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SUMMARY
Goal-directed behavior requires integrating sensory information with prior knowledge about the environ-
ment. Behavioral biases that arise from these priors could increase positive outcomeswhen the priors match
the true structure of the environment, but mismatches also happen frequently and could cause unfavorable
outcomes. Biases that reduce gains and fail to vanish with training indicate fundamental suboptimalities
arising from ingrained heuristics of the brain. Here, we report systematic, gain-reducing choice biases in
highly trained monkeys performing a motion direction discrimination task where only the current stimulus
is behaviorally relevant. Themonkey’s bias fluctuated at two distinct time scales: slow, spanning tens to hun-
dreds of trials, and fast, arising from choices and outcomes of the most recent trials. Our findings enabled
single trial prediction of biases, which influenced the choice especially on trials with weak stimuli. The pre-
stimulus activity of neuronal ensembles in the monkey prearcuate gyrus represented these biases as an
offset along the decision axis in the state space. This offset persisted throughout the stimulus viewing period,
when sensory information was integrated, leading to a biased choice. The pre-stimulus representation of his-
tory-dependent bias was functionally indistinguishable from the neural representation of upcoming choice
before stimulus onset, validating our model of single-trial biases and suggesting that pre-stimulus represen-
tation of choice could be fully defined by biases inferred from behavioral history. Our results indicate that the
prearcuate gyrus reflects intrinsic heuristics that compute bias signals, as well as the mechanisms that inte-
grate them into the oculomotor decision-making process.
INTRODUCTION

Choice biases are prevalent.1 Biases that reflect imbalanced

priors or reward expectations in the environment are advanta-

geous as they could improve the speed or overall gain of our

choices.2–8 However, biases could also hinder performance,9

especially when they arise from heuristics that do not truly cap-

ture the environment or task structure. It is often hypothesized

that the history of past stimuli, actions, and outcomes inform

these heuristics for sequential choices, where subjects perform

a series of similar decisions.5,9–22 However, the computations

involved in these heuristics, specifically what constitutes past

history (e.g., time scales) and how it influences future choices

(e.g., changes in the starting point of the decision-making pro-

cess19,23 or dynamic bias signals4,20) is not well understood.

Further, the neural representation of history dependent biases

(e.g., locus and neural code) and their integration in the deci-

sion-making process remain underexplored.
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Addressing these questions is especially impactful in a task in

which heuristic biases are not rewarding, and thus there is no

task incentive to develop them. Biases that increase reward

rate encourage alteration of decision strategies based on task

structure.4,5,10,11 The underlying computations and neural mech-

anismsmay, therefore, not generalize to conditions where biases

are non-rewarding and not induced by the experimenter. Inves-

tigating non-rewarding biases that persist despite training

provides an opportunity to study the neural computations under-

lying choice bias free from experimenter-induced factors and of-

fers an opportunity to compare the findings with those of past

studies4,5,10,11,17

Addressing our questions greatly benefits from single trial

quantification of the magnitude of bias, as well as recording

from neural ensembles in brain regions that represent both the

bias and the decision-making process. Single trial quantification

of themagnitude of bias necessitates development of behavioral

models that can accurately predict the bias on individual trials.
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Although many studies attempted to do so,16,23,24 there are few

comprehensive models that achieve sufficient accuracy, often

because they ignore one or more key factors that shape the

bias. Additionally, past studies on the neural representation of

bias focused largely on single neuron activity,4,13,16–19 whereas

accurate characterization of themoment-by-moment fluctuation

of the state of the neural population requires simultaneous

recording of many neurons.24–26 Finally, past studies focused

largely on finding a neural representation of bias and rarely

explored how the bias is integrated in the decision-making pro-

cess. Here, we overcome these challenges for the first time by

developing a comprehensive framework that determines the

magnitude of bias on individual trials, characterizes bias repre-

sentation by the prefrontal neural population, and determines

the computational mechanism for integrating the bias in the de-

cision-making process.

We recorded simultaneously from large populations of prearc-

uate gyrus neurons while monkeys performed a direction

discrimination task, designed such that past history was unre-

lated to the present stimulus, making history-dependent biases

suboptimal. Nonetheless and despite extensive training, mon-

keys showed detectable biases that fluctuated throughout and

across experimental sessions. Their choice biases stemmed

from two sources: fast biases shaped by actions and outcomes

of past trials, especially the most recent one, and slow biases

fluctuating over tens to hundreds of trials. Our single-trial quan-

tification of bias enabled us to show that the total bias, as well as

its two sources, was represented in the population activity of

pre-arcuate gyrus neurons prior to the stimulus onset. The

same pre-stimulus neural responses were also predictive of

the upcoming choice. These neuronal representations of bias

and choice were well aligned in the activity state space, suggest-

ing that the pre-stimulus choice prediction was achieved through

the representation of bias, which itself reflected past choices and

feedbacks. Finally, we demonstrate that the bias influenced the

decision-making process as an initial offset in the accumulation

of evidence, followed by a dynamic bias signal throughout the

stimulus presentation, pointing at the computational mechanism

for the integration of bias in the decision-making process.

RESULTS

The present study is the reanalysis of previously published data

in the context of new scientific question.26,27 Using a 96-channel

multi-electrode array, we recorded neural population activity

from the prearcuate gyrus (PAG, area 8Ar; 169–250 single and

multi-units in each session; median = 220), while monkeys (n =

2) performed a direction discrimination task (9 and 7 sessions

for monkeys 1 and 2, respectively26,27). Each trial began with

the monkey fixating on a central fixation point on the screen,

following by the appearance of two targets (T1 and T2; Fig-

ure 1A), and a circular patch of random dot kinematogram.28

The percentage of coherently moving dots (coherence or motion

strength) and the net motion direction varied randomly from trial

to trial. The motion stimulus was shown for 800 ms and was fol-

lowed by a delay period. The monkey reported motion direction

at the end of the delay period with a saccadic eye movement to

the corresponding targets. We use signed motion coher-

ence19,28,29 to jointly represent the stimulus strength and
direction with a single variable (positive for motion toward T1

and negative for motion toward T2).

Highly trained monkeys exhibit slow and fast choice
fluctuations
Monkeys were extensively trained in the task and showed stable

performance prior to neural recordings. The average fraction of

correct choices was equal to 0.78 ± 0.01 and 0.74 ± 0.008 for

monkeys 1 and 2, respectively. The mean sensitivity threshold

(coherence strength corresponding to 0.75 accuracy) equaled

0.08 ± 0.012 and 0.11 ± 0.019. Both monkeys barely exhibited

lapses; the lapse rate (1- accuracy for the strongest stimulus)

was close to zero (0.002 ± 0.0007 and 0.028 ± 0.007). Despite

their extensive training and trial-to-trial independence of stimulus

conditions, both monkeys demonstrated slow fluctuations in

their choice preference, where monkeys chose one target more

frequently than the other for tens to hundreds of trials before

reversing their preference (Figure 1B; black line at the bottom).

These fluctuationswere spontaneous andcould not be explained

by fluctuations of motion direction across trials because motion

direction was largely balanced in those periods (Figure 1B, top).

To further ensure that the slow choice preference fluctuation

did not merely reflect random fluctuations arising from spurious

unbalance of motion directions and coherence, we repeated

our analysis and replicated our results by subsampling trials to

equalize the number of trials with stimuli moving toward T1 or

T2 for each coherence (Figures 1B, S1A, and S1B blue line; see

STARMethods, Equation 2). Across sessions, the correlation co-

efficient between slowchoice preference fluctuations and signed

motion coherence was weak and not statistically significant

(mean ± SEM0.02 ± 0.04, permutation test p-value = 0.52). Addi-

tionally, the mean auto-correlogram of slow choice preference

fluctuations calculated on coherence-balanced trial history

showed a statistically significant broad central peak (Figure S1;

one – sided permutation test, p-value < 0.05), indicating the pres-

ence of slow fluctuations of response preference, irrespective of

fluctuations of stimulus statistics.

On a finer timescale, we also observed that the monkey’s

choices were influenced by recent choices and outcomes. As

illustrated by the example trial sequence in Figure 1C, the mon-

key tended to choose the opposite target after error trials in this

session. Fluctuations of both slow and fast choice preference

were reflected as a shift in the psychometric curve (see STAR

Methods, Equation 1) when it was calculated conditioned on

the direction of slow choice preference (Figure 1D), previous

choice (Figure 1E), or recent outcome (Figure 1F).

Improvement of choice prediction accuracy with slow
and fast choice fluctuations
To quantify how monkeys’ decisions were affected by the slow

and fast fluctuations of choice preference, wemeasuredwhether

andhowmuch theywould improve theprediction accuracyof up-

coming choice beyond that given by motion stimulus alone.

We built a logistic regression model to predict choices based

on three variables: stimulus coherence, slow choice preference

fluctuation, and fast choice preference fluctuations expressed

as a combination of previous choice and reward (see STAR

Methods, Equations 2–4). The cross-validated model prediction

accuracy was assessed using a leave-one-out procedure. To
Current Biology 31, 1234–1244, March 22, 2021 1235



Figure 1. Well-trained monkeys in a random dots direction-discrimination task show slow and fast fluctuations in their preferred choice

(A) Task design. After the monkey acquired a central fixation point, the patch of randomly moving dots appeared on the screen for 800 ms. The fraction of dots

moving coherently in a given direction defined the trial difficulty. Themotion was followed by a delay period with variable length, after which themonkey indicated

its choice by making a saccade towards one of the two targets (T1 or T2).

(B) Top – average of signed motion coherence. Dashed line indicates 0% coherence, and positive and negative values indicate motion toward T1 and T2,

respectively. Bottom– black line shows the fraction of trials in which themonkey chose T1. The dashed blue line also shows the choice preference towards T1 but

calculated after balancing coherence in a given window. All curves calculated in a 130 trial running window.

(C) The monkey’s choices in a sample sequence of 30 trials. Color intensity indicates signed motion coherence direction, with positive values showing motion

toward T1 and negative values motion toward T2.

(D–F) Psychometric curves from one experimental session (the same session as in B and C) computed conditioned on the monkey’s slow choice preference (D),

previous choice (E), and previous reward (F). Dots indicate actual data and the solid lines are maximum likelihood fits of logistic functions (see STAR Methods).

See also Figure S1.
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measure the role of choice preference fluctuations in deter-

mining choices, we compared the prediction accuracy with a

baseline obtained by fitting the model using shuffled fast and

slow choice preferences across trials. Because shuffling de-

stroys the statistical relationship between current choices and

choice preference fluctuations, the comparison with the baseline

isolates improvement of the prediction accuracy conferred by

the latter. The mean prediction accuracy improvement across

all sessions was small but significantly larger than zero

(0.016 ± 0.002, one sample t-test, p-value = 10-6; Figure 2A;

black bars; see Table S2 with results for two monkeys sepa-

rately). Importantly, when we focused only on difficult trials

where the stimulus is less informative and biases could have a

larger influence on choice, the improvement of choice prediction

accuracy doubled (mean ± SEM: 0.032 ± 0.004; one sample

t-test, p-value = 10-7; Figure 2A; open bars; see Table S2 with
1236 Current Biology 31, 1234–1244, March 22, 2021
results for two monkeys separately). Consistently, the improve-

ment tested only on easy trials was not different from zero

(mean ± SEM: 0.0001 ± 0.0002; one sample t-test test, p-value =

0.69; see Table S2 with results for two monkeys separately),

which is expected because prediction accuracies based on

stimulus strength alone are already close to ceiling. Overall,

biases had a tangible effect on upcoming choices especially

for more difficult decisions.

It is possible to use similar choice prediction models to quan-

tify the temporal extent of fast and slow choice preference fluc-

tuations. For fast choice preference fluctuations, information

about choice and reward of the previous trial significantly

improved choice prediction accuracy (Equation 5 in STAR

Methods, mean difference tested on difficult trials equaled

0.015 ± 0.003; one sample t-test, p-value = 3*10-5). However,

including information about more distant past (from two to five
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Figure 2. Predicting the monkey’s choices becomes more accurate

by using fluctuations of behaviorally defined choice preference

(A) Improvement of choice prediction accuracy measured as the difference of

the accuracy of a logistic regression model with fast and slow choice prefer-

ence fluctuations and a reference model in which choice preferences were

shuffled across trials. Bothmodels contained stimulus strength (signedmotion

coherence) as a regressor in addition to the bias terms. Improvement in choice

prediction accuracy was higher when computed for difficult trials (white bars,

compare to black bars for all trials). Each pair of bars represents a single

session. (* one-sided permutation test; p-value < 0.05)

(B–D) Traces of slow (B, blue), fast (C, navy blue), and total (summed fast and

slow, D, green) biases across a sample experimental session. On each trial,

biases were computed from the choice preference fluctuations multiplied by

their corresponding weights from the logistic regression model. Insets zoom in

on a sequence of 60 trials in the session (the grey bar on the x-axis) for better

visualization of the dynamics of different types of biases. Note the different

time scale between slow and fast biases but their similar contribution to the

total bias in terms of their magnitudes.

See also Figure S2, Tables S1, and S2.
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trials back) did no improve the prediction accuracy further

(paired t-test on prediction accuracies, p-value > 0.32; Fig-

ure S2A), indicating that in our task, fast choice fluctuations
were shaped in a time scale that was no longer than one single

trial in the past.

We studied how the size of the trials window used to calculate

slow choice preference improved performance of a model that

included both slow and fast choice preference fluctuations

compared to amodel in which only fast choice preference fluctu-

ationswasused (in bothmodels coherencewasalsousedasa re-

gressor). If slow fluctuations were defined using trial windows of

less than 130 trials, there was not statistically measurable effect

(Figure S2B; Equation 4, paired t-test on prediction accuracies,

p-value > 0.063). However, when slow fluctuations were calcu-

lated in larger windows (130–400 trials), there was a statistically

significant increase inpredictionaccuracy (paired t-test,p-value<

0.05 for 19 cases; Figure S2B). Therefore, we conclude that slow

choice preference fluctuations estimated in a window of at least

130 trials and fast choice fluctuations capturing the immediately

preceding choice and reward were the only reliable and measur-

able variables that predicted choice apart from the stimulus.

An important question is to know the relative strength of the ef-

fect of fast and slow choice preference fluctuations. To compare

their effects, we first expressed both types of fluctuations in the

same units (log-odd units) by using the logistic regression model

described above. Thus, ‘‘slow bias’’ (Figure 2B) was defined as

the product of slow choice preference fluctuation and its corre-

sponding weight in the model plus the model offset (see STAR

Methods). Similarly, ‘‘fast bias’’ (Figure 2C) was defined as the

product of fast choice preference fluctuation and its model

weights (see STAR Methods). To compare the relative strength

of slow and fast biases on choice prediction, we calculated the

mean ratio of the absolute value of each divided by the sums

of absolute values of both biases and stimulus strength in log-

odds space (see STAR Methods, Equation 6). We found that

both fast and slow biases were effective in shaping the choice

but, on average, the fast bias had a lower impact on choice

(mean ± SEM 0.18 ± 0.01) compared to the slow bias (mean ±

SEM 0.25 ± 0.01; difference of fast and slow = - 0.07 ± 0.016,

one sample t-test p-value = 0.0006).

To capture the overall effect of slow and fast biases on

behavior, we defined ‘‘total bias’’ (Figure 2D) on each trial as

the sum of slow and fast biases. The total bias in log-odds units

corresponds to the single-trial quantification of bias that is cen-

tral for our analysis (for comparison, we provide Table S1 where

total bias is expressed in units of coherence). On average, the

contribution of total bias to the monkey’s choices was 0.25 ±

0.01 in units of log-odds For comparison, it was more than twice

smaller than the contribution of motion stimulus alone (mean ±

SEM0.58 ± 0.02), reflecting the fact that monkeysmade their de-

cision largely based on the presented stimuli, but they were also

slightly impacted by their current bias.

Impact of slow and fast biases on monkey’s reward rate
Since our task was designed such that the stimulus sequence

across trials did not have temporal correlations, the existence

of behavioral biases described above can only impair the mon-

key’s performance. As expected, periods with larger total bias

correlated with periods with lower animal accuracy (fraction of

correct choices; Pearson correlation coefficient -0.08 ± 0.03,

permutation test, p-value = 0.001). However, the reduction in ac-

curacy was very small (0.007 ± 0.003; one sample t-test,
Current Biology 31, 1234–1244, March 22, 2021 1237
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Figure 3. Pre-stimulus responses of prearcuate gyrus neurons carry

information about behavioral biases

(A–C) Peristimulus time histograms (PSTHs) of example cells (left, monkey 1,

and right, monkey 2) averaged across trials with high positive (dark) or negative

(light) slow (A, blue), fast (B, navy blue), or total (C, green) biases. Specific bias

ranges for which trials were averaged (see legends) corresponded to the 0.35

(negative) and 0.65 (positive) quantiles of the bias distribution for all sessions

pulled together. Shaded areas correspond to SEM. On the x-axis, zero refers

to stimulus onset. Target onset time is indicated by an arrow. Spikes were

counted in 100 ms moving windows in steps of 20 ms.

(D) Histograms of the coefficients of determination (cross-validated R2) of a

linear regression model fitted to predict slow (left, blue), fast (middle, navy

blue), or total (right, green) biases from the pre-stimulus population activity of

prearcuate gyrus cells (T = 800 ms; grey areas in A–C). Arrows indicate mean

across sessions (0.23 ± 0.05 for slow; 0.29 ± 0.06 for fast and 0.3 ± 0.05 for

total biases respectively; mean ± SEM).

See also Figure S3.
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p-value = 0.02), suggesting that monkeys may not have noticed

the adverse effect of biases on their performance or they did not

find enough incentive to fully abolish them.

Representation of bias in the pre-stimulus neural
responses of PAG
Since the slow and fast biases influenced the monkey’s choice

(Figure 2A), the information about them should be present in

brain regions involved in the decision-making process. An area

of interest could be PAG, as it provides easy access to a large
1238 Current Biology 31, 1234–1244, March 22, 2021
scale recordings and its neural responses are related to the

accumulation of evidence.26,30,31 Also, since the observed

behavioral biases had a history dependent component, there

should be neurons sensitive to the bias even prior to the stimulus

presentation. Such a tuning is illustrated in Figures 3A–3C, where

we show responses of example neurons representing slow (Fig-

ure 3A), fast (Figure 3B), and total (Figure 3C) biases.

To investigate whether these biases were represented in the

responses of PAG neural population, we used a linear model in

which each type of bias (slow, fast, or total) was regressed

against pre-stimulus activity of simultaneously recorded PAG

neurons (Equation 8; spike counts calculated in 800 ms window

prior to stimulus onset). The analyses were performed using first

few PCA components of the neural population responses that

collectively explained 50% of the variance (Equation 7). Here,

we used PCA to reduce overfitting,31,32 but qualitatively similar

results were obtained without dimensionality reduction. All three

biases were significantly represented in the pre-stimulus re-

sponses of PAG population (Figure 3D; mean of cross–

validated R2 across sessions was equal to 0.23 ± 0.05, 0.29 ±

0.06 and 0.30 ± 0.05 for Bs, Bf and Bt respectively, one-sided

permutation test, p-value = 0.001 in all three cases).

Consistent with a representation of the fast bias, PAG activity

prior to the stimulus onset represented previous choice and

reward, which, together, defined the fast bias. Examples of

four neurons for which firing rates were modulated by previous

choice or reward are shown in Figure S3 (A and C, respectively).

In all cases, the response modulation toward previous choice or

recent outcome persisted through the pre-stimulus period.

Fitting a logistic regression model to the firing rate of the pop-

ulation of simultaneously recorded PAG neurons (Equation 9 for

n < 0) revealed that previous choices could be decoded up to

three trials back in the past (Figure S3B; means ± SEMs:

0.52 ± 0.005; p-value = 0.003 for n = -3; 0.53 ± 0.006; p-value =

0.0003 for n = -2 and 0.81 ± 0.02; p-value < 10-11 for n = -1, one –

sided t-test; see Table S2 with results for two monkeys sepa-

rately). A similar model (Equation 9 for n < 0) could predict the

outcome (reward) of the preceding trial (Figure S3D; mean ±

SEM 0.81 ± 0.01; one-sided paired t-test, p-value 0.0001; see

Table S2with results for twomonkeys separately), but not further

back (see STAR Methods).

Predicting choices from pre-stimulus neural responses
of PAG
Given that slow and fast biases influenced monkeys’ decisions

(see Figure 2A) and that they were represented in the pre-stim-

ulus PAG activity (see Figure 3), we asked whether pre-stimulus

activity was also predictive of monkeys’ upcoming choices. Fig-

ure 4A shows two example units. One of the units (Figure 4A, left)

had a higher firing rate for choosing the T2 target and the other

unit had a higher firing rate for the opposite target (Figure 4A,

right). Importantly, both units represented the upcoming choice

even prior to the stimulus presentation (grey areas), matching

the representation of bias in the neural population.

To quantify this activitymodulation at the population level, we fit

a logistic regressionmodel to predict upcoming choices using the

PCA-dimensionality-reduced PAG population responses in the

800ms before stimulus onset (Equation 9 for n = 0). Formany ses-

sions (44%; 7 out of 16), the cross-validated prediction accuracy
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Figure 4. Pre-stimulus activity of prearcuate gyrus neurons predicts

upcoming choice

(A) Mean firing rate of two cells (from two monkeys) averaged across trials with

T1 (dark) or T2 (light) choices. Shaded area corresponds to SEM. Arrow on the

x-axis indicates target onset. Firing rates were calculated in a 100ms windows

moved in steps of 20 ms.

(B) Cross-validated prediction accuracy of a logistic regression model for

predicting upcoming choice from the pre-stimulus activity of simultaneously

recorded neurons in prearcuate gyrus (window size, 800 ms; grey area in A,

PCA dimensionality reduction). Accuracy was higher when assessed for

difficult trials only (white bars). Choice prediction accuracy was above chance

level (0.5, dotted line) for seven or nine sessions when calculated for all or

difficult trials respectively (*, one-sided permutation test; p-value < 0.05). Mean

across session was equal (0.52 ± 0.005, p-value = 0.001 for all trials; 0.54 ±

0.008 p-value = 0.001 for difficult trials mean ± SEM p-values from one-sided

permutation test).

See also Figure S3 and Table S2.
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was above chance level (0.5) (Figure 4B, black bars; mean across

sessions, 0.52 ± 0.005, one-sided permutation test p-value =

0.001; see Table S2 with results for two monkeys separately).

Similar to the behavioralmodel, the cross-validated prediction ac-

curacy was higher when we focused on difficult trials (white bars;

0.54 ± 0.008 one-sided permutation test, p-value = 0.001; see Ta-

ble S2 with results for two monkeys separately), and not signifi-

cantly different from chance level for easy trials (mean ± SEM

acrosssessions0.5±0.004one–sidedpermutation test,p-value=

0.31; see Table S2 with results for two monkeys separately).

Prediction of choices based on pre-stimulus neural
activity is due to the representation of slow and fast
biases
A key question is whether choice predictive neural responses

prior to stimulus onset are due to the representation of the fast

and slow biases that we have defined behaviorally. One possibil-

ity is that encoding of our behaviorally defined biases fully ex-

plains the representation of choice prior to the stimulus onset,

which would imply that total bias and choice representations

are ‘‘aligned’’ in neuronal activity space. Alternatively, choice

predictive neural responses could arise from factors not fully

captured by fast and slow biases, which would cause
misalignments between choice and total bias representations

(see STAR Methods, Equation 13). To differentiate these two

possibilities, we asked if the neural representation of biases

was as predictive of behavior as the neural representation of

choice.

For each trial, we used the remaining trials in the session to find

the best hyperplanes that explained the choice (Equation 9) and

total bias (Equation 8) based on pre-stimulus responses (Fig-

ure 5A). Then, we calculated the distance of pre-stimulus re-

sponses of the left-out trial from those two hyperplanes (dchoice

and dbias). If the pre-stimulus choice and bias representations

were aligned, predicting the upcoming choice based on dbias

would be as accurate as using both dchoice and dbias (Equations

10 and 11). Indeed, this waswhat we observed. Across sessions,

the difference in predicted accuracy was negligible (Figure 5B;

mean ± SEM, 0.002 ± 0.003) and not significant (paired t-test,

p-value = 0.42), suggesting that the neural representation of total

bias was functionally indistinguishable from the neural represen-

tation of choice prior to stimulus onset. Consistent with these re-

sults, predicting the choice based on the sign of dbias or dchoice

was comparable, with slightly better accuracies for dbias (mean

difference: 0.02 ± 0.004, paired t – test p-value = 0.001; see Table

S2 with results for two monkeys separately); Figure 5C; mean

prediction accuracy based on choice hyperplane, 0.52 ± 0.005;

one-sided permutation test p-value = 0.001); based on bias

hyperplane 0.54 ± 0.004; one – sided permutation test p-value =

0.001; see Table S2 with results for two monkeys separately),

further supporting our conclusion.

Additional insight about choice predictive neural responses

prior to stimulus onset is gained from comparing the geometry

of choice and bias decoder hyperplanes. Vectors in high-dimen-

sional spaces tend to be orthogonal.33 However, if the represen-

tation of choice and bias are functionally aligned, one would

expect that the angle between the norms of their respective hy-

perplanes is less than 90 deg. Indeed, the mean angle was equal

71 ± 2.5 deg. and was significantly smaller than 90 deg. (mean ±

SEM., permutation test p-value = 0.001; for extended analysis

see Figure S4). Additionally, we found that the weight vectors

that defined the norm of the choice and bias hyperplanes (bj in

Equation 8 and aj in Equation 9) were positively correlated and

the correlation coefficients were significant for the majority of

sessions (Figure 5D; n = 13, one – sided permutation test

p-value < 0.05; across session mean ± SEM, 0.33 ± 0.04; one-

sided permutation test p-value = 0.001), supporting the notion

that the hyperplane norms were not orthogonal.

Further supporting the alignment hypothesis, we found that

sessions with stronger representation of the total bias (higher

cross-validated R2) in pre-stimulus activity of PAG also had a

higher cross-validated choice prediction accuracy (Figure 5E;

Pearson correlation coefficient 0.91 p-value = 9*10-7). These re-

sults suggest that across-session variability in choice predictive

power could be explained by the across-session variability in the

representation of total bias.

The integration of bias into the accumulation of
evidence
Given the presence of the bias signal prior to stimulus presenta-

tion, the question arises of whether and how this bias impacts

the accumulation of the sensory evidence during the stimulus-
Current Biology 31, 1234–1244, March 22, 2021 1239
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(B) Difference in choice prediction accuracy between amodel including the distances from neuronal activity to the choice and bias hyperplanes as predictors, and

amodel with the distance to the bias hyperplane as the only predictor. Themean prediction accuracy difference between the twomodels was equal 0.002 ± 0.003

and not significant (paired t-test, p-value = 0.42)

(C) Experimental data. Choice prediction accuracies from the direct and indirect methods were comparable, suggesting that the bias and choice decoders are

aligned as illustrated in (A). As in (B), choice decoding was based on PAG activity from an 800 ms window before stimulus onset (0.5 chance level marked by

dotted line; mean ± SEM calculated across sessions, PCA dimensionality reduction)

(D) Consistent with an alignment of the bias and choice hyperplanes, the correlation coefficient between weights of choice and bias decoder hyperplanes (y-axis)

was significantly positive for most of the sessions (* one-sided permutation test, p-value < 0.05).

(E) Across sessions choice prediction accuracy (direct method) correlated with the strength of the total bias representation (defined as the R2 of the total bias

linear regression model; corr = 0.91, p-value = 9*10-7). Each point represents a single session (dots or stars for Monkey 1 or 2, respectively).

See also Figure S4 and Table S2.
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viewing period. Our result about the alignment of bias and choice

decoders before stimulus onset suggests that the bias could be

implemented as an initial offset in baseline activity before accu-

mulation of sensory information begins in each trial. This initial

offset is best visible in the neuronal activity axes where the deci-

sion is encoded (orthogonal to the choice decoder hyperplane

shown in Figure 5A). Thus, we plotted how the decision variable

(projection of neuronal activity onto the choice axes) evolved

over time and how its slope depended on coherence and bias

(Figure 6, see STAR Methods Equations 14, 15).

We found, consistent with our expectations, that there was

an offset in the decision variable before stimulus onset. The

offset was positive when the bias favored the final choice (Fig-

ure 6A, dark curve) and negative when the bias was against the

final choice (light curve). This offset was roughly constant for

the whole duration before stimulus onset and persisted during

the first few hundreds of milliseconds of stimulus viewing

period, when the decision was formed. Interestingly, the offset

lasted longer for more difficult stimuli (Figure 6B), where
1240 Current Biology 31, 1234–1244, March 22, 2021
monkeys integrated the sensory evidence longer. However, to-

ward the end of the stimulus presentation, the offset vanished

because the monkey had likely reached a decision on the ma-

jority of trials. Our results suggest that the initial bias was inte-

grated into the decision-making process and contributed to the

formation of the choice.

The initial offset and final convergence of the decision vari-

ables for positive (Figure 6A, dark curve) and negative (light

curve) biases are consistent with predictions of bounded evi-

dence-accumulation models for the decision-making pro-

cess.34–36 The gradual dynamics of the decision-variables and

larger and longer-lasting effects of offset for weaker motion stim-

uli (compare Figures 6B and 6C) is compatible with thesemodels

too. This is because the accumulation of sensory evidence is

slower for weaker stimuli, and the decision variable takes longer

to hit the decision bound. This slower ramping lets the bias-

induced offset (light and dark red) survive longer during stimulus

viewing. In contrast, sensory evidence accumulates quickly on

easy trials, causing accelerated convergence of the decision
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(A–C) Instantaneous decision variable (DV) from the logistic regression model
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across sessions.

(D and E) Cumulative bcoh (D) and cumulative (dynamic) bbias (E) from a linear

model in which the slope of the trial by trial DV was estimated as a weighted

sum of coherence and total bias locally in time (see STAR Methods). Shaded

area represents 95% confidence interval (bootstrap procedure, n = 1000).

Both models’ weights for coherence and total bias were accumulated only

from periods of significant bcoh and were not normalized by the number of

points used in their calculation. DV slope was fitted in 200 ms window (10
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variables and leaving minimal room for the bias-induced offset to

influence the final decision.

Another interesting feature of the neurally inferred decision

variable is that it continues to rise after the convergence of pos-

itive and negative bias curves in Figure 6. Because our model is

designed to predict the choice (Equation 14), the magnitude of

the model decision variable is influenced by any factor that im-

proves its accuracy. Those include neural responses that may

represent only the final choice but not necessarily the

decision-making process that leads to the choice. Such

choice-related responses have been shown to emerge in mo-

tor-planning regions toward the end of the stimulus viewing

period in the dots task,37 and could be responsible for additional

rise of the model decision variable after 700 ms from stimulus

onset when the initial bias is no longer represented.

An initial DV offset is not the only way bias can influence the

evidence accumulation process. Favoring one choice over

another can be also achieved by asymmetries in the rate in which

stimulus information is accumulated.4,20 To test this, we first

fitted the slope of the trial by trial DV traces locally in time by us-

ing a sliding window of 200 ms to avoid the potential saturating

effects of DV due to the decision threshold.4 Next, we asked

how this time-resolved slope depended on stimulus coherence

and total bias by expressing it as a weighted sum of both quan-

tities (Figures 6D, 6E, and S5; Equation 15). As expected, the

DV’s slope significantly depended on coherence shortly after

stimulus onset (Figures 6D and S5A). Restricting ourselves to

this time period, we also found that the total bias influenced

the rate of evidence accumulation, but its impact was weak

compared to that of the stimulus strength itself (Figures 6E and

S5B).
DISCUSSION

We have studied the dynamics and neuronal representation of

biases in highly trained monkeys performing a direction discrim-

ination taskwhile recording simultaneous responses of hundreds

of neurons in the prefrontal cortex. Despite trial-by-trial indepen-

dence of the stimulus direction, monkeys exhibited weak but

measurable suboptimal behavioral biases. Observed biases

emerged at two distinct time scales. The slow bias, reflecting

the monkey’s preference towards one of the targets, fluctuated

at a time scale spanning tens to hundreds of trials. The fast bias

was shaped by the choice and outcome of only the preceding

trial. Together, these biases improved prediction accuracy of up-

coming choices beyond that given by stimulus alone. As ex-

pected, this increase was higher on trials with weak stimuli.

Further, we found that pre-stimulus population activity of prearc-

uate gyrus represented the fast and slow biases. The same

activity was also predictive of the monkey’s upcoming choices.

Critically, the axes that represented bias and choice in the neural

population state space were similar; suggesting that choice-pre-

diction power of pre-stimulus prefrontal activity was largely due
points) and moved with 20 ms resolution. Analysis was based on pooled data

from all sessions. Note that the accumulated effect of bias (E) is approximately

one order of magnitude smaller than the accumulated effect of coherence (D).

See also Figure S5.
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to the representation of the fast and slow biases. Conditioned on

behavioral biases, we demonstrated that biases were incorpo-

rated into the decision-making process as an offset of baseline

activity that was dynamically accumulated throughout the inte-

gration of sensory evidence duringmotion stimulus presentation.

To make optimal decisions, one should take into account all

available and relevant information. This idea is expressed in

Bayesian decision theory where choices depends on both the

current sensory information and prior expectations (for review,

see38). Such prior expectations might reflect for example the

previously learned statistics of the stable environment and as

such ease correct decisions especially when sensory evidence

is ambiguous.4,39 In contrast, when environment is unpredict-

able, prior expectations do not provide additional useful informa-

tion into decision at hand but instead might lead to suboptimal

behavioral biases that potentially reduce accuracy. In our task,

prior history was uninformative, and thus all biases that we

observed despite extensive monkey’s training could not arise

from a reward optimization strategies. As expected, the

observed biases were weak, but nevertheless could be reliable

measured on a trial-by-trial basis. That gave us a unique oppor-

tunity to explore innate mechanisms that shape history-depen-

dent biases that arise spontaneously and are unrelated to any

imposed task strategy.

In perceptual and value based decision making tasks one

particular type of biases refers to the fact that current choices

can depend on previous history of stimuli, rewards, and choices

even in the conditions where such dependence is not relevant for

the task, so-called sequential biases.5,9,10,12–14,16–19 Such his-

tory dependences can span from one trial up to several trials in

the past.5,9,12,16,17,23,40 Only a couple of studies have reported

the presence of separate time scales in sequential biases. One

such example refers to the study where monkeys performed

perceptual decision task and during training exhibited intrinsic

slow (tens of trials) and fast (previous few trials) choice sequential

biases.23 As the slow bias component decreased with training, it

is likely that it was a byproduct of learning. Fast and slow bias

components have been shown to depend also on sensory com-

ponents of the previous history.9 Our results add to that body of

research and constitute a rather unique example of such biases

in highly trained primates performing unstructured tasks in which

past trails are irrelevant for choice at hand. As it has been sug-

gested, the existence of such biases might be a byproduct of a

priori adaptive mechanisms that take advantage of stability of

natural environment to make faster and more accurate deci-

sions.38 As such, biases can reflect different learning mecha-

nisms with a slow process responsible for tracking the changes

in the statistics of a non-stationary environment.41,42 However, in

our task biases, while having an impact on choice, they have very

little impact on task performance.Whereas fast biasmight reflect

fast learning mechanism described in above mentioned study, it

is unlikely that slow bias is a consequence of a slow learning pro-

cess as it does not relate to stimulus or reward statistics. Instead,

it might rather reflect slow fluctuation in the internal cognitive

state of the animal as recently demonstrated.43

Inmany studies, fast sequential biasesdependonpast choices

and rewards frommore than one trial back.5,9,10,12–14,16–19,44 One

of the differences between the above studies and our results is

the fact that, to define the fast bias, past choices and outcomes
1242 Current Biology 31, 1234–1244, March 22, 2021
were jointly used. Each of those pre-trial variables, when treated

independently, had lower effect on upcoming choices, probably

due to the high level of training of our animals. The level of exper-

tise could also be a reason why fast biases were restricted to the

most recent past choice and reward. Nevertheless, to track the

sources for those differences, it would be important to jointly

analyze training and steady-state behaviors to determine how

time scales evolve with learning.

Given that history-dependent biases impact choices, they

should be represented in the form of choice-predictive

neuronal activity in brain regions that represent both the bias

and the decision-making process. Such choice predictability

has been described in the pre-stimulus activity of LIP neurons

in the seminal work of Shadlen and Newsome.19 However, as

the authors did not investigate history-dependent biases, it

was unclear what the source of this choice predictability

was. Several studies investigated whether choice pre-

dictability reflects past history of stimuli, choices, and

outcomes,9,13,16,17,19,21,45–48 Although recently it has been

demonstrated that choice-predictive signals in visual cortex

could be partially accounted for by previous history,16 the re-

maining unexplained residuals probably reflected unmeasured

biases at the behavioral level that are nevertheless measurable

at the neuronal level. At the behavioral level, our results go

beyond these results by providing a single-trial quantification

of bias that seems to exhaust all biases that are linearly decod-

able from neuronal population activity in PAG. That allowed us

to demonstrate that choice predictive power of prefrontal cor-

tex pre-stimulus activity can be explained by history dependent

biases. While it is still possible that other biases exist in the

monkeys’ behavior, their temporality or non-linearity make

them hard to detect andmeasure. Similar results to the ones re-

ported here could potentially also hold in other brain areas,

such as lateral intraparietal area (LIP), superior colliculus (SC),

frontal eye field (FEF), or dorsolateral prefrontal cortex

(dlPFC)4,19,30,49,50 where neuronal activity has been shown to

reflect accumulation of evidence. Therefore, although it is

possible that PAG is not the only brain areawhere an integration

of bias and stimulus signals holds, the details about how this

integration works as reported in the present study remains to

be seen in other candidate brain areas.

Several models have proposed how biases might mechanis-

tically combine with sensory information to form the final deci-

sion.51–55 One of the predictions is that biases can act either as

an offset or as a change in the slope of sensory information

accumulation20,36,53,54 (but see56). Previous experimental

work provided evidence in favor of the offset hypothesis.19,23

For instance, conditioning neuronal responses on the final

choice Shadlen and Newsome demonstrated an offset in pre-

stimulus LIP neuronal activity that persisted during the stimulus

presentation period.19 However, since the choice is a combina-

tion of bias and stimulus evidence integration, whether

similar offsets in accumulation of evidence would be observed

when directly conditioning on bias has remained unsolved.

Here, we provide this missing evidence and demonstrate an

offset in pre-stimulus neuronal activity between trials in which

behavioral bias matched or mismatched final decision. This

bias is later dynamically accumulated during stimulus

presentation.
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To conclude, we have provided neuronal evidence that behav-

ioral biases and choices are represented in the same neuronal

circuits along similar directions of activity state space. The impli-

cations of these results can be multifarious. For instance, in a

speculative vein, the fact that biases are directly incorporated

into the decision process as an offset, just as veridical informa-

tion would do, could speak about why it is so difficult to eliminate

deleterious biases from our daily life behavior,57,58 and it is in line

with current work on decision making proposing bottlenecks in

sensory59 and value-based processing.60
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal model
We recorded extracellular activity from populations of neurons in the prearcuate gyrus (PAG) of two adult male macaque monkeys

performing a direction discrimination task. All training, surgery, and recording procedures conformed to the National Institutes of

Health Guide for the Care and Use of Laboratory Animals and were approved by Stanford University Animal Care and Use Committee

(protocol number is 9720).

METHOD DETAILS

Behavioral tasks
The direction discrimination task is illustrated in Figure 1A. Each trial began when a fixation point (FP; 0.3� diameter) appeared at the

center of the monitor. The monkey was required to fixate within ± 1.5� of the FP. Afterwards two targets (T1 and T2) appeared. In 11

sessions, the targets were placed on opposite sides of the screen. In the remaining five sessions, both targets were placed contra-

lateral to the recorded hemisphere. After a short delay (400 ms for 15 data sets and 500–1500 ms for one data set, median 876 ms), a

patch of randomly moving dots was shown at the center of the screen for 800 ms. The fraction of coherently moving dots (stimulus
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strength or coherence) defined the difficulty of a given trial.19,28,29 The motion direction and strength were chosen randomly on each

trial from a set of predefined values. The coherent motion direction could be toward one target or the other. Coherence ranged from

0 to 0.8. We use signed motion coherence, C, to specify motion direction and coherence using one number, where positive values

indicate motion toward T1 and negative values motion toward T2. The coherence range was tailored for each monkey to obtain the

full range of performance accuracy from the chance level to nearly perfect. The stimulus was followed by a delay period of variable

duration (302–1478 ms, median = 758 ms) randomly selected on each trial. At the end of the delay period, FP disappeared (Go cue)

and the monkey had to report the perceived direction of motion by making a saccade towards the corresponding target and main-

taining gaze on the target until the trial outcome was revealed. Correct choices were rewarded with a drop of juice. The mean inter-

trial interval (the time between revealing an outcome and the next fixation) was equal to 1882 ± 43 ms (mean ± SEM across all trials

pooled from 16 sessions; median = 1269ms). For the zero coherence trials, choices were rewarded randomly with a probability of 0.5.

Throughout the session the eye position was monitored at 1 kHz with a scleral search coil (CNC Engineering, Seattle).

Neural recording
We recorded extracellular activity of a population of PAG neurons using 96 channel microelectrode arrays (Blackrock Microsystems,

Salt Lake City; electrode length = 1.5 mm; spacing = 0.4 mm; impedance � 0.5 MU), while monkeys performed the behavioral task.

The electrode array was implanted anterior to the concavity of the arcuate sulcus and posterior to the tip of principal sulcus. Neural

signals were saved online with 30 kHz sampling rate and spike waveforms were sorted offline (Plexon Inc., Dallas). Recording

artifacts simultaneously occurring in a large number of channels were removed using customized algorithms. We identified 169–

250 single and multi-units in each session (median = 220). We use the term ‘‘units’’ to refer to both well-isolated single neurons

andmulti-units. The data sets analyzed in the present study included 9 and 7 recording sessions frommonkeys 1 and 2, respectively.

These sessions were chosen based on three factors: large number of trials per session (>1000), high quality of recordings, and large

number of units. Although the position of the electrode array could not be changed by the experimenter after implantation, the re-

corded units could change from one session to another, presumably due to small movements of cortex relative to the array. The

analyzed data were published previously26,27 in the context of different scientific questions.

Due to the length of the experimental sessions and the large size of the datasets, they were saved as multiple small files, each

containing data from an experimental block of more than a hundred trials. These data files were concatenated offline at the end

of the session. For 11 of the recording sessions, online spike detection thresholds varied in different blocks of the experiment,

causing non-stationary baseline firing rates across the session. To make certain that our analyses were not affected by this non-sta-

tionarity, we z-scored firing rates in each block after removing the first and last three trials in the block (median number of removed

trials per session, 18, range, 6-30). The z-scored firing rates were concatenated across the session and used in the session by ses-

sion analyses explained below. Similar but noisier results were obtained when the blocks were analyzed without z-scoring.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analysis
Psychometric curves were defined as the fraction of trials in which the monkey chose target T1 for a given signed motion coherence,

C, for each session. We fit a logistic function to the psychometric curve:

Logit½PT1ðCÞ� = b+aC (1)

where PT1 is the probability of choosing target T1, and a and b are model parameters, describing sensitivity and overall bias,

respectively. We used a maximum-likelihood fitting procedure for Equation 1 and all subsequent models in the paper.

We use animal accuracy calculated for unsigned coherence in each session to define difficult and easy motion strengths. Difficult

motion strengths were those associated with lower than 75% accuracy. Easy motion strengths were those associated with accuracy

equal or higher than 75%.

Modeling behavior
We hypothesized (and confirmed below) that behavior is influenced by past history of choices at two different time scales: long time-

scale changes in target preference varying over tens to hundreds of trials, and short timescale preference shaped by action and

reward history in a few previous trials.

We defined the slow timescale fluctuations of choice preference based on the frequency of choosing targets T1 and T2:

jsðiÞ =
NT1ðiÞ

NT1ðiÞ+NT2ðiÞ � 1

2
(2)

were NT1(i) and NT2(i) correspond to the number of T1 or T2 choices, respectively. NT1(i) and NT2(i) were computed for a group of

trials around i : [i�W/2,i�2]W[i+1, i+W/2]. Trials i and i-1 were excluded from calculation ofJs(i) to avoid confounds and any overlap

with the variables that will be used to define the fast timescale fluctuations of choice preference (see below). We tested various trial

windows,W, as explained below. To ensure thatJs(i) reflected spontaneously generated choice preference and not random fluctu-

ations in the stimulus history, we subsampled trials in the analysis window to balance the number of trials for each signed coherence.

Excluding trials after the ith trial — making the definition of Js(i) causal — did not qualitatively change our results.
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We defined fast time-scale changes of choice preference based on immediately preceding trials. Past studies suggest that the

outcome of decisions before trial i can influence the choice on current trials i 5,10,12.We use three indicator variables to define different

combinations of choice and outcome for each preceding trial. For trial i-n, where i indicates the current trial and n indicates howmany

trials back in the past are considered, the vector of indicator variables are:

c�n
f ið Þ=

8>><
>>:

1 0 0ð Þ if T1�

0 1 0ð Þ if T1+

0 0 1ð Þ if T2�

0 0 0ð Þ if T2+

(3)

where T1 and T2 indicate the two choices, and +/- indicate the two possible outcomes (rewarded/unrewarded) of trial i - n. Here

and further in the text we use bold symbol notation to denote vectors.

To test the effect of fast and slow timescale choice preference on the monkey’s behavior, we used a logistic regression model 61

that included both the motion strength and direction from the current ith trial (signed coherence C), together with the slow and fast

choice preference fluctuations:

Logit PT1 ið Þ½ �=b0 +b1C ið Þ+b2

�
c�1

f ið Þ�T +b3js ið Þ (4)

where PT1(i) is the probability of a T1 choice in trial i. The constant term b0 captures the overall monkey’s preference towards one of

the targets (constant within a given session), and thus it is added into the definition of the slow bias below. The predictorJf
-1(i) defines

the fast choice preference fluctuations, which are shaped by choice and reward on the previous trial (Equation 3), andJs(i) is the slow

choice preference fluctuation that varies at time scales much larger than the immediately experienced history (Equation 2). Here the

model weights b0, b1 and b3 are constants and b2 is a row vector composed of three constants.

The model in Equation 4 was cross-validated using a leave-one-out procedure: the model was fit to all trials except for a held-out

trial and its preceding trial, which was used for estimating the fast choice preference for the held-out trial. We used the model pa-

rameters to predict the probability of a T1 choice in the held-out trial. The procedure was repeated for all trials in the experiment.

For each training set we balanced the number of T1 and T2 choices by randomly removing trials corresponding to the surplus choice.

We considered that the model prediction was correct if it gave a higher probability to the target chosen by the monkey. The overall

prediction accuracy of the model was calculated for all trials in a session, or sub-groups of easy and difficult trials.

We used the model described in Equation 4 to estimate fast and slow biases on each trial of each session. The ‘‘fast bias’’ at trial i

was calculated as Bf(i) = b2(Jf
-1(i))T. The ‘‘slow bias’’ was calculated as Bs(i) = b0+ b3Js(i). We defined the ‘‘total bias’’ as the sum of

the fast and slow biases, Bt(i) = Bf(i)+Bs(i). The advantage of defining fast and slow bias effects on the current choice using the pa-

rameters obtained by the logistic regression model is that all variables are measured using log-odds, thereby allowing a direct com-

parison between the strength of the three variables on choices. For comparison, for each session we calculated total bias in coher-

ence units as Bt(i)/b1(i) (see Table S1).

The significance of the effects of slow and fast choice preference fluctuations on choices was assessed by shufflingJf
-n(i) andJs(i)

independently across trials and fitting Equation 4 to this shuffled data. We repeated this process 1000 times to calculate the distri-

bution of prediction accuracy for the shuffled data, corresponding to the null hypothesis distribution. As in our shuffling procedure we

kept the relation between the monkey’s choice and motion coherence intact, the null hypothesis distribution was centered on the

baseline prediction accuracy given solely by the stimulus direction and strength. We subtracted that mean from the model prediction

accuracy to calculate the accuracy improvement conferred by adding the monkey’s fast and slow biases into the logistic regression

model. The p-value for the significance of this improvement was calculated as the fraction of shuffles for which the prediction accu-

racy was higher than or equal to the prediction accuracy for the unshuffled data (one-tailed permutation test). To test whether the

mean improvement across all the behavioral sessions was different from zero, we used two – sided, paired t-test between the pre-

dicted and mean shuffled accuracies across sessions.

To select the time scale of the slow fluctuations of choice preference, Js(i), we tested a wide range of W from 20 to 500 trials in

steps of 10 trials. A wide range of window sizes provided choice prediction accuracies significantly higher than a model without

slow choice preference. We chose the shortest window in a consecutive set of significant window sizes (W = 130; Figure S2).

This window was used for calculation of slow choice preference in all subsequent analyses. We would like to emphasize that a

130 trial window was somehow an arbitrary choice and any other sufficiently larger window would lead to qualitatively comparable

results in Figure S2.

The time scale of fast bias was chosen using a similar procedure by progressively including Jf
-2(i) to Jf

-5(i) in the model:

Logit PT1 ið Þ½ �=b0 +b1C ið Þ+
Xj

n= 1

bT
n+ 1c

�n
f ið Þ (5)

where j = {1, ., 5}. Because choice prediction accuracy did not show tangible improvement by these extensions, we limited our

definition of fast bias to the immediately preceding trial, as in Equation 4.

To compare the strength of each bias on the decision, we used themodel in Equation 4 to define themotion coherence in log-odds

space of choice as Mc(i) = b1C(i). Next for each session separately, we defined the total choice predictive power in ith trial as Et(i) = |

Mc(i)|+|Bf(i)|+|Bs(i)|. The impact of each bias (Ix) on the decision, (where x˛{s,f,t} stands for slow, fast or total bias) was defined as:
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Ix =
1

N

XN
i =1

jBxðiÞj
EtðiÞ (6)

To evaluate whether variations of total bias,Bt, correlates with themonkey’s accuracy, wemeasured average accuracy in windows

of 130 trials. Accuracy was based on a subsampled group of trials to balance motion coherences. We used 130 trials to match the

time window in which total bias was calculated. Next we calculated Pearson correlation coefficient between absolute value of total

bias and accuracy. To assess the significance of Pearson correlation coefficients, we used a two – sided permutation test by

randomly shuffling rewarded trials and recomputing accuracy and its correlation with absolute value of total bias (n = 1000). To mea-

sure the reduction of accuracy (and reward) caused by the total bias, we calculated the mean difference of accuracy in trials with low

and high total bias in each session. Trials were labeled as low (or high) bias, if the absolute value of the total bias was within the small-

est (or largest) tertiles of the distribution of absolute total bias across all sessions.

Neuronal data analysis
Firing rate and dimensionality reduction

In the present studywe focused on the activity of PAG units before stimulus appearance, the period of timewhen the effects of choice

biases could be most easily detected as stimulus cannot yet affect neuronal responses 19. For each recorded unit,m, the firing rate

(the number of spikes per unit of time) at trial i, rm(i), was computed in an 800 ms window that terminated 10 ms before dots onset.

Because of the large number of recorded units and limited number of trials, models that use neural responses to predict bias or

choice are prone to overfitting. To diminish overfitting, we reduced dimensionality of the neuronal population activity using principal

component analysis (PCA). The projection of the neural responses on the jth principal component in the ith trial is defined as

~rjðiÞ =
XM
m= 1

ljmrmðiÞ (7)

where lm(j) is the jth PCA coefficient for themth unit andM is the number of simultaneously recorded units. For each recording ses-

sion, we used the lowest number of PCA components, denoted J, which explained at least 50% of the total variance (range 38–52,

median 48 components). The 50%cutoff provided a good balance between reducing overfitting (increasing prediction accuracy) and

maintaining task-related variance of neural responses. Qualitatively similar results were obtained for different variance cutoffs or for

the raw data. Principal components were calculated across all trials.

Decoding biases— linear regression models

A linear regression model was used to investigate whether PAG population activity represents fast, slow and total biases. We re-

gressed any of these biases with the first J principal components of population activity as

BxðiÞ = b0 +
XJ

j = 1

bj~rjðiÞ+ ε (8)

where ‘‘x’’ stands for {s, f, t} for slow (Bs), fast (Bf), or total bias (Bt), respectively, and ε is a Gaussian noise term. J corresponds to

the number of principal components that explain 50% of the total neural response variance, as explained above. Bias variables were

z-scored using all trials in the session. The model was cross-validated using a leave-one-out procedure. The significance of the

cross-validated R2was assessed based on a permutation test (n = 1000 random shuffles ofBx; the one-tailed p-value was computed

as the fraction of shuffles leading to a R2 higher than the one obtained from unshuffled Bx).

Decoding Choice - logistic regression models

We used a logistic regression model to predict the monkey’s nth past choice, future choice, or outcome, based on population activity

of the units before stimulus onset on the current trial.

Logit Px i + nð Þ½ �= a0 +
XJ

j =1

aj r
�
j ið Þ (9)

where i is the current trial, n˛{0, ±1, ±2,-3,-4,-5} and ‘‘x’’ stands for T1 for choice prediction and ‘+’ for outcome prediction (reward

or not). Positive and negative n indicate trials after and before i, respectively.

For the choice decoder, we balanced the training set for T1 and T2 choices to make chance level equal to 0.5 for the model

prediction accuracy. Similar to the behavioral model in Equation 4, for each repetition/cross-validation, we randomly removed trials

corresponding to the surplus choice to have equal numbers of T1 and T2 choices. For the outcome decoder, we did not balance

rewarded and unrewarded responses because errors comprised only a small fraction of trials (16%–29% across sessions) and

balancing the number of rewarded and unrewarded trials led to exclusion of more than half of the trials in each session. Rather

than dropping trials, we calculated the chance level for predicting trial outcome as the monkey’s overall reward rate (the fraction

of the rewarded trials). Both models (choices or outcomes) were cross-validated using a leave-one-out procedure. For the model

predicting upcoming choice (n = 0) the significance of the model prediction accuracy was assessed based on a permutation test

similar to the ones described earlier (n = 1000 random shuffles of choices or outcomes). For the remaining models we tested if

the mean prediction accuracy calculated across sessions was significantly higher than chance level (one – sided t – test). For the
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outcome decoder due to slight model overfitting we observed significant decoding accuracy below chance for (n s 0) using a left –

sided t – test. The effect disappeared when we trained the model on data with a larger dimensionality reduction.

Alignment of choice and total bias decoders

The bias and choice decoders (Equations 8 and 9) provide distances of pre-stimulus responses from the discriminant hyperplanes

that best explain themonkey’s choice or total bias (dchoice and dbias). If the pre-stimulus choice and bias representationswere aligned,

predicting the upcoming choice based on dbiaswould be as accurate as using both dchoice and dbias. That is, dchoicewould not provide

additional information for predicting the choice beyond what is provided by dbias.To test this hypothesis we trained and compared

two logistic regression models:

Logit½PT1ðiÞ� = a1dbiasðiÞ (10)

and

Logit½PT1ðiÞ� = ba1dbiasðiÞ+ ba2dchoiceðiÞ (11)

Alternatively, one could test for the alignment of the neural representations of choice and bias by directly comparing the two

discriminant hyperplanes. If our definition of total bias and its neural representation provide a complete account of the representation

of choice prior to stimulus onset, one would expect parallel hyperplanes in Equations 8 and 9, and thereby strong correlations in the

weight vectors that determine the norm of hyperplanes ( a!and b
!
). In contrast, if our definition of total bias is an incomplete account of

the factors that predict the choice prior to stimulus onset, and if those factors have distinct neural representations from our total bias,

the choice hyperplane would not align with our total bias hyperplane. Specifically, if we assume that factors beyond our total bias add

up to make a new bias term, w, that has a neural representation captured by wðiÞ = g0 +
PJ
j=1

gjr
�
j ið Þ, we can update Equation 8 to

include all biases

B�tðiÞ = ðb0 + g0Þ +
XJ

j= 1

bj~rjðiÞ+
XJ

j= 1

gj~rjðiÞ+ ε (12)

where B�t is the corrected bias term that includes both our slow and fast biases and additional factors that we may have failed to

identify behaviorally in this paper. Because the combination of all possible bias terms is what enables the prediction of the upcoming

choice based on neural responses prior to stimulus onset (Logit½PT1ðiÞ�= B�tðiÞ), we can combine Equations 9 and 12 to write

XJ

j= 1

aj~rjðiÞ = ðb0 � a0Þ +
XJ

j= 1

bj~rjðiÞ+
XJ

j= 1

gj~rjðiÞ+ ε (13)

Equation 13 clarifies that in the presence of additional bias factors not captured by our definition of total bias, the choice hyperplane

would not need to align well with our total bias hyperplane. Alternatively, if our definition of total bias is complete within the precision

conferred by our dataset, the third term on the right-hand side of Equation 13 would be negligible and the choice and total bias hy-

perplanes would align well. We test for the alignment of hyperplanes by calculating the correlation of the weight vectors that deter-

mine their norms ( a! and b
!
), and by calculating the angle of the two vectors. Since both hyperplanes lay in a highly dimensional

space, angles calculated are from two random hyperplanes are biased towards 90 deg (that is, they are biased to be orthogonal).

To account for this bias, we also computed the angle between the two hyperplanes using only from two up to 38 top PCA dimensions

used for the previous analysis. Additionally, we checked choice prediction accuracy and total bias representation in a reduced space.

In addition to the analyses above, we compared the accuracy of predicting choices using the neural representation of our total bias

or the neural representation of choice prior to stimulus onset. For simplicity, we relied on the sign of dchoice and dbias. Based on Equa-

tion 9, positive values of dchoicemean a higher probability of choosing T1, while negative valuesmean a higher probability of choosing

T2. Similarly, positive and negative dbias suggest leaning toward T1 and T2, respectively.

Choice decoder during stimulus presentation

To explore the dynamics of choice prediction accuracy based on neural responses, we extended Equation 9 to include time:

Logit½PT1ði; tÞ� = a0ðtÞ +
XJ

j = 1

ajðtÞ~rjði; tÞ (14)

where i is the current trial and t is the center of time window used for the analysis. We used a 100-ms sliding window that moved

from 800 ms before to 1100 ms after stimulus onset in steps of 20ms. The projection of the neural responses on the jth principal

component in the ith trial ~rjði; tÞ was defined using the same PCA coefficients used in Equation 7 and based on the 800 ms activity

prior to stimulus onset. Similar to the model in Equation 9, we used a leave-one-out cross-validation and balanced choices in the

training sets.

The model decision variable (DV) given by the right-hand side of the above equation is the distance of population neural responses

from a linear discriminant hyperplane separating T1 and T2 choices. To investigate how behavioral bias interacts with the DV, we
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calculated themean DV conditional on trials where the pre-stimulus total bias favored the choice finally made by the animal (matched

trials) or on trials where the total bias was against the final choice (non-matched). To plot the average of DV for each group of trials, we

flipped the sign of the DV for T2 choice trials before averaging.

To investigate how the rate of accumulation of evidences depends on coherence and total bias, we first fit the trial by trial DV slope

(SDV) using a polynomial fit of order one (linear model; matlab polyfit function). The fit was done locally in time based on a 200 ms

window (10 consecutive time points) moved with 20 ms (1 point) resolution and performed for each trial separately (DV was given

by the right side of the Equation 14). Next, we fitted the linear model in which SDVwas expressed as aweighted combination of coher-

ence C and total bias Bt:

SDVði; tÞ = b0ðtÞ+ bcohðtÞCðiÞ+bbiasðtÞBtðiÞ+ ε (15)

The model weights were fitted based on all trials pooled from 16 session (n = 19715 trials). The confidence intervals of model

weights were obtained from bootstrap, by randomly subsampling trials (n = 1000 random samples with replacement) and refitting

the model (Equation 15). We used the central 95% of the bootstrapped weight’s distribution as confidence intervals. The statistical

significance of the weights was assessed from permuted data where we randomly shuffled SDV across trial dimension but keeping

the temporal dimension unchanged and re – fitting the model in Equation 15. We used a two – sided permutation test (n = 1000

shuffles).

To investigate the dynamical accumulation of the total bias during integration of sensory evidence we focused only on the time

interval in which bcoh was statistically significant (p – value < 0.05; two – tailed permutation test). Outside that interval, we set bcoh

and bbias to zero and computed their cumulative sum across time (matlab function cumsum). The cumulative sum is an unnormalized

estimate of the overall slope of DV as a function of coherence and bias that takes into account the non-linear effects that introduces

the presence of a hard decision boundary. The procedure was repeated for bootstrapped data to obtain the 95%confidence interval.

We emphasize that as DV rises to the decision threshold non – linearly and reaches it at a different times points depending on stim-

ulus strength, it is better to estimate DV’s slope instantaneously and then accumulate the local slopes than performing a single fit

using a a large window following stimulus onset to obtain a single slope. As a side effect, the estimates of the linear model weights

(Equation 15), especially for the total bias, were noisy (Figure S5).

All mathematical analysis were performed usingMatlab (MathWorks). All statistical tests were two – sided if not stated otherwise.
e6 Current Biology 31, 1234–1244.e1–e6, March 22, 2021



Current Biology, Volume 31
Supplemental Information
Prefrontal cortex represents heuristics

that shape choice bias and its integration

into future behavior

Gabriela Mochol, Roozbeh Kiani, and Rubén Moreno-Bote



 

 

 

Figure S1. Statistically significant slow choice fluctuations through the session. 

Related to Figure 1. A – B Slow fluctuations of choice preference are not an artifact 

generated by smoothing, as shown by the difference between the observed and shuffled-

data auto-correlations. Top: slow choice preference calculated in 130 trials window 

(blue) from one example session of monkey 1 (A) and monkey 2 (B). The dotted line 

corresponds to condition with no choice preference. Bottom: the auto – correlograms of 

the slow choice preference fluctuation for experimental (blue) and shuffled data (black). 

The shuffled data were generated by permuting monkey choices across trials and 

recalculating the slow choice preference fluctuation (n = 1000). They represent the null 

hypothesis distribution when there are no significant temporal fluctuations of choice 

preference while simultaneously preserving, if present, an overall preference towards a 

particular choice. Black line corresponds to mean auto – correlograms of shuffled data 

and grey area corresponds to 90% of the distribution estimated from shuffles. C – D The 

mean auto – correlogram calculated across session for monkey 1 (C) and 2 (D). 

Convention as in A - B.  



 

 

 

Figure S2. Slow and fast choice preference fluctuations have separated time scales. 

Related to Figure 2. A. Mean increase in choice prediction accuracy of a model fitted 

to predict upcoming choice from the current stimulus coherence and the history of 

previous outcomes and choices in comparison to a model with just the coherence 

regressor. Fast choice preference is defined as a categorical variable that combines the 

choice and outcome in the previous trial but not on further trials (see Methods). Adding 

additional regressors from two trials back or further (i-k refers to a model including the 

coherence of the current trial i and choices and outcomes from the k previous trials as 

regressors) does not significantly improve the performance of the (i-1) model. B. The 

slow choice preference fluctuation occurs around a time scale of hundreds of trials. We 

took model (i-1) described before and extended it with one additional regressor - the 

choice preference calculated in a window T, varying between 20 and 500 trials. 

Significant improvement in the choice prediction accuracy of the extended model was 

observed for a broad range of T (* 130 – 400 trials, p – value < 0.05), but not outside 

this range. It means that slow bias calculated in T < 130 trials does not carry additional 

information about the choice beyond the one given by fast bias and allowed us to infere 

separation of time scale in observed behavioral biases. Significance tested using paired 

t-test (prediction accuracy for the (i-1) model against the extended model with slow 

choice preference).A-B. Prediction accuracy tested on difficult trials only. Mean across 

all sessions, error bars indicate SEM. 



 

 

 

Figure S3. Pre-stimulus activity of PAG neurons caries information about previous 

choice and outcome – the two components of the fast behavioral bias. Related to 

Figures 3, 4 and Table S2. A. Firing rate of example cells (left - monkey 1 and right - 

monkey 2) averaged across trials when animal previously has chosen first (black) or 

second (gray) target. Shaded area around curves corresponds to SEM. Time zero refers 

to the onset of stimulus in the present (i
th

) trial. Spikes are counted in a 100 ms window 

swept with 20 ms resolution. B. Mean cross-validated prediction accuracy of decoding 

past and future choices from pre-stimulus activity of prearcuate gyrus cells. History and 

future horizons considered are up to five trials back and two trials forth from current i
th

 

trial respectively. Rate calculated in 800 ms window before stimulus onset (shaded 

rectangle in A). Dotted black line marks chance level (0.5). Accuracy averaged across 



 

 

16 sessions ( SEM). C. Firing rate of example cells averaged across previously 

rewarded (black) or unrewarded (gray) trials. D. Mean cross-validated prediction 

accuracy of decoding past and future outcome from pre-stimulus activity of prearcuate 

gyrus cells. Dotted black line marks chance level corresponding to animals performance 

(0.76, mean fraction of rewarded trials across 16 sessions). C – D convention like in A – 

B.  

 

Figure S4. The statistics of choice and bias decoders as a function of number of 

principal components. Related to Figure 5. The non-zero angles between choice and 

bias decoders were at least partly due to the bias toward orthogonality in high-

dimensional spaces. Measuring angles in lower dimensional spaces (A) resulted in 

smaller angles. For comparison we plot cross-validated prediction accuracy of choice 

decoder (B), and R
2 

of bias decoder (C) calculated from test dataset of reduced 

dimensionality (from first two up to first 38 PCA components). Note that both decoders 

were trained on PCA’s explaining 50% of the variance. 



 

 

 

Figure S5. DV slope depends on the coherence and total bias. Related to Figure 6. 

A – B. Shared dependence of DV’s slope on coherence and total bias. Coefficient 𝑏𝑐𝑜ℎ 

(A) and 𝑏𝑏𝑖𝑎𝑠 (B) of the linear model in which slope of evidence accumulation (DV) 

was estimated from a weighted sum of coherence and total bias. Analysis based on 

pooled data from all sessions. Shaded area represents 95% confidence interval 

(bootstrap procedure, n = 1000). 

 

Session #1 #2 #3 #4 #5 #6 #7 #8 

Bias 

(log -odds) 

0.348 ± 

0.0046 

0.466 ± 

0.0084 

0.378 ± 

0.0048 

0.382 ± 

0.0067 

0.426 ± 

0.0095 

0.556 ± 

0.0049 

0.394 ± 

0.0052 

0.440 ± 

0.011 

Bias 

(coherence) 

0.011 ± 

0.0001 

0.029 ± 

0.0005 

0.020 ± 

0.0003 

0.015 ± 

0.0003 

0.030 ± 

0.0007 

0.040 ± 

0.0004 

0.035 ± 

0.0005 

0.019 ± 

0.0005 

Session #9 #10 #11 #12 #13 #14 #15 #16 

Bias 

(log -odds) 

0.452 ± 

0.0078 

0.659 ± 

0.017 

0.428 ± 

0.013 

0.354 ± 

0.011 

0.554 ± 

0.011 

0.330 ± 

0.0065 

0.375 ± 

0.0076 

0.718 ± 

0.015 

Bias 

(coherence) 

0.018 ± 

0.0003 

0.067 ± 

0.002 

0.046 ± 

0.001 

0.044 ± 

0.001 

0.050 ± 

0.001 

0.041 ± 

0.0008 

0.052 ± 

0.001 

0.066 ± 

0.001 

 

Table S1. Mean total bias magnitude in log – odds and coherence units for each 

session. Related to Figure 2. Since in each trial bias could have been negative or 

positive to assess its magnitude we took its absolute value and averaged across trials 

(mean ± SEM). 

 



 

 

 Improvement in choice prediction accuracy between model with coherence and 

model with additional slow and fast bias predictors (mean ± SEM; p-value 

from two – sided t – test) 

Monkey 1 All trials (0.014 ± 0.003, p-value = 8*10
-4

). Difficult trials only (0.030 ± 0.005, 

p-value = 2*10
-4

.) Easy trials only (-0.0001 ± 0.0002, p-value = 0.35). 

Monkey 2 All trials (0.02± 0.003, p-value = 6*10
-4

). Difficult trials only (0.036 ± 0.005, p-

value = 7*10
-4

). Easy trials only (0.0004 ± 0.0004, p-value = 0.36). 

 Predicting choice history from PAG activity (mean ± SEM; p-value from one – 

sided t – test) 

Monkey 1 0.52 ± 0.005; p-value = 0.006 for n = -3; 0.54 ± 0.006; p-value = 0.0002 for n = -

2 and 0.85 ± 0.02; p-value = 9*10
-8

 for n = - 1. 

Monkey 2 0.52 ± 0.01; p-value = 0.075 for n = -3; 0.51 ± 0.01; p-value = 0.12 for n = -2 

and 0.75 ± 0.016; p-value = 2*10
-6

 for n = -1. 

 Predicting feedback history from PAG activity (mean ± SEM; p-value from 

one – sided t – test) 

Monkey 1 0.85 ± 0.012; p-value = 0.0006 for n = -1. 

Monkey 2 0.77 ± 0.008; p-value = 0.016 for n = -1. 

 Predicting choice from PAG activity based on choice decoder.(mean ± SEM; p-

value from one – sided permutation test) 

Monkey 1 All trials (0.53± 0.005, p-value = 0.001). Difficult trials only (0.55 ± 0.008, p-

value = 0.001). Easy trials only (0.51 ± 0.004, p-value = 0.025). 

Monkey 2 All trials (0.51± 0.008, p-value = 0.14). Difficult trials only (0.52 ± 0.014, p-

value = 0.005). Easy trials only (0.49 ± 0.004, p-value = 0.875). 

 Predicting choice from PAG activity based on bias decoder (mean ± SEM; p-

value from one – sided permutation test) 

Monkey 1 All trials (0.54± 0.003, p-value = 0.001). 

Monkey 2 All trials (0.53± 0.01, p-value = 0.001). 

 Difference in choice prediction accuracy between bias and choice decoder 

(mean ± SEM; p-value from two – sided paired - test) 

Monkey 1 All trials (0.008± 0.004, p-value = 0.08). 

Monkey 2 All trials (0.026± 0.005, p-value = 0.003). 

 

Table S2. Statistics of the main results for two monkeys separately. Related to 

Figures 2, 4, 5 and S3. 
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