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SUMMARY
Lateral intraparietal (LIP) neurons represent formation of perceptual decisions involving eye movements. In
circuit models for these decisions, neural ensembles that encode actions compete to form decisions. Conse-
quently, representation and readout of the decision variables (DVs) are implemented similarly for decisions
with identical competing actions, irrespective of input and task context differences. Further, DVs are encoded
as partially potentiated action plans through balance of activity of action-selective ensembles. Here, we test
those core principles. We show that in a novel face-discrimination task, LIP firing rates decrease with sup-
porting evidence, contrary to conventional motion-discrimination tasks. These opposite response patterns
arise from similar mechanisms in which decisions form along curved population-response manifolds mis-
aligned with action representations. These manifolds rotate in state space based on context, indicating
distinct optimal readouts for different tasks. We show similar manifolds in lateral and medial prefrontal
cortices, suggesting similar representational geometry across decision-making circuits.
INTRODUCTION

Perceptual decision-making relies on deliberative processes

that evaluate and compare possible alternatives based on sen-

sory information. A commonly suggested mechanism for such

decisions is to integrate sensory information into a decision var-

iable (DV), which is compared against a decision criterion or

bound to commit to a choice (Green and Swets, 1966; Link,

1992; Ratcliff and McKoon, 2008; Smith and Vickers, 1988).

Consistent with these behavioral models, multiple brain struc-

tures show activity compatible with representation of the DV

(Gold and Shadlen, 2007; Shadlen and Kiani, 2013). For

example, neurons in the lateral intraparietal (LIP) area increase

their average firing rate in response to sensory evidence sup-

porting their preferred saccade target during a motion direction

discrimination task (Bennur and Gold, 2011; Shadlen and News-

ome, 2001). The hypothesis that the average LIP firing rate re-

flects accumulated evidence has successfully accounted for

various aspects of decision-making behavior such as choice

and reaction time distributions (Churchland et al., 2008; Purcell

and Kiani, 2016) as well as choice confidence (Kiani and Shad-

len, 2009). Similar encoding of the DV has been found in many

other brain structures (Deverett et al., 2018; Ding and Gold,

2010, 2012; Donner et al., 2009; Horwitz and Newsome, 1999;

Kiani et al., 2014a; Kim and Basso, 2008; Kim and Shadlen,
1999; de Lafuente et al., 2015; Peixoto et al., 2018; Ratcliff

et al., 2003) and in other perceptual tasks (Hanks et al., 2015;

Heekeren et al., 2004; Hou et al., 2019; Kumano et al., 2016;

O’Connell et al., 2012; Philiastides and Sajda, 2006; Purcell

et al., 2010; Thura and Cisek, 2014).

These experimental findings have promoted the proposition

that decisions are formed through competition of neuronal mod-

ules with specific choice preferences until one module ‘‘wins’’

and dictates the choice. The strongest supporting evidence for

this proposition is observed inmotor planning regions of the brain,

where neurons represent the formation of decisions communi-

cated through their preferred actions. Sensory information biases

this competition such that the evidence supporting a choice in-

creases the activity of corresponding neurons. Because the

competition happens at the level of action selection, what distin-

guishes different perceptual tasks is the sensory information being

integrated, not the integrator itself. These ideas shape existing

theoretical frameworks for implementation of the decision-making

process with biophysically realistic neural networks (Beck et al.,

2008; Deco et al., 2013; Lo and Wang, 2006; Mazurek et al.,

2003; Purcell et al., 2010; Wang, 2002; Wimmer et al., 2015;

Wong andWang, 2006). Such networks have been quite success-

ful in explaining past behavioral and physiological data.

However, several key assumptions at the core of these frame-

works have yet to be tested experimentally. First, it is unclear
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whether the neural representation of the integration process is

shared across tasks and whether potential differences necessi-

tate different readout schemes for downstream circuits. Second,

it is unclear whether the DVs are encoded as intermediate

response patterns between competing actions: are the pools

of neurons competing during decision formation identical to

those representing the final actions? Testing these assumptions

has been challenging because past studies were largely limited

to a single behavioral task. A side-by-side comparison of multi-

ple tasks is necessary for a rigorous test as it creates an oppor-

tunity to observe qualitative and quantitative differences of neu-

ral activity across tasks.

Here, we examine the geometry of population activity in LIP in

seven monkeys and three tasks: a motion direction discrimina-

tion task, which has been extensively used to study perceptual

decisions, and two variants of a novel face categorization task,

where subjects report the species or expression of a face (Oka-

zawa et al., 2018). We find a striking mismatch in patterns of

average firing rates among the tasks. Specifically, mean firing

rates during the face tasks are inversely correlated with the sen-

sory evidence in favor of the preferred saccade target of neu-

rons—the opposite of the pattern observed in the motion task

(Churchland et al., 2008; Kiani et al., 2008; Shadlen and News-

ome, 2001). We show that this inconsistency arises because,

at each moment, the LIP population encodes the DV on a curved

manifold in the state space, and this manifold changes in a task-

dependent manner. We establish that the curved manifold pro-

vides an explicit code (Misaki et al., 2010) for both the DV and

stimulus difficulty but the latter does not have apparent func-

tional contributions to the monkey’s confidence about the

choice. Further, we show that task dependence of curved mani-

folds is shaped by task rules and is not explained solely by differ-

ences of sensory stimuli. Finally, we demonstrate that similar

manifolds emerge in the lateral and medial prefrontal cortices.

We propose that the task-dependent curvature of the DV mani-

fold is a fundamental representational property that challenges

key assumptions of existing circuit models for perceptual

decisions.

RESULTS

Curved population response manifolds in LIP
We examined population response properties in LIP for two var-

iants of a face categorization task (Figure 1A, face task) and a

motion direction discrimination task (Figure 1B, motion task). In

the motion task, monkeys viewed a dynamic random-dots stim-

ulus and reported the perceived motion direction. We manipu-

lated stimulus difficulty by varying the percentage of coherently

moving dots across trials (motion coherence). Within each trial,

the stochastic nature of the stimulus caused frame by frame fluc-

tuations ofmotion coherence around a nominalmean for the trial.

In the face task, monkeys classified the species of a set of face

stimuli (monkey or human) or their expression (sad or happy) in

separate blocks. The discriminated categories in each block

were defined by two prototype faces. We manipulated stimulus

difficulty by creating a morph continuum between the two proto-

types and varying the stimulus morph level across trials. Our

customized morphing algorithm allowed independent morphing
2 Cell 184, 1–14, July 8, 2021
of facial features. We chose eyes, nose, and mouth as informa-

tive features andmorphed them, while fixing other facial features

at halfway between the prototypes. The facial features fluctuated

randomly around a mean morph level in each trial (SD, 20%

morph; updated every 106.7 ms), similar to the within-trial vari-

ability of motion in the motion task. These fluctuations, which

were interleaved with masks to remain subliminal, enabled us

to estimate spatiotemporal weighting of informative features

for decision-making (Figure S1). In both tasks, monkeys reported

their decision by making a saccadic eye movement to one of the

two targets, one placed inside the response field (RF) of the re-

corded neurons (Tin) and the other on the opposite side of the

screen, outside the RF (Tout).

Three monkeys performed the motion task and two monkeys

performed the face task, while we recorded from LIP neurons.

In both tasks, the monkey’s choice accuracy monotonically

improved as a function of stimulus strength (Figures 1C and

1E) and duration (Figures 1D and 1F). The reduction of psycho-

physical thresholds with longer stimulus durations (face task,

log-log regression slope, �0.19 ± 0.02, p < 0.001; motion task,

�0.61 ± 0.03, p < 0.001, bootstrap test) indicated that monkeys

leveraged multiple stimulus frames for their decisions. These re-

sults were quantitatively compatible with drift diffusion models

(DDMs) that accumulated sensory evidence toward decision

bounds in both tasks (DDM fit to psychometric function, face

task, R2 = 0.998; motion task, R2 = 0.997). In both tasks, the

model also quantitatively explained the results of psychophysi-

cal reverse correlation, including differential effects of sensory

evidence on choice over time and differential weighting of infor-

mative facial features for species and expression categorizations

(Figure S1). Based on the similarity of decision-making behavior

between the two tasks, we hypothesized that LIP neurons would

exhibit similar decision-related responses in both tasks.

Contrary to our expectation, we founda qualitative difference in

the population average LIP responses in the two tasks (Figures 2A

and 2B). In the motion task (Figure 2B), neurons had higher firing

rates when the stimulus strongly supported the Tin choice and

lower firing rates when it strongly supported the Tout choice.

Thus, the firing rates monotonically reflected the amount of evi-

dence for the Tin choice. However, LIP neurons recorded in the

face task exhibited a reversed order for Tin choices (Figure 2A);

they showed enhanced activity for weaker sensory evidence.

Consequently, the average firing ratesno longermonotonically re-

flected theamount of evidence for the Tin choice. This observation

is puzzling as it seemingly contradicts the account of LIP re-

sponses as a neural correlate of accumulated evidence for a deci-

sion. Critically, this pattern also appears to disagree with mon-

keys’ behavioral performance, which monotonically improved as

a function of stimulus strength in both tasks (Figure 1).

To quantify the significance of this reversal in firing rates, we

plotted the population average firing rates in a window span-

ning from 250 to 600 ms from stimulus onset as a function of

stimulus strength (Figure 2C). For Tin choices in the motion

task, firing rates increased with the strength of evidence sup-

porting the choice (a1 = 0.22 ± 0.05 across units, p = 8.2 3

10�5; Equation 1), whereas in the face task, firing rates

decreased (a1 = �0.19 ± 0.03, p = 3.8 3 10�8). This reversal

was also seen in many single units and was consistently
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Figure 1. Task designs and behavioral results

(A) Face categorization tasks. Monkeys classified face stimuli, reporting either the species (monkey versus human) or expression (sad versus happy) of faces in

different blocks. In each task, the stimuli were chosen from a morph continuum between two prototypes. On each trial, following fixation, two targets appeared,

one inside (Tin) and the other outside (Tout) of the neuron RF. Then, a sequence of faces interleaved with masks appeared. During the sequence, morph levels of

faces fluctuated around a nominal mean level for the trial, providing noisy sensory evidence. The stimulus was positioned non-foveally and its size was randomly

varied across trials by one octave to prevent themonkey from relying on local and low-level visual attributes. After a delay, the fixation point disappeared (Go cue),

and the monkey reported its choice by making a saccade to one of the targets.

(B) Motion direction discrimination task. Monkeys viewed a dynamic random-dots stimulus and reported the net motion direction. Stimulus difficulty was

controlled by varying the percentage of coherently moving dots.

(C and E) In both the face (C) and the motion (E) tasks, monkeys’ accuracy monotonically improved for higher stimulus strengths. Gray lines are the fits of drift

diffusion models (see STAR Methods).

(D and F) Psychophysical thresholds (the stimulus strength at 81.6% accuracy) decreased for longer stimulus durations. Error bars are SEM.

See also Figures S1.
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present in different monkeys and different task variations (Fig-

ures S2A–S2D). In contrast to Tin choices, firing rates system-

atically declined with the strength of evidence in favor of the

Tout choice during stimulus viewing in both tasks (Figure 2D;

motion task, a1 = �0.30 ± 0.05, p = 5.0 3 10�9; face task,

a1 = �0.33 ± 0.03, p = 2.9 3 10�20). The peri-stimulus time his-

tograms (PSTHs) for the Tout choice were better separated for

different stimulus strengths (Figure 2B), consistent with past

electrophysiological studies (Shadlen and Newsome, 2001) as

well as bounded evidence accumulation models for the deci-

sion-making process.

Does the reversal suggest different underlying neural compu-

tations during face categorization? Because individual units

show diverse response profiles (Figure S2B), we sought to better

understand the neural code by exploring the patterns of popula-

tion responses in the two tasks. Figures 2E and 2F depict popu-

lation activity in a three-dimensional (3D) principal component

(PC) space derived from the PSTHs of recorded units (top 3

PCs, explained variance in motion task: 78%, face task: 54%;

see Figure 3A for the PCA procedure). The data points in this
state space correspond to the population responses for different

stimulus strengths at different times after stimulus onset. The

population neural responses gradually changed along a curved

line in the state space from the strongest stimulus supporting

Tin to the strongest stimulus supporting Tout choices. The curva-

ture was quite large and unlikely to have been caused by random

fluctuation of neural responses (Figure S4A). Further, a bootstrap

analysis confirmed that themanifold is curved along a consistent

direction in each task (p < 0.001). This curvature, which arose

from the diverse tuning of neurons for stimulus strength in the

population (Figure S3B), was observed in individual monkeys

and also found for groups of simultaneously recorded units

within single sessions (Figures S4B–S4D). The curved manifold

gradually expanded over time after stimulus onset, indicating

better separation of population response patterns associated

with different stimuli. This expansion is compatible with integra-

tion of sensory evidence over time and the representation of the

DV by the neural population in both tasks. Later in the trials,

immediately before the monkey’s saccade, the population re-

sponses converged to one of the two states depending on the
Cell 184, 1–14, July 8, 2021 3
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Figure 2. Population response patterns form a curved manifold in state space that rotates across tasks giving rise to opposite ordering of

population average PSTHs

(A and B) PSTHs in the face andmotion tasks showed opposite ordering of firing rates as a function of stimulus strength for Tin choices (red lines). Stronger motion

toward Tin was associated with higher firing rates, matching past studies (Kumano et al., 2016; Roitman and Shadlen, 2002; Shadlen and Newsome, 2001;

Shushruth et al., 2018). The face task had a reversed order. Only correct choices were included in the PSTHs to ensure that the order of PSTHswas not shaped by

different proportions of choices for different stimulus strengths.

(C) Average firing rates for Tin choices (250–600 ms after stimulus onset) increased with the stimulus strength in the motion task but decreased in the face task.

Error bars are SEM.

(D) Average firing rates for Tout choices decreased with the stimulus strength in both tasks.

(E and F) Population neural responses formed curved manifolds. Principal component analysis (PCA) was performed on trial-averaged PSTHs concatenated

across units. In the 3D PC space, each point corresponds to the population neural activity for correct choices to different stimulus strengths at different times after

stimulus onset. The gray lines are cubic smoothing splines fit. Error bars are SEM.

(G and H) In the PC space, changes of the population average firing rate correspond to a linear axis (black vector). Depending on the direction of manifold

curvature with respect to this axis, changes of population response averages as a function of stimulus strength could becomemonotonic (motion task, H) or non-

monotonic (face task, G). In the 2D illustrations, the projection lines appear non-perpendicular to the averaging axis, but they are perpendicular in the 3D space.

See also Figures S2, S3, S4, S5, and S7.
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monkey’s choice (Figure S5). Correspondingly, the average firing

rates reached a common level (Figure S5A), as has been re-

ported previously (Shadlen and Newsome, 2001).

An important implication of the curvature of the population

response manifold is that the average firing rate does not neces-

sarily preserve the order of the stimulus strengths. Recall that the

average firing rate is calculated as a linear sum of single-neuron

firing rates with equal weights across the recorded population.

Because projections on the PC space are also linear, changes

of the population average firing rate would correspond to a linear

axis in the PC space (black vectors in Figures 2G and 2H). By

projecting on this axis, one can determine the average firing
4 Cell 184, 1–14, July 8, 2021
rate associated with each point on the manifold. In the face

task, the curved manifold was rotated with respect to the

average rate axis such that the projections result in a reversed

order of average firing rates for different stimulus strengths sup-

porting the Tin choice. By contrast, the position of the curved

manifold in the motion task did not create such a reversal.

Thus, the apparent mismatch of average firing rates between

the two tasks was incidental to the position of the manifolds,

which changed substantially in the state space for the two tasks.

However, the population response manifolds of both tasks

shared a common geometry that orderly represented the evi-

dence supporting each choice.
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These findings indicate that LIP activity during decision forma-

tion is better characterized as a state on a curved manifold than

as average firing rate. Aswe explain in the following sections, this

insight leads to important questions about the relationship be-

tween neural responses and behavior, as well as the underlying

computational mechanisms.

Functional implications of curved manifold for evidence
integration
The curved manifold indicates that LIP simultaneously encodes

two key variables for the decision-making process: stimulus dif-

ficulty and integrated evidence (the DV). Stimulus difficulty, or

more generally the experimentally controlled reliability of

incoming evidence, is defined as unsigned stimulus strength in

both tasks and encoded along themajor axis of the curvedmani-

fold (Figure 3A). In contrast, the DV is encoded as position along

the curved manifold, or alternatively as projections onto a linear

axis perpendicular to the major axis of the curved manifold. The

explicit encoding of stimulus difficulty contrasts with previous

studies, which suggested only an implicit code for stimulus diffi-

culty through the representation of the DV and choice (Kiani and

Shadlen, 2009; Pouget et al., 2016). Here, we define explicit as

linearly decodable (Misaki et al., 2010) and implicit as readable

albeit not linearly. Our results raise an intriguing possibility that

the curved manifold may contribute to both the choice and the

confidence associated with the choice, because it enables linear

readouts of both the DV and stimulus difficulty by down-

stream areas.

To examine this prediction, we first identified the best linear

axes in the state space for reading out the DV and stimulus diffi-

culty, thenwe quantified the sufficiency of these axes for predict-

ing choice and stimulus difficulty, respectively, and finally, we

tested whether projections along the stimulus difficulty axis

were predictive of the monkey’s confidence. In both the motion

and face tasks, the DV for a fixed stimulus duration is propor-

tional to the signed stimulus strength (Okazawa et al., 2018,

2020; Palmer et al., 2005). Further, in both tasks, difficulty is

defined by the absolute stimulus strength. We used an orthog-

onal canonical correlation analysis (CCA) (Cunningham and

Ghahramani, 2015) to find a pair of linear axes in the state space,

one most correlated with the signed stimulus strength (‘‘DV

axis’’) and another most correlated with the unsigned stimulus

strength (‘‘stimulus difficulty axis’’). These two axes provided a

two-dimensional (2D) perspective of the population neural re-

sponses, which reproduced the curved manifold in both tasks

(Figure 3B). The weights of neurons in the two axes were unim-

odally distributed, with no indication that distinct sub-popula-

tions were engaged in coding the DV and difficulty. The DV

and difficulty encoding axes were stable throughout the decision

formation period, reflecting the stability of curved manifolds in

the 3D PC space (Figures 2E and 2F).

Critically, the neural responses projected on the DV and diffi-

culty axes were predictive of the choice and stimulus difficulty,

respectively (Figures 3C and 3D). To ensure that these predic-

tions were not artificially introduced by our analysis, we adopted

a cross-validation approach, where we first derived the DV and

difficulty axes from a random half of the trials and then used

the other half for the predictions. Projections along the DV axis
gradually diverged for Tin and Tout choices during stimulus

viewing (Figure 3C; p < 0.001 in both tasks, bootstrap test of neu-

ral responses 350–450 ms after stimulus onset). Further, when

the monkey made an error, the neural responses followed a tra-

jectory opposite to that of correct trials, indicating that the DV

axis affords a representation of the DV that shapes the choice,

not a representation of the objective stimulus. Finally, the neural

responses projected on the stimulus difficulty axis distinguished

easy and difficult stimuli (Figure 3D; p < 0.001), but they did not

predict the monkey’s choices (Figure 3E; Tin versus Tout, face

task, p = 0.15; motion task, p = 0.46; 350–450 ms after stimulus

onset, bootstrap test). The inability to predict the monkey’s per-

formance suggests that the modulation of population responses

along the difficulty axis does not reflect potential increase of the

monkey’s attention or task engagement for difficult stimuli.

Does this stimulus difficulty encoding play a role in confidence

judgments? We examined this possibility by analyzing neural re-

sponses while monkeys performed the motion task with post-

decision wagering (Kiani and Shadlen, 2009; Middlebrooks and

Sommer, 2012). In this version of the task, a third target (sure

target, Ts) appeared during the delay period on half of the trials

(Figure 4A). By choosing this target after the Go cue, the monkey

could opt out of direction discrimination for a small but guaran-

teed reward. It has been previously verified thatmonkeys choose

Ts based on their certainty, selecting it more frequently on diffi-

cult trials (Figure 4B) (Kiani and Shadlen, 2009; Komura et al.,

2013; Odegaard et al., 2018). Further, previous studies demon-

strated that the neural representation of the DV is predictive of

the monkey’s Ts choices (Kiani and Shadlen, 2009). However,

if the neural mechanisms of confidence rely on explicit encoding

of stimulus difficulty by the LIP population, projections along the

difficulty axis in the state space would also be predictive of Ts
choices. In fact, it is even possible that previous reports of the

relationship between the DV representation and Ts choices

weremerely side effects of the joint encoding of the DV and stim-

ulus difficulty in the same curved manifold, because changes of

stimulus strengths across trials modify projections along both

the DV and difficulty axes.

Although projections along the stimulus difficulty axis distin-

guished difficult and easy trials (Figure 3D), these projections

were not predictive of the monkey’s confidence (Figure 4). To

illustrate this point, Figure 4C shows the projection of neural re-

sponses in the 2D space defined by the DV and difficulty axes at

an example intermediate time during decision formation (400 ms

after stimulus onset). The DV axis in this figure is defined with

respect to the correct choice, with positive and negative values

indicating the DVs in favor of the correct and error choices,

respectively. Whereas different choices were associated with

distinct projections along the DV axis, projections along the stim-

ulus difficulty axis did not distinguish low-confidence Ts choices

from the higher-confidence choices where the monkey chose

one of the direction targets (correct and error choices).

To quantitatively test these observations, we asked whether,

for a fixed stimulus strength, residual projections along the DV

and difficulty axes were predictive of confidence over the course

of decision formation (Figures 4D and 4E). The residuals were

computed separately for each stimulus strength. Then, we com-

bined the residuals of different stimulus strengths for each
Cell 184, 1–14, July 8, 2021 5
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Figure 3. LIP population responses jointly

encode the DV and stimulus difficulty

(A) Curved manifolds jointly encode the DV and

stimulus difficulty in the state space. ri indicates

the activity of unit i.

(B) Orthogonal canonical correlation analysis

(CCA) identifies the linear axes that encode the DV

and stimulus difficulty. All analyses were cross-

validated; we used half of trials to identify the axes

and the other half to create the projections. Data

points are projected responses for different stim-

ulus strengths. The gray curve is a second-order

polynomial fit to the data points. The plot shows

responses 400 ms after stimulus onset but similar

patterns were also observed at other times (300–

600 ms). Error bars are SEM.

(C) The population neural responses projected on

the DV axis for each stimulus category (Tin or Tout)

and for each choice outcome (correct or error).

The responses were predictive of the monkey’s

forthcoming choices. Shading indicates SEM.

(D) The population responses projected on the

stimulus difficulty axis for easy (R20% stimulus

strength) and difficult (<20%) stimuli.

(E) The monkey’s choices for a particular stimulus

strength were not correlated with projections of

population responses on the stimulus difficulty

axis. Residual responses were calculated for each

choice and stimulus strength and then averaged

across the stimuli.
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choice. This residual analysis addresses the stimulus difficulty

confound that causes joint variations along the DV and difficulty

axes, because it isolates the effect of variations along one axis

while keeping projections on the other axis constant. The resid-

ual projections along the DV axis showed a clear separation for

the three choices, with the residuals for Ts choices in between

those for correct and error choices (Figure 4D; correct versus

Ts, p < 0.001; error versus Ts, p < 0.001, bootstrap test, 350–

450 ms after stimulus onset). Thus, the DVs closer to zero were

associated with Ts choices and errors occurred because the

DV supported the opposite choice (Figures 3C and 4C), consis-

tent with previous reports (Kiani and Shadlen, 2009). In contrast,

residual projections along the difficulty axis failed to distinguish

different choices (Figure 4E; correct versus Ts, p = 0.52; error

versus Ts, p = 0.17), indicating that this axis did not have notice-

able bearing on the monkey’s choice and confidence. These re-

sults suggest that the functional role of the curvedmanifold is pri-

marily to encode the DV.

Task dependency of the DV encoding
The observed geometry of the DV encoding has important impli-

cations for circuit models of perceptual decision-making. Exist-

ing theories assume action-selective neural modules compete to

implement evidence integration (Beck et al., 2008; Deco et al.,

2013; Lo and Wang, 2006; Mazurek et al., 2003; Purcell et al.,

2010; Wang, 2002; Wimmer et al., 2015; Wong and Wang,

2006). In these models, different perceptual tasks are imple-

mented by changing the input to the competing modules, not

by changing the competition process itself. However, the posi-

tion of the DVmanifold largely differed between the face andmo-

tion tasks (Figures 2G and 2H), suggesting that the DV encoding
6 Cell 184, 1–14, July 8, 2021
is also task-dependent. Revealing the nature of this task depen-

dency—whether it arises due to differences in sensory stimuli or

task rules—and its impact on the readout of the DV is important

for understanding the properties of decision-making circuits.

We therefore analyzed a subset of neurons (n = 28) recorded in

two face categorization tasks (species and expression) to quan-

tify task dependency. The face stimuli in both contexts could

vary along both species and expression morph axes (Figure 5A).

The stimuli around the center of this 2D space were presented in

both categorization tasks (gray box in Figure 5A). Thus, the mon-

keys applied two different categorization rules to the same visual

stimuli. Their behavior indeed indicates that they successfully

distinguished the two categorization rules without significant

interference from the orthogonal rule (Figure 5B).

We found that the change in task rules alone is sufficient to

change the neural manifold. In both face tasks, PSTHs

showed a reverse order with stimulus strength (Figure S2D),

and there was significant curvature in the population response

manifolds (Figure 5C; p < 0.001). Critically, the manifolds

formed by the neural activity within the species and expres-

sion categorization tasks were distinct from each other (Fig-

ure 5C; different coefficients of polynomial fits to the mani-

folds, p < 0.001, likelihood-ratio test). These manifold

differences were apparent in population response patterns

for the same stimuli in the two tasks, evident in the projections

of population responses on the top three PCs (Figure 5D; p <

0.001, permutation test). Projections on the first PC were most

striking, because they revealed the distinct category bound-

aries of the two tasks (top row of Figure 5D; a vertical bound-

ary in the species task and a horizontal boundary in the

expression task).
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Figure 4. Explicit encoding of stimulus difficulty in LIP is not pre-

dictive of confidence judgments

(A) We measured the monkey’s confidence about motion direction using a

post-decision wagering task. A sure target (Ts) appeared during the delay

period on a random half of trials. The monkey could choose Ts to opt out of

direction discrimination for a small but guaranteed reward.

(B) Monkeys chose Ts more frequently for weaker motion strengths.

(C) Population neural responses at 400 ms after stimulus onset (100-ms win-

dow). The sign of the DV axis is redefined with respect to the correct target

such that positive DV indicates neural support for the correct choice. The

saturation of the dots indicates stimulus strength. For error and Ts choices, we

show only the three weakest stimulus strengths, where these choices were

present in all recording sessions. Error bars are SEM.

(D) Residual projected population responses on the DV axis were predictive of

the monkey’s choices. The residuals were computed by subtracting the mean

projection for each stimulus strength and then combining them across

different stimulus strengths for each choice. The shading indicates SEM.

(E) Residual projected population responses on the stimulus difficulty axis

were not predictive of the monkey’s choices.
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The differences in the manifolds caused the linear DV axes

derived from CCA to be different in the two task contexts. The

two DV axes projected onto the 3D state space had a +19.0� ±
6.0� angle (signed with respect to the axis of average firing

rate), which was significantly different from 0� (Figures 5E and

5F; p < 0.001, bootstrap test; the angle difference grew larger

in higher dimensional state spaces). Consequently, when a DV

decoder optimized for one categorization task was used for de-
coding the DV in the other task, a substantial readout bias

emerged (Figure 5H; Dg0 = 10.3 ± 1.1 in Equation 9 for decoding

with the same- and different-context DV axes at 400 ms, p =

2.5 3 10�4, likelihood-ratio test).

Although the neurons recorded in both face categorization

tasks provided the best test for changes of manifolds with task

context, the difference could also be inferred from the units re-

corded only in one categorization task (n = 104). For those units,

we computed the angle between the DV axis and the average

firing rate axis for each task (uspc and uexp in Figure 5E). If an

area encodes the DV in a task-independent manner, these an-

gles would be identical. However, we found them to be signifi-

cantly different (Figure 5G; Monkey A, p < 0.006; Monkey L,

p < 0.006, bootstrap test).

Together, the manifolds that encode the DV changed in the

state space depending on task contexts, and these changes

necessitated the optimal readout axis of the DV to be also

task-dependent. In simple decision-making models based on

competition of action-selective modules, the balance of activity

between the modules encodes the DV, and as such, the same

DVs across tasks are associated with similar relative activity be-

tween the action-selective units. In contrast, the population neu-

ral code in LIP is versatile, reflecting the decision context in a

manner that suggests distinct encoding of the DV and action.

Distinct encoding of the DV and action plan
Further support for distinct encoding of the DV and action plan

comes from comparing the population responses during deci-

sion formation and saccade preparation (Figures 6A–6D). During

saccade preparation, responses coalesced into one of two

states corresponding to the two choices (Figures 6A and 6C,

right, and S5 depicts average firing rates). However, the axis

connecting the two action states wasmisaligned with the curved

DV manifold (Figures 6B and 6D). The angle between the two

axes (face task, 34.4� ± 4.0�; motion task, 11.7� ± 1.6� in 3D

space) was significantly greater than those expected from the

variability of neural responses (p < 0.001, bootstrap test; the ex-

pected angles based on response variability were estimated by

comparing the choice axes between random halves of trials,

face task: 2.9� ± 1.6�, motion task: 2.5� ± 1.3�).
The misalignment can also be demonstrated by comparing the

firing rates between units preferring different choices (T1 and T2,

Figure 6E). In the motion task, the differential firing rates were

strongly correlated with stimulus strength (slopes of firing rate dif-

ference as a function of stimulus strength for T1 choice: 9.46 ±

1.10), whereas in the face task, they were much less dependent

on stimulus strength (slope: 1.61 ± 0.62). Tin� Tout differential

firing rates followed a similar pattern (Figure 6F). In the face

task,a significantportionofneurons (27.3%)showednon-positive

slopes of Tin� Tout firing rates as a function of stimulus strength

(Figure 6G), larger than the proportion observed in the motion

task (9.3%, p = 0.0002, Fisher’s exact test). Accordingly, ideal

observer accuracy for discriminating Tin and Tout stimuli based

on single unit firing rates was much poorer in the face task (Fig-

ure 6H; slope of AUC as a function of stimulus strength, face

task: 0.047 ± 0.007, motion task: 0.255 ± 0.019, p = 2.13 10�21).

Congruent with these results, the weights of a large portion of

individual neurons in the DV axis were negative for the face task
Cell 184, 1–14, July 8, 2021 7
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Figure 5. Task dependency of the population response manifold

(A) The stimuli used in our two face tasks can be visualized in a 2D space. The stimuli at the central region of this space (gray box) appeared in both tasks.

(B) Performance in both tasks with respect to each categorization rule. Near chance performance for the irrelevant categorization rule (e.g., magenta dots in the

species task) indicates that monkeys correctly ignored the irrelevant stimulus fluctuations. Lines are drift diffusion model fits. Error bars are SEM.

(C) The neural manifolds were distinct in the two tasks. The common PC space was derived from the combined neural responses. The plot was generated using a

subset of units (n = 28) recorded in both tasks.

(D) The same stimuli elicited different response patterns in the two tasks. The heatmaps show projections of population responses on the top three PCs for the

stimuli in the central region of the morph plane (gray box in A). We divided this region into 16 sub-regions for better visualization.

(E) Illustration of angles between the DV-encoding axes of the twomanifolds (q), as well as their angles with the average rate axis (uspc anduexp). The DV-encoding

axes were computed using CCA. Manifolds are identical to those in (C) but from a different perspective.

(F) The angle of DV encoding axes in the two tasks was significantly greater than zero. Error bars are SEM.

(G) Angles between the DV encoding and averaging axes were significantly different. Unlike q, the calculation of u could be done using the units recorded only in

one task. Here, we show results from those units so that (F) and (G) provide independent support for our conclusion. Asterisks indicate significant difference (p <

0.006, bootstrap test).

(H) Using the DV-encoding axis of one task to read out the DVs in the other task would lead to substantial biases. The plots show neural responses of expression

categorization task projected on the DV encoding axis of the same task or the species categorization task. The fitting curves are logistic functions (Equation 9).
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(24.2%, compared to 10.1% in the motion task, p = 0.003,

Fisher’s exact test). A negative weight indicates a qualitative

mismatch between the saccade selectivity of the neuron and

its contribution to the encoding of the DV. However, the negative

weights were less prevalent than expected if the DV and action

codes were uncorrelated (50% incongruence; p = 1.2 3 10�9,

binomial test), suggesting partial but imperfect correspondence

between the population codes for the DV and action.

Based on these findings, we suggest that there could be a non-

monotonic transformation of the neural activity from the DV en-
8 Cell 184, 1–14, July 8, 2021
coding in early phases of decision formation to encoding of a

planned action at later times in the trial (Figure 6I). In other words,

the encoding of theDV in LIP is context-dependent and not tightly

bound to the actions associatedwith the decisions. At later times,

however, theDV representation gives rise to the representation of

the upcoming saccade and is ultimately supplanted by it.

Encoding of theDV in lateral andmedial prefrontal areas
Our analyses thus far focused on LIP neural activity. How-

ever, decision-related signals encoding the DV are prevalent
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Figure 6. Distinct encoding of the DV and action plan

(A and C) Left: population responses at 400 ms after stimulus onset and the average PSTHs aligned to stimulus onset. Right: population responses at 50 ms

before saccade onset and the average PSTHs aligned to the saccade onset.

(B and D) Distinction of the DV and action encoding is visualized in the 3D state space by comparing the two manifolds during decision formation (solid gray line)

and saccade preparation (dashed black line). Two different perspectives are shown to illustrate the 3D configuration.

(E) The difference in firing rates of T1 and T2 selective neurons created by constructing pseudo-populations with balanced preference for the two choices (see

STAR Methods). The difference was larger for stronger stimuli in the motion task but largely similar across stimulus strengths in the face task.

(F) The difference in firing rates of Tin and Tout trials.

(G) Slope histograms for the difference of Tin and Tout firing rates as a function of stimulus strength (b1 in Equation 2).

(H) Ideal observer accuracy for discriminating Tin and Tout stimuli with equal strength. Accuracy at each time was quantified using the area under curve (AUC) of

the receiver operating characteristic analysis applied to individual unit responses. Shading indicates SEM across units.

(I) Schematic of the transformation of neural code. Neural activity during decision formation encodes the DV in a manner partly dissociated from the action

selectivity of neurons (black curve in the inset is angled but not orthogonal to the action axis). As the decision-making process progresses, the DV is transformed

to a choice representation through changing the activity of neurons according to their action selectivity.

See also Figures S5 and S6.
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across multiple brain structures (Deverett et al., 2018; Ding

and Gold, 2010, 2012; Horwitz and Newsome, 1999; Kiani

et al., 2014a; Kim and Shadlen, 1999; de Lafuente et al.,

2015). If the curved manifold is a representational property

of decision formation, areas other than LIP are also expected
to have this response geometry. Alternatively, the manifold

curvature could be specific to LIP and stem from its circuit

and functional properties. To test these possibilities, we

examined the responses of two other cortical areas in the

frontoparietal network involved in oculomotor decisions
Cell 184, 1–14, July 8, 2021 9
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Figure 7. Curved population response manifolds in the lateral and

medial prefrontal cortices

(A) PSTHs of prearcuate gyrus (PAG, Utah array recording) and supplementary

eye field (SEF, linear probe recording) neurons during a reaction time version of

the motion task. Both areas showed monotonically increasing responses for

Tin choices with larger stimulus strengths, similar to LIP.

(B) Population responses in both areas formed a curvedmanifold as in LIP. The

plots show the manifold at 400 ms after stimulus onset. Error bars are SEM.
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during the motion task: the supplementary eye field (SEF) and

the prearcuate gyrus (PAG).

Both areas revealed similar response geometries as in LIP

(Figure 7). Critically, population responses, visualized using the

same PCA procedure as for LIP, formed a curved manifold in

both areas (Figure 7B; significance of curvature, p < 0.001),

with a monotonic arrangement of different stimulus strengths

along the manifold. In these recordings, monkeys performed a

reaction time variant of the task, where they indicated their deci-

sion as soon as they were ready. In the reaction-time task, the

monkey did not wait for a Go cue, and the trial terminated as

soon as the monkey committed to a choice. Hence the results

confirmed that the curvature of the manifold is indeed a property

pertaining to decision formation, not a post-commitment repre-

sentation and not a persistent representation of choice.

Together, the results across the frontoparietal network indicate

that the curved DV manifold is a ubiquitous property of the brain

regions involved in decision formation.

DISCUSSION

We show that the average firing rates of LIP neurons do not

change monotonically with the DV in the face task, in contrast

to the motion task (Figure 2A). In state space, the neural popula-
10 Cell 184, 1–14, July 8, 2021
tion represents theDV along a curvedmanifold in both tasks (Fig-

ures 2E and 2F). However, the manifolds are rotated and shifted

with respect to the axis of average firing rate across tasks,

causing the disparate ordering of PSTHs (Figures 2G and 2H),

and highlighting the conceptual gap between average firing rates

and the DV (Raposo et al., 2014; Schall, 2019). Population level

analysis was key to elucidating task-dependent encoding of

the DV because a dependency could be obscured in average

firing rates (Hou et al., 2019; Kumano et al., 2016). The task-

dependent changes of the DV manifold are not simply due to

changes in sensory stimuli. Rather, they occur even when the

same stimuli were used with different task rules (Figure 5). Criti-

cally, the rotation of DV manifolds implies that the readout of the

DVs—a necessity for action planning and circuit-circuit coordi-

nation in the decision-making network—must take task context

into account. In the absence of such ‘‘context-aware readouts,’’

there could be substantial inaccuracies manifesting as choice

bias (Figure 5H).

The task-dependent encoding of the DV despite identical ac-

tions (saccades) across tasks also suggests partial dissociation

of neural codes for the DV and actions. This conclusion is further

supported by opposing selectivity of a sizeable fraction of neu-

rons for the DV and actions, as well as misalignment of the DV

and action encoding axes in population responses. Our results,

however, do not indicate that decision formation takes place in

circuits separate from action planning. Rather, the same LIP

population that initially encodes the DV on a curved manifold

gradually changes its response patterns to encode actions later

in the trial (Figures 6 and S5). This sequential use of the same

neural population for decision-making and action planning

matches prior experimental observations in frontal cortices (Aoi

et al., 2020; Kaufman et al., 2015; Peixoto et al., 2021), especially

progressive recruitment of choice representation (Peixoto et al.,

2018). The partial dissociation between the DV and action plan-

ning necessitates network models in which the same neural cir-

cuits undergo a transformation of population response patterns

over time (Figure 6I).

Our finding that similar response geometries and encoding dy-

namics are present in LIP, as well as lateral andmedial prefrontal

cortices (Figure 7), suggests ubiquitous principles that shape the

neural code throughout the cortical nodes of the decision-mak-

ing network. Our conclusions, therefore, transcend present de-

bates about the causal role of LIP in perceptual decisions (Jeur-

issen et al., 2019; Katz et al., 2016; Shushruth et al., 2018; Zhou

and Freedman, 2019). The presence of a similar response geom-

etry in multiple nodes of the saccade planning network supports

the possibility that decisions are formed through interactions

within a distributed network encompassing multiple brain re-

gions. Pertinently, neural responses in the superior colliculus,

caudate, and frontal eye fields have been occasionally reported

to vary inversely or non-monotonically with stimulus strength

(Ding and Gold, 2010, 2012; Horwitz and Newsome, 2001), hint-

ing at the potential presence of curved DV manifolds in those re-

gions as well.

Why does the curvature exist ubiquitously in all the tasks and

brain regions studied here? We suggest that curved manifolds

arise automatically due to fundamental constraints on neural

computations (Figure S6). The first set of constraints limit the
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dynamic range of the firing rates (and hence projections along

the encoding axes) that constitute the neural code: the non-

negativity of firing rates puts a lower bound on the dynamic

range, and various costs associated with spiking (e.g., metabolic

costs) (Lennie, 2003) curtail firing rates from above. An energet-

ically efficient code would seek to lower the overall firing rate of

neurons, bending the manifold near the non-negativity bound

(Keemink and Machens, 2019) (Figure S6C). The second set of

constraints arises from the need for a precise code. Encoding

a continuous decision variable within a limited dynamic range

could become more precise with a curved manifold than a

straight line, as the difference of nearby DV values could be en-

coded with larger, more distinguishable changes in population

responses (Figure S6C). However, the exact precision gained

by a curved manifold depends on the correlation structure of

the population (Bondy et al., 2018; Moreno-Bote et al., 2014)

and the feasibility of decoding along the curved manifold instead

of a linear readout. Fortunately, decoding along a low-order poly-

nomial in state space, similar to those in our study, is not prohib-

itively challenging. Further, there is no strong reason to favor a

linear readout over other simple readouts (Ritchie et al., 2019).

However, the complexity of the manifold cannot increase in an

unbounded fashion as the resulting neural code may become

susceptible to decoding errors or become too tangled to be

easily readable (Figure S6E). We propose that for each task,

the sensory and contextual inputs define the sub-region of the

state space where the DV can be encoded in, and the constraints

above shape a curved manifold that accommodates adequately

precise encoding of the DV and an easy readout.

The curved manifold indicates that the LIP population activity

explicitly encodes both stimulus difficulty (i.e., reliability of sen-

sory evidence) and the DV (Figure 3A), a departure from past

studies that reported only implicit encoding of stimulus difficulty

by single neuron responses in LIP (Kiani and Shadlen, 2009; Pou-

get et al., 2016). This encoding of stimulus difficulty cannot be

explained away as an increased attention level or task engage-

ment for more difficult stimuli. Two key observations corroborate

our conclusion. First, stimulus difficulty is encoded from the very

beginning of the representation of the decision-making process

(�200 ms after stimulus onset) (Figure 3D), making it unlikely to

be a reactive recruitment of engagement mechanisms due to

perceived stimulus difficulty. We remind that stimulus difficulty

is not predictable prior to the stimulus onset and inferring the dif-

ficulty of a stimulus is time-consuming (Khalvati et al., 2020).

Second, and more critically, higher engagement should lead to

better behavioral performance, but the activity along the diffi-

culty encoding axis was uncorrelated with the monkey’s accu-

racy (Figure 3E). Moreover, trial-to-trial variations of the encoded

difficulty for the same stimulus strength did not correlate with the

monkey’s confidence in a post-decisionwagering task (Figure 4),

providing a clear example that decodability does not necessarily

amount to functionality (Ritchie et al., 2019). This apparently non-

functional encoding of stimulus difficulty lends support to the hy-

pothesis that the manifold curvature is a geometric property of

population responses for computing or monitoring changes of

the DV, as explained above.

We further rule out that the curvature of the DV manifold and

encoding of stimulus difficulty arise from sensory responses or
spatial attention to stimuli. Parietal neurons respond to a variety

of stimulus attributes in their RFs (Bisley et al., 2004; Janssen

et al., 2008; Lehky and Sereno, 2007; Sarma et al., 2016) and

also show strong response modulations depending on the loca-

tion of spatial attention (Bisley and Goldberg, 2003). However,

these response properties do not explain the reversal of firing

rates. First, our recording from face-selective regions in the infe-

rior temporal (IT) cortex during the face tasks has revealed that

sensory responses are monotonically modulated by the stimulus

strength (Figure S7), just like the monotonic tuning to random

dots stimuli in the middle temporal (MT) area (Britten et al.,

1993). Therefore, the reversal was not inherited from response

properties in sensory areas. Second, our sensory stimuli were

presented outside the LIP RFs. Increased sensory responses

or spatial attention to more difficult stimuli would not affect or

rather decrease the activity of the recorded LIP neurons, leading

to a response pattern opposite to the reversed order in the face

task. To further ascertain that the observed LIP responses were

not affected by inadvertent overlaps of the stimuli with RFs, we

performed a control experiment in our face task, where we

showed the stimuli in the visual hemifield opposite to the LIP

RFs. The results replicated the same reversal of firing rates

and curved manifolds as in the main task (Figures S2J–S2L). It

should also be noted that past studies have reported similar

LIP response patterns regardless of whether motion stimuli

were presented foveally or parafoveally (Huk and Shadlen,

2005; Shushruth et al., 2018), indicating that differences in stim-

ulus position across tasks do not explain our results.

A hallmark of the decision-making process is its flexibility. To

implement flexible decisions, neural circuits must accommodate

context-dependent interpretation of information, intricate rules,

and a large variety of motor actions to interact with the outside

world. The curvature and context-dependency of the DV mani-

folds and the partial separation of the DV and action encoding,

as we report here, are some of the building blocks that the pri-

mate brain may have devised for flexible and accurate decisions

based on sensory information.

Limitations of the study
The present study uses the PSTHs of neurons recorded over

different sessions to infer the geometry of population re-

sponses. We therefore do not directly quantify the effect of

population noise correlations, which are known to influence

the optimal encoding and decoding axes in large neural popu-

lations (Moreno-Bote et al., 2014; Rumyantsev et al., 2020).

Although we observe the population response geometry and

its task dependency robustly across datasets and small pools

of neurons recorded simultaneously in the same session (�10

neurons) (Figure S4C), much larger-scale neural recordings

from LIP are needed to quantify the true effect of correlations

across the population.

One of our key findings is task-dependent changes of the

curved DV manifolds. However, we have limited understanding

of how this task-dependency is implemented. Future experi-

mental and computational modeling studies are needed to

address this gap in our knowledge. It would also be important

to examine how widely similar task dependencies exist

outside LIP.
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Data and code availability
The datasets and analysis code supporting the current study are available at https://github.com/KianiLab/Okazawa_Cell_2021.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Monkeys
We recorded responses of parietal and frontal neurons while seven adult macaque monkeys (Macaca mulatta; all males, 5–15 years

old) performed a variety of perceptual decision-making tasks. Twomonkeys (A and L) performed two variants of a novel face discrim-

ination task and fivemonkeys (D, I, S, O, andN) performed direction discrimination taskswith randomdots (Kiani et al., 2008; Roitman

and Shadlen, 2002). Monkeys D and I also performed the dots task with post-decision wagering (Kiani and Shadlen, 2009). All exper-

imental procedures conformed to the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were

approved by the institutional animal care and use committee at New York University. The data from monkeys D, I, and S were pre-

viously published (Kiani and Shadlen, 2009; Kiani et al., 2008).

METHOD DETAILS

Behavioral tasks
Monkeys were seated in a semi-dark room in front of a cathode ray tubemonitor (frame rate, 75 Hz) with their heads stabilized using a

surgically implanted head post. Stimulus presentation was controlled with Psychophysics Toolbox (Brainard, 1997) and MATLAB.
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Eye movements were monitored using a high-speed infrared camera (Eyelink, SR-Research, Ontario) or a scleral eye coil (Fuchs and

Robinson, 1966). Gaze positions were recorded at 1 kHz.

Throughout the paper, we refer to the face discrimination task as the ‘‘face task,’’ and to the direction discrimination task with

random dots as the ‘‘motion task.’’

Face task
The task required classification of faces into two categories, each defined by a prototype face. Each trial began when the monkey

fixated on a small fixation point at the center of the screen (diameter, 0.3�). Shortly afterward, two red targets appeared on opposite

sides of the screen, equidistant from the fixation point. After a variable delay (truncated exponential distribution, range, 250–500 ms),

a face stimulus appeared 1.6�–2.5�, to one side of the fixation point (contralateral to the recording site in the main experiment or ipsi-

lateral in a control experiment, Figures S2J–S2L). The stimulus size randomly varied across trials by one octave to prevent the mon-

key from relying on local features (width range, 2.9�-5.8�, mean, 4.2�). The stimulus was presented for a variable duration (truncated

exponential distribution, range, 227–1080 ms, mean, 440 ms) followed by a delay period (truncated exponential distribution, range,

300–900ms, mean, 600ms). After the delay, the fixation point disappeared (Go cue), and themonkey reported the face category with

a saccadic eye movement to one of the targets. Correct responses were rewarded with a drop of juice. To manipulate task difficulty,

we created a morph continuum between the two prototypes and presented different intermediate faces (see below). When the face

was halfway between the two prototypes on the morph continuum, the reward was given randomly.

We trained monkeys to categorize the same face stimuli in two distinct ways: species and expression categorization (Figure 5A). In

the species categorization task, the two prototype stimuli were human and monkey faces, whereas in the expression categorization

task, they were faces with ‘‘happy’’ and ‘‘sad’’ expressions. Here, happy and sad are used as designations that facilitate explaining

the task. We focus merely on the monkey’s ability to discriminate different expressions and do not imply that they interpret these

expressions as humans do. Monkeys performed these two categorizations in blocks that switched either within or across sessions.

In the first few trials of each block, we presented only the faces closest to the prototypes of the discriminated categories to cue the

task context to the monkey. In both categorization tasks, monkeys easily generalized across different facial identities. We therefore

created multiple stimulus sets from different human and monkey identities. Each set enabled testing both categorization tasks (see

below). We switched the stimulus set after runs of sessions. In total, three stimulus sets were used during electrophysiological

recording sessions.

Each stimulus set can be visualized as a two-dimensional (2D) ‘‘face space,’’ whose axes correspond to the morph level between

species and expression category prototypes (Figure 5A). This 2D face space was created with three ‘‘seed’’ faces: photographs of

happy and sad expressions of a human face and neutral expression of a monkey face. The seed faces were obtained from the Mac-

Brain Face Stimulus Set (Tottenham et al., 2009) and the PrimFace database (https://visiome.neuroinf.jp/primface). We manually

defined 96–118 anchor points on each seed face and developed a custom algorithm to morph the three seed faces by computing

a linear weighted sum of the positions of the anchor points and textures inside the tessellated triangles defined by the anchor points.

Our algorithm allowed independent morphing of different stimulus regions. Further, because our morphing changed both the geom-

etry and content of the facial regions, the resulting faces were perceptually seamless.

Natural faces are complex and high-dimensional stimuli that challenge investigation of the decision-making process. To control

stimulus complexity and make studying the decision-making process tractable, we limited informative features for face categoriza-

tion. We selected three features in each face (eyes, nose, and mouth) and limited morphing across faces to those regions, reducing

the effective stimulus dimensionality. Regions outside the informative features were always fixed at the midpoint of the morph space

between the three seed faces and did not change in the experiment.

Each informative facial feature varied in a 2D ‘‘feature space’’ defined by the corresponding features of the three seed faces.

Morphed features were generated as weighted combinations of the three seed features. To change the features along the species

axis, the weights for the happy ðWhÞ, sad ðWsÞ, and monkey ðWmÞ faces varied from [0.5, 0.5, 0] to [0, 0, 1]. We label these two end

points as �100% and + 100% species morph levels (or species prototypes). For the expression axis, the weights for the prototypes

changed from [0.75,�0.25, 0.5] to [-0.25, 0.75, 0.5]. The negative weights indicate linear extrapolation beyond the seed features. We

verified that for the weights used in our stimulus sets, all morphed features and resulting faces looked naturalistic and did not show

noticeable aliasing. In the 2D space, the speciesmorph level of a feature was defined by ðWm �Wh �WsÞ3100%, and its expression

morph level was defined by ðWs � WhÞ3100%. Because the three informative features were morphed independently in their 2D

feature spaces, our full stimulus space was six dimensional. The 2D face space of Figure 5A shows faces with identical morph levels

of eyes, nose, and mouth — a 2D cut of the 6D space.

On each trial, we chose a nominal morph level along the relevant axis for the categorization task (species axis for species catego-

rization or expression axis for expression categorization). This nominal value determined the morph level of the three features in the

trial, as well as the response that the monkey was rewarded for. The nominal morph level ranged from –96% to +96%. The exact set

of nominal morph levels was adjusted for each stimulus set to keep the monkey’s overall accuracy roughly constant across the sets.

To investigate how monkeys weighted evidence conferred by the three informative features, we allowed the features to fluctuate

randomly around the nominal morph level of the trial every 106.7 ms during stimulus presentation. For all nominal morph levels be-

tween �12% and +12%, the three features fluctuated independently within their own 2D feature spaces according to a circular

Gaussian distribution with a standard deviation of 20% morph level. The features therefore changed both along the relevant and
e2 Cell 184, 1–14.e1–e9, July 8, 2021
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irrelevant axes for the categorization task, allowing us to gauge which ones influenced the monkey’s choices. For strong nominal

morph levels (>12%), fluctuations happened only along the relevant axis in order to prevent the monkey from confusing the task

context. Sampled values that fell outside the prototype range [–100% +100%] were replaced with new samples inside the range

(5.2% of samples).

We used a masking procedure to keep changes of features in a trial subliminal (Okazawa et al., 2018). The masks were created by

phase randomization of faces (Heekeren et al., 2004) and interleaved the stimulus fluctuations. In each 106.7 ms sample-mask cycle,

a face stimulus was shown for 13.3 ms and then gradually faded out as the mask faded in. In the fading period, the mask and the

stimulus were linearly combined, pixel-by-pixel, according to a half-cosine weighting function, such that in the last frame, the weight

of the mask was one and the weight of the face was zero. In the next cycle, a new face stimulus with slightly altered informative fea-

tures was shown, followed by fading with another mask, and so on. Before the first sample-mask cycle in the trial, we showed amask

frame to ensure all stimulus samples were preceded and followed by masks. The masking procedure was quite effective in pilot ex-

periments with humans, preventing the detection of the feature changes. The stimulus in each trial looked like a face appearing and

disappearing behind cloud-like patterns. Stimulus viewing duration in each trial consisted of 2-10 stimulus-mask cycles (truncated

exponential distribution, mean, 4), which corresponded to 227–1080 ms, including the initial mask.

Two monkeys performed the task in 72 recording sessions (monkey A, 40 sessions; monkey L, 32 sessions), which amounted to

56,582 trials (monkey A, 18,080 and 9,309 trials for species and expression categorizations, respectively; monkey L, 17,077 and

12,116 trials). In the majority of these sessions (55), the face stimulus was contralateral to the recording site. In the control condition

where the stimulus was ipsilateral to the recording site (Figures S2J–S2L), we ran 17 sessions (monkey A, 10; monkey L, 7) and

collected 12,944 trials (monkey A, 7,584 trials for species categorization; monkey L, 4,041 and 1,319 trials for species and expression

categorization, respectively).

Motion task
The experimental settings for the motion task are described elsewhere (Kiani and Shadlen, 2009; Kiani et al., 2008), and summarized

here. The monkey began each trial by fixating a fixation point at the center of the screen, followed by the appearance of two red tar-

gets on opposite sides of the screen equidistant from the fixation point. After a variable delay (truncated exponential distribution,

range, 250–600 ms), the moving random-dots stimulus (Britten et al., 1992) appeared within a 5�, circular aperture centered on

the fixation point. The percentage of coherently moving dots determined the strength of motion (coherence). The motion strength

varied randomly across trials from the following set: 0%, 1.6%, 3.2%, 6.4%, 12.8%, 25.6%, and 51.2% coherence. The net motion

direction was toward one of the two targets and varied randomly across trials. Monkeys I and S performed a variable duration task,

where the stimulus was presented for 80-1500 ms (truncated exponential distribution, mean, 311 ms). The Go cue occurred after the

stimulus or following a delay period (truncated exponential distribution, range, 500–1000 ms, mean, 847 ms), instructing monkeys to

report their perceivedmotion direction with a saccadic eyemovement to one of the targets. Monkey D as well as monkey I performed

another variable duration task, where the stimulus duration was 100-900 ms (mean, 286 ms) and always followed by a delay duration

of 1200-1800 ms (mean, 1386 ms). Monkeys O and N performed a reaction time task, where they were free to respond any time after

the stimulus onset (mean reaction time, monkey O, 729 ms, monkey N, 927 ms). Correct responses were rewarded with water or

juice. For 0% coherence motion, the reward was given randomly.

Monkeys D and I also performed a version of the variable duration task with post-decision wagering (Kiani and Shadlen, 2009).

During this task, on a random half of the trials, a third target (‘‘sure’’ target) appeared at a random time during the delay period

(500–750 ms after motion offset) and stayed on through the rest of the delay period. After the Go cue, the monkey made a saccade

either to one of the two direction targets or to the sure target, if present. Choosing the sure target always yielded a reward, but the

reward sizewas smaller than that for choosing the correct direction target. The reward ratio was adjusted to encourage themonkey to

choose the sure target on nearly half of trials.

We collected 67,349 trials in the variable duration task (monkey I, 24,603 trials; monkey S, 21,947 trials; monkey D, 20,799 trials).

Among them, 30,991 trials were in the post-decision wagering task (monkey I, 10,192 trials; monkey D, 20,799 trials). We collected

23,756 trials in the reaction time task (monkey O, 6,291; monkey N, 17,465). Psychophysical thresholds were comparable across

the tasks.

Neural recording
For recordings from the lateral intra-parietal (LIP) cortex, electrodes were placed in the ventral division of LIP (LIPv), located based on

both structural magnetic resonance imaging scans and transition of white and gray matter during recordings. The recording was per-

formed through a plastic cylinder (Crist Instruments, Damascus, MD), implanted on the skull, and a plastic grid (1 mm spacing; Crist

Instruments), placed inside the chamber for precise targeting of the electrodes. We used either single tungsten microelectrodes

(FHC, Bowdoin, ME) or 16-channel linear array probes (V-Probe; Plexon, Dallas, TX). Action potential waveforms were isolated online

using a time-amplitude window discriminator or sorted offline (Plexon offline sorter). In our analyses, we combined both well-isolated

single units and multi-units. We confirmed that similar results were obtained using single units alone (Figure S4D).

Units were selected for analysis if they exhibited spatially-selective persistent activity during the delay period of a memory-guided

saccade task (Gnadt and Andersen, 1988). While the monkey maintained fixation, a target briefly flashed on the screen and was fol-

lowed by a delay period (�1000 ms). At the end of the delay period, the fixation point turned off (Go cue), and the monkey made a
Cell 184, 1–14.e1–e9, July 8, 2021 e3
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saccade to the remembered target location. The target location varied randomly across trials. The response field (RF) of the neurons

was identified as the target locations associated with the largest firing rates during the delay period. During the motion or face task,

we placed one of the targets (Tin) in the RF and the other (Tout) outside the RF. For the post-decision wagering results included in this

paper, the sure target (Ts) was placed outside the RF.

Our choice to focus on units with persistent delay activity in a memory-guided saccade task was made to remain consistent with

previous studies (Roitman and Shadlen, 2002; Shadlen and Newsome, 2001). However, the LIP neurons lacking persistent activity

also showed similar curved population response manifolds during our main tasks (Figure S2F–S2I). Thus, similar conclusions could

be made using all LIP neurons or different subgroups of neurons.

In the motion task, 129 units were recorded from the LIP of three monkeys (monkey D, 46 single units; monkey I, 50 single units;

monkey S, 33 single units). In the face task, 132 units were recorded from two monkeys (monkey A, 70 (single: 41); monkey L, 62

(single: 34)) with face stimuli presented contralateral to the recording site. An additional 44 units (monkey A, 31; monkey L, 13)

were also recorded during the control condition with ipsilateral stimuli (Figures S2J–S2L).

To examine the decision-related activity of other cortical areas, we also recorded from two prefrontal regions: prearcuate gyrus

(PAG) in lateral frontal cortex and supplementary eye field (SEF) in dorsomedial prefrontal cortex. The recordings from PAGwere per-

formed from monkey N with a chronically implanted 96-channel microelectrode array (electrode length = 1 mm; spacing = 0.4 mm;

Blackrock Microsystems, Salt Lake City, UT). We performed 11 recording sessions, which yielded 84 ± 10 (mean± s.d.) simulta-

neously recorded units per session. The recordings from SEF were performed frommonkey O with either single tungsten microelec-

trodes (FHC) or 16-channel linear array probes (Plexon). In 9 recording sessions, we isolated 34 SEF units. SEF was identified based

on stereotactic coordinates, saccade selectivity, and evoked-saccades with low-current microstimulation ð<50mAÞ.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analysis
We sorted the stimulus strengths for each task into five levels. For the motion task, we used motion coherence to define the strength

levels, compatible with past studies (Kiani and Shadlen, 2009; Kiani et al., 2008; Shadlen and Newsome, 2001): 0%–3.2%, 6.4%,

12.8%, 25.6%, and 51.2% coherence. For the face task, we used the average morph level across stimulus-mask cycles in each trial:

0%–5%, 5%–15%, 15%–25%, 25%–50%, 50%–100%morph. Due to the stochastic nature of the stimuli, this average morph level

could differ from the nominal morph level. Specifically, in addition to changing the stimulus along the relevant axis for the categori-

zation task, the fluctuations also shifted the stimulus along the irrelevant axis. Using the average morph level enabled us to quantify

the veridical stimulus strength for both axes and explore their effects on the behavior and neural responses. Apart from this benefit,

we confirmed that defining the strength levels based on the nominal morph level did not critically change any of our results. Similarly,

we confirmed that defining the stimulus strength levels of the motion task based on average motion energy— ameasure of veridical

stimulus strength (Adelson and Bergen, 1985; Kiani et al., 2014b) — did not change any of our conclusions. The same stimulus

strength levels were used for both behavioral and neural data analyses.

Note that the stimulus strength could be in favor of one choice or another. Therefore, for analyses that depended on the exact

choice made by themonkey (e.g., Tin versus Tout), we expanded the definition of stimulus strength levels to add a sign to the numbers

above, where positive and negative strengths indicate stimuli supporting the Tin and Tout choices, respectively. Throughout the paper,

we use consistent colors to show different stimulus strength levels in the figures, with red symbols depicting positive strengths and

blue symbols depicting negative strengths, while the saturation of symbols depicting absolute stimulus strength.

Psychometric functions (Figures 1C and 1E) were calculated as the probability of making correct choices — choices compatible

with the sign of the stimulus strength level— as a function of stimulus strengths. Psychophysical thresholds were defined as the stim-

ulus strength that yielded 81.6% correct choices. Thresholds were estimated by fitting a logistic function to the choice data (similar

results were obtained with cumulative Weibull fits). To assess the effect of stimulus duration on behavioral performance, we divided

trials into six stimulus duration quantiles, calculating the psychophysical threshold separately for each quantile (Figures 1D and 1F).

To test if the behavioral performance is consistent with an evidence accumulation mechanism, we fit a drift diffusion model (DDM)

to the data. In the DDM, signed momentary sensory evidence accumulated over time to create the decision variable (DV). The pro-

cess continued until the DV reached either an upper or a lower bound, or all the available sensory evidencewas integrated. The bound

that was reached first dictated the choice. But if the accumulated evidence failed to reach a bound by the end of the trial, the sign of

the DV determined the choice. We fit the DDM to individual monkeys’ behavior using a maximum-likelihood procedure. Details of the

method are described elsewhere (Okazawa et al., 2018). The DDM had two free parameters in the motion task: sensitivity and bound

height. Sensitivity, k, determined the linear scaling of the mean momentary evidence in the model with signed stimulus strength, s.

Therefore, the drift rate of the diffusion process at each moment, mðtÞ, was equal to ksðtÞ. Since stimulus strength was defined based

onmotion coherence, sðtÞwas a constant in themodel. The bound height,B, determined the amount of evidence that had to be accu-

mulated to reach the upper ð+BÞ or lower ð�BÞ bound. Because the drift rate and bound height scale with the s.d. of momentary

evidence in the model, we set the variance of the momentary evidence to 1 to allow unique solutions for the model fit.

For the face task, we allowed different sensitivity parameters for the three informative features in each categorization task: mðtÞ =
keseðtÞ+ kmsmðtÞ+ knsnðtÞ, where seðtÞ, smðtÞ, and snðtÞ are signed morph levels of eyes, nose, and mouth along the relevant axis for

categorization at time t. We did not observe any notable influence of morph levels along the irrelevant axis on the monkey’s choices,
e4 Cell 184, 1–14.e1–e9, July 8, 2021
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within the tested ranges in our tasks (Figure 5B). We therefore excluded them from the equation for drift rate to limit the number of

model parameters. In a reaction-time version of the task performed by human subjects, we established that sensitivity parameters

were largely constant over time (Okazawa et al., 2020) and that there was minimal loss of information (leak). We do not present these

model variants in this paper as they do not directly pertain to our main conclusions. However, we note that we do not find substantial

evidence for non-stationary sensitivity or the presence of a significant leak in themonkey data, suggesting a similarity of the decision-

making process across species.

The monkeys that performed the same task had consistent behavior and neural responses. We therefore combined data across

subjects in the figures. But when appropriate, we show individual monkeys’ results too (e.g., Figure S2). The behavioral plots in

Figures 1C–1F combine data from all monkeys performing the respective tasks. The model fits (gray lines) are the average of fits

for individual monkeys. Figures 1C and 1D combines data and fits across both monkeys and both face categorization tasks. Fig-

ure 5B shows the behavior separately for the species and expression categorization tasks. Since the veridical stimulus strengths

varied along both task-relevant and irrelevant axes, we plotted two psychometric functions, one for each axis. Both curves in the

figure are from the DDM explained above. The model fits do not include any degree of freedom for stimulus strengths along the

irrelevant morph axis, as explained above. The non-significant changes of model accuracy along the irrelevant morph axis are due

to random stimulus fluctuations along the task-relevant axis that do not totally average out for the limited number of trials in the

dataset.

Neural data analyses
Peri-stimulus time histograms (PSTHs) shown in Figures 2A, 2B, 6A, 6C, S2, and S4D were smoothed by convolution with a 100 ms

boxcar filter. The PSTHs were aligned to the stimulus onset and cut off at 300 ms after stimulus offset to focus our analysis on the

responses pertaining to the decision formation based on sensory inputs. The same convention was used in subsequent analyses.

When plotting the PSTHs, we focus on correct trials only to be able to examine changes of firing rate with stimulus strength for

the same choice except for Figure S2E.

The firing rates shown in Figures 2C, 2D, and S2K were calculated by counting the number of spikes during decision formation

(250-600 ms after stimulus onset) in correct trials. To combine data across units with different ranges of firing rates, we z-scored

the firing rates of each unit by subtracting its mean firing rate and dividing by the standard deviation of firing rates across all trials.

We then calculated themean of z-scored firing rates of each unit for each stimulus strength and averaged them across units. To quan-

tify the relationship between the firing rates, rðsÞ, and the stimulus strength, s, we performed linear regressions independently for Tin
and Tout choices:

rðsÞ = a0 +a1jsj (1)
where jsj is the absolute (unsigned) stimulus strength. The regress
ion coefficients (a0 and a1) were determined for each unit. The lines

in Figures 2C, 2D, and S2K were generated from average a0 and a1 across units. The significance of slopes across the neural pop-

ulation was determined based on a two-sided t test on the distribution of single unit slopes.

To test if the differences in activity between two pools of neurons preferring two choices implement the DV, we computed the dif-

ferential firing rates between units preferring two choices (Figure 6E). Since the units were recorded from one hemisphere andmost of

them had the same preference, we created a pseudo-population, where the preferred choice of a random half of the recorded units is

inverted. We then computed the differences in the firing rates between the units with the opposite preferences for each stimulus

strength. We repeated this procedure 1,000 times and averaged the PSTHs over these repetitions.

To examine if the difference of Tin and Tout firing rates increased with stimulus strength, we used the following linear regression:

DrðsÞ = b0 + b1jsj (2)
where DrðsÞ is the differential firing rate between correct Tin and T
out choices for the unsigned stimulus strength jsj. Figure 6G shows

the distribution of the slope coefficient ðb1Þ across the recorded units.

We implemented a neurometric analysis (Figure 6H) to quantify the accuracy of an ideal observer that uses the responses of LIP

neurons to discriminate the stimuli with similar strength on the two sides of the category boundary in each task (Britten et al., 1992;

Shadlen andNewsome, 2001). The ideal observer accuracy equals the area under the Receiver Operating Characteristic (ROC) curve

of the distribution of spike counts for the two competing stimuli. Figure 6H shows the results for different stimulus strengths using a

100ms slidingwindow. To remain conservative, we did not conditionalize spike count distributions on correct choices in this analysis.

Because conditioning on correct choices would lead to higher areas under ROC for weaker stimuli, it would further reduce the depen-

dence of the ideal observer’s accuracy on stimulus strength, bolstering our conclusion that the difference of the activity of pools of

neurons selective for the two choices fails to fully explain the representation of the DV in the face task.

The PSTHs for the reaction-time version of the motion task (Figure 7A) were calculated from 100 ms before stimulus onset

to the median reaction time for each stimulus strength. A 50 ms window before saccade onset was excluded from each trial

so that the PSTHs were not influenced by the motor burst of the neurons. Using a more conservative exclusion window

(100 ms before saccade onset) did not critically change the results. For both the PAG and SEF units, target selectivity

was determined using neural responses during a presaccadic period (–300 to 0 ms from saccade onset) and the choice
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target that evoked higher activity was defined as the putative Tin. Responses in memory- or visually-guided saccade tasks

corroborated our designations.

In the following sections, we explain analyses for characterization of population response patterns. We use these population an-

alyses as a vehicle to drive intuition and develop insights, noting that because these methods build on single cell responses, their

conclusions can also be derived from careful analysis of single cells across the population.

Principal component analysis of neural data
Weperformed principal component analysis (PCA) to visualize the neural population responsemanifolds (Figures 2E–2H, 5C, 6A–6D,

7B, S2, S3, S4, and S5). PCA was performed across units using trial-averaged PSTHs. Each unit contributed multiple PSTHs, one for

each combination of choices and stimulus strength levels. The PSTHs focused on the period of decision formation and spanned 250-

600ms after stimulus onset.We detrended the PSTHs of each unit by subtracting the average unit PSTH across all stimulus strengths

and choices to focus on modulations of activity associated with task parameters. We confirmed that the detrending did not critically

change the observed geometry of neural manifolds. We then concatenated the detrended PSTHs of each unit into a response vector

for that unit and combined the vectors of all units into a population response matrix with T3C rows and N columns, where T is the

number of time points in each PSTH (1 ms resolution), C is the number of conditions (5 stimulus strength levels 3 2 choices, Tin and

Tout), andN is the number of units. Only correct Tin and Tout choices were used for these analyses because error responses were rare

for high stimulus strengths. A tiny fraction of elements in the population responsematrix weremissing ð<0:1%Þ due to low numbers of

trials for some units. The missing data were replaced with the average response of the corresponding unit. The first three principal

components (PCs) explained 78% of the total variance of the full N dimensional neural space in the motion task and 54% of the total

variance in the face task. The analysis included all units recorded either simultaneously or separately. We confirmed that similar re-

sults were obtained using simultaneously recorded units only (Figure S4C).

Because we have aligned the PSTHs of LIP neurons with respect to their RFs (Figure S3A; PSTHs were defined with respect to Tin
and Tout, not the right-left location of targets), the PCA effectively captures the structure of population responses within a group of

neurons having a shared choice preference. Therefore, the observed manifold geometry arises from the variability of neural re-

sponses within that group of neurons (see Figure S3B for intuition). The finding, however, also extends to a neural population with

diverse choice preferences. We performed PCA for a pseudo-population created by inverting the preferred choice of a random

half of the recorded units. The resulting manifold geometry leads to conclusions similar to our main results (Figures S3C–S3F).

The neural population response for each stimulus strength level at each time can be depicted as a point in the three-dimensional

(3D) PC space (Figures 2E–2H, 5C, 6A–6D, 7B, S2, S3, S4, and S5). The data points in the figures were calculated based on spike

counts within a 100 ms window centered at the specified times in each figure. To draw a manifold that captures the population re-

sponses for different stimulus strength levels (gray lines), we fit the projection of population responses along each PC axis with a cu-

bic smoothing spline as a function of stimulus strength (csaps function in MATLAB). The SEM of the population response projections

along each PC axis (error bars in Figures 2G, 2H, 7B, and S2L) was computed using a bootstrap procedure. We re-computed the

mean firing rate of each unit for each stimulus strength level and time by randomly sampling trials with replacement. Then, we pro-

jected the resulting population response patterns onto the 3D PC space. This procedure was repeated 1,000 times, and the standard

deviations of the projections were calculated and used as the SEM of the data points in the plots.

To rule out the possibility that the population response manifold is actually a straight line that looks curved due to noise in the

measured neural responses, we performed three tests. The first two examined the consistency of the direction of the curvature using

a cross-validation procedure, and the third tested whether the observed extent of the curvature could arise solely from neural noise.

For the analyses in the paper, the three tests always provided consistent results.

Stochastic variability of neural activity could indeed cause changes in the curvature of the population responsemanifold, but these

noisy changes are in random directions in the state space and would lack consistency. In our cross-validation tests, we divided the

trials of individual units into random halves and derived amanifold for each half. In the first test, we directly compared the directions of

themajor axes of the twomanifolds, v1
!and v2

!. Themajor axis of eachmanifold was defined as the vector between themidpoint of the

two ends of the manifold and the apex of the manifold. The angles between the two major axes were quite small, 11.9� ± 6.0� in the

motion task and 9.3� ± 4.9� in the face task (mean±SEM, calculated over 1,000 iterations of random splitting of data). These angles

were significantly smaller than expected from noise (90�), indicating strong consistency in the direction of manifold curvature.

In our second cross-validation procedure, we adopted a more robust approach that averaged the direction of curvature of all lo-

cations of the manifold for the second half of the data with respect to the major axis of the manifold from the first half. For the 1D

manifold ðm!ðsÞÞ in the state space at the location corresponding to stimulus s, its curvature is:

T
!

sð Þ= m!0
sð Þ���m!0
sð Þ
��� (3)
N
!

sð Þ= T
!0

sð Þ���m!0
sð Þ
��� (4)
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k sð Þ= jN! sð Þj (5)
where T
!ðsÞ is the unit tangent vector, N

!ðsÞ is a vector normal to
 the curve, and the length of N
!ðsÞ equals the curvature, kðsÞ, at the

location corresponding to stimulus s. j:j is the L2 norm. The direction of N
!ðsÞ determines the direction of curvature in the state space.

The dot product of N
!ðsÞ with v1

! determines how well their directions match each other:

cos f sð Þð Þ= N
!

sð Þ$v1!����N! sð Þ
����$
����v1!

����
(6)
where fðsÞ is the angle between N
!ðsÞ and v1

!at s. cosðfðsÞÞwas c
omputed at every point on themanifold and then averaged over the

full extent of the manifold. Positive values of Ccos f sð Þð ÞDs indicate that the direction of the curved manifold for the second half of data

is consistent with the first half. We tested if this value is significantly greater than zero using a bootstrap procedure (iterations, 1,000).

For our third test of the significance of manifold curvature, we compared the curvature of the actual neural data with that of simu-

lated data from a linearized response manifold with similar conditional response variability to the actual data (Figure S4A). The simu-

lated data were generated by straightening the underlying manifold in the actual data. We first redefined the mean firing rates of each

unit for different stimulus strengths by linearly interpolating between firing rates for the strongest stimuli supporting Tin and Tout
choices. This interpolation ensured the linearity of the simulated response manifold. For each stimulus strength, we defined the dis-

tribution of simulated responses of a unit as amean-adjusted version of the true distribution of unit responses, such that variance and

shape of stimulus-conditioned response distributions remained unchanged. We simulated individual trials by randomly sampling

from these adjusted distributions for the same number of trials that each unit was recorded for. Repeating this process for all the units

generated a simulated dataset with the same number of units, trials, and conditional response variability as the actual data. We

created 1,000 simulated datasets and derived the manifold for each of them using the procedure explained above. Then we calcu-

lated the curvature at each point of each manifold using Equation 5 and quantified the overall magnitude of the curvature as the

average curvature across the manifold. Finally, the magnitude of the manifold curvature in the data was compared with the distribu-

tion of magnitudes obtained from the simulated data.

In the PC space, the projected population average firing rate changed along a linear axis (straight line in Figures 2G, 2H, 5E, and

S5B), since PCA is a linear dimensionality reduction procedure. A vector that corresponds to this linear projection axis can be readily

derived from the PC coefficients:

r!pop:avg: =
XN
n= 1

w1;n;
PN
n= 1

w2;n;
PN
n= 1

w3;n

" #
(7)
where wi;n is the coefficient of neuron n for the i-th PC and N is t
he total number of neurons. In Figures 2G and 2H, to illustrate the

population average firing rates corresponding to locations on the manifold, we projected a perpendicular line from each point on the

manifold to the axis of the average firing rate in the 3D PC space. Due to limitations of 2D illustrations, however, these perpendicular

projections in the 3D space appear to have angles different from 90� in the figure.

For the reaction time tasks, PCA was performed as described above but using the detrended PSTHs from 250 ms to 550 ms after

stimulus onset. The PAG results in Figure 7 were generated using the simultaneously recorded units in one session ðn = 99Þ. Similar

results were obtained in all recorded sessions.

Locating the DV and stimulus difficulty axes in the population response state space
The curved population response manifold suggests the presence of linear axes in the state space that encode the decision variable

(DV) and stimulus difficulty (Figure 3A). To identify the best encoding axes, we performed an orthogonal canonical correlation analysis

(CCA) (Cunningham and Ghahramani, 2015) (Figure 3B). CCA finds linear transformations that maximize the correlation of two

matrices with each other. One matrix in our analysis was the neural population response, R, consisting of the trial-averaged, de-

trended PSTHs of the recorded units. The population response matrix was constructed as we explained for the PCA analysis but

was limited to a shorter window (350–450 ms after stimulus onset) in order to allow approximation of the DV and stimulus difficulty

based on task parameters. Neural activity around 400 ms after stimulus onset well reflects the decision formation, but similar results

could also be obtained at earlier or later times (e.g., 300 ms, 500 ms, or 600 ms). The second matrix in our analysis was the task

parameter matrix, P, which approximated the DV and stimulus difficulty associated with each PSTH as s (signed stimulus strength)

and � jsj, respectively. For simplicity, we assumed a constant DV and difficulty during the short PSTH snippet included in the

response matrix. The average DV across trials of a particular stimulus strength is proportional to the signed stimulus strength in

our tasks, especially at early periods of the decision-making process when the decision bound is not yet reached for the majority

of trials because the behavior could be successfully modeled with linear integration of stimulus strength (Figures 1C–1F and S1).

The proportionality constant, however, changes with time, as the DVs for different stimulus strengths diverge from each other
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(Beck et al., 2008; Kiani et al., 2014a; Peixoto et al., 2018). It is therefore important to limit the duration of analysis window to ensure

reliable CCA results, while keeping it long enough to allow accurate estimation of mean firing rates in each condition. A 100 ms win-

dow met the analysis requirements, but our conclusions were not critically dependent on it. Further, the exact time of the analysis

window had minimal impact on our results as long as it reasonably overlapped with decision formation (we tested 350–600 ms after

stimulus onset). More complex methods in which we inferred the DV and task difficulty using the exact stimulus fluctuations corre-

sponding to the analysis window and the DDM yielded similar results.

The CCA seeks projection vectors, a!i and b
!

i, that maximize the correlation of canonical variables R a!i and P b
!

i. After finding the

first pair of canonical variables, the analysis finds a second pair of canonical variables uncorrelated with the first. Orthogonal CCA

also ensures that the projection vectors are orthogonal (Cunningham andGhahramani, 2015). Combining the projection vectors yield

2D transformation matrices A= ½ a1
�!; a2

�!� and B = ½ b1�!
; b2
�!�, which we used to project the neural responses to the 2D subspace

defined by the linear DV and difficulty axes:

x!CCA = r
!T

AB�1 (8)
where r! is the population response vector and x! is the positio
CCA n in the 2D subspace. In Figures 3, 4, and 5H, r!consisted of firing

rates of the neurons in 100mswindows. For the CCA results presented in the paper, we reduced the dimensions ofR to 10 using PCA

to attempt denoising the population responses prior to the CCA. However, the denoising or the number of PC dimensions used for

denoising was not critical for our conclusions (we tested awide range of dimensions from 10 to 40; 10 dimensions explained 89%and

76% of the total variance in the motion and face tasks, respectively). The 2D CCA dimensions accounted for 63% (motion) and 36%

(face) of the total variance.

All figures and analyses that depended on CCA were cross-validated. The cross validation was implemented by using a random

half of trials as a training set to compute the transformation matrices, and then applying them to the other half of trials (test set). In

Figures 3B–3E and 4C–4E, the SEM of the data points were estimated using a bootstrap procedure within the test trials (iterations,

1,000). The gray curves in Figures 3B and 4C, which estimated themanifold spanning different stimulus strengths, were computed by

fitting the projection of neural responses along each dimension using a second-order polynomial function of stimulus strength.

To plot the time course of neural responses along the two axes defined by CCA (Figures 3C and 3D), we further split the test trials

based on the monkey’s choice (correct or error) or based on stimulus difficulty (easy or difficult, specified as stimulus strengths

greater or less than 20%). When computing the choice-dependent neural responses (Figure 3C), all stimulus strengths were com-

bined except for 0%, for which the correct choice was undefined. When computing the difficulty-dependent neural responses (Fig-

ure 3D), we used only correct trials, thus keeping the monkey’s choice identical between the easy and difficult conditions.

To examine the relationship between the neural responses and the monkey’s confidence, we analyzed a subset of neurons (70/

129) recorded during the motion task with post-decision wagering (see the section on Behavioral tasks). Bailing out of the motion

direction discrimination by choosing the sure-bet option indicated low confidence. We first performed CCA on a random half of trials

with correct choices (training set) to find the best encoding axes for the DV and stimulus difficulty. Then, we projected neural re-

sponses of the remaining trials on these axes, independently for correct, error, and Ts choices. In Figure 4C, we adjusted the sign

of the DV axis projections such that positive and negative values indicated DVs in favor of the correct and error choices, respectively.

To quantitatively test the relationship between the neural responses and the monkey’s choices (Figures 3E, 4D, and 4E), we

computed the residual activity associated with each choice (correct, error, and Ts) by subtracting the mean projection of all test trials

with the same stimulus strengths along each axis. We then averaged the residual responses across different stimulus strengths to

achieve better visualization and boost analysis power. For these analyses, we used only trials with low stimulus strengths (3.2%–

12.8%), where error and Ts choices were present in all sessions. Because correct and error choices were undefined for 0% coher-

ence trials, they were not included.

Testing task dependency of neural responses
To examine how task contexts influenced LIP activity, we compared the neural responses during the species and expression cate-

gorization of the same face stimuli (Figure 5). The analysis used a subset of units (n = 28) recorded in both tasks in the same sessions.

To create the PC space common to both categorization tasks, we used stimuli present in both tasks (gray region in Figure 5A). The

stimuli were grouped into four strength levels (½�15% � 5%�, ½�5% 0%�, ½0% 5%�, ½5% 15%�) for each stimulus axis (species and

expression). This yielded 32 conditions (4 species levels 3 4 expression levels 3 2 task contexts). We computed PSTHs of correct

trials in these conditions and performed PCA using the same procedure described earlier.

In Figure 5D, we plotted the PC scores of each stimulus strength (4 3 4 levels) in a window 350-450 ms after stimulus onset. The

significance of differences in PC scores between the tasks was determined using a permutation test. For each stimulus level, we

shuffled the trial labels between the two tasks (preserving the number of trials) and computed PC scores of the two shuffled groups.

We then evaluated the similarity of the two groups of PC scores by calculating the Pearson correlation coefficient across stimuli and

PC dimensions. We repeated this procedure 1,000 times to establish the null distribution and compared it against the observed cor-

relation coefficient to report the p-value.

In Figure 5C, we selected the top three PCs derived from the above analysis and projected neural responses calculated for our

standard stimulus strength levels in each task as explained in earlier sections. Here, the statistical significance of the difference of
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the manifolds between the two tasks was evaluated using a likelihood ratio test. We fit the PC scores of each dimension using a sec-

ond-order polynomial function of stimulus strength, either simultaneously, using the same coefficients for both tasks, or separately,

using different coefficients for each task. The goodness of fits was quantified as the likelihood of data points given the manifolds

under a Gaussian noisemodel. The noise covariance matrix was estimated using a bootstrap procedure (iterations, 1,000). The likeli-

hood ratio test determined whether the likelihood of separate manifolds for the two tasks was significantly larger, taking into account

the difference in the degree of freedom between the two fits.

The task dependency of neural responses influenced how the DV was encoded by the population. To examine the extent of this

effect, we first determined the DV axis in each task context using the CCA procedure described earlier. Our results did not critically

depend on whether we determined the DV axis by performing the 2D CCA (estimating both the DV and difficulty axes) or by perform-

ing a 1D CCA (estimating the DV axis only). We then computed the angle between the DV axes of the two face categorization tasks in

the 3D PC space (q in Figure 5E). We used the neural responses in a window 350-450 ms after stimulus onset, but the results were

largely invariant to the exact choice of analysis window during decision formation. q was defined with respect to the axis of average

firing rate ( r!pop:avg: in Equation 7) such that positive values indicated a greater angle between r!pop:avg: and the DV axis in expression

task, compared to that in species task. Hence, when the DV axes in the two categorization tasks differ, q should be either significantly

greater or less than zero. We used a bootstrap procedure to test the statistical significance of q (iterations, 1,000).

We quantified the extent to which the angle between the DV axes (q) affected the linear readout of the encoded DVs. We projected

the neural responses recorded in one task context on the DV axis derived for the same or different tasks (Figure 5H; the results of the

expression task are plotted). The projected responses were fit with a logistic curve as a function of stimulus strength ðsÞ:

xCCA = ðg0 + I $Dg0Þ+
g1

1+ expð � ðg2 +g3sÞÞ
(9)
where g are regression coefficients and I is an indicator variable (0
i for using the DV axis from the same task and 1 for using the DV axis

from the different task).Dg0 is a regression coefficient that captures the change of bias caused by not adjusting the DV axis based on

task context. The significance of Dg0 was examined using a likelihood ratio test that compared the likelihood of models with and

without Dg0. The likelihoods were estimated using a bootstrap procedure (iterations, 1,000).

The analyses above used only the neurons recorded in both task contexts. Because the rest of units (n = 104) were recorded for

only one task context, their DV axes could not be directly compared. However, the axis of average firing rate ( r!pop:avg:) could be used

as a common reference. We reasoned that, if a brain area encodes the DV in a context-independent manner, a population of neurons

recorded from this area would have a fixed angle between the DV axis and the axis of average firing rate (i.e., uspc =uexp in Figure 5E).

We therefore tested if the angle between the DV axis and r!pop:avg: differed between the populations recorded for each face catego-

rization task (Figure 5G). The SEMof the angles and statistical significance of the angle differences were calculated using a bootstrap

procedure (iterations, 1,000). Repeating these tests in higher dimensional state spaces provided similar conclusions.
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Supplemental figures

Figure S1. Psychophysical kernels of the face tasks support bounded evidence accumulation with task-dependent weighting of facial

features, related to Figure 1

(A) In the face task, morph levels of the three informative facial features (eyes, nose, mouth) randomly fluctuated every 106.7 ms around a mean morph level on

each trial (nominal morph level). These fluctuations allowed us to perform psychophysical reverse correlation (Ahumada, 2002) to examine spatiotemporal

weighting of features for decision-making. Psychophysical kernel, Kf ðtÞ, for each facial feature f at time t was calculated as the difference of average fluctuations

of morph levels conditional on the monkey’s choices:

Kf ðtÞ = E½sf ðtÞjTin choice� �E½sf ðtÞjTout choice�where sf ðtÞ is themorph level of feature f at time t. We used trials with nominal morph levels less than 20%,where

stimulus fluctuations were potent enough to switch the monkey’s decision. To calculate a kernel across different morph levels, we subtracted the nominal morph

level of each trial from the actual morph levels presented on the trial and then averaged these residuals across trials. Colored lines show the resulting kernels for

species categorization (top row) and expression categorization (bottom row). Kernel amplitudes were different across features and tasks, indicating that (1) the

three informative features differentially contributed to themonkey’s decisions in each task, and (2) the feature weights varied across tasks. Species categorization

reliedmost heavily on the eyes but expression categorization on themouth. Further, the kernels decreased over time in our task design, compatible with bounded

integration of evidence, although such declines could also arise from other mechanisms (Okazawa et al., 2018). To quantify the weights of the three features for

the monkey’s choices, we approximated the decision-making process with a drift diffusion model (DDM) that accommodated differential weights for the

informative features along the relevant morph axis for each categorization task (see STAR Methods). Fitting the model to the distribution of choices across trials

quantitatively explained monkeys’ psychometric functions and changes of threshold with stimulus viewing duration (Figures 1C and 1D). Further, it generated

predictions for the shape of psychophysical kernels that closely matched the data (gray lines). The predicted kernels were calculated by creating new stimulus

sequences that were not used for fitting the model and simulating the DDM for these stimuli with the fitted model parameters. The predicted kernels accurately

explained the data (species categorization, R2 = 0:97; expression categorization, R2 = 0:98). (B) Feature weights of the DDM fits in the two face categorization

tasks. Error bars are SEM.
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Figure S2. Reversed ordering of Tin PSTHswith stimulus strengthwas consistently present across units, monkeys, different categorizations,

and conditions in the face task, related to Figure 2
(A) Units recorded in the face task (top row) showed a reversed order of Tin PSTHs for different stimulus strengths compared to those recorded in the motion task

(bottom row).We show three example units from each task. For clarity, trials were divided into two difficulty levels (R20%, red, and <20%, black) for Tin (solid) and

Tout (dashed) choices. The PSTHs show only correct responses and are smoothed with a 100 ms boxcar filter. (B) Histograms of the slope of individual unit firing

rates (window from 250 to 600 ms) as a function of stimulus strength (a1 in Equation 1). Overall, units recorded in the face task showed negative slopes for Tin.

Arrows indicate means. (C) Population average PSTHs for individual monkeys. Conventions are the same as in Figure 2A. (D) Population average PSTHs for

species and expression categorizations in the face task. (E) Population average PSTHs including both correct and error trials. Including error trials leads to

different proportions of Tin and Tout choices for different stimulus strengths. A mixture of Tin and Tout choices for lower stimulus strengths moves their PSTHs

toward the center of the firing rate range. Nonetheless, the reversal of the order of the PSTHs was still present in the face task. (F-I) Although our main analyses

focused on neuronswith significant persistent activity during the delay period of thememory-guided saccade task to remain consistent with past studies, the cells

(legend continued on next page)

ll
Article



that did not elicit significant persistent activity in the saccade task showed similar population response profiles in our main tasks. Including these cells in our

analyses for the face task (n = 111) did not critically change the reverse ordering of PSTHs (F) or the curved manifold of the population responses (H). In fact, the

population of the cells without persistent activity in the memory-guided saccade task replicated both findings on their own (G, I), albeit they had lower firing rates

during the stimulus viewing period. (J) Ipsilateral placement of face stimuli eliminated any possible overlap with the RF. Yet, the ordering of the PSTHs remained

the same as that in the main task, confirming that the reversal of Tin PSTH order with stimulus strength was not caused by inadvertent overlaps between the RFs

and the face stimuli. These results also rule out explanations based on attentional mechanisms or visual selectivity of LIP cells that depend on the overlap of the

stimulus and the RF. Further support for our conclusions comes from independent analyses of stimuli with different sizes, which changed by an octave across

trials. Both large and small stimuli in the main task caused consistent Tin PSTH orders and curved manifolds (not shown). Forty-four units were recorded in 17

sessions of the control experiment. (K) The average firing rates in the ipsilateral control experiment decreased with stimulus strength for both Tin (Equation 1, a1 =

� 0:15±0:05, p = 0:010) and Tout choices (a1 = � 0:31± 0:05, p = 4:6310�8). Error bars are SEM. (L) The population neural responses in the ipsilateral control

experiment formed a curved manifold. The plot shows the neural activity at 400 ms after stimulus onset (100 ms window). The curvature of the manifold was

significant (p< 0:001, based on tests of consistency of curvature direction; see STAR Methods).
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(legend on next page)
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Figure S3. A curvedmanifold in the PC space arises from the variation of tuning for stimulus strength across the recorded population, related

to Figure 2

(A) A schematic description of our principal component analysis (PCA). Our dataset included neurons preferring either of the two targets. T1 and T2 indicate the

targets on the right and left side of the screen, one of which in the RF. Tin and Tout indicate the targets inside and outside the neuron RF. Signed stimulus strength in

the experiment was originally defined based on the location of the targets (T1 versus T2). For each neuron, we redefined the stimulus strength such that negative

valuesmatched Tout and positive valuesmatched Tin. Doing so enabled us to analyze the recorded units as a population of neurons with similar target preferences

(i.e., aligned Tin) (middle). In our main analyses, PCA was applied to the PSTHs after this alignment (right) to focus on the diversity of stimulus tuning across the

population (see panel B). (B) When the preferences of neurons are aligned, a curved manifold arises from the variation of neural tuning across units. To

demonstrate this point, we simulated six hypothetical scenarios for a neuron pair with opposite choice preferences (one preferring T1 and the other T2), plotting

their joint manifolds before and after the Tin alignment. If the neurons have symmetric tuning for positive and negative stimulus strengths (slopes with similar

magnitudes but opposite signs) and the tuning slopes are identical across the population, themanifold would be a straight line regardless of Tin alignment (B1-B2).

If the single-unit tuning is asymmetric but similar across the population, the manifold would be curved before alignment (B3) but straight afterward (B4). However,

Tin alignment does not remove the curvature caused by diverse tuning across neurons (B5-B6). (C) The Tin alignment focused our analyses on the diversity of

responses across the population. However, all of our main conclusions replicate in the absence of Tin alignment too. The left panels show the population response

manifolds without Tin alignment for a balanced population of neurons preferring T1 and T2 (see STAR Methods). The right panels show the manifolds with Tin
alignment. (D-F) Context dependency of neural manifolds (see Figures 5C, 5F, and 5H) tested using the population without Tin alignment. The results are

qualitatively similar to those with alignment.
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Figure S4. The extent of the manifold curvature in LIP population responses exceeded the curvature expected purely from neural response

variability, related to Figure 2

(A) To confirm the significance of the manifold curvature, we compared the magnitude of curvature in the actual neural responses with that of simulated data that

had the same response variability as the actual data but were constrained to a linearized manifold (see STARMethods). The linearized manifolds were generated

by adjusting mean responses for each stimulus strength to be on an interpolating line between the responses to the strongest stimuli supporting the Tin and Tout
choices. Population responses were then generated using these adjusted means while preserving the response variability across trials at the levels observed in

the data. Response variabilities could bend the simulated manifolds due to finite sampling. However, these ‘‘noise’’-induced curvatures were much smaller than

those in the data (right column in the panel, p< 0:001; error bars are SEM.). The plots are based on firing rates in the same window as in Figures 2E and 2F (350-

450 ms after stimulus onset). Colored lines are second-order polynomial fits to ten bootstrap samples of the observed data (left column) or ten simulated

linearized population response manifolds (middle column). (B) Significant manifold curvatures were consistently observed in both monkeys performing the face

task (monkey L, n = 62; monkey A, n = 70). (C) The curvature was also observed in individual sessions of the task when we could record enough units simul-

taneously to infer themanifold from single sessions (session 1, n = 8; session 2, n = 10). Conventions in B andC are the same as in Figure 2E. (D) Average PSTHs of

well-isolated single units (n = 75) and their curved manifolds showed the same patterns obtained from all units.

ll
Article



Figure S5. Population neural responses throughout task epochs, related to Figure 2

(A) Population average PSTHs aligned to multiple task events. Those aligned to the stimulus onset are the same as Figures 2A and 2B. In the face task, the

separation of the population average Tin and Tout PSTHs were smaller, and firing rate dynamics continued into the delay period after stimulus offset. However, in

both tasks, Tin PSTHs converged to the same level before the saccade for all stimulus strengths, consistent with past studies (Roitman and Shadlen, 2002;

Shadlen and Newsome, 2001). (B) Around the time of theGo cue and saccade, the population neural responses in the PC state space converged to one of the two

points that represented the monkey’s choice. The PC space is identical to those in Figures 2E and 2F. Each panel shows the responses at a particular moment

aligned to the Go cue (top) or saccade onset (bottom). (C) Population response manifolds expanded over time after stimulus onset, remaining largely aligned

during decision formation but misaligned with the action encoding axis. After the stimulus offset, population response patterns for different stimulus strengths

converge onto one of the two action-encoding points in the state space, compatible with the transformation of the DV encoding to choice encoding. Regions not

occupied by neural responses on the saccade-alignedmanifolds are shown as dashed lines and plotted only to convey misalignment with themanifolds at earlier

times. (D) The trajectory of population neural responses for each stimulus strength in the same PC space, aligned to the stimulus onset and saccade onset for

each task. Data points represent response patterns for different stimulus strengths at different times. Lines connect data points of the same stimulus strength over

time. Later times are shown with larger points and more saturated colors.
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Figure S6. Curved manifolds emerge when precise coding of continuous variables must happen with a limited dynamic range of neural

responses, related to Figure 6

Various constraints limit the dynamic range of neurons in a biophysically plausible neural circuit (Wohrer et al., 2013), including but not limited to the non-negativity

of firing rates and metabolic costs associated with spiking (Keemink and Machens, 2019; Lennie, 2003). These constraints limit the neural responses to a

bounded subspace within the population response state space. (A) Encoding a continuous variable (e.g., the DV) along a straight line in the state space can

achieve arbitrary high precision in the absence of constraints on the dynamic range of neural responses. (B) Compacting a straight linear manifold within the

bounded subspace has two important downsides. First, the diagonal lines that provide the maximum dynamic range go through the center of the bounded

subspace, where the whole population has high levels of activity —an energetically expensive code. Second, compacting the straight manifold makes the

response patterns associatedwith different DVs less distinguishable, reducing the encoding precision. (C) Bending themanifold within the bounded subspacewill

reduce energetic costs (Keemink andMachens, 2019). Further, under a favorable correlation structure in the population responses (Moreno-Bote et al., 2014) and

especially if decoding along a curved manifold is feasible, the curved manifold makes the population responses associated with neighboring DV values more

distinguishable, increasing the encoding precision. (D) The presence of curvature is not changed by affine transformations of the bounding subspace, e.g.,

applying different scaling coefficients to the responses of individual units. However, the exact shape and layout in state space could bemodified. (E) Although it is

possible to further elongate the one-dimensional manifold by twisting and tangling it within the subspace, it may not be advantageous for two reasons. First,

although such twisted manifolds allow larger separation of points along the manifold, they may bring distant points closer to each other in the state space,

increasing readout errors due to noise. Second, a twisted manifold necessitates a more complex readout (decoder). Whereas a linear or low-order polynomial

readout is easily implementable, more complex readouts may not be easy to implement or may lack the robustness offered by simpler decoders.
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Figure S7. Neurons in the IT cortex show monotonic tuning for stimulus strength during the face categorization tasks, similar to the
monotonic tuning of MT cells for motion strength, related to Figure 2

Firing rates of MT neurons are known to monotonically change as a function of motion coherence of the random dots stimuli. If sensory responses to our face

stimuli show non-monotonic, complex tuning, integrating these responses might result in non-monotonic firing rates as observed in LIP. To exclude this pos-

sibility, we analyzed the activity of neurons in the IT cortex recorded simultaneously with LIP neurons during the face tasks. The recordings were made from face

selective neural clusters in anterior IT (Tsao et al., 2003). The figure shows the population average firing rates of 199 face-selective neurons. Stimulus strengths

were sorted according to individual neurons’ preferred face category. The firing rates weremonotonically modulated by the stimulus strength, providing evidence

against the possibility that the reversal of firing rates in LIP is inherited from the activity of sensory neurons.
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