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SUMMARY

Humans often slow down after mistakes (post-error
slowing [PES]), but the neural mechanism and adap-
tive role of PES remain controversial. We studied
changes in the neural mechanisms of decision mak-
ing after errors in humans and monkeys that per-
formed a motion direction discrimination task.
We found that PES is mediated by two factors: a
reduction in sensitivity to sensory information and
an increase in the decision bound. Both effects
are implemented through dynamic changes in the
decision-making process. Neuronal responses in
the monkey lateral intraparietal area revealed that
bound changes are implemented by decreasing an
evidence-independent urgency signal. They also re-
vealed a reduction in the rate of evidence accumula-
tion, reflecting reduced sensitivity. These changes in
the bound and sensitivity provide a quantitative ac-
count of choices and response times. We suggest
that PES reflects an adaptive increase of decision
bound in anticipation of maladaptive reductions in
sensitivity to incoming evidence.

INTRODUCTION

The ability to change strategies when our actions fail to produce

desired outcomes is fundamental to flexible behavior and sur-

vival in a complex, varying environment. Following errors, hu-

mans often slow down to respond on subsequent decisions, a

phenomenon known as post-error slowing (PES) (Rabbitt and

Rodgers, 1977). PES is a prime example of flexible changes in

decision making and is widely assumed to play an adaptive

role by preventing future errors (Botvinick et al., 2001; Dutilh

et al., 2013; Goldfarb et al., 2012; Holroyd et al., 2005; Laming,

1979). However, the increased response times (RTs) in PES are

rarely accompanied with tangible improvements in accuracy,

suggesting that the phenomenon is more complex than a simple

change in decision criterion (Danielmeier and Ullsperger, 2011;

Gehring et al., 1993; Notebaert et al., 2009; Schroder andMoser,

2014). Understanding the mechanisms of PES and its role in

adaptive decision making requires a systematic and quantitative

study of the behavior and neural mechanisms involved in the de-

cision-making process.
Previous investigations into the neural mechanisms of PES

have focused almost exclusively on one aspect of this pro-

cess: error detection and performance monitoring by medial

frontal cortex (Schall et al., 2002). Error-related signals from

medial frontal cortex correlate with slowing on the next trial

(Gehring et al., 1993), and inactivation or lesions of medial

frontal cortex can reduce or eliminate PES (di Pellegrino

et al., 2007; Narayanan et al., 2013). However, far less is

known about how the detection of errors in medial frontal re-

gions affects future decision-making processes. Neuroimaging

studies have revealed a diversity of changes in blood oxygen

level-dependent (BOLD) responses across cortex following er-

rors (Danielmeier and Ullsperger, 2011; King et al., 2010), but

the limited spatial and temporal resolution of these techniques

precludes model-based hypothesis testing for changes in the

neural mechanisms of decision-making at the level of single

neurons.

Intra-cortical recordings in non-human primates have excel-

lent temporal and spatial resolution and, thus far, have re-

vealed a network of posterior parietal, lateral prefrontal, and

subcortical brain areas that work in concert to form decisions

by integration of sensory information over time toward a crite-

rion level (decision bound) (Hanes and Schall, 1996; Kiani

et al., 2014b; Ratcliff et al., 2003; Roitman and Shadlen,

2002). Medial frontal cortex sends projections to several areas

in this network (Huerta and Kaas, 1990) but does not directly

represent the evidence accumulation process (Purcell et al.,

2012; Stuphorn et al., 2010). Recent studies have demon-

strated that integration of sensory evidence in this network

is influenced by the behavioral state of the animal to adjust de-

cision speed and accuracy (Hanks et al., 2014; Heitz and

Schall, 2012), but it is unclear whether similar mechanisms

extend to PES. Particularly, no previous study has quantified

changes of neural responses following perceptual errors in

these areas.

We measured PES in humans and monkeys trained to

perform a motion direction discrimination task, establishing a

non-human primate model for studying neural mechanisms of

PES. By using quantitative models of the decision-making pro-

cess, we hypothesized that PES in both species arises from a

mixture of two effects: an increase in the decision bound and

a decrease in the signal-to-noise ratio (SNR) of incoming sen-

sory evidence. Together, these effects explain why PES may

or may not be accompanied by changes in accuracy. We

tested this hypothesis by recording from responses of single

neurons in the lateral intraparietal area (LIP) of monkeys per-

forming the task. Consistent with our model predictions, neural
Neuron 89, 1–14, February 3, 2016 ª2016 Elsevier Inc. 1
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Figure 1. PES in Humans and Monkeys dur-

ing Perceptual Decision Making

(A) Motion discrimination task. Subjects initiated

a trial by fixating on a central point. The targets

appeared after a short delay, followed by the

random dot stimulus. When ready, subjects indi-

cated the motion direction with a saccadic eye

movement to a choice target. The motion strength

(percentage of coherently moving dots [%Coh])

varied randomly across trials.

(B and C) Psychometric functions did not show

appreciable change following negative feedback.

Mean proportion correct as a function of motion

strength for post-correct (black) and post-error

(red) trials for six humans (B) and two monkeys (C)

who exhibited PES. Smooth curves are fits to a

logistic function. Error bars denote SEM. See Fig-

ures 8, S2, and S5 for behavioral data from sub-

jects that did not exhibit PES.

(D and E) RTs are longer following errors. Smooth

curves are fits to a hyperbolic tangent function.

(F and G) RT distributions show heavier upper tails

following errors. Cumulative RT distributions for

post-correct (black) and post-error (red) trials

averaged across motion strengths demonstrate

greater slowing for long RTs compared with short

RTs. Insets show the RT probability density for

an example motion strength (3.2% coherence)

following correct (black open bars) and error (red

solid bars) trials. Similar changes were evident for

other motion strengths.
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responses in LIP revealed both decreased sensitivity and an in-

crease in decision bound after errors. Neural responses also

showed that both factors were implemented through changes

in the dynamics of decision formation. Sensory and motor de-

lays, sensory and accumulation noise, and static components

of neural responses (start point and endpoint) remained un-

changed, ruling out competing hypotheses that could not be

distinguished solely on the basis of the behavior and computa-

tional models. These results indicate that changes of neural

response dynamics after errors implement rapid adjustments

of the decision policy by elongation of decision time in order

to mitigate reduction of accuracy.
2 Neuron 89, 1–14, February 3, 2016 ª2016 Elsevier Inc.
RESULTS

Humans and monkeys (Macaca mulatta)

were trained to perform a reaction-time

version of a motion direction discrimina-

tion task (Figure 1A). In each trial, the

subject viewed a dynamic random-dots

stimulus (Britten et al., 1992) and, when

ready, reported the perceived motion di-

rection with a saccadic eye movement.

We manipulated task difficulty by varying

the percentage of coherently moving dots

(motion strength) on a trial-by-trial basis

(see Experimental Procedures).

All subjects exhibited improved accu-

racy for stronger motion (Table S1; Fig-

ures 1B and 1C; Equation 1: humans, b1 = 20.85 ± 1.01, p <

10�10; monkeys, b1 = 11.91 ± 0.46, p < 10�10), compatible with

previous studies (Roitman and Shadlen, 2002). Also as ex-

pected, RTs decreased sharply for stronger motion (Table S1;

Figures 1D and 1E; Equation 2: humans, b1 = �2,005 ± 104.56,

p < 10�10; monkeys, b1 = �267 ± 15.00, p < 10�10). All subjects

were trained to a high level of performance as evidenced by their

low psychophysical thresholds (ranges of 8.2%–13.0% for mon-

keys and 4.6%–9.9% for humans). On average, monkeys were

faster than humans (mean RTs of 604 ± 0.9 ms for monkeys

and 915 ± 3.6 ms for humans), but humans had lower thresholds

than monkeys. Therefore, we used a slightly more difficult
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Figure 2. HypothesizedMechanisms of PES

and Their Behavioral Predictions

We used a DDM to predict expected changes in

post-error behavior under different hypotheses for

themechanism of PES. Each column shows one of

these hypotheses, which can be distinguished on

the basis of changes in the psychometric and

chronometric functions and the shape of the RT

distributions. The first row shows a schematic of

these hypotheses. The second and third rows

illustrate predictions for psychometric and chro-

nometric functions, respectively. The final row

shows predicted changes in cumulative RT

distributions (insets show the probability density

function for an example motion strength). The

sensitivity (k), urgency (uN; Equation 4), and non-

decision time (t0) parameters used for the model

simulations are shown in row two. All other pa-

rameters were constant for post-correct and post-

error conditions.
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stimulus set for humans to approximately match the error rates

across species (mean percentages correct of 77.2 ± 0.20 for

monkeys and 74.8 ± 0.33 for humans).

Because the motion strength and direction were independent

across trials, the optimal strategy was to make the decision

solely on the basis of the sensory information provided on

each trial. Nonetheless, both humans and monkeys were

influenced by the outcome of previous trials. The majority of

subjects (73%; six humans and monkeys O and N) exhibited

longer RTs in trials following error feedback (Table S1; mean

human DRT = 117.0 ± 14.82 ms; monkeys O and N mean

DRT = 59.5 ± 6.75 ms), compatible with past studies of PES.

To maintain our focus, we first report results from this majority

group that exhibited clear PES. Later in this paper, we report re-

sults from the minority that responded differently to errors.

Quantitative Hypotheses of PES
Electrophysiological recordings of neural responses from parie-

tal cortex, frontal cortex, basal ganglia, and superior colliculus of

monkeys engaged in perceptual decisions have shown that inte-

gration of noisy sensory evidence over time toward a decision

bound underlies the choice and RT (Hanes and Schall, 1996;

Kiani et al., 2014b; Ratcliff et al., 2003; Roitman and Shadlen,

2002). Many of the recorded neurons represent the integral of

evidence in favor of the target in their response fields (RFs).

Furthermore, their firing rates reach a common threshold shortly

before a saccade toward RF. A simple process model that

closely approximates these responses consists of accumulators

that integrate noisy evidence toward a decision bound (Gold and

Shadlen, 2007). The accumulator that reaches its bound first dic-
Neuron 89, 1–
tates the choice and the time to bound in-

dicates the decision time. Variants of this

‘‘bounded accumulation’’ model have

been shown to provide quantitative ex-

planations of behavior across a large

array of decisions (Bogacz et al., 2006;

Busemeyer and Townsend, 1993; Link,

1992; Usher and McClelland, 2001). To

study the mechanisms of PES quantitatively, we used a simple

variant of this model, the drift-diffusion model (DDM), in which

the two competing accumulators are replaced with a single

accumulator with an upper and a lower bound that correspond

to the two options (Gold and Shadlen, 2007; Link, 1992). We

adopted the DDM because of its simplicity, but other variations

of the bounded-accumulator framework will produce identical

conclusions.

Our model offers a tool to formalize longstanding hypotheses

about the neural mechanisms of PES (Figure 2). A first hypothe-

sis is that PES occurs because subjects postpone the onset of

evidence accumulation in order to recover from the error (Lam-

ing, 1979; Pouget et al., 2011; Rabbitt and Rodgers, 1977). In

the DDM, this would be captured by the non-decision time

parameter that reflects the sum of sensory and motor delays. If

PES arises from error-induced elongation of non-decision time,

slowing would be equivalent at all motion strengths, and the pro-

portion correct would remain unchanged (Figure 2, first column).

Furthermore, the RT distributions should shift in time but main-

tain their shape for each motion strength.

A second hypothesis is that PES arises from impairment of the

subject’s sensitivity to incoming evidence following errors,

perhaps because the negative feedback or unexpected outcome

distracts and diverts attention (Notebaert et al., 2009) by influ-

encing either sensory cortex (Treue and Martı́nez Trujillo, 1999)

or transmission of information from sensory cortex to decision-

making areas (Green et al., 2010). This hypothesis is plausible

because accuracy rarely increases and occasionally decreases

following errors (Danielmeier and Ullsperger, 2011). In the

DDM, this is captured by a sensitivity parameter that defines
14, February 3, 2016 ª2016 Elsevier Inc. 3
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how the evidence that the decisionmaker extracts from the stim-

ulus scales with stimulus strength (Gold and Shadlen, 2007).

Lower sensitivity reduces available evidence per unit time and

slows down evidence accumulation, causing longer RTs (Fig-

ure 2, second column). The increased RTs, however, are also

associated with reduced accuracy because of the reduced reli-

ability of evidence (Figure 2, second column). Moreover, slowing

of RTs should be maximal for higher motion strengths because

the rate of evidence accumulation (sensitivity3motion strength)

is changed more for those stimuli. Finally, the RT distribution

should be shifted and only modestly skewed for each motion

strength.

A third hypothesis is that PES is caused by an adaptive in-

crease in the decision bound, which increases the total evidence

that must be accumulated before a choice is made. This hypoth-

esis, which is favored by many leading models of executive con-

trol and adaptive behavior (Holroyd et al., 2005; Laming, 1979),

predicts increased accuracy at the cost of longer RTs (Hanks

et al., 2014; Heitz and Schall, 2012). Changes in bound height

also predict larger effects on RT when the rate of evidence accu-

mulation is low, causing maximal slowing at low motion

strengths (Figure 2, third column) and skewing the RT distribu-

tion of each motion strength by creating a heavier upper tail.

A change in decision bound could be implemented through

different neural mechanisms. Two obvious possibilities include

changes in the final firing rate or the initial firing rate of the neu-

rons that represent evidence accumulation. A less obvious but

computationally effective alternative is to adjust the total evi-

dence needed to reach the bound through a dynamic stimulus-

independent rise of the accumulators, referred to as urgency

(Churchland et al., 2008; Standage et al., 2011; Thura et al.,

2014). Because urgency equally increases the firing rates of neu-

rons representing all potential choices, it reduces the total evi-

dence that must be accumulated for committing to a choice,

as if the bound had changed although the start points and end-

points remain fixed. In the DDM, changes in the start point and

endpoint are represented by static shifts in bound heights, but

urgency is implemented with a dynamic collapse of the bounds

(Hanks et al., 2014). Note that the DDMbound collapse in this pa-

per is solely a mathematical shortcut to capture urgency in a

simplified model that accumulates evidence along a single

dimension. Also note that both static bound changes and

changes in urgency make qualitatively similar predictions about

accuracy and RTs in PES (Figure 2, third column). In our initial

modeling, we use a DDM with urgency, and later we will distin-

guish changes in urgency from static changes in start point

and endpoint through quantitative model comparisons and,

more important, analyses of neural responses.

The aforementioned mechanisms are not mutually exclusive.

In fact, it is likely that PES results from changes in multiple com-

ponents of the decision-making process. For example, sensi-

tivity may be reduced by unexpected negative feedback, and

simultaneously the decision bound is raised to compensate.

The model can disentangle these mixed effects into a combina-

tion of reduced urgency and sensitivity (Figure 2, fourth column).

The opposite effects of the two changes on accuracy could bal-

ance out, leading to little or no change in psychometric functions.

However, the RT distributions develop a heavier tail, and the
4 Neuron 89, 1–14, February 3, 2016 ª2016 Elsevier Inc.
mean RTs increase for all stimuli, especially in trials with lower

motion strengths.

PES Is Due to Decreased Urgency and Sensitivity
To distinguish different PES mechanisms, we characterized

the post-correct and post-error performance of our subjects.

Human and monkey behavior after errors exhibited common

trends, suggesting that PES in both species reflects a common

set of neural mechanisms (Figure 1). The increase in mean RT

following errors was significantly larger for lower motion

strengths, for both humans (Figures 1D and S1; Table S1; Equa-

tion 2; b3 = �512.9 ± 144.06, p = 3.7 3 10�4) and monkeys (Fig-

ure 1E; Equation 2; b3 = �94.4 ± 26.31, p = 3.43 10�4). Also, for

eachmotion strength,PESwasmaximal for longerRTs, causinga

heavier upper tail in theRTdistribution (humans: Figure 1F; Equa-

tion 3; b2 = 21.95 ± 2.92, p < 10�10; monkeys: Figure 1G; Equa-

tion 3; b2 = 5.88 ± 1.31, p = 1.6 3 10�5). Finally, despite the RT

changes, accuracy did not show an appreciable difference

following errors, for either humans (Figures 1B and S1; Table

S1; Equation 1; b2 = �2.31 ± 1.37, p = 0.09) or monkeys (Fig-

ure 1C; Equation 1; b2 = �0.63 ± 0.99, p = 0.53). The pattern of

RT changes together with the constancy of accuracy rules out

isolated changes in sensory-motor delays, sensitivity, and bound

height as the cause of PES. Rather, PES appears to be caused by

a mixture of changes in the decision-making processes.

To pinpoint the mechanisms underlying PES, we fit a DDM to

the RT distributions of individual subjects following correct and

error feedback (see Experimental Procedures). Figures 3 and

S1 demonstrate that the model reproduces all key aspects of

PES. The fits successfully accounted for the full RT distributions

across all motion strengths (Figure S1, third and fourth columns;

R2 values for the match between the model and data for individ-

ual subjects ranged from 0.86–0.98). They also captured the

properties of PES, showing increased slowing at lower motion

strengths (Figures 3C, 3D, and S1, first column) and also

increased skewness (heavier tail) in RT distributions of each mo-

tion strength (Figures 3E, 3F, and S1, comparison of third and

fourth columns).

The model can be independently verified by its ability to pre-

dict choices. Because we optimized the model parameters

solely on the basis of RTs and irrespective of choice, we could

generate predictions about the probability of each choice. Those

predictions accurately matched individual subjects’ choice

probabilities (R2 range 0.81–0.98 for psychometric functions),

in line with the experimental observation that accuracy is un-

changed following errors, although this was not forced by the

model (Figures 3A, 3B, and S1, second column). This successful

prediction supports that the model is a reliable approximation of

the neural mechanisms that underlie choice and RT.

The best fitting model parameters offer strong predictions

about the neural mechanisms of PES. Figure 4 illustrates those

predictions by comparing the model parameters for post-error

and post-correct trials (see Table S2 for all model parameters).

First, urgency was reduced following errors for all humans (Fig-

ure 4A) and monkeys (Figure 4B) exhibiting PES. This reduction

resulted in a significant elevation of the mean bound height (Fig-

ure 4C; Equation S2; b = 1.91 ± 0.402, p = 2.1 3 10�3). Second,

the stimulus sensitivity decreased for bothmonkeys and humans
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Figure 3. The DDM Fit to RT Distributions

Explains PES and Predicts No Change in

Accuracy

Model fits and predictions for one representative

human subject (left) and one representative mon-

key subject (right). See Figures S1 and S2 for a

detailed summary of model results for all subjects.

(A and B) Observed (solid points) and predicted

(lines) proportion correct as a function of motion

strength for a representative human (S6; first col-

umn) and monkey (O; second column).

(C and D) Observed and expected mean RT as a

function of motion strength.

(E and F) Observed (solid points) and fitted (lines)

cumulative RT distributions averaged across mo-

tion strengths. Insets show the corresponding

observed (bars) and fitted (lines) RT probability

density functions for an example motion strength

(3.2% coherence). For both species, the model fits

the heavier upper tail (greater slowing at larger RTs

compared to short RTs), ruling out pure non-de-

cision time changes (Figure 2, column 1). Similar

results were obtained for all motion strengths.

Error bars denote SEM.
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(Figure 4D; Equation S2; b = �0.038 ± 0.013, p = 2.1 3 10�2).

Third, there was no systematic tendency for increased non-

decision time following errors (Figure 4E; Equation S2; b =

�10.4 ± 11.80, p = 0.41). Therefore, we hypothesized that PES

emerges from a combination of changes in the decision-making

processes: a decrease in urgency and sensitivity. Belowwe eval-

uate this hypothesis using LIP neural responses.

Dynamics of LIP Neural Responses Change with PES
Figures 5A and S3 show the mean firing rates of 114 neurons

from monkeys O and N. After the stimulus onset, there was a

gradual ramping of firing rates. Responses increased when the

monkey ultimately chose the target in the RF (Tin) and declined

when the choice was in the opposite direction (Topp). The

‘‘buildup rate’’ depended on the motion strength: stronger mo-

tion toward Tin increased buildup rates (Figure S3; Equation 5;

b2 = 1.6 ± 0.13, p < 10�10), and stronger motion toward Topp
decreased buildup rates (Equation 5; b3 = �0.4 ± 0.13, p =

8.6 3 10�4), consistent with the accumulation of different levels

of sensory evidence. Also, as expected by the model, the firing

rates reflected the decision commitment by converging to a

common level at the end of the ramp �70 ms prior to the Tin
saccade (Figure S3). The start point and endpoint of the ramp
Neuron 89, 1–
represent, respectively, the start point of

evidence accumulation and the span

over which the firing rates change during

decision formation.

LIP responses did not show any change

in the static features of the ramp: onset

time, start point firing rate, and endpoint

firing rate. The mean onset time of the

ramp was indistinguishable for post-error

(120 ± 21.3 ms) and post-correct (119 ±

17.6 ms) trials (p = 0.66, Wilcoxon

signed-rank test; Figure 5B), ruling out increased sensory delay

as a main cause for PES. LIP neurons also showed similar firing

rates at the beginning of the integration process following errors

(Figure 5C; F = 0.01, p = 0.91, mixed-measures ANOVA) and

achieved the same common level before the saccade (Figure 5D;

F = 0.15, p = 0.70). Finally, we verified that the total excursion

(endpoint to start point) was indistinguishable for post-correct

and post-error trials (Figure 5E; F = 0.15, p = 0.69). Identical

trends were evident in the normalized responses, which reduced

across-neuron variation in total excursion (see Experimental Pro-

cedures). Overall, the onset time and the range of the ramp re-

mained stable.

However, PES was associated with a change in the dynamics

of neural responses between the start point and endpoint. This

change consisted of two components: a stimulus-independent

component that corresponded to a reduced urgency and a stim-

ulus-dependent component that corresponded to a reduced

sensitivity to stimulus strength. Below we expand on these

components.

Following Churchland et al. (2008), we estimated the form of

the urgency signal by averaging firing rates across Tin and Topp
trials. Because we combined trials in which evidence is for and

against a particular response, the effect of incoming evidence
14, February 3, 2016 ª2016 Elsevier Inc. 5
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cancels out, and only the nonspecific urgency modulation re-

mains. Figure 6A shows these neurally derived estimates, con-

firming the presence of a rising urgency signal that was well

characterized by the same hyperbolic function used in the

DDM. It also shows that the urgency was reduced following

errors. Across individual neurons, there was a significant reduc-

tion in urgency following errors, as captured by a decrease in the

asymptote of the best-fitting hyperbolic function (Equation S3;

DuN = �0.60 ± 0.20, p = 1.7 3 10�2, Wilcoxon signed-rank

test), while the rise time and start point did not change (Dt1/2 =

�6.9 ± 50.41, p = 0.84; Db0 = 0.016 ± 0.012, p = 0.99). A similar

difference in post-error and post-correct urgency was observed

when the dynamic component of the urgency signal was esti-

mated using an alternative method developed by Hanks et al.

(2011) (Figure 6B; see Supplemental Experimental Procedures).

Put together, the unchanged start point and endpoint firing rates

and the reduced urgency in LIP responses implemented a dy-

namic increase in the decision bound and augmented the overall

evidence that subjects accumulated for decisions. We found

further support for this conclusion through nested model testing.

Replacing the dynamic urgency (bound collapse) in the model

with a static change in bound height significantly reduced the

quality of the fits in the majority of subjects (p < 0.05, likelihood

ratio test in seven of eight subjects exhibiting PES).

LIP neural responses also reflected the reduction of stimulus

sensitivity. Recall that our model suggested reduced sensitivity

as one of the two factors that induced PES. A combination of ur-
6 Neuron 89, 1–14, February 3, 2016 ª2016 Elsevier Inc.
gency and sensitivity reductions makes specific predictions for

changes in the buildup rate of LIP neurons (Figure 7A): an overall

reduction of buildup rates for Tin motion directions, smaller or no

effects for Topp motion directions, and shallower dependency of

buildup rates onmotion strength. LIP responses were consistent

with this prediction (Figure 7B). The lack of change in the Topp
buildup rates could potentially be due to a floor effect (firing rates

cannot go below zero). Importantly, however, we found that the

slope of buildup rate as a function of motion strength for Tin mo-

tion directions was significantly shallower following errors (Fig-

ure 7B; Equation 5; b4 =�0.46 ± 0.18, p = 9.03 10�3). This effect

was still clear even when we regressed out the relationship of RT

and buildup rate (Equation 5; b4 = �0.35 ± 0.17, p = 3.93 10�2),

indicating that RT differences alone cannot explain the result.

Altogether, LIP responses are most consistent with a model in

which both evidence-dependent (sensitivity) and evidence-inde-

pendent (urgency) inputs to the accumulation mechanism are

reduced following errors.

Decreased SNR with PES Is Not Explained by Elevated
Noise
From a theoretical perspective, the combined reduction of ur-

gency and sensitivity could be replaced with a combination of

reduced urgency and increased noise without affecting the qual-

ity of RT fits. Note that the critical factor in the model is the SNR.

Traditionally, noise is assumed to be constant, and drift rate and

decision bound are expressed in units of noise (Link, 1992).
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Assuming fixed noise, our model predicted a reduction of sensi-

tivity. A more general conclusion from the model would be a

reduced SNR, which could be implemented by reduced sensi-

tivity, elevated noise, or both. To formally establish this point,

we fit an alternative model in which we fixed sensitivity and al-

lowed noise to vary across post-correct and post-error trials

(equal number of free model parameters). For all eight subjects

exhibiting PES, the quality of the fit was statistically unchanged

(bootstrap test of model log likelihoods, p > 0.46 for all subjects).

An examination of the best fitting parameters revealed that PES
could be equally well explained with a mixture of reduced

urgency and elevated noise (Figure S4; Equation S2: B:

b = 3.96 ± 1.239, p = 1.5 3 10�2; s: b = 0.12 ± 0.038, p =

1.6 3 10�2; t0: b = �0.12 ± 7.923 ms, p = 0.98). Thus, these

two models (noise change and sensitivity change) are indistin-

guishable solely on the basis of behavioral data, but we can

turn to physiology to resolve this apparent model mimicry.

The LIP responses confirmed that reduced SNR is due at least

partly to reduced sensitivity (above). They also enabled us to

directly test whether PES could be partially attributed to elevated

noise. Elevated noise manifests itself as increased trial-to-trial

fluctuations of the rate function that underlies spiking activity.

We quantified this rate fluctuation by computing the variance

of conditional expectation (VarCE), a statistic that parses true

across-trial variability in response rate from point-process vari-

ability (Equation S4; Churchland et al., 2011). For both post-cor-

rect and post-error trials, VarCE gradually increased over time

following motion onset, consistent with the accumulation of

noisy evidence, and reached nadir around the time of saccade,

consistent with convergence to a bound. However, there was

no significant increase in VarCE for post-error relative to post-

correct trials (Figure 7C; bootstrap, p > 0.05 for all comparisons

100–400 ms after motion onset). Results were identical when we

analyzed the Fano factor (spike count variance/spike count

mean; Equation S5). Altogether, our data demonstrate that

decreased SNR with PES is due primarily to reductions in sensi-

tivity rather than elevated noise.

Post-error Speeding Is Associated with Reduced
Sensitivity and Reduced Decision Bound
In the previous sections, we focused on the majority of subjects

who exhibited clear PES. Here, we explore the remaining minor-

ity. Two subjects (one human, S7, and one monkey, D) consis-

tently decreased their RTs following errors (Figures 8 and S2;

Table S1). ‘‘Post-error speeding’’ has been previously reported,

especially in fast-response regimes when subjects emphasize

speed over accuracy (King et al., 2010; Notebaert et al., 2009).

Our two subjects with post-error speeding presented an oppor-

tunity to contrast the mechanism of post-error speeding and

PES. For both subjects, the slope of the psychometric function

was significantly reduced after errors (Figures 8A and S2;

Equation 1; b2 =�2.02 ± 0.82, p = 0.01), and post-error speeding

was maximal at lower coherences (Equation 2; b3 = 161 ± 52.77,

p = 2.3 3 10�3). This pattern of behavior was best explained

with a combination of decreased sensitivity and, importantly,

decreased decision bound (Table S2), perhaps to rush through

trials with impaired sensitivity. Our nested behavioral models

indicated the necessity of bound changes to explain post-error

speeding for both subjects (monkey D, p = 8.9 3 10�8; subject

S7, p < 10�10) but could not distinguish between static bound

changes or dynamic changes in urgency.

The responses of 37 LIP neurons in monkey D indicated a

strong increase in the start point of integration (Figure 8C; F =

8.89, p = 3.1 3 10�3, mixed-measures ANOVA) and no change

in the endpoint (F = 0.04, p = 0.83), leading to an overall reduction

of the neural response excursion for this monkey (F = 4.36, p =

3.73 10�2). This large increase in start point obscured our ability

to reliably compare neural urgency signals across conditions.
Neuron 89, 1–14, February 3, 2016 ª2016 Elsevier Inc. 7
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tion of Urgency following Errors

(A) LIP responses averaged across all choices (Tin
and Topp) and stimuli from monkeys O and N in

post-correct (black) and post-error (red) trials.

Averaging across choices cancels out the effect

of incoming sensory evidence such that only

an evidence-independent urgency signal remains

(Churchland et al., 2008). Smooth curves are fits of

a hyperbolic function (Equation S3). Inset shows

the average urgency signal based on the best

fitting DDM parameters for the two monkeys (see

Figure 4B).

(B) Neurally derived estimate of urgency based on

the mean buildup rates computed during decision

formation (Hanks et al., 2011). The mean buildup

rate was computed in a running window (width =

150 ms, 25 ms steps) 100–400 ms after motion

onset to obtain a piecewise estimate of the first

derivative of the urgency function. The integral of the piecewise buildup rates provides an estimate of the dynamic urgency signal. The urgency signal was

estimated independently for post-correct (black) and post-error (red) trials. Asterisks indicate time bins in which the urgency signals on post-correct and post-

error trials were significantly different (p < 0.05; parametric bootstrap, 1,000 samples). Error bars denote SEM.
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Therefore, we cannot rule out changes in urgency in addition to

changes in start point. Regardless of its origin, it seems clear that

a reduced decision bound is highly likely to play a central role in

shaping post-error speeding. A stronger conclusion about the

underlying neural mechanism of this bound reductionmust await

data from additional monkeys.

Our last subject, monkey B, did not show noticeable changes

of behavior following errors (Figures S5A and S5B; Table S1), of-

fering a control to test whether the aforementioned changes in

neural responses following errors were associated with behav-

ioral changes or were merely incidental to negative feedback.

Post-correct and post-error responses of 52 neurons recorded

from thismonkey were largely identical (Figure S5C). The buildup

rates (Equation 5; b4 = 0.34 ± 0.48, p = 0.48), urgency (DuN =

0.27 ± 0.43, p = 0.63; Dt1/2 =�42.87 ± 60.07, p = 0.35, Wilcoxon

signed-rank test), and overall excursion (F = 0.002, p = 0.96,

mixed-measures ANOVA) were unchanged following errors.

Altogether, these results indicate that changes in neuronal re-

sponses are specific to the type of post-error behavioral

adjustment.

DISCUSSION

Seminal work by Laming (1979) has formed the basis for

numerous computational frameworks that explain PES through

adjustments in the decision bound (Goldfarb et al., 2012; Holroyd

et al., 2005) and has led various clinical and neurophysiological

studies to interpret PES as a direct index of adaptive behavior

(e.g., Sergeant and van der Meere, 1988). However, a pure

bound change makes a strong prediction that accuracy in-

creases following errors (Figure 2), a prediction that has been

contradicted by many studies, including this one (e.g., King

et al., 2010). This has led some researchers to question whether

PES reflects any adaptive process whatsoever or whether this

interpretation should be exclusively reserved for the rare cases

in which post-error accuracy is also elevated (Schroder and

Moser, 2014).
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Through a detailed analysis of behavior, we demonstrated that

increases in decision bound are necessary to explain PES, even

in the absence of elevated accuracy. The key experimental ob-

servations are more slowing at low stimulus strengths and heav-

ier tails in the RT distribution. This pattern is best explained by a

reduction in urgency that effectively raises the decision bound.

Although our results support adaptive theories of PES, we note

that this explanation is necessarily incomplete; some additional

mechanism is needed to explain why accuracy rarely increases

with PES.

The additional mechanism is a concurrent reduction in sensory

SNR, which eliminates expected gains in accuracy with

increased decision bound. Decreased SNR is maladaptive for

the goals of the task: it reduces the reward rate by making re-

sponses both slower and less accurate and therefore cannot

reflect a strategic adjustment. Rather, decreased SNR must

reflect an unavoidable reaction to the occurrence of negative

feedback. Such maladaptive responses are not unprecedented.

Several previous studies have reported declines in performance

after negative feedback, particularly when it is unexpected

(Notebaert et al., 2009; Rabbitt and Rodgers, 1977).

Our results suggest a new interpretation of PES as an attempt

to adaptively compensate for a maladaptive consequence of

negative feedback. This conjunction explains why RT and accu-

racy appeared unrelated in many past studies of PES (Danielme-

ier and Ullsperger, 2011). When the reduction of urgency and

sensitivity are balanced, RTs will increase without appreciable

changes in accuracy (King et al., 2010; Rabbitt and Rodgers,

1977). When the reduction of urgency (increase of decision

bound) overcompensates, PES will be accompanied with

increased accuracy, as observed in some studies (Danielmeier

and Ullsperger, 2011; Laming, 1979). An imbalance in the oppo-

site direction will result in reduced accuracy, as observed in our

post-error speeding subjects and a minority of previous studies

(Rabbitt and Rodgers, 1977). We suggest that the key to under-

standing the diversity of PES behavior is the balance between

changes of decision criterion and changes of stimulus sensitivity.
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(A) Schematic changes in buildup rate under different hypotheses of PES.
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Topp (open circles) directions. Changes of buildup rates following errors are

consistent with a combined change in urgency and sensitivity (A, right). Error

bars denote SEM.
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following errors. This variance indicates a combination of stimulus and neural

noise and can be quantifiedwith the VarCE (Equation S4). Top: VarCE for Tin for
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(A and B) Psychometric and chronometric functions of subjects that exhibited

post-error speeding (monkey D and subject S7). Conventions are similar to

those in Figures 1B–1E.

(C) Average responses of the population of LIP neurons recorded frommonkey
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as in Figure 5A.
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This new hypothesis generates several testable predictions.

One prediction is that increasing the delay following feedback fa-

cilitates recovery of sensitivity from negative feedback, thereby

mitigating the need to slow down. We tested this prediction

through a follow-up study in which we manipulated the delay

between feedback and the start of the next trial (i.e., the intertrial

interval [ITI]; 0.35–3.2 s, see Supplemental Experimental Proce-

dures). We observed that for longer ITIs, PES was reduced (Fig-

ure S6), compatible with previous studies (e.g., Danielmeier and

Ullsperger, 2011).

The effect of negative feedback on sensitivity also suggests a

link between the subject’s expectations and PES, leading to a

second prediction: unexpected negative feedback should pro-

duce larger declines in sensitivity and a larger PES. We tested

this prediction by fitting a modified version of the model with an

additional parameter that scaled post-error sensitivity by error-

trial motion strength. The results indicated a larger decline in

sensitivity when subjects received negative feedback in trials

with stronger motion (Equation S2; b = �0.86 ± 0.345, p =

0.03), compatible with our prediction because negative feedback

is less expected on those trials (Kiani et al., 2014a).Our prediction

is partially consistent with theories that assume error detection

and PES are driven by differences between predicted and actual

outcomes (Holroyd et al., 2005). However, our results suggest

that this component of PES is not necessarily adaptive. Distin-

guishing whether expectations drive adaptive or maladaptive

components of PES could be addressed through experiments

that explicitly probe subjects’ expectations before feedback de-

livery (Purcell and Kiani, 2015, Soc. Neurosc., conference).
Neuron 89, 1–14, February 3, 2016 ª2016 Elsevier Inc. 9
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Neural Mechanisms of PES
A complete understanding of PES requires us to understand (1)

how errors are detected and (2) how they influence future sen-

sory processing and decision strategies. The role of medial fron-

tal cortex in error detection is well known. Medial frontal neurons

discharge immediately after erroneous responses or feedback

(Purcell et al., 2012; Schall et al., 2002), contributing to error-

related negativity in extracranial electroencephalographic signal

(Gehring et al., 1993) and BOLD responses associated with

performance monitoring (King et al., 2010). Further, artificial

inactivation of medial frontal cortex eliminates PES in rodents

(Narayanan et al., 2013), and medial frontal lesions in humans

reduce or eliminate PES (di Pellegrino et al., 2007), indicating a

critical connection between performance monitoring processes

and PES.

Studies on medial frontal cortex, however, do not tell us how

errors affect sensory processing and decision strategies. Previ-

ous studies have reported correlations between medial frontal

cortex and decision-related frontal and parietal areas during

PES (King et al., 2010), but the nature of this interaction is unclear

at a single-neuron level. Anatomically, medial frontal cortex is not

well positioned to accumulate sensory evidence, because it re-

ceives relatively sparse inputs from sensory areas (Huerta and

Kaas, 1990). During perceptual decision making, medial frontal

neurons may not exhibit choice-selective signals (Purcell et al.,

2012), and firing rates do not converge at a fixed bound prior

to response execution (Stuphorn et al., 2010). In contrast, LIP

is a node in a larger network of brain areas involved in integration

of sensory inputs to plan eye movements. In the direction

discrimination task, LIP neurons represent integration of sensory

evidence to a decision bound (Gold and Shadlen, 2007). Our re-

cordings from LIP provide crucial new insights into the mecha-

nisms by which errors modify future decisions.

Neural responses that provide access to the dynamics of the

integration process are key to distinguish hypotheses that could

not be differentiated on the basis of behavior alone. Below, we

expand on three components of the decision-making process

that have been implicated in PES by past studies.

Delays in Decision Onset

Our observation that the onset of evidence accumulation is indis-

tinguishable for post-correct and post-error trials is inconsistent

with theories of PES that hypothesize delays in the start of

evidence accumulation following errors (Laming, 1979; Rabbitt

and Rodgers, 1977). We cannot directly rule out delayed activa-

tion of motor processes downstream of LIP; for example,

slowing following countermanded saccades has been shown

to produce delayed activation in oculomotor neurons (Pouget

et al., 2011). However, the non-uniform slowing across RTs

and absence of increased non-decision time in the model indi-

cate that delayed motor activation is not sufficient to explain

PES and is unlikely to be a core component of increased RTs.

Quality of Evidence and Efficiency of Accumulation

Although the DDM indicated that reduction of SNR was a core

component of PES, the model could not separately quantify

the role of sensitivity and noise. The inadequacy of DDM is an

inherent feature shared by all bounded accumulation models.

To provide intuition about this inadequacy, we note that fitting

a model in which bound, sensitivity, and noise are all free to
10 Neuron 89, 1–14, February 3, 2016 ª2016 Elsevier Inc.
vary does not generate a unique solution. Broadly speaking, to

achieve a unique fit, one must fix at least one of the three factors

and express the remaining two in the units of the fixed one. It

is therefore implausible to use the pattern of choices and RTs

to independently assess post-error changes of sensitivity and

noise in the presence of bound changes.

LIP responses addressed this conundrum by showing no

change in VarCE following errors. VarCE reflects the sum of sen-

sory and accumulation noise (Churchland et al., 2011), and its

constancy suggests that elevated neural noise is not a major

contributor to PES. On the other hand, a reduction of sensitivity

shows clearly in the buildup rates of LIP neurons. In our task,

sensory evidence for direction discrimination is provided by ex-

tra-striate visual cortical areas, MT and MST (Britten et al., 1992;

Ditterich et al., 2003; Fetsch et al., 2014). Reduction of sensitivity

in parietal neurons may reflect a reduction in the quality of the

sensory representation in MT and MST (Treue and Martı́nez Tru-

jillo, 1999) or the readout of sensory information by the decision-

making network (Green et al., 2010). On the basis of past fMRI

studies, we speculate that the former is less likely (Danielmeier

and Ullsperger, 2011; King et al., 2010), but distinguishing these

two possibilities requires electrophysiological recordings from

MT and MST.

Decision Bound

Bound adjustments in PES are likely implemented through mod-

ulation of a dynamic urgency signal, an evidence-independent

input that equally drives all choice-selective neural populations

(Churchland et al., 2008; Hanks et al., 2014). Decreased urgency

causes neural responses to rise more slowly, increasing the ev-

idence required to reach the bound. Similar changes in LIP and

prefrontal neurons have been shown to implement changes of

decision bound for speed-accuracy trade-off (Hanks et al.,

2014; Heitz and Schall, 2012). Thus, our results contribute to

mounting evidence that changes in decision bound are not im-

plemented through elevated endpoint, as one might expect,

but instead through mechanisms that directly accelerate or

decelerate accumulation of evidence toward a fixed threshold

(Hanks et al., 2014; Lo et al., 2015).

Post-error reduction of urgency increases the accumulated

evidence for the decision and neutralizes the reduction of SNR.

In theory, such an effective increase of decision bound could

also have been implemented by a static reduction of the start

point of the accumulation process. There is, however, a limitation

to this alternative. Because firing rates are bounded at zero,

decreasing the start point has an inherently restricted range. A

similar limitation, however, does not apply if one’s goal is to

reduce the effective bound height to respond faster following er-

rors, as did monkey D in our experiment (Figure 8).

A dynamic modulation of decision bound may be computa-

tionally advantageous, compared with a static change of the

bound. Note that the difference of post-correct and post-error

urgency signals growswith time (Figure 6). The effective increase

in the decision bound is therefore largest for longer RTs, which

are associated with intermediate and weak motion stimuli (Fig-

ure 1). For the same stimuli, accuracy is most susceptible to a

reduction of SNR and also can improve the most with an in-

crease of decision bound. In contrast, for the strongest stimuli,

accuracy tends to be high and is unlikely to significantly benefit
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from increasing the decision bound. Manipulating decision

bound through urgency ensures the increase of decision time

happens where it matters the most.

The origin of urgency signal is unknown, but it may be shaped

by the cost of acquiring evidence (Drugowitsch et al., 2012) and

implemented by mechanisms that encode elapsed time (Ja-

zayeri and Shadlen, 2015). The post-error changes of urgency,

however, are likely to originate from structures involved in error

detection (Purcell et al., 2012; Schall et al., 2002). Although it is

tempting to conclude that these error-related signals directly

furnish changes of decision bound in the following trials, it is

important to note that these signals are limited to the period

immediately after the error and rarely overlap with the following

decisions. Most likely, the effect on urgency is mediated through

mechanisms that store long-term history of past behavior (e.g.,

Kiani et al., 2015; Tsujimoto et al., 2010). Future studies will

shed light on this issue.

The changes of urgency in LIP responses can be part of amore

widespread effect in the decision-making and action-planning

network. For example, pre-supplementary motor area is in-

hibited (Danielmeier and Ullsperger, 2011; King et al., 2010)

and corticospinal excitability is reduced in PES (Amengual

et al., 2013). Such inhibitions, if also present in our task, are un-

likely to be a purely motor (i.e., post-decisional) effect because

they would predict equal elongation of RT for all stimulus

strengths, incompatible with our experimental observations (Fig-

ures 1, 3, and S1). Rather, they are likely to be part of the deci-

sion-making process itself. Mounting evidence suggests that

the decision-making process is distributed in a network that in-

cludesmotor areas (Cisek and Kalaska, 2010; Gold and Shadlen,

2000; Hanes and Schall, 1996; Noorbaloochi et al., 2015; Ratcliff

et al., 2003; Selen et al., 2012). From this perspective, we view

our parietal recordings as a window onto the activity of this

distributed network, and so the reductions in motor activity likely

reflect another manifestation of the reduced urgency that we

observe in our parietal neurons.

Conclusions
The neural mechanisms of PES have been hotly debated, but

different hypotheses have been difficult to distinguish using

only behavioral data or noninvasive methods for monitoring neu-

ral activity. Using quantitative modeling and electrophysiology,

we provide a new account of PES as an active reduction of

response urgency to balance reductions of sensitivity and main-

tain performance. This dual mechanism quantitatively explains

post-error behavior and offers a parsimonious description for

its diversity in past studies.

EXPERIMENTAL PROCEDURES

Behavioral Task

Seven humans (four female, three male; ages 18–30 years) and four rhesus

monkeys (two male, two female; ages 4–12 years) were trained to perform a

motion direction discrimination task. All subjects were naive to the purpose

of the experiment. Informed written consent was obtained from all human sub-

jects. Experimental procedures for humans were approved by the Institutional

Review Board at New York University. Experimental procedures for monkeys

conformed to the National Institutes of Health Guide for the Care and Use of

Laboratory Animals and were approved by the animal care committees at
the University ofWashington (monkeys N and B) and Stanford University (mon-

keys O and D). Data from monkeys N and B have been previously published

(Roitman and Shadlen, 2002).

Subjects were seated in a semi-dark room in front of a cathode ray tube

monitor (frame rate, 75 Hz) with their heads stabilized (surgically implanted

head post for monkeys, chin and forehead support for humans). They began

each trial by fixating a small red point at the center of the screen (fixation point

[FP], 0.3� diameter). After a variable delay (truncated exponential distribution;

mean = 300–700 ms), two red targets (0.5�) appeared on opposite sides of the

screen equidistant from the FP. After another random delay, the dynamic

random-dots stimulus (Britten et al., 1992) appeared within a 5�–7� circular

aperture centered on the FP. The stimulus consisted of three independent

sets of moving dots shown in consecutive frames. Each set of dots was shown

for one video frame and then replotted three frames later (Dt = 40 ms; density,

16.7 dots/deg2/s). When replotted, a subset of dots were offset from their orig-

inal location (speed, 5 deg/s) while the remaining dots were placed randomly.

The percentage of coherently displaced dots determined the strength of mo-

tion. Subjects reported their perceived direction of motion with a saccadic eye

movement to the choice target in the direction of motion. Subjects were free to

indicate their choice any time after motion onset. RT was defined as the differ-

ence between saccade initiation time and motion onset. See Supplemental

Experimental Procedures for additional task details.

Behavioral Data Analyses

For all analyses, ‘‘post-error’’ refers to trials following an error feedback, and

‘‘post-correct’’ refers to trials that followed a correct feedback. In addition,

we used only post-correct trials that are also pre-error to guard against slow

fluctuations in behavioral state (see Supplemental Experimental Procedures).

We used a logistic regression to assess the effects of motion strength and

errors on accuracy on the subsequent trial:

logit½PðcorrectÞ�=b1C+ b2CI; (Equation 1)

where logitðpÞ is logðp=1� pÞ,C is the motion strength on the current trial, I in-

dicates the outcome of the previous trial (0 = correct, 1 = error), and bi are the

regression coefficients. b1 tests for the effect ofmotion strength on choice, and

b2 tests for the effect of previous-trial outcome on the slope of the psychomet-

ric function.

Similarly, we assessed the effects of motion strength and errors on RT with

the following linear regression:

T = b0 + b1C+ b2I+ b3CI; (Equation 2)

where T is the RT on the current trial. We obtained identical results using a

nonlinear regression analysis (hyperbolic tangent).

We tested whether PES was greatest at shorter or longer RTs using a linear

regression model of the following form:

DT = b0 + b1C+ b2D; (Equation 3)

where DT indicates the mean RT difference between post-error and post-cor-

rect trials for coherence, C, and RT decile, D. Deciles were computed sepa-

rately for each coherence and trial type (post-correct or post-error). Positive

b2 indicates maximal slowing at longer RTs ðH0 : b2 = 0Þ. We obtained similar

results using different numbers of quantiles.

DDM

We fit a DDM to each subject’s behavior following correct and error trials to

evaluate alternative hypotheses about the mechanisms responsible for PES.

Choice and RT result from integration of noisy sensory evidence over time to

a decision criterion or bound. The model parameters are as follows. The sensi-

tivity parameter, k, determines the linear scaling of the mean rate of accumu-

lation (i.e., drift rate) with motion strength (C). Therefore, m= kC is the mean of

the distribution of momentary evidence per time unit. The SD of themomentary

evidence, s, is fixed to 1 in the majority of model fits. For one variation of the

model, we compared the standardmodel with the effect of varying SNR of sen-

sory evidence by changing the noise (s) and fixing k. The non-decision time

parameter, t0, determines the mean time necessary for sensory processing

and motor delays before and after the decision process. We further assume
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that non-decision time is normally distributed with SD, st0. The bound height,

B(t), determines the amount of evidence thatmust be accumulated for a choice

at decision time t. We modeled evidence-independent response urgency as a

collapsing bound over time (Hanks et al., 2014). A hyperbolic function was cho-

sen for the shape of the bound collapse (Churchland et al., 2008):

jBðtÞ j =b� uN

t

t + t1=2
; (Equation 4)

where b is the initial bound height, uN is the asymptotic reduction in bound

height, and t1=2 is the time to reach 50% reduction. Similar results were ob-

tained with other functional forms for urgency. Finally, an offset in the start

point of the accumulation, z, and a bias in the duration of non-decision time

for right/left choices, t0bias, accounted for choice biases and choice-depen-

dent RT difference that are occasionally observed in both human and non-hu-

man primates. See Supplemental Experimental Procedures for details of

model fitting. Briefly, we fit the full RT distributions, irrespective of choice, us-

ing a maximum likelihood procedure. In most fits, we allowed four model pa-

rameters (k, t0, uN, and t1=2) to vary between post-error and post-correct

conditions.

Neural Analyses

Single-neuron responses were recorded from area LIP of four rhesus monkeys

while they performed themotion discrimination task (see Supplemental Exper-

imental Procedures). Peristimulus time histograms (PSTHs) were created by

averaging neural responses aligned to different task events. For illustration

purposes, they were smoothed by convolution with a 100 ms boxcar filter.

We divided trials according to whether the chosen target was inside (Tin) or

opposite (Topp) the RF of the neuron and whether the trial was post-correct

or post-error, as defined above.

We estimated the start time of evidence integration on the basis of PSTHs of

trials ending with Tin saccades. A 40 ms window moved backward along the

PSTH from the saccade onset toward motion onset in 1 ms steps. The onset

of integration was defined as the first time when (1) activity made a transition

from a ramp to a stable state (ramp was defined with a significant Spearman

correlation for 10 consecutive steps, p < 0.01) and (2) firing rate showed at

least a 20% drop compared with 100 ms before the saccade onset (Pouget

et al., 2011). Other methods for measuring activity onset (e.g., dip time, see

below) produced similar conclusions. Also, similar results were obtained for in-

dividual neurons and the population.

The firing rates associated with the beginning and end of the evidence

accumulation process were measured in two distinct time windows. For

the start point firing rate, we used a 50ms window centered on the post-

stimulus dip in LIP activity. The dip is hypothesized to reflect a reset of

the integration process and happens 50–150 ms after motion onset. We

defined the dip as the minimum firing rate for each neuron in that period

(mean dip time = 107 ± 3.34 ms). The dip time closely corresponds with

the accumulation onset time estimated above. Thus, similar results were

obtained by using the firing rate around the onset time. Using other mea-

surements of start point firing rate (e.g., the baseline period 0–200 ms

before motion onset) led to identical conclusions. We estimated the

endpoint of accumulation as the mean firing rate 75–25 ms before the

saccade onset, a time period at which firing rates converge to a common

level irrespective of RT and motion strength (Figure S3; Churchland et al.,

2008; Roitman and Shadlen, 2002). Only trials in which the Tin target was

chosen were included in this analysis. We also tested for differences in

the overall excursion, that is, the difference between the start point and

endpoint firing rate of each neuron. We assessed the significance of activity

changes in each epoch using a mixed-measures ANOVA with motion

strength and previous trial outcome as fixed effects and cell identity as a

random effect.

We quantified the urgency signal using two different methods: averaging

neural responses across all motion directions, motion strength, and choices

(Churchland et al., 2008), and piecewise estimation of the derivative of the ur-

gency signal (Hanks et al., 2011). See Supplemental Experimental Procedures

for details. Parameterization of post-correct and post-error urgency signals

was done by fitting a hyperbolic function (Equation S3) in the epoch from the

response dip until 450 ms after motion onset (Figure 6A).
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We computed the buildup rate of LIP neurons on a trial-by-trial basis by

convolving the spike train with a Gaussian kernel (SD = 25 ms) to estimate

the smoothed rate function and then by applying a linear regression to this

rate function. The analysis was performed on an epoch starting at the charac-

teristic dip and ending 100 ms before saccade initiation. To combine the

buildup rates across neurons, we standardized them for each neuron (Z score).

We tested for post-error changes of buildup rate using the following linear

regression:

n= b0 + b1I+ b2CJ1 + b3CJ2 + b4CJ1I+ b5CJ2I; (Equation 5)

where n indicates the normalized buildup rate and C is the motion strength

on each trial. I is an indicator variable for the previous trial outcome. J1 and

J2 are indicator variables for motion direction: J1 equals 1 for motion toward

the neuron’s RF and 0 otherwise; J2 equals 1 for motion away from RF and

0 otherwise. b2 and b3 indicate the change of buildup rate with motion strength

toward Tin and Topp (i.e., the neural sensitivity), and b4 and b5 indicate the

change of sensitivity following errors. The null hypothesis is no change in

sensitivity (H0: b4 = 0 and b5 = 0).

We also tested whether the variation in buildup rate following errors can be

entirely accounted for by changes in RTs. First, we removed the covariation

with RT using a regression model:

n= b0 + b1T: (Equation 6)

Then the residual buildup rate that could not be explained by RT variations

ðnr = n� b0 � b1TÞ was used in Equation 5.

To test for changes in neural variance during PES, we measured the across-

trial firing rate variability as the VarCE (Churchland et al., 2011). See Supple-

mental Experimental Procedures for details. Briefly, the analysis assumes

that the spike count in each epoch is a stochastic realization of a point process

governed by a rate parameter, which itself is randomly drawn from a distribu-

tion. VarCE estimates the variance of this rate distribution at each moment by

subtracting from the total spike count variance an estimate of the point-pro-

cess variance.
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Figure S1. Related to Figure 3. Drift-diffusion model fits and predictions for individual subjects that exhibited 
post-error slowing. Each row shows fitted chronometric functions (column 1), predicted psychometric functions 
(column 2), and fitted post-correct (column 3) and post-error (column 4) cumulative RT distributions (CDFs) for 
each subject.  Lines are model fits (columns 1, 3, and 4) or predictions (column 2) and circles are data.  Black 
indicates post-correct trials and red indicates post-error trials.  For RT distributions, the brightness increases with 
motion strength (%Coh). 
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β1	(motion	strength,	%Coh) β2	(previous-trial	feedback) β3	(interaction)
Response	time	(ms)

Humans
S1 -1249.84 ± 21.46 *** 131.61 ± 27.72 *** -235.74 ± 202.09
S2 -1814.75 ± 35.05 *** 150.91 ± 44.11 ** -493.03 ± 325.45
S3 -3115.35 ± 38.28 *** 138.08 ± 50.62 ** -634.17 ± 383.65
S4 -1379.71 ± 34.54 *** 197.38 ± 46.67 *** -719.66 ± 343.49 *
S5 -1511.92 ± 27.48 *** 71.34 ± 36.34 -139.27 ± 253.61
S6 -2555.39 ± 55.90 *** 379.77 ± 72.94 *** -1165.08 ± 524.01 *
S7 -2620.97 ± 37.29 *** -165.92 ± 49.33 ** 652.37 ± 360.61

Monkeys
O -197.88 ± 19.25 *** 68.53 ± 9.78 *** -60.33 ± 26.79 *
N -963.04 ± 72.48 *** 114.15 ± 25.76 *** -174.68 ± 95.10
D -303.03 ± 21.99 *** -97.61 ± 8.48 *** 195.79 ± 30.60 ***
B -580.60 ± 43.22 *** -1.26 ± 16.28 -48.13 ± 58.39

β1	(motion	strength,	%Coh) β2	(previous-trial	feedback)
Proportion	correct

Humans
S1 14.30 ± 1.72 *** -0.25 ± 2.44
S2 16.62 ± 2.00 *** -0.61 ± 2.74
S3 38.92 ± 5.69 *** -14.84 ± 6.75 *
S4 25.32 ± 3.42 *** -0.46 ± 4.99
S5 20.20 ± 2.38 *** -2.95 ± 3.12
S6 19.37 ± 2.73 *** -4.32 ± 3.47
S7 36.35 ± 4.70 *** -4.12 ± 6.36

Monkeys
O 11.96 ± 0.73 *** -0.86 ± 1.00
N 26.05 ± 4.30 *** -5.18 ± 5.01
D 10.05 ± 0.61 *** -1.63 ± 0.78 *
B 20.59 ± 2.64 *** -1.76 ± 3.32

Each	row	shows	the	coefficients	of	Equation	1	(proportion	correct)	or	Equation	2	(response	time).		***	denotes	p	<	
0.001,	**	denotes	p	<	0.01,	*	denotes	p	<	0.05.

Table	S1,	related	to	Figure	1.	Effects	of	motion	strength	and	previous	trial	feedback	on	individual	subject	response	
times	(Equation	2)	and	proportion	correct	(Equation	1).
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S1 S2 S3 S4 S5 S6 S7 Monkey	O Monkey	N Monkey	D Monkey	B

post-correct 22.1 ± 1.05 30.4 ± 0.82 32.0 ± 0.79 24.1 ± 0.86 23.1 ± 0.78 27.8 ± 0.95 29.0 ± 0.88 15.4 ± 0.86 26.0 ± 1.02 14.1 ± 0.37 20.0 ± 0.59
post-error 24.3 ± 0.86 32.2 ± 0.69 34.6 ± 0.66 26.8 ± 0.98 24.1 ± 0.93 32.2 ± 0.84 24.1 ± 1.88 16.5 ± 0.96 26.5 ± 0.70 13.7 ± 0.27 21.3 ± 0.63
k
post-correct 0.47 ± 0.11 0.29 ± 0.03 0.52 ± 0.04 0.46 ± 0.05 0.49 ± 0.05 0.48 ± 0.04 0.65 ± 0.04 0.30 ± 0.03 0.56 ± 0.08 0.43 ± 0.04 0.44 ± 0.06
post-error 0.40 ± 0.09 0.26 ± 0.02 0.53 ± 0.04 0.42 ± 0.05 0.45 ± 0.06 0.36 ± 0.04 0.56 ± 0.06 0.27 ± 0.02 0.48 ± 0.06 0.31 ± 0.02 0.62 ± 0.05

t0
post-correct 337.6 ± 66.32 214.9 ± 32.19 91.4 ± 22.97 345.0 ± 35.68 295.5 ± 29.65 231.3 ± 17.59 283.5 ± 9.40 360.7 ± 15.55 241.8 ± 48.68 353.6 ± 7.82 324.9 ± 18.31
post-error 335.8 ± 62.73 192.3 ± 33.08 85.2 ± 14.17 338.6 ± 34.44 320.8 ± 35.12 165.9 ± 15.45 273.7 ± 11.70 372.7 ± 21.35 262.9 ± 20.21 310.7 ± 7.94 333.8 ± 11.72

τ1/2
post-correct 168.1 ± 56.13 459.5 ± 105.88 545.3 ± 105.78 1977.3 ± 795.66 1018.6 ± 14064.67 0.9 ± 1643.75 16978.9 ± 6074.52 221.4 ± 53.88 207.0 ± 39.58 809.4 ± 21186.91 63.2 ± 5.58
post-error 237.7 ± 70.77 591.8 ± 110.97 703.5 ± 148.68 4140.0 ± 1658.16 189.5 ± 4907.10 6921.7 ± 3501.17 194.6 ± 31680.53 296.6 ± 50.97 231.1 ± 32.27 0.1 ± 1968.08 65.6 ± 4.80

u∞
post-correct 88.3 ± 17.52 88.0 ± 12.78 88.2 ± 8.52 32.1 ± 5.11 6.8 ± 6.80 10.7 ± 3.19 16.5 ± 5.92 32.8 ± 21.27 88.7 ± 20.02 18.2 ± 3.73 126.0 ± 0.17
post-error 88.3 ± 17.56 88.9 ± 13.70 88.2 ± 8.83 32.1 ± 6.41 2.3 ± 5.77 37.7 ± 4.44 7.8 ± 5.79 32.8 ± 22.48 88.7 ± 19.84 4.9 ± 2.51 126.0 ± 0.08

b
all	trials 90.2 ± 17.78 90.8 ± 13.40 90.1 ± 8.70 32.7 ± 4.91 25.8 ± 1.88 38.5 ± 2.45 29.9 ± 0.91 33.5 ± 21.56 90.6 ± 20.25 18.5 ± 0.54 128.6 ± 28.44

t0	bias
all	trials 110.6 41.53 -190.4 ± 55.39 47.2 ± 13.067 -85.4 ± 55.1997 -11.8 ± 50.52 54.8 ± 21.34 -32.0 ± 15.03 128.1 ± 23.92 -2.2 ± 19.321 -4.1 ± 2.257 -18.2 ± 24.92

z
all	trials 0.0 ± 0.03 0.2 ± 0.04 -0.1 ± 0.03 0.2 ± 0.08 0.0 ± 0.12 0.0 ± 0.05 0.1 ± 0.04 0.2 ± 0.03 0.1 ± 0.02 -0.1 ± 0.07 0.0 ± 0.03

st0
all	trials 79.9 ± 38.34 2.2 ± 2.42 1.0 ± 0.34 46.3 ± 16.90 23.7 ± 11.88 2.9 ± 1.55 3.4 ± 1.41 69.1 ± 6.03 99.4 ± 14.33 50.1 ± 2.93 76.8 ± 6.63

Table	S2,	 related	to	Figures	3	and	4.	Best-fitting	drift-diffusion	model	parameter	values	to	individual	subject	data.

Each	row	shows	best-fitting	parameter	values	(±SE)	for	drift-diffusion	model	fits	to	individual	subject	data	(see	Experimental	Procedures).		Standard	error	was	computed	using	a	nonparametric	bootstrap.						indicates	the	average	bound	over	the	middle	
95%	of	decision	times	(see	Figure	4).	Starting	point	(z)	is	reported	as	a	proportion	of	b.

B

B
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
Additional behavioral task details 
 
Both human and monkey subjects were extensively trained so that all subjects, regardless of species, 
achieved high accuracy and stable speed (see Results). For the final data collection, we emphasize both 
speed and accuracy and subjects exhibited intermediate RTs and psychophysical thresholds comparable to 
previous reports (Hanks et al., 2014; Palmer et al., 2005). Subjects could exhibit higher accuracies when 
instructed to do so, indicating that the lack of post-error change of accuracy was not due to a ceiling effect. 
To further establish this point, we performed a control analysis by dividing experimental sessions into two 
groups based on psychophysical thresholds (median split).  Our results were similar for both high- and low-
threshold sessions, which again rules out ceiling effects on post-error accuracy.   
 
To achieve the high trial counts required for the analyses, subjects contributed several sessions of data. In 
each session, humans performed several blocks of 100-200 trials (1,959 – 2,846 total trials per subject, 
mean = 2,427 trials, total = 16,989 trials). Monkeys performed the task for liquid reinforcement until 
satiated in each session (total trial count, monkey N: 3,534; monkey O: 21,179; monkey B: 2,615; monkey 
D: 15,290).  Stimulus presentation was controlled with Psychophysics Toolbox (Brainard, 1997) and 
Matlab. Eye movements were monitored using a high-speed infrared camera (Eyelink, SR-Research, 
Ontario) for humans and monkey O. A scleral search coil (Fuchs and Robinson, 1966; Judge et al., 1980) 
was used to monitor eye movements of monkeys N, B, and D. Gaze positions were recorded at 1kHz.  
 
The direction and motion strength was randomly chosen on each trial.  For monkeys, motion strength could 
be one of the following values: 0%, 3.2%, 6.4%, 12.8%, 25.6%, and 51.2%.  Because our human subjects 
were better at the task than monkeys, we used a slightly more difficult stimulus set: 0%, 1.6%, 3.2%, 6.4%, 
12.8%, and 25.6%.  This ensured a comparable range of difficulty for all subjects. 
 
Following the response, the humans received distinct auditory tones indicating whether the response was 
correct or an error.  Monkey B and N received a tone and liquid reward after correct responses. Monkey O 
and D received immediate feedback (tone + liquid for corrects, different tone for errors) on some trials.  For 
the other trials, the initial choice was followed by the presentation of two distinct gambling targets.  
Shifting gaze to one gambling target would result in auditory feedback and a large reward following correct 
direction choices or no reward for incorrect direction choices (i.e., high-risk target).  Shifting gaze to the 
other gambling target would result in a small reward regardless of the initial choice (i.e., low-risk target). 
Our focus here is to understand the effect of errors on the primary motion discrimination task, and therefore 
we only analyzed behavior following trials in which explicit feedback was given (i.e., non-gambling trials 
and high-risk choices). For all subjects, trials with 0% coherent motion were rewarded randomly. We 
defined these trials as correct or error based on the feedback that was received. 
 
 
Definition of post-correct trials 
 
We used only post-correct trials that are also pre-error trials to guard against the possibility that fluctuations 
in behavioral state could create confounds across PES conditions (Dutilh et al., 2012; Nelson et al., 2010). 
This additional criterion is not critical for our results, but it ensures that post-error trials are matched to the 
post-correct trials that occurred around the same time in the session.  This has been demonstrated to protect 
against the influence of performance fluctuations (Dutilh et al., 2012). We observed very similar results 
even when all post-correct trials were considered, suggesting that performance fluctuations were not a 
major factor in our data.  In addition, we repeated our behavioral analyses using only post-correct trials that 
were followed by another correct response to guard against the possibility that our results were influenced 
by systematic effects that precede errors (Allain et al., 2004; Eichele et al., 2008; Ridderinkhof et al., 2003).  
Again, the results were very similar suggesting that selection of post-correct trials that were pre-error was 
uncritical for our results. 
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Inter-trial interval manipulations 
 
If PES is caused by adaptive increases in decision bound to compensate for reduced sensitivity following 
negative feedback, then PES should be sensitive to the delay between negative feedback and the next 
decision (Danielmeier and Ullsperger, 2011; Dudschig and Jentzsch, 2009; Jentzsch and Dudschig, 2009). 
Specifically, extending the inter-trial interval (ITI) would dissipate the effects of negative feedback and 
provide time for restoring normal sensory sensitivity.  To test this prediction, we conducted a follow up 
experiment in which we varied ITI across blocks for five human subjects. Each subject experienced two ITI 
conditions; a short ITI block and a long ITI block.  Each ITI condition was completed across multiple 
consecutive sessions before switching to the new condition. For two subjects, the short ITI was 0.8s and the 
long ITI was 3.2s.  For three subjects, the short ITI was 0.35s and the long ITI was 2.4s.  The ordering of 
the conditions was counterbalanced across subjects.   
 
We used Equations 1 and 2 to test for significant changes in RT and proportion correct following errors in 
both ITI conditions.  To test the significance of the effect of ITI on the magnitude of PES, we used the 
following regression equation:  
 

Δ𝑅𝑇 =   𝛽! + 𝛽!𝐼    (Equation S1) 
 
where I is an indicator variable set to 1 for the short ITI condition and 0 otherwise.  Δ𝑅𝑇 is the difference 
between post-error RT on individual trials and the post-correct/pre-error RT that preceded it (total number 
of trials for short ITI: n = 3,932; long ITI: n = 3,140 trials).   
 
 
Model fitting procedure 
 
For each fit, we calculated the probability of the accumulated evidence crossing the upper or lower bound 
at each decision time using a numerical solution for the Fokker-Planck equation (Kiani et al., 2014; Kiani 
and Shadlen, 2009).  We fit the full RT distributions by maximizing the likelihood of RTs on individual 
trials irrespective of choice. A nonparametric bootstrapping method (100 iterations) was employed to 
estimate the standard error of parameter estimates. Because our fits ignored choice, we could then use the 
fitted parameters to generate predictions for the choice probabilities associated with each condition. 
 
To probe the cause of PES, we separately fit the observed data from post-correct and post-error trials. We 
adopted a two-stage fitting approach in order to reduce computational demands and ensure that our fits 
converged to a global minimum.  First, we optimized all eight parameter values to fit post-error RTs.  Next, 
we refit key parameters of interest to the post-correct RTs while fixing parameters not likely to explain PES.  
We fixed both bias parameters (z, and t0bias) across post-correct and post-error conditions because we found 
that RT biases did not change following errors.  In addition, we fixed st0 across post-correct and post-error 
conditions because this parameter reflects variability inherent in the sensory and motor systems. Overall, 
changes in five model parameters were explored as the cause for PES (b, k, t0, 𝑢∞, 𝜏!/!). Our results did not 
depend critically on whether we fit post-error or post-correct data first, or whether we shared b, st0, z, and t0 

bias across the post-correct and post-error fits. 
 
We used weighted least-squares regression to assess the significance of model parameter changes across 
subjects.  The regression equation was defined by the following function: 

  
∆𝑃 = 𝛽 + 𝜀    (Equation S2) 

 
where ΔP is a vector of differences in parameter values fit to post-error and post-correct data for each 
subject. β was found by minimizing the function 𝑆 =    𝑤! 𝛥𝑃! − 𝛽 !!

!!! , where wi are individual subject’s 
weights (n subjects) given by the inverse of the variance of model parameter differences estimated from 
bootstrapping. The null hypothesis is no change following errors (𝐻!:𝛽 = 0). To test overall changes in 
bound height in the presence of urgency, we averaged B(t) (Equation 4) between the 2.5th to 97.5th 
percentile of the decision time distribution.  The resulting mean, 𝐵, corresponds to the average bound 
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height when most choices occurred.  Equation S2 was then used to test for overall changes in the mean 
bound height across post-correct and post-error trials. 
 
If unexpected negative feedback drives reductions in sensitivity after errors one would expect that the 
magnitude of post-error sensitivity reductions depends on error-trial motion strength.  We tested this 
hypothesis by evaluating a modified drift-diffusion model that allowed rescaling of post-error drift rate 
based on error-trial motion strength.  In this model, the drift rate was 𝜇 = 𝑘𝐶!"# for post-correct trials, and 
𝜇 = 𝑘 + 𝛼𝐶!"#$ ×𝐶!"# for post-error trials, where 𝐶!"# and 𝐶!"#$ are the motion strength on the current 
and previous trials, respectively.  Negative 𝛼 indicates that sensitivity is reduced more when negative 
feedback is less expected. 
 
Changes in bound height with PES could be due to either a static offset in overall bound, b, or a dynamic 
change in urgency (the rate of the bound collapse parameterized by 𝑢∞ and 𝜏!/!). We used nested model 
comparisons to test whether static or dynamic bound changes were necessary to explain PES. We used a 
likelihood-ratio test to determine the necessity of each mechanism.  For comparisons of non-nested models, 
we used a parametric bootstrapping procedure.  As explained in the Results, we found that changes in 
urgency (the rate of bound collapse) were necessary to explain PES, and so we focus primarily on this 
model.   
 
 
Neural recording details 
 
Neuronal activity was recorded from the lateral intraparietal area (LIP) of four rhesus monkeys while they 
performed the motion discrimination task (50 neurons from Monkey O; 64 neurons from Monkey N; 37 
neurons from Monkey D; 52 neurons from Monkey B). LIP was located based on stereotaxic coordinates 
and structural magnetic resonance imaging (MRI) scans.  Neurons were selected for recording if they 
exhibited spatially selective persistent activity during the delay period of memory-guided and visually-
guided delayed saccade tasks (Gnadt and Andersen, 1988; Hikosaka and Wurtz, 1983). These tasks require 
the animal to maintain fixation following target presentation throughout a delay period (~1000ms) until the 
offset of the fixation point cues the animal to initiate a saccade to the target (visually-guided saccades) or 
remembered target location (memory-guided saccades).  The target location was varied across trials to 
identify the spatial location that elicited a maximal response from the neuron.  This location was designated 
the response field (RF). 
 
Estimation of urgency signal 
 
We used two different analyses to test whether PES is accompanied by evidence-independent changes in 
the temporal dynamics of LIP responses. First, following Churchland et al. (2008), we averaged responses 
across all post-correct trials regardless of motion direction, motion strength, choice, and outcome. In this 
average, changes in activity related to incoming perceptual evidence cancel out, and the remaining 
modulation of activity is due to a nonspecific signal that accelerates commitment to a choice. To combine 
responses across neurons, we normalized the firing rate of each neuron to the average firing rate in a 100ms 
window before dots onset. The urgency signal was independently calculated for the post-correct and post-
error trials. Responses were truncated 100 ms prior to saccade initiation, to ensure that the approximated 
urgency was not influenced by pre-saccadic response bursts. Similar results were obtained when we 
quantified urgency only based on low coherence stimuli (≤6.4%), which had little net motion information. 
 
The post-correct and post-error urgency signals were parameterized with a hyperbolic function fit to the 
epoch from the response dip until 450 ms after dots onset (Figure 6A):   
 
    𝑅(𝑡) = 𝛽! + 𝑢∞

!
!!!!/! 

    (Equation S3)  

 
where R(t) indicates the urgency at time t, β0 is the baseline, and 𝑢∞ and 𝜏!/! determine asymptotic level 
and half time of the urgency.  We computed the best fitting parameter values for individual neurons and 
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tested for significant changes between post-correct and post-error trials using Wilcoxon signed-rank tests. 
Similar results were obtained when we fit the same function to the population average responses (Figure 
6A). 
 
In the second analysis, following Hanks et al. (2011), we estimated the urgency signal by computing the 
buildup rate on a trial-by-trial basis.  We divided the trial using a running window of 150ms with 25ms 
time steps from 100 to 400 ms after dots onset for post-correct and post-error trials.  Bins that included 
within 100 ms before the time of saccade were excluded.  We computed the buildup rate in each bin by 
convolving the spike train with a Gaussian kernel (SD = 25ms) and then by applying a linear regression to 
this smoothed rate function.  The average buildup rate across all trials, irrespective of choice, provides a 
piecewise linear approximation to the first derivative of the urgency signal.  The time integral of this 
derivative provides an estimate of the dynamic component of the urgency signal itself (Figure 6B).  We 
used a parametric bootstrap (1000 samples) to estimate standard error (Hanks et al., 2011) and assess 
significant differences in the neurally-derived urgency for post-correct and post-error trials on a bin-by-bin 
basis. 
 
 
VarCE analysis 
 
The analysis was performed using a 60 ms window that was moved in steps of 10 ms. We estimated the 
point process variance of each neuron at each time by multiplying the spike count with an upper bound 
estimate of the neuron’s Fano Factor (𝜙): the largest possible value that ensured a positive VarCE at all 
times. For each neuron we computed the spike count in each time step and subtracted the mean spike count 
across all trials with a similar condition (e.g., motion strength, direction, etc). To enhance the analysis 
power we combined these conditional residual spike counts across neurons and computed VarCE in each 
time bin as the total variance of the residuals from all conditions and neurons, 𝑉𝑎𝑟 𝑧∪ , minus the weighted 
average of the point process variance for each condition: 
 

𝑉𝑎𝑟𝐶𝐸 =   𝑉𝑎𝑟 𝑧∪ −   
!!"
!∪
𝜙!𝑁!"!

!!!
!
!!!    (Equation S4) 

 
where 𝑛∪ is the total number of trials across M conditions and K neurons, 𝑛!" is the number of trials, and 
𝑁!" is the mean spike count for the ith condition and jth neuron. A common 𝜙! was used across all conditions 
for a neuron. It was computed as the minimum value of the Fano factor across the trial, and following 
Equation S5 the Fano Factor for each neuron was calculated as: 
 

𝐹𝐹 =    !"# !∪!!
!∪

!
!!! !!

    (Equation S5) 

 
where 𝑧∪ and 𝑛∪ refer to all recorded trials for the neuron. We verified that 𝜙! was stable across post-
correct and post-error conditions, indicating that the point-process noise does not change.  Standard error of 
VarCE was estimated using a bootstrap procedure (250 iterations, random sampling of trials with 
replacement). The definition of conditions depended on the epoch of interest. For early decision formation 
(motion aligned VarCE, Figure 7C, left panel) they were defined based on motion direction and strength. 
For the perisaccadic epoch (saccade aligned VarCE, Figure 7C, right panel), they were defined based on 
motion direction, motion strength, and choice. 
 
We used a nonparametric bootstrap to test for significant differences in VarCE and Fano factor for post-
correct and post-error trials.  For each time bin, we computed the difference in neural variance between 
post-error and post-correct trials, and generated 95% confidence intervals. Our results were identical if we 
computed VarCE and Fano factor for each neuron individually then tested for significant differences 
between post-correct and post-error trials across neurons. 
 
	  
	  



	   13 

SUPPLEMENTAL REFERENCES 
 
Allain, S., Carbonnell, L., Falkenstein, M., Burle, B., and Vidal, F. (2004). The modulation of the 

Ne-like wave on correct responses foreshadows errors. Neurosci Lett 372, 161-166. 
Brainard, D.H. (1997). The Psychophysics Toolbox. Spat Vis 10, 433-436. 
Dudschig, C., and Jentzsch, I. (2009). Speeding before and slowing after errors: is it all just 

strategy? Brain Res 1296, 56-62. 
Dutilh, G., van Ravenzwaaij, D., Nieuwenhuis, S., van der Maas, H.L., Forstmann, B.U., and 

Wagenmakers, E.-J. (2012). How to measure post-error slowing: a confound and a simple 
solution. Journal of Mathematical Psychology 56, 208-216. 

Eichele, T., Debener, S., Calhoun, V.D., Specht, K., Engel, A.K., Hugdahl, K., von Cramon, D.Y., 
and Ullsperger, M. (2008). Prediction of human errors by maladaptive changes in event-
related brain networks. Proc Natl Acad Sci U S A 105, 6173-6178. 

Fuchs, A., and Robinson, D. (1966). A method for measuring horizontal and vertical eye 
movement chronically in the monkey. Journal of Applied Physiology 21, 1068-1070. 

Gnadt, J.W., and Andersen, R.A. (1988). Memory related motor planning activity in posterior 
parietal cortex of macaque. Exp Brain Res 70, 216-220. 

Hikosaka, O., and Wurtz, R.H. (1983). Visual and oculomotor functions of monkey substantia 
nigra pars reticulata. III. Memory-contingent visual and saccade responses. J 
Neurophysiol 49, 1268-1284. 

Jentzsch, I., and Dudschig, C. (2009). Why do we slow down after an error? Mechanisms 
underlying the effects of posterror slowing. Q J Exp Psychol (Hove) 62, 209-218. 

Judge, S.J., Richmond, B.J., and Chu, F.C. (1980). Implantation of magnetic search coils for 
measurement of eye position: an improved method. Vision Research 20, 535-538. 

Kiani, R., and Shadlen, M.N. (2009). Representation of confidence associated with a decision by 
neurons in the parietal cortex. Science 324, 759-764. 

Nelson, M.J., Boucher, L., Logan, G.D., Palmeri, T.J., and Schall, J.D. (2010). Nonindependent 
and nonstationary response times in stopping and stepping saccade tasks. Atten Percept 
Psychophys 72, 1913-1929. 

Ridderinkhof, K.R., Nieuwenhuis, S., and Bashore, T.R. (2003). Errors are foreshadowed in brain 
potentials associated with action monitoring in cingulate cortex in humans. Neurosci Lett 
348, 1-4. 

 


	NEURON12980_proof.pdf
	Neural Mechanisms of Post-error Adjustments of Decision Policy in Parietal Cortex
	Introduction
	Results
	Quantitative Hypotheses of PES
	PES Is Due to Decreased Urgency and Sensitivity
	Dynamics of LIP Neural Responses Change with PES
	Decreased SNR with PES Is Not Explained by Elevated Noise
	Post-error Speeding Is Associated with Reduced Sensitivity and Reduced Decision Bound

	Discussion
	Neural Mechanisms of PES
	Delays in Decision Onset
	Quality of Evidence and Efficiency of Accumulation
	Decision Bound

	Conclusions

	Experimental Procedures
	Behavioral Task
	Behavioral Data Analyses
	DDM
	Neural Analyses

	Supplemental Information
	Author Contributions
	Acknowledgments
	References


	mmc1.pdf
	SuppMat_Figures_corrected.pdf
	SuppMat_Text_corrected




