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We have calculated the intrinsic dimensionality of visual object repre-
sentations in anterior inferotemporal (AIT) cortex, based on responses of
a large sample of cells stimulated with photographs of diverse objects.
Because dimensionality was dependent on data set size, we determined
asymptotic dimensionality as both the number of neurons and number
of stimulus image approached infinity. Our final dimensionality estimate
was 93 (SD: ± 11), indicating that there is basis set of approximately 100
independent features that characterize the dimensions of neural object
space. We believe this is the first estimate of the dimensionality of neural
visual representations based on single-cell neurophysiological data. The
dimensionality of AIT object representations was much lower than the
dimensionality of the stimuli. We suggest that there may be a gradual
reduction in the dimensionality of object representations in neural pop-
ulations going from retina to inferotemporal cortex as receptive fields
become increasingly complex.
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1 Introduction

The nature of object representations within the visual system remains a mys-
tery (see the review by Kourtzi & Connor, 2011). Underlying the difficulty of
the problem is the large dimensionality of the representation space, whose
size is unknown. While it has long been known that the full richness of color
in the world can be encoded in primates by three dimensions (red, blue,
green), the question remains how many dimensions are required to encode
all aspects of visual objects in general, including shape, texture, and color.
The goal of this study is to provide a specific numerical estimate for the in-
trinsic dimensionality of object representations in inferotemporal cortex. To
our knowledge, this is the first study to measure the dimensionality of neu-
ral representations using single-cell neurophysiological recordings, though
there has been previous work based on human psychophysics (Meytlis &
Sirovich, 2007; Sirovich & Meytlis, 2009) and fMRI (Haxby et al., 2011).

Intrinsic dimensionality is the number of independent parameters re-
quired to fully describe a data set (Fukunaga, 1990; Lee & Verleysen, 2007).
In this case, the data are neural population responses to object stimuli. We
will not be interested in the number of parameters required to represent one
object stimulus, but rather the number of parameters required to describe
responses to all objects collectively in a large stimulus set. Dimensionality
is equivalent to the minimum neural population size needed to encode a
collection of objects, provided the response of each neuron is statistically
independent from all others. In reality, of course, neural responses are not
independent but show correlations and other, higher-order, statistical de-
pendencies. Therefore, actual neural populations for encoding objects will
undoubtedly be much larger than this minimum size.

The dimensionality of population responses and the sparseness of pop-
ulation responses are unrelated concepts. Population sparseness is the frac-
tion of neurons stimulated by a single object. Sparseness for this data set
was presented previously (Lehky, Kiani, Esteky, & Tanaka, 2011). Popu-
lation dimensionality is the minimum size of the population required to
encode all objects.

Anterior inferotemporal cortex is an appropriate region to measure the
intrinsic dimensionality of neural objects representations because it is a
high-level visual area believed to be important for object recognition (Logo-
thetis & Sheinberg, 1996; Tanaka, 1996). It forms the highest predominantly
visual area along the ventral visual pathway, after which projections run
forward to multimodal areas such as perirhinal cortex and prefrontal cor-
tex. Visual stimuli required to stimulate inferotemporal neurons are more
complex than in any of the earlier visual areas.

Unraveling the neural basis of object recognition has had less success
than some other visual modalities, such as color or motion, largely due
to the high dimensionality of object representations. Color has three di-
mensions, at least in the early visual stages, and 2D motion also has three
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dimensions (speed and the x and y motion direction components). In those
low-dimensional systems, it is fairly obvious which stimuli to apply to
neurons to characterize the system. In a high-dimensional system such as
object representation, it is not clear which stimuli to use. This problem has
led to two general approaches in experimental design when dealing with
object recognition. One is to stimulate neurons with as many random object
images as possible and use that as a starting point to search for regularities
in the responses (e.g., Kiani, Esteky, Mirpour, & Tanaka, 2007). Another is to
select some image parameter for close study on the basis of intuition with-
out principled knowledge of the neural object space (e.g., surface curvature;
Yamane, Carlson, Bowman, Wang, & Connor, 2008). In this difficult situa-
tion, quantitatively characterizing the space of object representations would
be of benefit. Measuring the dimensionality of the space provides an early
step toward that goal.

2 Methods

2.1 Recording. Extracellular single cell recordings were collected from
two macaque monkeys (M. mulatta). Recordings were conducted in three
regions of anterior inferotemporal cortex as anatomically defined by Saleem
and Tanaka (1996): superior temporal sulcus (STS), anterior dorsal TE
(TEad), and anterior ventral TE (TEav). The STS region ran along the lower
bank of the superior temporal sulcus. TEad extended across the lateral con-
vexity of inferotemporal cortex from the lip of STS to the lateral lip of the
anterior medial temporal sulcus (AMTS). TEav extended across the entire
AMTS, including its lateral bank, and continued along the lateral half of
the inferior temporal gyrus. Penetration positions were evenly distributed
over anterior 15 mm to 20 mm for monkey 1 (right side) and anterior 13 mm
to 20 mm for monkey 2 (left side). All cells that remained reliably isolated
throughout the stimulus presentation period were included in the data
set regardless of selectivity. Because we did not find major differences in
the statistical properties of the three areas (Lehky et al., 2011), all of these
data were pooled for the dimensionality calculations. Further details of the
recording methods and other aspects of the procedures have been previ-
ously described (Kiani, Esteky, & Tanaka, 2005; Kiani, Esteky, Mirpour, &
Tanaka, 2007; Lehky et al., 2011).

Recording procedures were in accord with NIH guidelines as well as
those of the Iranian Physiological Society.

2.2 Stimuli and Task. The stimulus set consisted of color photographs
of natural and artificial objects (125 × 125 pixels), isolated on a gray back-
ground. Object sizes were approximately 7 degrees across at their largest
dimension. Stimulus images were drawn from a wide variety of categories,
including human, monkey, and nonprimate faces; human and animal bod-
ies; and reptiles, fishes, fruits, vegetables, trees and various kinds of artifacts
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Figure 1: Examples of object images used as stimuli.

(Figure 1 shows examples). Image presentations were repeated a median
of 10 times to each neuron. We used color images because we were inter-
ested in the dimensionality of object representations in general, and not
just object shape. We expect that using colored images would only slightly
increase dimensionality over gray-scale images, as it does not appear that
many dimensions are required to represent color (perhaps just three).

Each neuron was presented with 1271 images on average. However, not
all of those images were the same for every neuron. Therefore, we used data
only from the overlapping set of 806 images presented to all 674 neurons.
This produced a response matrix with 806 rows and 674 columns, leading
to 806 × 674 = 543,244 elements in the matrix.

The task of the monkey was to maintain fixation within 2 degrees of a
0.5 degree fixation spot presented at the center of the screen. Eye position
was monitored by an infrared eye tracker.
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At the start of each trial, the monkey fixated the central spot for 300 ms.
After that, a series of images was presented using rapid serial visual presen-
tation (RSVP) (Földiák, Xiao, Keysers, Edwards, & Perrett, 2004; Keysers,
Xiao, Földiák, & Perrett, 2001). Each image appeared for 105 ms followed
immediately by the next image without gap, with images in pseudorandom
order. A trial lasted for 60 images or until the monkey broke fixation. The
monkey received a juice reward every 1.5 to 2.0 seconds while maintaining
fixation.

2.3 Spike Train Analysis. We measured neural activity for each stimu-
lus presentation during a 140 ms window, offset by the earliest significant
response within the inferotemporal population (70 ms) (Tamura & Tanaka,
2001). Dimensionality calculations described below were based on the mean
response to each image over that time period. Responses to the last two
stimuli in each image series were not included because the data analysis
window extended beyond the end of the trial.

Using the RSVP procedure depended on sparseness in the responses of
inferotemporal cortex, in which it was unlikely that two successive stim-
uli would both evoke a strong response. To minimize crosstalk of neural
activity measurements in cases where the previous stimulus did have a
strong response, we excluded presentations with large activity (exceed-
ing the spontaneous activity by 2 × SD) within the first 50 ms of the la-
tency period, immediately following stimulus onset. This resulted in the
exclusion of 15% of presentations. Spontaneous activity was measured in
a 200 ms window at the start of each trial, preceding the series of stimulus
presentations.

2.4 Dimensionality Calculations. For this analysis we started with the
population response to each image. Because there were 674 neurons in the
data set, each image was represented by a 674-element population response
vector. The population response to each image could therefore be thought
of as a point in a 674-dimensional space. Because there were 804 images,
we had 804 points in a 674-dimensional space.

The presumption behind estimating the intrinsic dimensionality of this
674-dimensional space was that there was some degree of redundancy in
the responses of the 674 neurons, so in fact, the number of independent di-
mensions was actually smaller than 674. In that case, the 804 points would
be confined to a lower-dimensional subspace (or manifold) within the orig-
inal 674-dimensional space. A simple example of this is shown in Figure 2,
where the points are nominally in a three-dimensional space but in reality
are confined to a two-dimensional surface (2D manifold) within that 3D
space.

Two unrelated methods were used to calculate the intrinsic dimensional-
ity of neural object representations. One was a local method and the other a
global method. As described by Camastra (2003), a local method uses only
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Figure 2: Two-dimensional saddle-shaped manifold embedded in a three-
dimensional space. Although points are nominally in 3D space, they are con-
fined to lying on a lower-dimensional 2D surface (aside from slight noise jitter)
and therefore have an intrinsic dimensionality of 2. Colors indicate z-axis val-
ues and are used to aid visualization. This illustrates the idea that although
neural population responses to object stimuli may nominally be in a very high-
dimensional space (defined by the number of neurons in the encoding popula-
tion), because of redundancies between neurons, population responses may be
confined to a lower-dimensional subspace.

information in the neighborhood of each data point, while a global method
first pools the information from all data points before doing any calcula-
tions. The local method we used was the Grassberger–Procaccia algorithm
(Grassberger & Procaccia, 1983), while the global method was based on
eigenvalues from a principal components analysis (PCA) of the data. The
two methods were first used to check the consistency of their dimensional-
ity estimates; after that, a more detailed analysis was performed using the
PCA eigenvalue method.

2.4.1 Grassberger-Procaccia Algorithm. The Grassberger-Procaccia algo-
rithm finds what is called the correlation dimension of data. Although best
known for calculating fractal dimensions, it can be used for estimates of
intrinsic dimensionality in general (Camastra & Vinciarelli, 2002; Lee &
Verleysen, 2007; Martinez, Martinez, & Solka, 2012).

To implement the Grassberger-Procaccia algorithm, a hypersphere was
placed around each data point. In our data, that would be a 674-dimensional
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sphere around each of the 804 data points. Then the fraction of other data
points falling inside the hyperspheres was counted as a function of hy-
persphere radius. The assumption under the algorithm is that the fraction
of data points inside the hyperspheres is proportional to rd for small val-
ues of r, where r is the radius of the hyperspheres and d is the intrinsic
dimensionality of the data.

In terms of equations (using the notation of Martinez et al., 2012),

C(r) = 2
n (n − 1)

n∑
i=1

n∑
j=1

ci j (r) (2.1)

where

ci j =
{

1, if ‖xi − x j‖ ≤ r

0, if ‖xi − x j‖ > r
. (2.2)

In equation 2.1, the indices i and j refer to images in the data set and C(r)
is the fraction of data points falling inside the hyperspheres as a function
of hypersphere radius r. C(r) is therefore bounded in the range [0.0 1.0].
The term c(r) is a counter for the number of data points falling inside
each hypersphere. The total number of data points in the data set is given
by n (804 in this case), so that the total number of distances between all
data points is n(n − 1)/2. In equation 2.2, x is an individual data point
(corresponding to the neural population response vector to one image).
The equation increments the count ci j (r) if the Euclidean distance between
two data points is less than r in the 674-dimensional space defined by the
674 neurons in the data set.

As C(r) is proportional to rd for small values of r, then

d = lim
r→0

log (C (r))
log (r)

. (2.3)

The intrinsic dimensionality d of the data can therefore be estimated by
plotting the log(C(r)) versus the log(r) curve and determining the slope of
the curve when values of r are small.

In our implementation of the Grassberger-Procaccia algorithm, we did
a linear least squares regression over points in the leftmost portion of the
log (C (r)) versus log(r) curve (small values of r) and used the slope of that
line as our estimate of intrinsic dimensionality. The region of the curve
included in the linear regression calculations was selected as follows. Be-
cause the number of data was finite, hyperspheres with extremely small
radii had very few data points falling within them, and the small sample
noise therefore made it impossible to do a meaningful linear regression
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under that condition. We therefore excluded the portion of the curve where
the total number of points included in the hyperspheres was less than 16.
That formed the lower bound in the region used to calculate the linear
regression. The upper bound was set at C(r) = 2.2 × 10−3. That value was
based on visual inspection of the curve, as a reasonable estimate of where
the asymptotic region of the left portion of the curve ended.

2.4.2 Principal Components Analysis Algorithm. The basis for using PCA
to estimate intrinsic dimensionality lies in observations such as those of
Farmer (1971) that for noisy data, large eigenvalues from the PCA analysis
correspond to “signal” and small eigenvalues to “noise.” The dimension-
ality of the data then becomes in principle just a matter of counting the
number of large eigenvalues. The practical problem is finding a formal
criterion to define the eigenvalue categories “large” and “small.”

The general starting point for this kind of analysis is to plot log eigenval-
ues as a function of their rank order, starting with the largest eigenvalue to
the left. This forms a rapidly decreasing curve even when plotted logarith-
mically. Many algorithms then differentiate large from small eigenvalues
by trying to find some discontinuity in that curve, either in slope or in the
size of the difference between successive eigenvalues.

Here we introduce a different approach in which PCA eigenvalues for
the data are compared with eigenvalues produced by a randomly shuffled
version of the data. The assumption is that the shuffling destroys whatever
signal was present in the data.

To implement this, two curves were plotted. One curve was for eigen-
values from the original data and the other from the shuffled data. Each
set of eigenvalues was first normalized so that it summed to 1. The total
number of eigenvalues in each case was 674. That was equal to the number
of elements in the population response vector for each image.

Original eigenvalues larger than the shuffled eigenvalues were then cat-
egorized as large, corresponding to signal in the data. The rest were small,
corresponding to noise. Counting the number of large eigenvalues gave
the intrinsic dimensionality of the data. Graphically, the point at which the
original and shuffled eigenvalue curves crossed indicated intrinsic dimen-
sionality. For a given set of eigenvalues, only one shuffling was used, as
there was little change in the intrinsic dimensionality estimate for repeated
reshufflings (an occasional change in the value by one).

In this procedure, we shuffled the data in the 806 × 674 response matrix
by assigning each neural response to a randomly selected stimulus image.
In practice, that was done by unfolding the 806 × 674 matrix into a 543,244
× 1 matrix, randomly permuting the elements of that 1D matrix, and then
reshaping it back to an 806 × 674 matrix.

This method, comparing original and shuffled data, is a variant of
the parallel analysis technique introduced by Horn (1965). A variety of
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procedures in this genre are reviewed by Peres-Neto, Jackson, and Somers
(2005).

2.4.3 Effects of Neural Correlation. Population responses to images were
synthesized from neurons recorded individually with single electrodes
rather than in parallel with multielectrodes. Because of that, we would
expect actual neural correlations in our sample population to have been
higher than what we measured. To investigate the effect this might have on
our dimensionality estimates, we mathematically increased correlations in
the data.

To do that, we defined a 674 × 674 correlation matrix C for the 674
neurons in our sample. The correlation values in the matrix were all set
to a constant value c, except for self-correlations on the matrix diagonal,
which were set to 1.0. The correlation matrix then underwent a Cholesky
decomposition to generate a matrix U according to the formula UTU = C.
Finally, for each population response vector ri in our data, corresponding
to the ith image in the stimulus set, a new response vector r′

i with higher
correlations between neurons was generated by r′

i = riU.
This procedure is designed to generate random variables with correlation

c starting from uncorrelated random variables. However, our raw data were
not uncorrelated but already had nonzero correlations between neurons.
Because of that, the value c set in the correlation matrix C we defined
did not accurately reflect the final correlations in our transformed data.
Therefore, we adjusted the value of c empirically to produce the level of
neural correlation we desired.

2.4.4 Effects of Data Set Size. Intrinsic dimensionality depends on data
set size. Dimensionality increases as either the number of stimulus images
or the number of neurons increases. As more images are added, new fea-
tures are included that were not present in any previous images. As new
neurons are added, new feature selectivities are included that were not
present in any previous neurons. Assuming that the number of indepen-
dent feature dimensions is not indefinitely large (see section 4), at some
point, dimensionality reaches an asymptotic limit as the number of stimu-
lus images approach infinity and the number of neurons approach infinity.
The asymptotic intrinsic dimensionality of neural object representations is
the fundamental measure we are interested in, not dimensionality calcu-
lated on the basis of an arbitrary, limited sampling of images and neurons
in the available data set.

To estimate asymptotic dimensionality, we first constructed curves that
plotted dimensionality as a function of both the number of stimulus images
and the number of neurons. Then an asymptotic function (see section 2.4.5)
was fit to these curves, allowing us to estimate dimensionality as data set
size approached infinity. The curves themselves were constructed by taking
various-sized subsamples of the data (various numbers of images, various
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numbers of neurons) from the full data set and calculating dimensionality
for each subsample size.

We estimated asymptotic dimensionality using only the global method
(PCA eigenvalues) and not the local method (Grassberger-Procaccia), as it
was judged to be more robust when using small subsamples of the data
as required by the procedure. The PCA method required determination of
the point where two curves crossed. The Grassberger-Procaccia calculated
the asymptotic slope of a curve, which was more sensitive to uncertainty
at small sample sizes and also required a decision about what points to
include in the asymptotic region of the curve.

Bootstrap resampling was used to subsample data. For example, if we
wanted to estimate dimensionality for 300 neurons presented with 200
images, we took a random sample of 300 neurons from the data and a
random sample of 200 stimulus images and calculated dimensionality based
on that. This subsampling was repeated 20,000 times, each time with a
different random set of 300 neurons and 200 images, and the dimensionality
estimates averaged.

Dimensionality was calculated over a two-dimensional grid using differ-
ent neuron sample sizes and different image sample sizes. The dimension-
ality could thus be plotted as a three-dimensional surface, as a function of
the number of neurons and number of images. Both the number of neurons
and number of images were sampled at increments of 20, so image sam-
ple sizes were [20, 40, 60, . . . , 800] and neuron sample sizes were [20, 40,
60, . . . , 660]. Including points on the axes (zero images or zero neurons), the
total number of points on the dimensionality surface was 1394. At 20,000
replications for each point on the grid, dimensionality calculations were
performed over 20 million times.

Finding the asymptotic dimensionality as both neurons→ ∞ and im-
ages → ∞ was a two-step process in which a one-dimensional asymptotic
function was first fit along one parameter (either number of neurons or
number of images) and then along the other parameter. The curve fitting
could be done in either order, along the neuron parameter first and image
parameter second [Neurons → Images] or the opposite way [Images →
Neurons]. Reversing the order of curve fitting produced two independent
estimates of asymptotic dimensionality for any given asymptotic function.
These two estimates ideally should both be identical. We repeated all curve
fitting with two completely different asymptotic functions to check repro-
ducibility. Therefore, using two asymptotic functions each fitted to the two
parameters in opposite orders, we produced four estimates of asymptotic
dimensionality.

Below we will describe the procedure for the [Neurons → Images] curve-
fitting order. The [Images → Neurons] procedure was entirely analogous.
For the [Neurons → Images] process, we first took a set of cross sections
of the dimensionality surface along the number-of-neurons axis. This pro-
duced a family of curves showing dimensionality as a function of neurons,
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each curve corresponding to a different number of images. There was one
dimensionality versus neurons curve when the number of images was 20,
another curve when the number of images was 40, and so forth, all the way
up to 800 images, for a total of 40 curves. Each of these curves was then fit
with an asymptotic function. When this curve fitting was done, we had 40
estimates of dimensionality, each for different numbers of images, all under
the condition that the number of neurons approached infinity (plus a 41st
point for the trivial condition of zero dimensionality for the representation
of zero stimulus images).

Next we moved to fitting along the second parameter: number of im-
ages. The 41 estimates derived above were plotted to form a single curve
(dimensionality versus number of images). This curve was fit with the
same asymptotic function as before. The value of the asymptote for this
curve gave the final answer, the asymptotic intrinsic dimensionality of the
data for the neural representation of objects, as both the number of images
and number of neurons approached infinity.

For the [Images → Neurons] process, we took cross sections of the
dimensionality surface along the number-of-images axis rather than the
number-of-neurons axis, producing a set of curves showing dimensional-
ity as a function of number of images. Everything proceeded analogously
from there. As all the curve fitting was performed on an entirely different
set of curves, this provided a second, independent estimate of asymptotic
dimensionality.

The asymptotic functions we used had 6 parameters. Because a different
set of parameters was used to fit each cross section of the dimensionality
surface, the total number of parameters was six times the number of cross
sections along the first variable (neurons or images) plus six more parame-
ters to fit along the second variable. Therefore, for the [Neurons → Images]
order, there were (41 × 6) + 6 = 252 parameters to fit the surface, and in
the [Images → Neurons] order there were (34 × 6) + 6 = 210 parameters.
These are both much lower than the 1394 data points defining the surface.

The reason we divided the fitting of the dimensionality surface into a
series of 1D fittings instead of a single 2D fitting is because of the general
unwieldiness of dealing with a large 2D equation with hundreds of pa-
rameters, including defining a form of the equation capable of generating
good fits as well as searching for optimal parameter values within such a
large parameter space. On the other hand, approximating the surface with
a simple 2D equation having few parameters would have led to relatively
large fitting errors, rendering extrapolations unreliable.

2.4.5 Curve-Fitting Procedure. Curve fitting was replicated with two in-
dependent asymptotic functions. The first was adapted from Nilson (2002):

y = a

[
1 −

(
b

exp
(
xc/d

) − 1 + b

)e] f

, (2.4)



2146 S. Lehky, R. Kiani, H. Esteky, and K. Tanaka

where y was the dimensionality and x was the number of neurons or images
in the data set. Equation 2.4 reduces to the widely used asymptotic function
y = 1 − e−x when all six parameters [a, b, c, d, e, f] are set to one. The second
asymptotic equation was

y = a
[
tanh

(
bxc + d log

([
x + 1

]e))] f
. (2.5)

This reduces to tanh
(
x + log (x + 1)

)
when all parameters are set to one.

In both cases, the parameter we were primarily interested in estimating
was a, which defined the asymptotic values of the curves generated by
these equations. Nonlinear curve fitting was done with the lsqcurvefit

command in the Matlab Optimization Toolbox, using the fmincon algorithm
with the interior point option set. Both the MaxFunEvals and TolFun options
were set to 104, and both the TolFun and TolX options were set to 10−8.

All nonlinear curve-fitting algorithms require an initial guess of the pa-
rameters. Starting from that initialization, the algorithm iteratively adjusts
parameter values to reduce error between the fitted curve and the data un-
til a local error minimum is reached. There is no guarantee that this local
error minimum is the global error minimum. Therefore, best-fit parame-
ters produced by the curve-fitting algorithm, including estimated values of
asymptotes, frequently depend on the initial parameter setting.

We started the fit of each curve by trial-and-error setting of initial pa-
rameters until a reasonable fit to the data was obtained, as determined by
visual inspection of the plots. This was then refined by manually adjusting
the initial conditions to produce the smallest calculated fit error. In the final
stage of fitting, we followed an automated iterative procedure in which the
output parameter estimates from the fitting algorithm were fed back as ini-
tialization parameters for the next run of the algorithm. This caused a drop
in fitting error with each iteration (measured as RMS error) as the input and
output values of the parameters gradually converged. The iterative running
of the fitting algorithm was continued until the change in the asymptotic
dimensionality estimate produced by 10,000 iterations was less than 0.01.

2.4.6 Dimensionality of Stimulus Images. In addition to computing the
asymptotic dimensionality of the neural data, we determined the asymp-
totic dimensionality of the physical stimulus images producing the data,
following an identical procedure. In this case, we looked at the dimen-
sionality of the physical image set as the number of images approached
infinity. To reduce the computational load, these calculations were done on
60 × 60 pixel versions of the images. That would have the effect of slightly
reduced dimensionality estimates relative to the 125 × 125 pixel versions
actually used as stimuli in the experiments.

For these computations, the 60 × 60 × 3 matrix defining each color im-
age was unfolded to a 1 × 10,800 one-dimensional matrix. The 1302 images
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Figure 3: Estimating intrinsic dimensionality of the data using the Grassberger-
Procaccia algorithm. The curve plots the relationship defined by equation 2.1.
The asymptotic slope of the curve for small values of r gives the dimensionality.

we had available were then pooled to form a 1302 × 10,800 image ma-
trix. PCA eigenvalues from the original and shuffled versions of this image
matrix were compared to form the dimensionality estimate of the image
set. Random subsampling of the image set was used to generate a dimen-
sionality versus number of images curve, with 1000 bootstrap resamplings
for each point. Finally the two asymptotic functions, equations 2.4 and 2.5,
were fit to this curve, producing two estimates of the asymptotic intrinsic
dimensionality of the physical stimulus set.

3 Results

Using the full data set of 674 neurons, each presented with 804 images, the
result of the local (Grassberger-Procaccia) method is shown in Figure 3. The
estimate of intrinsic dimensionality of inferotemporal responses to object
stimuli is given by the slope of the C(r) versus r curve (for small r) in the
figure. The value of the dimensionality produced by this analysis was 40.

The result of the global method (PCA eigenvalues) analysis is shown
in Figure 4. Plotted are two curves, the rank-ordered eigenvalues for the
original data (based on the 674 × 806 neural response matrix) and the
rank-ordered eigenvalues for randomly shuffled data. The point at which
the two curves cross gives the dimensionality estimate for the data. The
value of the dimensionality for this analysis was 52 (although occasionally a
particular shuffling of the data produced a value of 53). Thus, two unrelated
techniques for estimated dimensionality, a local technique and a global
technique, produced roughly similar values.



2148 S. Lehky, R. Kiani, H. Esteky, and K. Tanaka

Figure 4: Estimating intrinsic dimensionality of the data from eigenvalues as-
sociated with a principal components analysis. The solid line plots eigenvalues
from the data sorted in rank order, and the dashed line plots eigenvalues after
the data have been randomly shuffled. In both cases, eigenvalues are normalized
to sum to 1.0. The point at which the two curves cross gives the dimensionality.

Dimensionality values were not affected in any way by subtracting spon-
taneous activity from each neuron prior to doing the calculations or by
any other subtractive (additive) constant. Transforms of the data involv-
ing multiplicative constants, however, did affect dimensionality. For ex-
ample, normalizing all response vectors to have unit length increased the
Grassberger-Procaccia dimensionality estimate from 40 to 53 and the PCA
dimensionality estimate from 52 to 63. However, in the absence of com-
pelling evidence for such normalization in vivo, we proceeded with data
analysis using unnormalized response vectors.

Examination of these PCA eigenvalues can tell us how much of the re-
sponse to object stimuli in inferotemporal cortex is signal and how much
is noise. When eigenvalues are normalized to sum to 1.0, the value of each
eigenvalue indicates the fraction of variance in the data that the eigenvalue
accounts for. Thus, summing the 52 largest eigenvalues in data, correspond-
ing to the dimensionality of the data, tells us the fraction of the neural
response corresponding to signal. By this criterion, 59% of inferotemporal
response was signal and 41% was noise. Of course, the category “noise”
includes not only truly random effects but also all aspects of the signal not
relevant to this analysis. The first two principal components accounted for
17% of the variance, similar to 15% in the inferotemporal object data of
Baldassi et al. (2013).

3.1 Effect of Neural Correlation. Neural populations were synthesized
from neurons recorded individually with a single electrode rather than in
parallel using multielectrodes. Therefore, we would expect that in reality,
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Figure 5: Correlation matrices of neural responses for 674 neurons in the data
set. Correlation values are indicated by colors as given in the right-hand scale.
(a) Correlation matrix for the original data. Mean absolute correlation is 0.063.
The dimensionality for these data is 52, as shown in Figure 4. (b) Correlation
matrix for data that have been mathematically transformed to increase neural
correlations, in order to examine effect on dimensionality. Mean absolute cor-
relation doubled to 0.126. The increased correlation caused a slight decrease in
dimensionality from 52 to 48.

correlations among neurons would have been higher than what we mea-
sured due to noise correlation. We examined the effect that this would have
on dimensionality estimates by mathematically transforming the data to
increase correlations, as described in section 2.

The correlation matrix for the 674 neurons in our data set is shown in
Figure 5a, with correlation shown using a color code. Within a 674 × 674
matrix, it shows the correlation coefficient of the responses of each neuron
with every other neuron. The mean of the absolute value of correlations
was 0.063 (removing all self-correlations of 1.0 from the calculation). The
Grassberger-Procaccia estimate of dimensionality for these data, as men-
tioned before, is 40 (see Figure 3), and the PCA estimate is 52 (see Figure 4).
A second correlation matrix is shown in Figure 5b, in which the mean ab-
solute correlation was doubled to 0.126. With these higher correlation data,
the Grassberger-Procaccia dimensionality estimate changed from 40 to 41.
The PCA estimate changed from 52 to 48.

Noise correlations between simultaneously recorded neurons have been
reported to be 0.2 when the neurons were close (within several hundred
micrometers of each other) and declining as neural separation increased
(Kaliukhovich & Vogels, 2012). Our neurons were widely separated, spread
over more than a centimeter, so correlations would not have been high,
almost certainly less than the correlation of 0.126 we examined. It therefore
appears that the results of this study would not be substantially changed for
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modest increases in neural noise correlations provided by multielectrode
recording techniques.

3.2 Effect of Data Set Size. Dimensionality estimates depended on the
size of the data set. Dimensionality increased as a function of the number
of stimulus images (see Figure 6a) and the number of neurons (see Figure
6b), both figures produced by analyzing subsampled data using the PCA
eigenvalue method. Varying both parameters simultaneously produced the
dimensionality surface in Figure 6c.

Therefore, the dimensionality values computed above are valid only
for the limited sample of stimulus images and neurons in our data set.
What is required is an estimate of asymptotic dimensionality of neural
object representations as the size of the data set (both images and neurons)
approached infinity.

In our two-step procedure for estimating asymptotic dimensionality; the
two parameters “number-of-neurons” and “number-of-images” could be
fit successively in either order-either [Neurons → Images] or [Images →
Neurons]. Below, we show the estimation procedure in detail for [Neurons
→ Images], using equation 2.4 as the asymptotic function.

The first step in estimating the asymptotic dimensionality using the
[Neurons → Images] order is illustrated in Figure 7. Shown is a series of
curves plotting dimensionality as a function of the number of neurons,
each curve for a different number of stimulus images. These curves are
cross sections taken from the dimensionality surface in Figure 6c. Although
Figure 7 shows curves at increments of 200 images, in reality we had curves
at increments of 20 images, too many to show in an uncrowded manner.

Each curve in Figure 7 was individually fitted with an asymptotic func-
tion, equation 2.4. Figure 7a gives a close-up perspective of the fits. Figure 7b
gives a broader perspective showing the same curves as they approach their
asymptotic values. The green dots in Figure 7b indicate the actual asymptote
for each curve.

The next step was to take all the asymptotes in Figure 7b (the green dots)
and plot them as a function of number of images (see Figure 8). Thus, we
have dimensionality as a function of number of images, for the condition
that the number of neurons approaches infinity.

At this point, the asymptotic function was fit to the set of points in
Figure 8a, producing the line shown in the figure. The asymptote for that line
is shown in Figure 8b. That is the asymptotic dimensionality as both number
of images and number of neurons approach infinity. The final value of the
asymptotic intrinsic dimensionality provided by this analysis therefore was
dim = 87.

Another estimate of asymptotic dimensionality was found by reversing
the order in which the two parameters were fit, this time following the
[Images → Neurons] order. To do this, we started with a set of dimension-
ality curves plotted as a function of the number of images rather than as
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Figure 6: Dimensionality as a function of data set size. (a) Dimensionality as
a function of the number of stimulus images, holding the number of neurons
constant at 674. (b) Dimensionality as a function of the number of neurons,
holding the number of stimulus images constant at 806. (c) Dimensionality as
a function of both the number of stimulus images and the number of neurons.
Colors indicate dimensionally values and are used to aid visualization.
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Figure 7: Asymptotic dimensionality as the number of neurons approaches
infinity. (a) Series of dimensionality curves plotted as a function of the number
of neurons, each for a different number of stimulus images. Lines indicate fit
of asymptotic function (see equation 2.4) to points. (b) Same series of curves
plotted further out to make the asymptotes more apparent. Green dots indicate
actual asymptotic dimensionality as the number of neurons approaches infinity.

a function of the number of neurons (cross sections of the dimensionality
surface in Figure 6c taken parallel to the number-of-images axis). From
there the procedure was completely analogous to that followed in Figures 7
and 8. Using equation 2.4 again as the asymptotic function, the estimated
asymptotic in this case was dim = 105.

Two more estimates of asymptotic dimensionality were found using
equation 2.5 as the asymptotic function rather than equation 2.4, with both
the [Neurons → Images] and [Images → Neurons] order of fit. These es-
timates were dim = 80 and dim = 97, respectively. The four estimates of
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Figure 8: Asymptotic dimensionality as both the number of neurons and num-
ber of images approach infinity. (a) Dimensionality plotted as a function of
the number of stimulus images. Green points are from Figure 7b (plus addi-
tional points not shown in that figure), which already reflect the number of
neurons going to infinity. Here we extend along the second dimension, number
of stimulus images. The line indicates the fit of the asymptotic function (see
equation 2.4). (b) Same curve plotted further out to make the asymptote more
apparent.

asymptotic dimensionality are summarized in Table 1, providing a mean
estimate of dim = 93 (SD ± 11).

Attempts to apply this procedure to subsets of the data, such as to each
monkey individually or to different classes of object stimuli, resulted in
asymptote estimates that varied erratically within a single series of curves
(such as those in Figure 7), indicating that there were too few data.
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Table 1: Four Estimates of Asymptotic Dimensionality of Object Representa-
tions in Inferotemporal Cortex.

Function Fit Order Dimensionality

Equation 2.4 Neurons → Images 87
Equation 2.4 Images → Neurons 105
Equation 2.5 Neurons → Images 80
Equation 2.5 Images → Neurons 97

Mean: 93 ± 11

Note: The estimates were derived using two different asymptotic equations, each with
two orders of fit.

3.3 Dimensionality of Stimulus Images. In addition to estimating the
dimensionality of the neural responses, we followed an analogous proce-
dure to estimate the dimensionality of the physical stimulus images. If each
pixel in the images was statistically independent, then the dimensionality
of the images would be equal to the number of pixels times three (for the
three color channels), which for our calculations would be 60 × 60 × 3 =
10,800. However, images have a lot of structure such that nearby pixels tend
to be correlated, producing a much lower dimensionality than if each point
in the image were independent. Figure 9 shows dimensionality plotted as a
function of the number of images, using equation 2.4 as the asymptotic func-
tion. This produced a dimensionality estimate of 441. Using equation 2.5 as
the asymptotic function produced a second dimensionality estimate of 572,
with the average of the two estimates being 507. This estimate will depend
on the resolution of the images in pixels, with greater dimensionality with
more pixels. As the actual stimuli were 125 × 125 pixel images rather than
60 × 60, the dimensionality of the stimuli would be somewhat greater than
given here. In any case, the important point is that the dimensionality of
the object stimuli was clearly much larger than the dimensionality of the
neural representation of the stimuli.

4 Discussion

This is the first estimate of the dimensionality of object representations in the
primate visual system based on neurophysiological data. Two independent
methods for estimating intrinsic dimensionality of neural object represen-
tations in inferotemporal cortex produced similar values. Estimates were 40
using a local method (Grassberger-Procaccia) and 52 using a global method
(PCA eigenvalues). This consistency reinforces confidence that these meth-
ods are producing reasonable estimates of dimensionality. However, we
found that dimensionality depended on the size of the data set, increasing
as the amount of data increased. As more data were accumulated, either as
the number of neurons or the number of images, a richer sampling of the
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Figure 9: Asymptotic dimensionality of object images. This is the dimension-
ality of the physical stimuli, and not the dimensionality of neural responses
to stimuli that was shown in previous figures. (a) Dimensionality plotted as a
function of number of images, with the line indicating fit of asymptotic function
(see equation 2.4). (b) Same curve plotted further out to make the asymptote
more apparent.

world was created requiring a greater number of independent parameters,
or dimensions, to describe. Once data set size was taken into account, the
estimate of intrinsic dimensionality of object representations asymptoted at
around 100.

For some, 100 dimensions intuitively may not seem like a lot to provide
a reasonable representation for every object or scene a creature is likely to
encounter. However, once one recalls that merely three dimensions generate
all the richness of colors in the world, then perhaps 100 dimensions does
not seem so small to represent shape and texture as well.
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Previous studies of the dimensionality of object representations have not
considered the data-size factor. Estimates by Sirovitch and Meytlis (2009)
of “less than 70” and by Haxby et al. (2011) of 35 are similar to our findings
without taking sample size into account. However, when we extrapolated
the data to larger sample sizes, we found a larger measure of dimensionality.

The major limitation of this analysis is the requirement to extrapolate far
beyond the available data. That is an issue that ultimately must be dealt
with by collecting data on far larger numbers of neurons and stimulus
images. An assumption of these analyses is that intrinsic dimensionalities
asymptote to a finite value as sample size increases in terms of both number
of stimulus images and number of neurons. The samples we have are in
fact too small and noisy to distinguish, purely on mathematical grounds,
between a dimensionality function that asymptotes and one that increases
without limit as the sample size goes to infinity. Given all this, the use of
asymptotic functions to fit the data bears some examination.

Looking first at number of stimuli, an argument can be made as to why
the dimensionality of inferotemporal responses might asymptote to a fi-
nite limit as the number of images goes to infinity. Photoreceptors in the
retina are finite in number and noisy, leading to acuity limits (Westheimer,
1990). Having a finite number of spatial arrangements that can be reliably
distinguished leads to a finite limit on the dimensionality of the retinal
representation as the number of stimulus images increases. The potential
dimensionality in the retina is further constrained by the very high redun-
dancy of retinal representations (Puchalla, Schneidman, Harris, & Berry,
2005). A finite dimensionality of population representations at the input
stage would be inherited by subsequent stages, including inferotemporal
cortex. We expect that as one moves up the visual hierarchy, dimension-
ality will either remain the same or decrease, but never increase, so that
finite dimensionality at the input is retained at all levels. Neural processing
rearranges the organization of response manifolds within a representation
space (DiCarlo, Zoccolan, & Rust, 2012) but does not create new dimensions
for that space.

If the stimulus inputs to AIT are finite-dimensional (where the imme-
diate stimulus inputs would actually be signals from lower levels of the
visual pathways), then responses of AIT would also be finite-dimensional,
less than or equal to the dimensionality of its inputs. Given that situation,
as the number of neurons in the AIT representation increases, the resulting
dimensionality cannot exceed the limit imposed by the finite-dimensional
input. In other words, dimensionality asymptotes as the number of neu-
rons increases because the neurons run out of new stimulus dimensions to
represent.

In looking at asymptotic dimensionalities, one might question the real-
world significance of the concept of having an infinite amount of data.
However, examining Figure 7, we see that the curve approaches its asymp-
tote after just a couple of thousand neurons. For all practical purposes, “as
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the number of neurons approaches infinity” is well approximated by just
a few thousand neurons, which is quite modest. Similarly, in Figure 8, we
see that the curve approaches its asymptote after several tens of thousands
of images, which is well within the experience of any individual. So the
dimensionality of object representations in the brain is likely to be close to
the asymptotic limit we estimated, and not constrained to be far below that
limit by the numbers of neurons and images that actually exist.

The intrinsic dimensionality computed here indicates that there is a ba-
sis set of approximately 100 independent features that characterize the di-
mensions of neural object space. In other words, the theoretical minimum
population size required to represent objects is about 100 neurons. Clearly
real population sizes are much larger than that, indicating a large degree of
redundancy in the representation, possibly necessitated by noise, response
correlation, and potential loss of neurons over the lifetime of the organism.
Most likely the high degree of redundancy observed in retinal ganglion
cells (Puchalla et al., 2005) is a general feature of visual representations,
including in inferotemporal cortex.

The most obvious way to achieve redundancy is to make multiple copies
of the same small basis set. However, we know from recordings that pop-
ulations of inferotemporal neurons do not have a small set of feature se-
lectivities that are encountered over and over again. Rather, inferotemporal
neurons seem to have a bewilderingly large and varied set of feature se-
lectivities. A previous statistical analysis of these same data (Lehky et al.,
2011) indicated an indefinitely large number of neurons, each with different
receptive field tunings for objects.

Having a limited number of independent, canonical features in the neural
representation and at the same time having an indefinitely large number
of different neural tunings for objects can be reconciled if neural feature
selectivities in different neurons are not entirely independent. The object
selectivity of each neuron must pool more than one feature from the canon-
ical set, with a vastly large number of such combinations possible. For
example, if each cell combined selectivity to five random feature dimen-
sions out of 100 possibilities, that would produce approximately 9 billion
different neural response characteristics to object stimuli. Individual face
cells in macaque monkeys have been reported to combine selectivity to
several feature dimensions (Freiwald, Tsao, & Livingstone, 2009), and we
are suggesting that may be true in general for all neurons involved in object
representations.

A technical limitation in the mathematical methods in the analyses was
that they were fundamentally linear and thus were unsuitable for extracting
intrinsic dimensionality if the data points fell along a nonlinear manifold.
Such nonlinear manifolds would have characteristics of being highly folded,
twisted, or curved. If a nonlinear manifold described the data better than
a linear one, use of linear analysis methods would bias the results toward
reporting a larger dimensionality than actually exists. For example, if the
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points fell on a 2D sheet that was highly folded so as to fill up 3D space
(the prototypical example of this in the dimensionality-reduction literature
being the Swiss roll curve), our methods would not pick up the complex
internal structure of that folded sheet and would incorrectly report the
intrinsic dimensionality as 3 rather than 2. It is possible, therefore, that
when the PCA eigenvalue analysis estimated an intrinsic dimensionality of
93, it was really, for example, an 82-dimensional manifold folded up in a
complex way so as to fill up a 93-dimensional space. Our methods would
not discover that.

There are newer algorithms for dealing with such nonlinear manifolds,
such as isometric feature mapping (ISOMAP) (Tenenbaum, de Silva, &
Langford, 2000) and locally linear embedding (LLE) (Roweis & Saul, 2000),
among others (see the review by van der Maaten, Postma, & van den Herik,
2009). However, these algorithms have primarily been tested with artificial
data sets having intrinsic dimensionalities in the range 2 to 4. As a practical
matter, it is doubtful how effective they would be when applied to an object
space having a dimensionality on the order of 100. For these algorithms to
operate, they would need to have the nonlinear manifold densely sampled
with data points in order to resolve its fine internal structure. In a high-
dimensional space, such dense sampling would require an impractically
large amount of data. We therefore leave the issue of high-dimensional
nonlinear manifolds with respect to the neural representations of objects as
a future research problem. However, we believe that the potential overes-
timation of the dimensionality with our linear techniques would be minor
and would not critically alter our conclusions.

The data here covered a wide variety of different object categories. It is
possible that restricting the data to a single category, such as faces, would
have produced a different estimate of intrinsic dimensionality. As different
object categories cluster in different regions of object space (Kiani et al.,
2007; Kriegeskorte et al., 2008), it is possible that those category clusters
are occurring within lower-dimensional subspaces of the object space as a
whole. In that case, individual object categories may have lower intrinsic
dimensionalities than reported here. In this study, we did not examine the
dimensionalities of individual object categories because the number of ex-
amples we had in each category was too small for the methods we are using.

Different visual areas may have different intrinsic dimensionalities for
stimulus representations. We saw that inferotemporal responses had a much
lower dimensionality than the stimulus images. We suggest here that a re-
duction in the dimensionality of population representations occurs grad-
ually as one ascends the hierarchy of visually responsive regions in the
ventral stream. Response patterns in the retina, most closely resembling the
high-dimensional stimulus images, would have the highest dimensional-
ity. Inferotemporal responses, with more abstract representations involving
a small basis set of relatively complex features, would have the lowest
dimensionality.
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Visual shape selectivity occurs not only along the ventral pathway but
also within parietal cortex along the dorsal pathway (Lehky & Sereno, 2007;
Murata, Gallese, Luppino, Kaseda, & Sakata, 2000; Sereno & Maunsell,
1998; Sereno, Trinath, Augath, & Logothetis, 2002). Quantitative differences
found in shape representation in AIT and LIP (Lehky & Sereno, 2007) raises
the possibility that the dimensionality of visual representations in parietal
cortex may be different than in inferotemporal cortex.

As we have noted, intrinsic dimensionality of inferotemporal responses
to object images was much lower than the dimensionality of the physical
stimuli. Most dimensions of physical object space appear not to be regis-
tered by inferotemporal cortex. Fewer dimensions in the neural object space
than in the physical object space means that object discriminability is re-
duced compared to what is in principle possible. That would be roughly
analogous to the way that a color-blind person with two cone pigments
(two-dimensional color representation) cannot make discriminations that
a person with a normal three-dimensional color representation can. Thus,
inferotemporal cortex would be forming an impoverished representation of
objects compared to what physically exists. Perhaps this is an evolutionary
consequence of resource limitations in the brain. So with optimization for
limited resources, primates get a particular object representation that is just
good enough for all practical purposes in their daily lives but does not reach
theoretical limits. The difference in dimensionality between neural object
space and physical object space also relates to philosophical discussions
about the relationship between our subjective experience of the world and
the nature of the underlying physical reality.

It would be interesting to measure the dimensionality of visual repre-
sentations in nonprimates to see if there is a further decrease relative to
physical object space in less visually oriented species. In addition, the same
mathematical dimensionality methods could be applied to human fMRI
data through voxel-based calculations.

Moving beyond counting dimensionality size, a key question for the fu-
ture is obviously to identify what these dimensions specifically are or, in
other words, what features in the world they correspond to. It is also an
open question whether there exists an inborn inferotemporal object repre-
sentation space with a particular dimensionality size or if different individ-
uals parse the world into different sets of dimensions based on experience.
Although there certainly is experience-dependent plasticity in feature re-
sponses of monkey inferotemporal cells or their human analog (Kobatake,
Wang, & Tanaka, 1998; Op de Beeck, Baker, DiCarlo, & Kanwisher, 2006;
Suzuki & Tanaka, 2011), it has been suggested that these changes may be
confined to modulations of preexisting properties (Op de Beeck & Baker,
2010).

To understand the biological basis of object recognition, we need to
quantitatively describe the neural object representation space. Measuring
the dimensionality of that space is a step toward that goal. The finding that
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object space has approximately 100 dimensions highlights the complexity
and challenge of the object recognition problem.
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