/
or kurtosis while holding the other statistics constant
(Figure 1B and Supplementary Movies S1–S5). To
accomplish this, we used the Pearson distribution
system as implemented in the MATLAB function
pearsrnd (Johnson, Kotz, & Balakrishnan, 1995). We
parameterized the Pearson system to produce a diverse
set of distributional shapes. Specifically, on ;19% of
trials, the mean was varied to take values of 58, 108, 158,
or 258 (l5, l10, l15, and l25 conditions, respectively). On
;19% of trials, the skewness was varied to be either
positive or negative across two magnitudes (60.6 and
60.85; c�:85, c�:6, cþ:6, and cþ:85 conditions). On ;19%
of trials, the kurtosis was increased to 1,802 accompa-
nied by a small increase in standard deviation to 20.48.

Figure 1. Experimental design. (A) Observers fixated while

viewing a field of moving dots until they detected the presence

of a patch with ‘‘odd’’ motion compared to the background.

They indicated their detection when it occurred by making a

saccade into the patch and received auditory feedback about

their accuracy. (B) Generating distributions for dot displace-

ments in different experimental conditions. Background motion

was generated from a normal distribution and is shown on each

plot with dashed gray lines.
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(j condition), and, on ;19% of trials, the same change
in kurtosis was accompanied by a larger change (388) in
standard deviation (jr condition). On ;19% of trials,
the standard deviation alone was increased to 508 (r
condition). Finally, in ;4% of trials, the dot motion in
the odd patch aperture was generated with the same
statistics as the background (; condition).

The observers were instructed to identify the location
of the odd patch and to make a saccade to its location
as soon as it was detected. Observers were required to
maintain fixation without blinking until making their
response. They were not provided any specific instruc-
tions as to what features should be used to identify the
odd patch, but they were told that it would always be in
the upper half of the display. The stimulus was turned
off when gaze left a window around the fixation point
(38 diameter), and the trial otherwise terminated if 10 s
elapsed without a response (1.1% of trials). Feedback
for correct and incorrect choices was provided through
two distinct auditory tones. Observers were extensively
trained on the task until their accuracy on the l25 trials
exceeded 80%; they were unaware of the specific
criterion. Training was performed over multiple ses-
sions and before beginning collection of the data
reported here.

Calculating sample statistics of dot
displacement

There are two potential reasons that we could have
failed to generate motion stimuli with distinct higher-
order moments. First, dot displacements were gener-
ated using continuous coordinates in degrees, but to
show the dots, those positions had to be discretized
onto the grid of monitor pixels. Second, in any given
trial, the observer sees a finite number of dot
displacements, and so the ability to estimate the
parameters of the motion distributions, particularly for
the higher-order moments, might be limited by
insufficient data. To evaluate these potential limita-
tions, we must also consider that the Pearson system is
defined on the real number line. Therefore, to
determine how far our stimuli diverged from the
theoretical values of the different distributions, it was
necessary to evaluate the circular statistics of samples
derived from those distributions. Sample circular
statistics (Fisher, 1995) were computed using the
CircStat and pycircstat libraries (Berens, 2009).

We first estimated limiting values for the generating
moments by drawing large samples (N ¼ 100,000,000)
using each set of Pearson distribution parameters and
computing the circular mean, standard deviation,
skewness, and kurtosis. Next, to evaluate the possibility
of recovering moment values from the dot stimuli
themselves, we computed circular statistics from the

stimuli shown on each trial. That is, we measured the
angle of each coherent dot displacement after discre-
tization into pixel coordinates and then calculated the
sample statistics of that distribution. This computation
excluded the final 300 ms of the stimulus, correspond-
ing to the approximate nondecision time (i.e., the
approximate sum of visual latency and saccade latency;
Palmer, Huk, & Shadlen, 2005; Resulaj, Kiani,
Wolpert, & Shadlen, 2009). We did this so that the
statistics would correspond to the dot motion that was
most likely used to make the decision on each trial.

Figure 2 shows sample statistics for each condition.
It is clear that sample means derived from the stimulus
closely tracked the generating distributions. The
agreement between the generating and stimulus stan-
dard deviations was also close, although the latter
slightly overestimated the former across all conditions.
On conditions where we manipulated skewness or
kurtosis, the sample statistics slightly underestimated
the generating moments but were clearly distinct from
both the background statistics and the odd patch
statistics in other conditions.

Statistical analyses of behavior

Statistical analyses were performed on all trials with
a valid response, which was defined as the eye position
leaving the fixation window and landing between 1.758
and 58 from the fixation point. In total, the analyses
involved 5,349 trials. We used general linear models to

Figure 2. Sample statistics of dot displacement distributions.

Open circles show the corresponding circular moment of the

generating distribution at the limit of very large samples. Solid

points and error bars show the means and standard deviations

of the observed stimulus statistics across trials. Single-trial

moments were computed using circular statistics based on the

finite sample in each trial. Sample means and standard

deviations are shown in degrees.
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evaluate the influence of the odd patch distribution
statistics on both choice accuracy (i.e., the probability
of making a saccade into the odd patch) and reaction
time (RT). Specifically, we used logistic regression to
analyze accuracy and linear regression to analyze RT.
For these models, we used either the condition-wise
means of the sample statistics computed on each trial as
described already or, in separate models, the trial-wise
statistics. Condition-wise and trial-wise models were
otherwise structured the same way.

For choice accuracy, we characterized the effect of
the displacement statistics with the function

Pcor ¼ 1

1þe� b0þb1mþb2vþb3 sj jþb4kð Þ ; ð1Þ

where bi are regression coefficients and m, v, s, and k
are the circular mean, standard deviation, skewness,
and kurtosis. We used absolute skewness because we
expected that only the magnitude, and not the
direction, of skewness should be relevant. For each
moment, the null hypothesis was that changes in the
corresponding sample statistic would have no influence
on the probability of detecting the odd patch (H0: bi

¼ 0 for i . 0).
For RT, we characterized the effect of the statistics

with the function

RT ¼ b0 þ b1mþ b2vþ b3 sj j þ b4k: ð2Þ
As in the previous model, the null hypothesis for

each moment was that changes in the corresponding
sample statistic would have no influence on the time
taken to respond (H0: bi ¼ 0 for i . 0).

Bar plots of behavioral results have error bars that
show 95% bootstrap confidence intervals (Cumming &
Finch, 2005). Confidence intervals were computed
within each condition by resampling trials with
replacement and estimating the statistic of interest
across 100,000 iterations. The error bars correspond
to the 2.5 and 97.5 percentiles of the resulting
distribution. Plots of observer accuracy include an
estimate of chance performance. This estimate is the
ratio of the odd patch area to the area where a valid
response could be registered (the upper half of the dot
display from the outer bound of the fixation window
to the outer bound of the dot aperture; see afore-
mentioned).

Motion energy model

We used arrays of oriented spatiotemporal filters to
calculate the profile of directional motion energy
produced by each stimulus distribution. The array of
filters spanned direction selectivities from �908 to þ908
in steps of 58. We computed opponent motion energy
using a pair of filters for each direction: one that was

selective for that direction and one that was selective
for the opposite direction.

Each directional filter was implemented as the sum
of two space-time separable filters (Adelson & Bergen,
1985; Kiani, Hanks, & Shadlen, 2008). The spatial
filters were even and odd symmetric fourth-order
Cauchy functions:

f1 x; yð Þ ¼ cos4 að Þ cos 4að Þ exp � y2

2r2
g

� �

f2 x; yð Þ ¼ cos4 að Þ sin 4að Þ exp � y2

2r2
g

� �
;
ð3Þ

where a ¼ tan�1ðx=rcÞ. Along the x dimension, the
filters resemble Gaussian-weighted cosine and sine
functions. The envelope and period of the carrier
functions are controlled by the order (fourth) and by
rc, which we set to 0.358. They are windowed along the
orthogonal (y) dimension using a Gaussian envelope
with standard deviation rg ¼ 0.058. The temporal
filters were implemented as difference of Poisson
functions:

g1 tð Þ ¼ ðktÞ3 expð�ktÞ 1
3!�

ðktÞ2
3þ2ð Þ!

h i

g2 tð Þ ¼ ðktÞ5 exp �ktð Þ 1
5!�

ðktÞ2
5þ2ð Þ!

h i
:

ð4Þ

We set the time constant k of each temporal filter to
60. Together with the constants in the spatial functions,
the filters implement a spatiotemporal frequency
passband consistent with that measured in direction-
selective middle temporal cortex (MT) neurons (Al-
bright, 1984; Maunsell & Van Essen, 1983; Movshon,
Newsome, Gizzi, & Levitt, 1988).

Direction selective motion filters were constructed by
element-wise multiplication and summation of appro-
priate fi gj combinations. For example, f1 g1 þ f2 g2 and
f2 g1 � f1 g2 pass motion in the þx direction (Equation
3); this pair of filters is in space-time quadrature, which
confers phase invariance.

To estimate motion energy, we first convolved each
direction-selective spatiotemporal filter with a movie
of the dot stimulus. Next, we squared and summed the
quadrature pairs to produce a spatiotemporal image
of local motion energy. These images were then
summed over space, and net motion energy was
computed by subtracting motion energy in the
opposite direction. Finally, we took a mean over time
within a window that excluded the latency of the
motion energy filters (Equation 4). This procedure was
repeated across 500 different samples of the stimulus;
each sample had duration of 2 s (150 frames). The
resulting motion energy values, averaged over sam-
ples, comprise a motion energy profile for each
condition.
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Results

Perceptual sensitivity to motion statistics

Observers viewed a large random dot kinematogram
and attempted to detect a small patch where the motion
of the dots was ‘‘odd’’ compared to the background.
The motion in the odd patch could differ from the
background in terms of the mean, variance, skewness,
or kurtosis of the dot displacement angles. Observers
reported the odd patch by making a saccade to it as
soon as it was detected. Figure 3A shows the
probability of successfully detecting each kind of odd

motion. It is immediately apparent that conditions
where the odd patch differed from the background in
terms of mean or variance produced detection rates
above chance. In contrast, detection rates for odd
patches that differed only in skewness or kurtosis were
not different from chance. This pattern of behavior was
consistent across individual observers (Figure 3B).

We used logistic regression to evaluate these
relationships quantitatively. The regression model
(Equation 1) confirmed that detection accuracy was
significantly influenced by changes in mean (b1 ¼ 0.15
6 0.009, z¼16.63, p , 1e-8) and standard deviation (b2

¼ 0.10 6 0.005, z¼ 22.35, p , 1e-8), but not skewness
(b3¼�0.073 6 0.10 z¼�0.73, p¼ 0.47) or kurtosis (b4

¼ 0.031 6 0.035, z¼ 0.88, p¼ 0.38).
We wondered whether observers were sensitive only

to odd motion with relatively large deviations from the
background in terms of skewness or kurtosis. To
evaluate this possibility, we fit two additional logistic
regression models using trial-wise measures of the
stimulus statistics, limiting each model to the condi-
tions where either skewness or kurtosis were manipu-
lated (Figure 4). In neither case did we find evidence for
sensitivity to the higher moments: choice accuracy was
not significantly influenced by trial-wise skewness on
skew-manipulated trials (Equation 1, b3 ¼ �0.12 6
0.27, z ¼ �0.44, p ¼ 0.66) or by trial-wise kurtosis on
kurtosis-manipulated trials (Equation 1, b4 ¼ 0.10 6
0.073, z¼ 1.40, p ¼ 0.16).

We also examined how motion statistics influenced
the amount of time required to detect the odd patch.
Figure 5A shows the mean RT for each condition. It is

Figure 3. Probability of correctly detecting the odd patch in each condition. (A) Group results. Bar heights show mean accuracy across

all trials; error bars show 95% bootstrap confidence intervals. The horizontal dashed line shows the expected value of chance

performance (i.e., the probability that a random saccade would land within the odd patch; see Methods). (B) Individual observer

results. Each bar shows a different observer with the same ordering across conditions. Conventions are otherwise as in panel (A).

Figure 4. Trial-wise analysis of skewness and kurtosis. Histo-

grams show the distribution of higher-order stimulus statistics

depending on whether the observer produced a correct

(shaded patch) or error (dashed line) response.
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apparent that RTs were influenced by manipulations of
mean and variance; in contrast, RTs on trials with a
manipulation of skewness or kurtosis alone were
similar to those on trials where the odd patch motion
did not differ from the background (; condition). A
linear regression model (Equation 2) confirmed these
observations: RT was significantly influenced by mean
(b1 ¼ �0.11 6 0.005, t¼ �21.25, p , 1e-8) and
standard deviation (b2 ¼�0.084 6 0.003, t¼�26.40, p
, 1e-8) but not skewness (b3 ¼ 0.054 6 0.070, t¼ 0.77,
p¼ 0.44) or kurtosis (b4¼�0.021 6 0.025, t¼�0.84, p
¼ 0.40). This pattern of behavior was consistent across
individual observers (Figure 5B).

Motion energy model

Can a model of directional motion energy (Adelson
& Bergen, 1985) account for these results? To evaluate
this correspondence, we constructed an array of motion
energy filters selective to different directions. The
parameters for the filters were adjusted to match the
direction tuning of motion selective neurons in MT
cortex (see Methods). We compared the response
profile of the motion energy filter array across the set of
motion stimuli. These profiles are shown in Figure 6A.
It is apparent that changes in the mean direction of
coherent motion translate the motion energy profile
and that changes in the variance of dot displacements
broaden it. Consistent with the behavioral results,
motion energy profiles for conditions where only
skewness or kurtosis were manipulated do not appear

appreciably different from the background motion
energy profiles.

To relate the motion energy profiles to behavior, we
computed the root-mean-square difference (RMSD)
between each condition’s average motion energy profile
and the motion energy profile of the background
motion (Figure 6B). There are two observations to
make about this plot. First, on mean-manipulated
trials, the log-odds of detecting the odd patch increase
roughly linearly with the divergence of the odd and
background motion energy profiles. Second, relative
performance on variance-manipulated trials is better
than would be expected from the trend established by
the mean-manipulated trials. While the RMSD measure
is not intended as a formal decoding model, this
relationship suggests that performance is supported by
factors other than the shape of the time-averaged
population response modeled by these motion energy
filters, a point we return to in the discussion.

To determine whether the failure of the model to
represent higher order moments could be attributed to
its structure or to its parameterization, we constructed
arrays of filters with narrower direction tuning curves
(Figure 6C). We then applied these arrays to stimuli
with high skewness and kurtosis. Narrowly-tuned filters
were sensitive to higher-order moments, as evidenced
by a shift in the peak corresponding to skew and a
sharpening of the peak corresponding to kurtosis
(Figure 6D). This result indicates that spatiotemporal
filter arrays are not structurally insensitive to the
higher-order moments of random dot motion. Never-
theless, when parameterized to match primate physi-

Figure 5. Reaction times in each condition. (A) Group results. Bar heights show mean RT across all trials; error bars show 95%

bootstrap confidence intervals. (B) Individual observer results. Each bar shows a different observer with the same ordering across

conditions. Each trial’s RT was normalized to the observer’s maximum condition-wise mean RT. Conventions are otherwise as in panel

A.
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ology, they are functionally insensitive to that infor-
mation. Therefore, the inability to see differences of
higher order moments offers insight into the objectives
that the visual system has, and has not, evolved to
satisfy.

Discussion

Perceptual systems are tasked with extracting
meaningful information from patterns of sensory
inputs. In naturalistic environments, these patterns may
have complex distributions with features such as heavy
or asymmetric tails. It has previously been shown that
the perception of static surfaces uses some of this
complexity to infer texture and material properties
(Kingdom et al., 2001; Motoyoshi et al., 2007;
Okazawa et al., 2015; Portilla & Simoncelli, 2000).
Here, we sought to determine whether higher-order
moments are also used in the analysis of dynamic
stimuli. Using well-controlled artificial stimuli, random
dot kinematograms with different dot displacement
distributions, we found that human observers were
functionally blind to large changes in skewness or
kurtosis when the mean and variance were identical to
the background. This shows that, in at least some cases,
the visual system discards useful sensory information to
produce a compact internal representation that is

limited to mean and variance. These results constrain
theories of information processing in sensory systems.

Previous investigations of the relationship between
dynamic stimulus statistics and perceptual experience
have focused on higher-order correlations of spatio-
temporal luminance patterns. These higher-order cor-
relations arise in natural scenes, and modeling them is
necessary to account for human motion perception (Hu
& Victor, 2010; Nitzany & Victor, 2014). The present
work differs from these previous efforts by considering
the marginal statistics of individual elements that make
up the random dot kinematogram. The perception of
coherent motion in these stimuli is based on a
representation of summary statistics (Watamaniuk et
al., 1989), which is similar to the perception of static
artificial textures (Victor, 1994), peripheral areas of
natural scenes (Freeman & Simoncelli, 2011), and
natural soundscapes (McDermott, Schemitsch, &
Simoncelli, 2013). We found that humans were not
sensitive to higher-order moments in artificial dynamic
‘‘textures.’’ Nevertheless, it is interesting to speculate
about whether textures with such statistics exist in the
natural world, perhaps in the motion defined by flocks
of birds, herds of livestock, or crowds of humans.

By documenting a case where the visual system
ignores higher-order moments, we have shown that the
brain does not, as a rule, faithfully represent the
distributional characteristics of its inputs. Nevertheless,
there are domains in which higher-order moments are
used for perception. Therefore, the task going forward

Figure 6. Motion energy analysis. (A) Normalized responses of motion energy filter arrays to each condition. All responses were

normalized using the response of a filter with 08 direction preference to the background motion. The plots are organized as in Figure

1B. The response profile for background motion is shown in gray but is not visible on the skewness or kurtosis plots. (B) The

relationship between detection accuracy and divergence between background and odd motion energy profiles across the filter arrays.

Points corresponding to conditions with chance detection performance are unlabeled. Colors match the curves in panel A. (C)

Direction tuning curves with three different tuning bandwidths. The curves in panel A were estimated using rg ¼ 0.05 (Equation 3).

(D) Differences between normalized responses to high skew/kurtosis stimuli and to background motion in filter arrays with narrower

direction tuning. Line widths correspond to the tuning curves in Panel C.
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is to determine when and why that is the case. Two
alternate perspectives can guide such an investigation.
From one, perceptual systems typically represent the
higher moments of stimulus distributions, but in some
cases, as with random dot motion, those statistics are
discarded. Alternatively, it may be that stimulus
distributions are typically reduced to a Gaussian
representation and processed in terms of their mean
and variance except in special cases where dedicated
mechanisms for representing higher-order moments
convey particularly useful additional information.
Supporting the latter perspective, we note that Mo-
toyoshi et al. (2007) propose a specific mechanism for
the representation of luminance skewness, which may
have developed because higher-order luminance statis-
tics provide information about surface texture. Within
the domain of dynamic information, it is important to
note that we do not know whether our result will
generalize to distributions over other aspects of
translational stimuli, such as speed, or to other forms
of motion, such as the dynamic textures that define
optic flow.

Because we report a null result, it is natural to
wonder whether larger changes in skewness or kurtosis
might have been detected. While possible, we think this
is unlikely because observers typically show high
sensitivity for other aspects of the random dot stimulus.
In our experiment, observers were above chance on
trials with only a 58 change in mean direction, and
direction discrimination thresholds in other paradigms
can be as low as 28 (Watamaniuk et al., 1989). There is
a long history of studying motion perception using
random dot kinematograms, and their mean direction,
speed, and coherence have close correspondence in
neuronal responses (Britten et al., 1993). We cannot
rule out the theoretical possibility that heavy-tailed
motion could be detected in a stochastic stimulus
created using a different parameterization or in a
different class of spatiotemporal stimuli altogether. Yet
even if such a stimulus could be created, it is striking
that our observers were unable to detect large changes
in skewness or kurtosis of the stimulus that we did use
given their high sensitivity to changes in the first two
moments. Therefore, our experiment represents a
strong test, and refutation, of the hypothesis that the
visual system always represents higher-order moments
of sensory stimuli.

One challenge in using behavioral measurements to
make inferences about information processing limita-
tions is that it is often unclear at what stage potentially
useful information may be lost. When behavior appears
insensitive to some aspect of sensory input, it could be
that sensory systems fail to preserve a representation of
it or that inferential processes make poor use of that
representation. In the present case, we are able to
overcome this challenge by considering a formal model

of motion perception (Adelson & Bergen, 1985). This
model has close correspondence to the responses of
direction-selective neurons in striate and extrastriate
visual cortex (Albright, 1984; Maunsell & Van Essen,
1983; Movshon et al., 1988; Rust, Mante, Simoncelli, &
Movshon, 2006). When using direction-selective spa-
tiotemporal filters that matched the spatiotemporal
tuning of the primate visual system, we found that the
resulting motion energy profiles contained essentially
no information about the skewness or kurtosis of the
dot displacement distributions. This suggests that the
visual system discards information about higher-order
moments early in the processing hierarchy. Therefore,
we can conclude that performance was limited at the
sensory representation stage rather than by suboptimal
inference. This sensory limitation arises from how
inputs to direction-selective cells are combined to
generate a representation of spatiotemporal energy.

More elaborate models of motion processing can
account for other physiological phenomena, such as
neural selectivity for pattern motion (Rust et al., 2006;
Simoncelli & Heeger, 1998). These models build more
complex representations from component elements that
are equivalent to the motion energy profiles we
estimated. Therefore, they should not be able to recover
higher-order moments that are absent from the simpler
representation. Nevertheless, considering models of
later-stage motion processing may help to explain why
performance on variance-manipulated trials exceeded
what would have been expected from the motion
energy profiles alone. One important factor to consider
is that we examined the distribution of motion energy
across an array of filters tuned to the speed of coherent
motion in the background, yet increasing the variance
of individual dot displacement angles will also decrease
the average displacement in the mean direction.
Therefore, a more complete mechanistic model of our
task would likely need to represent the joint distribu-
tion of motion energy across a population of filters with
varying direction and speed tuning.

In building a more complete model, it will also be
necessary to consider how the observer represents and
decodes momentary evidence to form a decision about
the location of the odd patch. Our motion energy
analysis focused on time-averaged differences in the
motion energy profiles, but the observers were per-
forming an RT task, and RTs were fastest in conditions
with the largest divergence from the background
motion. It is likely that the dependence of RT on the
odd motion statistics can be attributed to multiple
sources. Specifying a mechanistic model of odd motion
detection will require answering several currently-open
questions. First, does performance arise from a single
strategy or from a mixture of condition-dependent
strategies? Perhaps bottom-up recognition supports
detection when odd motion differs strongly from the

Journal of Vision (2018) 18(6):9, 1–10 Waskom, Asfour, & Kiani 8

Downloaded From: https://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/937196/ on 08/09/2018



background, but top-down search must be engaged
when the difference is more subtle. Second, are
candidate odd patches subjected to an evidence
accumulation process that integrates multiple samples
of odd motion before committing to a decision? We are
actively pursuing these questions to more fully under-
stand the mechanisms that link stimulus statistics to
behavior in the odd patch detection task.

If higher-order moments do exist in natural dynamic
textures, the evolution of the visual system may have
sacrificed the chance to see them because computing
with compact representations of Gaussian statistics
confers several benefits. An observer of motion is
usually concerned with tracking the path of rigid
bodies; indeed, assuming Gaussianity may help the
visual system individuate multiple sources of motion
that otherwise generate a platykurtic response in a
population with broad direction tuning curves (Treue,
Hol, & Rauber, 2000). More generally, Gaussian
assumptions reduce processing demands for probabi-
listic computations because they require operations
only on scalar representations of a distribution’s
location and width. And because probabilistic compu-
tations on Gaussian inputs produce Gaussian outputs,
this architecture can simplify inferential procedures.
Nevertheless, a representation that is limited to lower-
order moments poses a challenge to fully-Bayesian
theories of neural computation, which would require
more complete representations of probability distribu-
tions that include detailed information about their tails.
Therefore, our results demonstrate a constraint that
can inform future theories of how sensory information
is encoded and decoded when using perception to guide
behavior.

Keywords: motion perception, random dots, motion
energy, skewness, kurtosis
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Supplementary movies

Supplementary Movie S1. Example random dot
stimulus from the l5 condition. The dashed circle
shows the location of the odd patch only for illustrative
purposes and was not present in the original stimulus.

Supplementary Movie S2. Example random dot
stimulus from the l25 condition. The dashed circle
shows the location of the odd patch only for illustrative
purposes and was not present in the original stimulus.

Supplementary Movie S3. Example random dot
stimulus from the cþ:85 condition. The dashed circle
shows the location of the odd patch only for illustrative
purposes and was not present in the original stimulus.

Supplementary Movie S4. Example random dot
stimulus from the j condition. The dashed circle shows
the location of the odd patch only for illustrative
purposes and was not present in the original stimulus.

Supplementary Movie S5. Example random dot
stimulus from the r condition. The dashed circle shows
the location of the odd patch only for illustrative
purposes and was not present in the original stimulus.
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