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Lehky SR, Kiani R, Esteky H, Tanaka K. Statistics of visual
responses in primate inferotemporal cortex to object stimuli. J Neu-
rophysiol 106: 1097–1117, 2011. First published May 11, 2011;
doi:10.1152/jn.00990.2010.—We have characterized selectivity and
sparseness in anterior inferotemporal cortex, using a large data set.
Responses were collected from 674 monkey inferotemporal cells,
each stimulated by 806 object photographs. This 806 � 674 matrix
was examined in two ways: columnwise, looking at responses of a
single neuron to all images (single-neuron selectivity), and rowwise,
looking at the responses of all neurons caused by a single image
(population sparseness). Selectivity and sparseness were measured as
kurtosis of probability distributions. Population sparseness exceeded
single-neuron selectivity, with specific values dependent on the size of
the data sample. This difference was principally caused by inclusion,
within the population, of neurons with a variety of dynamic ranges
(standard deviations of responses over all images). Statistics of large
responses were examined by quantifying how quickly the upper tail of
the probability distribution decreased (tail heaviness). This analysis
demonstrated that population responses had heavier tails than single-
neuron responses, consistent with the difference between sparseness and
selectivity measurements. Population responses with spontaneous activity
subtracted had the heaviest tails, following a power law. The very light
tails of single-neuron responses indicate that the critical feature for each
neuron is simple enough to have a high probability of occurring within a
limited stimulus set. Heavy tails of population responses indicate that
there are a large number of different critical features to which different
neurons are tuned. These results are inconsistent with some structural
models of object recognition that posit that objects are decomposed into
a small number of standard features.

monkey; extrastriate; object recognition; population coding; selectiv-
ity; sparseness; heavy tails; power law; Pareto distribution; stable
distribution

INFEROTEMPORAL CORTEX is a high-level visual cortical area be-
lieved to be involved in object recognition (Desimone et al. 1984;
Gross 2008; Logothetis and Sheinberg 1996; Rolls 2000; Tanaka
1996). Activation of inferotemporal neurons requires complex
stimulus features compared with earlier areas (Kobatake and
Tanaka 1994). Given that complexity, it is difficult to know if the
most effective stimulus found for a neuron during experimental
testing is likely to be close to the best possible stimulus, as only
a limited number of images can be practically examined. The
sample of images may give an unrepresentative view of what the

neuron responds to. Similarly, only a limited sample of neurons in
a population can be examined. How complex are the critical
features of inferotemporal cells? Are they simple enough that
something close to optimal is likely to be found within a limited
set of randomly chosen object stimuli? And how many different
critical features exist in a population? Are there just a few, as
postulated by some structural models of object recognition, or are
there a vast number of them, which may suggest other approaches
to object recognition? We propose to examine such issues through
a probabilistic analysis of responses using a large data set.

Responses of neurons that have been tested with a fixed set of
visual stimuli can be measured along two dimensions (Fig. 1).
First, we can measure the responses of a single neuron to
different stimulus images (“single-neuron response”). From
single-neuron responses, neural selectivity can be calculated.
Second, we can measure the response of a population of
neurons to a single image (“population response” or “image
response”), from which population sparseness can be deter-
mined. As the equations for neural selectivity and population
sparseness take the same form, it is convenient to refer to both
as selectivity in a generic sense.

Although population sparseness has often been the parame-
ter of theoretical interest, earlier studies tended to emphasize
neural selectivity. Neural selectivity and population sparseness
appeared to be implicitly treated as if they were interchange-
able, both in the experimental literature (Rolls and Tovée 1995;
Treves et al. 1999) and the modeling literature (Olshausen and
Field 1997). However, Willmore and Tolhurst (2001) pointed
out the importance of distinguishing the two concepts, and
more recent work has incorporated consideration of that dis-
tinction in V1 (Lehky et al. 2005; Tolhurst et al. 2009) and
inferotemporal cortex (Franco et al. 2007). The statistics of
neural selectivity and population sparseness may or may not be
identical. If their statistics are identical, then the system is
called ergodic (Lehky et al. 2005). Franco et al. (2007) con-
cluded that neural selectivity and population sparseness were
identical in monkey inferotemporal cortex. Here we report,
using a much larger data sample, that they are different.
Selectivity, sparseness, and ergodicity are all issues we shall
examine in detail.

The shape of the response probability distribution deter-
mines selectivity (with selectivity in the generic sense here).
Example high-selectivity and low-selectivity probability den-
sity functions (pdfs) are shown in Fig. 2. High-selectivity
responses have a greater probability of occurring at the ex-
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tremes, very small or very large (i.e., heavier tails). Low-
selectivity responses are more evenly distributed among inter-
mediate levels.

When analyzing data we shall pay particular attention to the
shape of the upper tail of the response probability distribution,
as tail heaviness is a fundamental factor determining selectiv-
ity. Measuring tail heaviness allows an estimate of how likely
we would be to obtain stronger neural responses if we were
able to expand the stimulus set size, or the number of neurons
recorded from, beyond what is experimentally practical. Tail
heaviness has never been measured for visual neurons. Our
approach will be to use a statistical technique called Pareto tail
estimation. Because we are using a larger data set than those in
previous studies, we are able to quantify tail characteristics of
response probability distributions in a manner not feasible
before.

Response statistics of neurons are of interest to theories of
sparse representations (Bell and Sejnowski 1997; Field 1994;
Hyvärinen et al. 2009; Olshausen and Field 1997; Simoncelli
and Olshausen 2001). Characterizations of inferotemporal neu-
rons presented here are relevant to those theories. Statistical
properties of neural responses are also important to theories of
population decoding (Jazayeri and Movshon 2006; Lehky and
Sejnowski 1988; Pouget et al. 2000; Quian Quiroga and Pan-
zeri 2009; Sanger 2003; Zhang et al. 1998). Within the field of
object recognition, statistical characterization of inferotempo-
ral neurons may constrain the manner in which object recog-
nition theories are constructed. Previous examinations of in-
ferotemporal selectivity or other probabilistic aspects of infero-
temporal responses include those of Rolls and Tovée (1995),
Baddeley et al. (1997), Treves et al. (1999), Krieman et al.
(2006), Waydo et al. (2006), Franco et al. (2007), Lehky and
Sereno (2007), Lehky and Tanaka (2007), and Zoccolan et al.
(2007).

METHODS

Recording

Extracellular single cell recordings were collected from two ma-
caque monkeys (Macaca mulatta) with tungsten microelectrodes.

Recording site positions were estimated from the location of the guide
tube, the electrode advancement indicated by micromanipulator read-
ings, the estimated distribution and location of gray matter, and the
depth of the ventral brain surface as indicated by changes in the
characteristic noise when the electrode tip reached the ventral cortical
surface. Cells were assigned to the following three cortical areas based
on the criteria of Saleem and Tanaka (1996): superior temporal sulcus
(STS), anterior dorsal TE (TEad), and anterior ventral TE (TEav). The
STS region extended along the lower floor of the superior temporal
sulcus until the lip of the sulcus. TEad extended from the lip of STS
to the lateral lip of the anterior medial temporal sulcus (AMTS).
Finally, TEav extended across the entire AMTS, including its lateral
bank, and continued along the lateral half of the inferior temporal
gyrus.

Penetration positions were evenly distributed over anterior 15–20
mm (monkey 1, right side) and anterior 13–20 mm (monkey 2, left
side). Each penetration provided data from 3.6 cells on average, with
1.8 cells per recorded site. These values were similar for both STS and
TE. Action potentials were isolated in real time with a template
matching algorithm implemented in hardware (Wörgötter et al. 1986).
Changing the template allowed data from more than one neuron to be
recorded at a single site. A conventional spike window discriminator
was also in place as an additional measure to ensure reliable isolation.

The selection of cells was not biased by response properties. All
cells that remained reliably isolated throughout the stimulus presen-
tation period were included in the data set (n � 674), regardless of
selectivity.

This procedure would have missed cells that had zero spontaneous
activity and that also had no response to any of the images presented
as the electrode advanced (i.e., would have missed extreme high-
selectivity neurons). These “silent cells” on the upper tail of the
selectivity probability distribution would be expected to be small in
number, as our data showed a unimodal probability distribution of
selectivities. There was no upswing in the distribution curve at high
selectivities that would indicate the start of a second peak beyond our
measurement range.

Recording procedures were in accord with National Institutes of
Health guidelines as well as those of the Iranian Physiological Soci-
ety. Further details of the recording methods have been described
previously (Kiani et al. 2005, 2007).

The experimental procedures were submitted to the Committee for
Care and Use of Experimental Animals, Iranian Society for Physiol-
ogy and Pharmacology (CCUEA-ISPP) and were approved by this
committee.

Stimuli and Task

The stimulus set consisted of color photographs of natural and artificial
objects, isolated on a gray background, each containing 125 � 125

Fig. 2. Schematic probability density functions (pdfs) for high-selectivity and
low-selectivity responses. Selectivity here can refer to either single-neuron
selectivity or population selectivity (population sparseness). The high-selec-
tivity pdf has a heavier tail than the low-selectivity pdf. These are generic
examples intended to qualitatively illustrate the differences.

Fig. 1. Two ways of viewing neural response data. Statistical properties can be
examined in terms of the response of a single neuron to a set of stimulus
images or in terms of the response of a population of neurons to a single
stimulus image.
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pixels. The larger dimension of each object extended �7°. Each
neuron was tested with a mean of 1,271 images. All image presenta-
tions were repeated 9 � 2 times (median: 10) to the neuron. Not all
those images were the same for every neuron. To fill a complete
response matrix (as in Fig. 1), we only used data from the 806 images
that were presented to all 674 neurons. They included human, mon-
key, and nonprimate faces, human and animal bodies, fishes, reptiles,
fruits, vegetables, trees, and various kinds of artifacts (examples are
shown in Fig. 3 and the full set in Supplemental Fig. S1).1

The only task of the monkey was to fixate within 2° of a 0.5°
fixation spot presented at the center of the screen. Eye position was
monitored by an infrared eye-tracker.

At the start of a trial the monkey maintained fixation for 300 ms.
After that, a series of images was presented with a rapid serial visual
presentation (RSVP) paradigm (Földiák et al. 2004; Keysers et al.
2001). Each image was presented for 105 ms, followed immediately
by the next image without gap. The order of images was chosen
pseudorandomly. A trial lasted for a series of 60 images, or until the
monkey broke fixation. The monkey received a juice reward every
1.5–2.0 s while maintaining fixation.

Our RSVP method enabled us to accurately measure neural re-
sponses to a large number of stimuli. It has been shown that cells in
the monkey inferotemporal cortex retain stimulus selectivity during
rapid serial presentations (De Baene et al. 2007; Edwards et al. 2003;
Földiák et al. 2004; Keysers et al. 2001), down to as fast as 14–28
ms/stimulus. Also, backward masking has a minimal effect on the
initial part of neuronal responses when the stimulus onset asynchrony
is greater than 80 ms (Kovács et al. 1995; Rolls and Tovée 1994; Rolls
et al. 1999).

The 105-ms stimulus duration we used fell within a behaviorally
valid range, as indicated by fixation durations in humans during
free-view scanning of images (Henderson and Hollingworth 1998).
The probability distribution of fixation durations between saccades in
their data had a mode of 230 ms and an interquartile range of 186 ms
(estimated from Fig. 2 of Henderson and Hollingworth 1998). Chim-
panzees have a shorter mean fixation duration than humans during
free-viewing of images (Kano and Tomonaga 2009). Under natural
viewing conditions, therefore, the visual system is exposed to a rapid
sequence of short-duration stimuli. As the eye moves between fixa-

tions, saccadic suppression blocks response cross talk between re-
sponses to successive images (Bremmer et al. 2009).

Spike Train Analysis

We measured neural activity for each stimulus presentation during
a 140-ms window, offset by the earliest significant response within the
inferotemporal population (70 ms) (Tamura and Tanaka 2001). The
time window for data analysis thus ran from 71 to 210 ms after
stimulus onset. All analysis procedures described below were based
on the mean response to each image over that time period. Responses
to the last two stimuli in each series were not included because the
monkey did not maintain fixation for the whole period used for the
measurement of the response. To minimize contamination of neural
activity measurement by responses to the previous stimuli, we ex-
cluded presentations with large activity (exceeding the spontaneous
activity by 2 � SD) in the 50-ms period immediately after the
stimulus onset. This resulted in exclusion of 15% of presentations.
Spontaneous activity was measured in a 200-ms window at the start of
each trial, preceding the series of stimulus presentations.

Describing the Response Probability Distributions

We were interested in determining which standard parametric
probability distribution best fit the data, both for single-neuron re-
sponses and population responses. This was done by calculating the
difference between the empirical cumulative distribution function
(cdf) and the best-fit cdf of various parametric distributions. The
empirical cdf was determined for each neuron (single-neuron re-
sponse) or each stimulus image (population response) with the Ka-
plan-Meier estimator.

Distributions tested. Seven standard probability distributions were
fit to each single-neuron or population response. The first six of these
were:

Weibull cdf: F�x�a, b) � 1 � e
�� x

a �b

(1)

log-logistic cdf: F(x|�, �) �
1

1 � e

�(ln(x)��)
�

(2)

log-normal cdf: F(x|�, �) �
1

��2�
�
0

x e

�(ln(t) � �)2

2�2

t
dt (3)

gamma cdf: F(x|a, b) �
1

ba�(a)�0
x

ta�1e

�t
b

dt (4)

exponential cdf: F(x|a) � 1 � e

�x
a

(5)

normal cdf: F(x|�, �) �
1

��2�
�
�	

x

e

�(t � �)2

2�2
dt (6)

The seventh distribution, the 
-stable distribution, is more compli-
cated. As the 
-stable distribution has not previously been used in
experimental neurophysiology to our knowledge, it is described in
more detail below.


-Stable distribution. The 
-stable distribution is a class of prob-
ability distributions useful for describing heavy-tailed random vari-
ables, including those with skewed distributions (Nolan 2011b; Sam-
orodnitsky and Taqqu 1994; Zolotarev 1986). First formulated by
Lévy (1925), it found initial application in finance (Mandelbrot 1963)
and is now used in a variety of disciplines (Adler et al. 1998;
Ghahfarokhi and Ghahfarokhi 2009; Mantegna and Stanley 2000;
Nikias and Shao 1995).

Stable distributions are defined by their characteristic function
(Fourier transform of the pdf):

1 Supplemental Material for this article is available online at the Journal
website.

Fig. 3. Example stimulus images, selected from complete set of 806 images.
Photos courtesy of Hemera Photo-Objects/Jupiterimages.
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�X(u) � �
�	

	

eiuxfX(x)dx

� exp���a�u�a�1 � isign(u)tan
�


2 � � i�u	 if 
 � 1

� exp����u��1 � isign(u)
2

�
ln �� u�
� � i�u	 if 
 � 1

(7)

where fX(x) is the pdf of random variable X. Stable distributions are
parameterized in a variety of ways. We used the 1-parameterization
here. No general equations for the pdf or cdf of stable distributions are
known to exist in closed form, which limited the use of these
distributions until sufficient computational power became widely
available. There are four parameters associated with the distribu-
tion: S(
,,�,�). The first is 
, the index of stability or character-
istic exponent, which determines tail heaviness. It may take values
0 � 
 � 2. Smaller values of 
 produce heavier tails, and all stable
distributions with 
 � 2 have power law tails. The second
parameter, , specifies skewness and may take values �1 �  �
1. Positive values are right skewed, and negative values are left
skewed. The parameters � and � are scale and location parameters.
Three special cases of stable distributions do have closed-form
expressions for their pdf: the normal distribution, corresponding to
S(2,,�/�2,�) where  has no effect; the Cauchy distribution,
corresponding to S(1,0,�,�); and the Lévy distribution, correspond-
ing to S(0.5,1,�,�).

Stable distributions have two unique properties that set them apart
from other distributions, both familiar from the normal distribution
special case. First, summing stable independent random variables with
the same distribution shape (same index 
) will produce a new
distribution that retains that shape (shape is stable, hence the name of
the distribution). A corollary of this is that a stable distribution
convolved with itself does not change shape. It has been suggested
that this property has significance for neural information processing
(Holden 1975). Second, stable distributions are attractor probability
distributions, as a generalized Central Limit Theorem applies to them
(Gnedenko and Kolmogorov 1968). In the same way that sums of
independent and identically distributed (i.i.d.) random variables with
finite variance will converge to a normal distribution, sums of i.i.d.
random variables with infinite variance (power law tails) will con-
verge to other stable distributions.

Fitting distributions to data. All parameter fits for the first six
distributions were maximum likelihood, except for the � parameter of
the log-normal distribution. That parameter was estimated by the
square root of the unbiased estimate of the variance of the log of the
data. Fittings for these distributions were done with the Matlab
Statistics Toolbox. Parameter fits for the 
-stable distribution were
done with the methods of Koutrouvelis (1980, 1981), with Matlab
code downloaded from Veillette (2011). (Other 
-stable software is
available from Nolan 2011a.)

After each of the seven distributions was fitted to the data, good-
ness of fit was compared. The error measure between the empirical cdf
and a parametric cdf used was the Kolmogorov-Smirnov distance:

D � max
1�i�n

�Femp(xi) � F(xi)� (8)

where F indicates cdf and n is the number of data points in the sample
(number of neurons or number of images). Errors for each single-
neuron response were then averaged to give a mean error for all
neurons recorded from, and, similarly, errors for each population
response were averaged to give a mean error for all images used. The
best-fit parametric distribution had the smallest mean error (smallest
mean Kolmogorov-Smirnov distance).

For purposes of fitting probability distributions, only neural
firing rates greater than zero were included. Firing rates equal to
zero were trimmed from the data. This was done because the

discrete nature of spikes made it impossible to assign accurate
spike rates at very low activity levels. For example, with a 140-ms
trial duration, a single spike occurring over 10 trials translates to an
average of 0.7 spikes/s. Mean responses below 0.7 spikes/s cannot
be resolved. All firing rates below 0.7 would be mapped to zero in
this example, leading to an artifactual excess of zeros in the data,
with no way of knowing to what extent zero measured firing rate
was actually 0.1 or 0.4 spikes/s. The shape of the lower tail of the
response distribution is therefore ambiguous. As firing rate in-
creases or trial duration increases, approximating a discrete pro-
cess by a continuous probability distribution becomes increasingly
accurate, and all this becomes less of an issue.

In addition to probability distributions of neural responses, we were
interested in the distributions of response-modulations. Response-
modulations are responses with spontaneous activity subtracted. Un-
like responses, which are always positive, response-modulations can
be either positive or negative. However, the first five probability
distributions above allow only positive values. For those distributions,
the data was shifted upward to nonnegative values when fitting
parameters. As we were interested in estimating the shapes of distri-
butions and not their locations, that procedure was sufficient for our
purposes.

Calculating Neural Selectivity and Population Sparseness

The selectivity/sparseness measure we used was kurtosis, which is
a measure of the “peakedness” of a probability distribution. Kurtosis
depends entirely on the shape of the distribution, independent of its
position (e.g., mean) or scale (e.g., variance). The equation for the
kurtosis selectivity index is:

SIK �
�
i�1

n

(ri � r�)4

ns4 � 3

�

1

n�
i�1

n �ri � �
i�1

n ri

n�4

�1

n�
i�1

n �ri � �
i�1

n ri

n�2�2 � 3

(9)

For single-neuron responses, ri refers to the response of the neuron to
the ith image and n refers to the number of images. For population
responses, ri is the response of the ith neuron in the population to a
particular image and n refers to the number of neurons in the
population. Mean response is denoted by r� and the standard deviation
of the responses by s. Subtracting 3 rescales kurtosis so that a normal
distribution has a kurtosis of 0. This rescaling procedure leads to what
is called excess kurtosis (kurtosis in excess of that for a normal
distribution), but here we shall refer to it simply as kurtosis.

Higher kurtosis means that more of the variance is due to infre-
quent large events on the tails, rather than frequent small events.
However, as kurtosis is a global measure of the shape of the entire
probability distribution and not just the tail, in some cases measures of
kurtosis and measures of tail heaviness can become dissociated.

Kurtosis has been a popular measure of selectivity in the theoretical
literature (e.g., Bell and Sejnowski 1997; Olshausen and Field 1996;
Simoncelli and Olshausen 2001). Use of kurtosis in the experimental
literature include Lehky et al. (2005), Lehky and Sereno (2007), as
well as Tolhurst et al. (2009).

Although kurtosis will be the main selectivity metric used here, a
number of other metrics exist in the literature, which we will briefly
examine. One of these is a selectivity index based on entropy of the
pdf of neural responses, introduced by Lehky et al. (2005) and
described more fully there:
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SIE � ��
i�1

M

p(ri)log2(p(ri))�r (10)

Here p(ri) is the probability density of the ith bin in a discretized
response pdf and �r is the bin width. There are also two selectivity
indices based on activity fractions. One was introduced by Rolls and
Tovée (1995) and slightly modified by Vinje and Gallant (2000):

SIR �
n

n � 1�1 �

��
r�1

n ri

n�2

�
r�1

n ri
2

n
 (11)

This modified version reverses the scale of the original Rolls and
Tovée (1995) formulation so that higher values of SIR correspond to
large selectivity. The other activity fraction measure was introduced
by Zipser and colleagues (Moody et al. 1998):

SIZ �

n � �
i�1

n ri

rmax

n � 1
(12)

Another selectivity index is based on the Michaelson contrast of responses:

SIC � (rmax � rmin) ⁄ (rmax � rmin) (13)

This measure was not useful for our large data set because it saturated
close to the ceiling value of 1.0 for every single-neuron response and
every population response.

Normalization

High population sparseness could arise as an artifact because
neurons in the population might nonspecifically have different levels
of activation. For example, if 99 neurons fired at 10 spikes/s to all
stimuli and 1 neuron fired at 100 spikes/s to all stimuli, that would
lead to calculation of high sparseness. However, that high sparseness
would not be interesting from the perspective of neural coding. To
control for this possibility, in addition to analyzing raw data we also
performed selectivity/sparseness calculations and other statistical
analyses using data in which the activity of each neuron was normal-
ized with respect to mean firing rate across all stimuli:

ri
norm �

ri

1

n�
i�1

n

ri

(14)

In principle, normalization has no effect on single-neuron selectivity.
That is because kurtosis depends on the shape of the response pdf, and
dividing all responses by the same constant changes the scale of the
pdf curve but has no effect on its shape. On the other hand, normal-
ization does affect population sparseness. For population sparseness,
each neuron in the population undergoes normalization by a different
number. Therefore, overall, there is a nonlinear transform in the shape
of the pdf of population responses, leading to a change in kurtosis.

Although we normalized with respect to mean firing rate, there are
different definitions of the normalization factor that could have been
used. One general family of normalizations is based on the p-norm or
Minkowski norm of the neural response vector �r1, r2, r3, ..., rn
 where
n is number of neurons in the population. The p-norm is defined as:

normp � ��
i�1

n

ri
p� 1

p
(15)

For p � 1 the norm is the sum of responses in the population, for
p � 2 the norm is the conventional Euclidean vector norm, and for
p � 	 the norm is the maximum response in the population.

Simulation results from a model indicated that the value of nor-
malized population sparseness strongly depended on the value of p
used in the definition of normalization. As p increases, normalized
sparseness becomes smaller. Depending on the value of p chosen,
normalized sparseness could be either smaller or larger than unnor-
malized sparseness.

By normalizing with respect to mean response of a neuron, we
effectively chose p � 1. That is because (sum of responses) and (mean
response) are equivalent when normalizing population sparseness, as
they differ by the same multiplicative factor (the population size) for
every neuron in the population.

Choosing p � 1 provided the most direct way of addressing
concerns that inhomogeneities with respect to mean responsiveness
of different neurons artificially inflated the calculated population
sparseness. However, we repeated all analyses using p � 2 (not
presented), and the results were qualitatively the same as reported
here.

After a preliminary analysis of the data, we decided that it would
be interesting to examine normalization not only with respect to
response magnitude but also with respect to the dispersion of re-
sponses. This was done by normalizing each neuron by the standard
deviation of responses over all stimulus images:

ri
norm �

ri

� 1

n � 1�
i�1

n

(ri � r�)2� 1
2

(16)

Effect of Data Set Size

The effect of data set size on calculated statistics was examined by
repeating the analyses using resampled subsets of the complete data
set. This was carried out both for subsets of stimulus images (for
single-neuron responses) and for subsets of neurons (for population
responses). A random subset of a particular size was selected without
replacement. The selectivity index was calculated for the subset, and
the largest firing rate (extremal response) was determined for the
subset as well. This was repeated 10,000 times for each subset size,
each time using a different random sampling, and the results were
averaged. Subset size ranged from 4 to 800 stimulus images for
single-neuron responses and from 4 to 650 neurons for population
responses.

Pareto Tail Index

Large responses occurring on the upper tails of response pdfs were
analyzed separately from the main body of data. Tail data were fit with
a generalized Pareto distribution using maximum likelihood. This was
done individually for the probability distribution for each single-
neuron response and for each population response. Fitting was per-
formed with the Matlab Statistics Toolbox.

Generalized Pareto tail analysis was introduced by Pickands (1975)
and has subsequently found wide use (Coles 2001), particularly by the
insurance industry for modeling rare large events on the upper tail of
a sparse distribution (earthquakes, floods, etc.) (Embrechts et al.
1997). We are not aware of any previous application to neurophysi-
ological data.

The pdf for the generalized Pareto distribution is a monotonically
declining function defined by:

y � f(r|k, �, �) �
1

��1 � k
(r � �)

� ��1�
1
k

(17)

when k 
 0. Within the k 
 0 case, when k � 0 the function is defined
for � � r and when k � 0 it is defined for � � r � ��/k. When k �
0, the generalized Pareto distribution becomes equal to the exponen-
tial distribution:
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y � f(r|0, �, �) �
1

�
e

�
(r��)

� (18)

defined for � � r. The parameter � sets the scale. The parameter �
defines the threshold for what is counted as a “large” response
(threshold where the upper tail starts). In this study � was individ-
ually set for each neuron (single-neuron responses) or each image
(for population responses) so that in each case the largest 10% of
responses were included in the tail analysis. Finally, k is a shape
parameter quantifying heaviness of the tail. It is also called the tail
parameter, and is the parameter we are primarily interested in. The
value of k determines qualitative properties of the tail. If k � 0 the
tail follows a power law, if k � 0 the tail is exponential, and if
k � 0 the tail is finite with zero probability of a response greater
than ��/k.

RESULTS

Neurons in the data sample included all cells that had
been stably isolated, so that the sample was not biased by
response properties. Recording positions were evenly dis-
tributed across the broad cortical regions delineated in
METHODS, which would have covered many feature columns
(Fujita et al. 1992), and possibly many category domains if
they exist in monkeys as in humans (Downing et al. 2006).
Results for all three cortical areas (TEav, TEad, and STS)
and for both monkeys appeared essentially the same, so their
data were pooled for presentation here (Fig. 7 presents some
unpooled results).

Although responses of inferotemporal neurons were pre-
dominantly excitatory, a few neurons produced mostly inhib-
itory responses. Of 659 neurons for which we have spontane-
ous activity data, 78 neurons (11.8%) produced large inhibitory
responses more frequently than large excitatory responses,
measured over the stimulus set of 806 images. A “large”
response was defined as a deviation of �5 spikes/s from
spontaneous activity.

Selectivity and Sparseness

Single-neuron selectivities for 674 neurons are shown in
Fig. 4Ai. Selectivity was defined as kurtosis (Eq. 9). A
separate selectivity was calculated for each neuron based on
its responses to 806 images. Figure 4Aii shows single-
neuron selectivities for neural response-modulations (spon-
taneous activity subtracted) rather than neural responses.
The sample size in this case was slightly smaller, 659
neurons, because spontaneous activity data were missing
from 15 neurons.

Single-neuron selectivities for responses and for re-
sponse-modulations were almost exactly the same. Mathe-
matically they should be identical, but here the samples
differed slightly. The reason they should be identical is that
we are using a selectivity measure, kurtosis, that is based on
the shape of the probability distribution. The shape of the
probability distribution does not change if we subtract the
same constant (spontaneous activity) from all responses of a
single neuron.

Population sparseness based on neural responses is shown in
Fig. 4Bi, while population sparseness based on response-modula-
tions is shown in Fig. 4Bii. A separate sparseness value was
calculated for each of 806 images, based on the probability
distribution of neural activities in the population for each image.

Population sparseness was greater than single-neuron selec-
tivity. This is shown by comparing average kurtosis values
given in each panel of Fig. 4, A and B. The difference in
kurtosis was significant at the P � 0.00001 level under a t-test
(for kurtosis means) and a Wilcoxon rank sum test (for kurtosis
medians). This was true for both responses and response-
modulations. This shows that measuring single-neuron selec-
tivity is not equivalent to measuring population sparseness.

Population sparseness still was greater than single-neuron
selectivity even after the response of each neuron in the
population was normalized with respect to mean firing rate
(Fig. 4, C and D). The difference between them remained
significant at the P � 0.00001 level when comparing both
means and medians.

Median selectivity for area STS was slightly lower than the
other two inferotemporal areas, TEav and TEad, both for
single-neuron selectivity and for population sparseness. For
single-neuron responses, the kurtosis values were [TEav,
TEad, STS] � [2.0, 2.1, 1.4]. For population responses the
values were [TEav, TEad, STS] � [6.9, 9.3, 4.9]. Previous
studies have reported that single-neuron selectivity in TEav
and TEad were similar (Lehky and Tanaka 2007; Tamura and
Tanaka 2001).

For comparison with the kurtosis selectivity index SIK,
values of the SIE, SIR, and SIZ measures (defined in Eqs. 9–12)
are given in Table 1. These other metrics also show that
population sparseness is greater than single-neuron selectivity.

Effect of Neural Correlation on Population Sparseness

As recordings were conducted with single electrodes, calcu-
lations of population sparseness did not take into account
correlations between neurons in the population. Such correla-
tions would be expected to cause a decrease in estimated
population sparseness. However, computer simulations based
on correlation values in the literature indicated that inclusion of
correlations would have had a very small effect on measured
population sparseness.

The noise correlation coefficient between nearby units
(within several hundred micrometers) is typically around 0.15–
0.20 (Constantinidis and Goldman-Rakic 2002; Gawne and
Richmond 1993; Huang and Lisberger 2009; Reich et al. 2001;
Smith and Kohn 2008; Zohary et al. 1994). Two studies using
tetrodes report much lower correlations between nearby neu-
rons (r � 0.005, Ecker et al. 2010; r � 0.02, Erickson et al.
2000). The correlation coefficient drops as the distance be-
tween neurons increases (Constantinidis and Goldman-Rakic
2002; Smith and Kohn 2008) and as stimulus duration de-
creases (Constantinidis and Goldman-Rakic 2002; Reich et al.
2001; Smith and Kohn 2008). For our recording conditions,
with neurons in the population spread over a broad cortical area
and with short stimulus durations (105 ms), a correlation
coefficient of 0.05 would be a reasonable value based on the
published data.

The effect of correlation on population sparseness was
estimated through model simulations as follows. Mimicking
the size of our data set, a population of 674 model neurons
whose responses followed a gamma distribution was stim-
ulated by 806 images. Noise correlations between neurons
were set at chosen values with copula statistical methods.
Thus we were able to compare sparseness for populations
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with zero and nonzero correlations. We examined two
nonzero correlation coefficients, r � 0.2 as a worst-case
value and r � 0.05 as a more likely value for our conditions.
Compared with zero correlation, the results showed that a
correlation of 0.2 caused population sparseness to decrease
by 6.7% and a correlation of 0.05 caused sparseness to
decrease by 1.8%.

Those downward shifts in population sparseness/selectivity
caused by including correlation are far too small to eliminate
the nonequivalence between population sparseness and single-
neuron selectivity observed here. Looking at results for nor-

malized activity in Fig. 4, C and D, mean population selectivity
was 396% greater than single-neuron selectivity for responses
and 295% greater for response-modulations, both much larger
than the correlation correction of 1.8%.

Selectivity/Sparseness vs. Response Magnitude

We looked at the relationship between selectivity/sparse-
ness and mean response. For single-neuron responses, we
used the mean response of each neuron to all images. For
population responses, we used the mean response of the

Fig. 4. Selectivity and sparseness. A: single-neuron selectiv-
ity. For each neuron, selectivity was measured as kurtosis for
the probability distribution of responses to 806 stimulus
images. Ai: selectivity of responses for 674 neurons.
Aii: selectivity of response-modulations for 659 neurons. Re-
sponse-modulation is response with spontaneous activity sub-
tracted. B: population sparseness. For each stimulus image,
sparseness was measured as kurtosis for the probability
distribution of responses across the population of neurons.
Bi: population sparseness of responses for 806 images.
Neural population size was 674 cells. Bii: population sparse-
ness of response-modulations for 806 images. Neural popu-
lation size was 659 cells. C and D: selectivity and sparseness
for normalized data. Neural responses were normalized with
respect to mean firing rate prior to calculations of single-
neuron selectivity and population sparseness.
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population to each image. The same was done for response-
modulations.

Figure 5Ai shows single-neuron selectivity plotted as a
function of the mean value of single-neuron responses. There
was large scatter among different neurons for both their mean
responses and their selectivities, with a moderately strong
negative correlation between those two properties (r � �0.52).
Highly selective neurons were associated with low mean re-
sponse. For response-modulations (Fig. 5Aii), there was less
scatter in activities, and they were weakly correlated with
selectivity.

Population sparseness is plotted as a function of mean
population response in Fig. 5Bi. The corresponding plot for
response-modulations is in Fig. 5Bii. There was little change in
the average level of activity in the population when stimulated
by different images. This indicates that different images are
encoded primarily by changes in the pattern of activity within
the population, without large shifts in the overall level of
population activity. Correlation between mean response level
and population sparseness was low.

Effect on Selectivity/Sparseness of Changing Stimulus
Set Composition

Ideally the library of critical features embedded within the
large and diverse image set we used would be an unbiased
sampling of all features present in the monkeys’ visual envi-
ronment. However, because the characteristics of such a stim-
ulus space are unknown, there was no way to design the
stimulus set perfectly. Although our stimulus set had great
diversity, there nevertheless may have been biases that affected
neural response statistics. One possibility was that the stimulus
set underrepresented high-effectivity stimuli. Another possibil-
ity was that the stimulus set underrepresented low-effectivity
stimuli.

To examine whether selectivity measurements were highly
sensitive to such potential biases, we resampled the existing
data to create an increased emphasis toward either high-
effectivity or low-effectivity stimuli. These were called aug-
mented data sets. We formed the high-effectivity augmented
data set (DShigh) by taking data from a random sample of 100
images in the top quarter of the most effective stimuli and
pooling them back into the base data set. The low-effectivity
augmented data set (DSlow) was formed in an analogous
manner, resampling from the bottom quarter of effective stim-
uli. In each case the augmented data set size increased from
806 images to 906 images.

These manipulations created a set of new single-neuron
response vectors, each with 906 elements rather than 806
elements. The effects of single-neuron response selectivity
were modest. Mean kurtosis of the base data set (DSbase) was
kbase � 3.50, while for DShigh and DSlow it was khigh � 2.47
and klow � 3.65, respectively. Normalizing single-neuron se-
lectivities had no effect on these values.

Examining population selectivities for augmented data sets
required an additional step. The resampling procedure itself

Table 1. Single-neuron selectivity and population sparseness for
neural responses, calculated with four metrics in the literature

Single Neuron Population

Selectivity
Normalized
selectivity Sparseness

Normalized
sparseness

SIK 1.88 1.88 9.61 7.98
SIE 0.30 0.30 0.80 0.37
SIR 0.29 0.29 0.56 0.36
SIZ 0.77 0.77 0.89 0.85

The four metrics are defined in Eqs. 9–12. Values represent medians over all
neurons (single-neuron responses) or over all stimulus images (population
responses).

Fig. 5. Selectivity/sparseness vs. response magnitude.
Correlation coefficients r are included. A: single-neuron
selectivity as a function of the mean value of neural
activities to all stimulus images. Each dot represents
mean response of a different neuron. Ai: single-neuron
responses; n � 674 neurons. Aii: single-neuron response-
modulations; n � 659 neurons. B: population sparseness
as a function of mean value of neural responses across
the population to a single image. Each dot represents
mean population response to a different image. Bi: pop-
ulation responses; n � 674 images. This plot omits 6
outliers extending to the right out to 45.6 spikes/s.
Bii: population response-modulations; n � 659 images.
All correlations were significantly different from zero at
the P � 0.001 level.
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would not create new image response vectors but would merely
insert repeats of existing ones into the augmented data set. To
create new image response vectors we took the 100 repeated
vectors and shuffled (permuted) their components before pool-
ing them back into the original base data set. For example, to
create the first component of the new vectors, the first compo-
nents of all 100 repeat vectors were shuffled among them-
selves. This shuffling was repeated individually for each of the
674 components in an image response vector (equal to the 674
neurons in the data set). In this manner, responses to 100 new
simulated random “images” with either low effectivity or high
effectivity were created and pooled back into the original data
set to create augmented data sets tilted toward those charac-
teristics.

Changing the set of image response vectors in this way had
little effect. For DSbase mean kurtosis was kbase � 12.51 while for
DShigh and DSlow it was khigh � 12.09 and klow � 12.73. After
normalizing responses, the values were kbase � 5.31, khigh � 5.34,
and klow � 5.17.

On the basis of these simulations, the observation that
population sparseness was greater than single-neuron selectiv-
ity appeared to be robust in the face of moderate shifts in the
characteristics of the stimulus set. The same held true when
response-modulations were examined rather than responses.

Effect of Data Set Size

The shape of the upper tail for the response probability
distribution is a major factor determining selectivity and
sparseness. Events occurring on the tail are rare. Small data
samples have a relatively high likelihood of missing those rare
large responses, thereby mischaracterizing tail properties. In
particular, small data samples, by missing rare large events,
underestimate the heaviness of the tail, and therefore underes-
timate selectivity and sparseness.

Here we examine two characteristics of responses expected
to increase in magnitude as the size of the data set increases:
1) selectivity/sparseness and 2) maximum value of responses
(extremal events). These characteristics were estimated as a
function of data set size by resampling subsets of our complete
data set (see METHODS). When dealing with single-neuron re-
sponses, data set size refers to the number of images tested on
each neuron. When dealing with population responses, data set
size refers to the number of neurons included within the
population when coding each image.

The effect of data set size on single-neuron selectivity (red)
and population sparseness (blue) is shown in Fig. 6A. Both
neural selectivity and population selectivity (sparseness) in-
creased as a function of data set size. However, population
selectivity increased faster, behavior expected if the probability
distribution of population responses had a heavier tail than the
distribution of single-neuron responses. (see Fig. 16 for model
simulations demonstrating tail heaviness effects). This held
true for both responses and for response-modulations, using
unnormalized and normalized data.

Maximum response also increased as a function of data set
size, looking at either single-neuron responses or population
responses (Fig. 6B). For single-neuron responses, maximum
response refers to the largest response of a neuron across all
stimulus images. For population responses, maximum response

refers to the activity of the most responsive neuron in the
population when presented with one stimulus image.

Population responses were again more sensitive to data set
size than single-neuron responses, indicating that probability
distributions for population responses have heavier tails. With
a heavier tail, as sample size increases there is greater proba-
bility of hitting an extremal event than with a thinner tail.
Curves for normalized data were not included in Fig. 6B
because a comparison of response magnitudes is not meaning-
ful after both sets of data have been independently normalized
with respect to mean response.

The greater value of population sparseness over single-
neuron selectivity remained when we examined data for the
individual monkeys KH (n � 322 neurons) and SH (n � 352
neurons). For individual monkeys, the number of stimulus
images was slightly larger than for the pooled data, being 1,016
images for monkey KH and 1,010 images for monkey SH. (The
806 images used in the pooled data represent the intersection of
those two stimulus sets). Figure 7A shows results for the
individual monkeys.

The difference between population sparseness and single-
neuron selectivity also remained when we examined data for
individual cortical areas rather than pooled data. Figure 7B
shows results for area TEav (n � 271 neurons). Results were
also similar for the other cortical areas examined, TEad (n �
221 neurons) and STS (n � 152 neurons).

Dynamic Range

We measured the dynamic range of each neuron, using as
one measure the interquartile range of its responses across the
image set (difference between the 25th and 75th percentiles of
responses). The results for 674 neurons are shown in Fig. 8.
The dynamic range of a neuron and its selectivity had low
correlation (r � �0.27).

We were interested in seeing which class of inferotemporal
neurons was more important for creating highly sparse popu-
lation responses: high-selectivity neurons or high-dynamic-
range neurons. Using population sparseness based on response-
modulations (so that spontaneous activity differences between
neurons were already factored out), we “lesioned” the 10% of
cells in the population with the highest selectivities or the 10%
with the largest dynamic range. The results showed that re-
moving high-selectivity neurons had little effect on population
sparseness, while removing high-dynamic-range neurons
caused a large drop (Fig. 9).

On the basis of these observations, we decided to measure
sparseness when neural responses were normalized for dy-
namic range. Specifically, we normalized each neuron in the
population with respect to the standard deviation of its re-
sponses over the stimulus image set (Eq. 16) (with standard
deviation and interquartile range being conceptually similar
measures of dispersion). This differs from the normalization
presented above, which was normalization with respect to
mean response. Normalizing for dynamic range caused popu-
lation sparseness values to collapse, dropping lower than sin-
gle-neuron selectivities (Fig. 10). The large drop in sparseness
occurred even though the normalized neurons still retained a
range of different mean activities and different single-neuron
selectivities. This shows that a critical requirement for high
population sparseness is a statistically inhomogeneous popula-
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tion with a diversity of dynamic ranges. Having different mean
firing rates does not matter so much, nor are the single-neuron
selectivities within the population of central importance. These
experimental results are reproduced in the modeling shown in
Fig. 15.

Response Magnitude vs. Rank

Response magnitude versus response rank is plotted in Fig. 11
on a log-log scale. This is known as a Zipf plot (Newman
2005). Only the upper tails (largest 10% of responses) are
shown in the plots. The single-neuron plots (red) were pro-
duced as follows. For each neuron, responses to all images
were normalized relative to the largest response. These nor-
malized responses were then averaged across all neurons. The
population plots (blue) were produced as follows. For each
image, responses of all neurons were normalized relative to the
largest response in the population. The results were then
averaged over all images.

For both responses and response-modulations, the population
curve had a steeper slope than the single-neuron curve. This again

indicates that the probability distribution for population responses
has a heavier tail than that for single-neuron responses. The
heavier tail of the population response increases the likelihood of
a larger extremal response, which in turn pushes down the rest of
the curve that is normalized relative to the extremal event.

It should be noted in the Zipf plots that the second largest
response was almost the same size as the largest response.
For single-neuron activities to different images, the second
largest response was 0.893 relative to the largest. For
population activities to a single image, the second largest
response was 0.795 compared with the largest. Moreover,
those fractions depended on data set size, increasing for
larger data sets (not shown). This last point was confirmed
by doing Zipf plots for different data set sizes (analogous to
the analysis presented in Fig. 6). By extrapolation, for very
large data sets beyond what we used, the second largest
response would approach equality with the largest response.

The Zipf rank-order plots show that even for highly selective/
sparse representations, the best response does not strongly dom-
inate other responses. With a large data set, the chances are high

Fig. 6. Effect of data set size on response statistics.
A: selectivity/sparseness vs. data set size. For single-neuron
responses, data set size was number of neurons. For pop-
ulation responses, data set size was number of stimulus
images. Different data set sizes were created by bootstrap
resampling subsets of the complete data. Ai: effects of data
set size based on responses. Aii: effects of data set size
based on response-modulations. Aiii and Aiv: same curves
for normalized data. B: maximum response vs. data set
size. Bi: effects of data set size based on responses.
Bii: effects of data set size based on response-modulations.
Selectivity and maximum response in these plots reflect
mean values over 10,000 repeats of resampled data at each
point.
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for finding a second stimulus or a second neuron that is almost as
good as the best one. This does not affect the underlying response
probability distribution, which is what determines selectivity/
sparseness.

Probability Density Functions of Responses

We investigated which probability distribution provided the
best overall description of single-neuron responses and popu-
lation responses. Seven distributions were examined: Weibull,
log-logistic, log-normal, gamma, exponential, normal, and

-stable (Eqs. 1–7). The error measure used was the Kolm-
ogorov-Smirnov distance (Eq. 8) between the empirical cdf of
responses and the best-fit cdf for each of the seven parametric
distributions. The Kolmogorov-Smirnov distance was aver-
aged over all neurons (single-neuron responses) or all stimulus
images (population responses).

For single-neuron responses, the gamma distribution gave the
best fit by a small margin over other distributions (Fig. 12A). Fits
for responses (Fig. 12Ai) and response-modulations (Fig. 12Aii)
were very close (theoretically they should be identical). Although
the gamma distribution provided the best fit, it was not signifi-
cantly better than the Weibull, log-logistic, or log-normal distri-
butions, based on standard errors of mean Kolmogorov-Smirnov
distances over the set of all single-neuron responses.

Fig. 8. Dynamic range of neurons. Dynamic range was measured here as
interquartile range of responses. Dynamic ranges for responses and response-
modulations of each neuron are the same, as subtracting a constant (sponta-
neous activity) has no effect upon this calculation.

Fig. 7. Results for individual monkeys and individual cor-
tical area. A: comparison of population sparseness and
single-neuron selectivity for monkey KH as well as for
monkey SH. B: comparison of population sparseness and
single-neuron selectivity in cortical area anterior ventral TE
(TEav). Kurtosis is plotted as a function of data set size,
where different data set sizes were formed by resampling
subsets of the complete data, as in Fig. 6. For population
sparseness, data set size refers to number of neurons in the
population. For single-neuron selectivity, data set size re-
fers to the number of stimulus images presented to each
neuron.
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The equation for the gamma pdf is:

f(x|a, b) �
1

ba�(a)
xa�1e

�
x
b

(19)

For best-fit gamma distributions, the median value of a was 3.0
with interquartile range 1.7. The median value of b was 2.0
with interquartile range 1.6. Correlation between the two pa-
rameters was �0.04.

Plots of pdfs based on best-fit gamma parameters are shown
in Fig. 12B, i and ii. Three plots are shown in the figure, with
shape parameter a taken at its 5th, 50th, and 95th percentile
values over all neurons, while scale parameter b was kept at its
50th percentile value. The shapes of the response pdfs are quite
different in each case, indicative of the diversity in the re-
sponse statistics for different neurons. If we had included the

spread of values for the scale parameter b, the diversity would
have appeared even greater.

Best-fit probability distributions for population activities are
shown in Fig. 13. Population probability distributions based on
responses were dissimilar to those based on response-modula-
tions. For responses, the log-normal distribution gave the best
fit by a small but significant margin (Fig. 13Ai). For response-
modulations, the 
-stable distribution gave an extremely good
fit with a much smaller Kolmogorov-Smirnov distance than
any of the other tested distributions (Fig. 13Aii).

The pdf for the log-normal distribution is:

f(x|�, �) �
1

x��2�
e

�(log(x) � �)2

2�2
(20)

For population pdfs based on responses, the median best-fit
value of � was 1.7 and its interquartile range was 0.13. The
median value of � was 1.0 with interquartile range 0.03. The
correlation between the two parameters was 0.3.

Plots of population response pdfs based on best-fit log-
normal parameters are shown in Fig. 13Bi. Plots are shown
with parameters � and � each set to their 5th, 50th, and 95th
percentile values from among neurons in the population. All
three distributions are similar, demonstrating that the probabil-
ity distribution of neural responses within a population remains
much the same for different images.

The 
-stable distribution gave the best description of popu-
lation response-modulations. The pdf of the 
-stable distribu-
tion is given by the inverse Fourier transform of Eq. 7, which
cannot be expressed in closed form. For the two 
-stable
parameters describing shape, the median value of 
 was 1.31
with interquartile range 0.09, while the median value of  was
0.66 with interquartile range 0.25. The correlation between the
two parameters was �0.29. This value of 
 indicates a power
law tail, with a tail heaviness between a normal distribution
(
 � 1) and a Cauchy distribution (
 � 2). The positive 
value indicates a positively skewed distribution.

Plots of population response-modulation pdfs based on best-
fit 
-stable parameters are shown in Fig. 13Bii. For these plots,

 was set at its 5th, 50th, and 95th percentile values and  was
set to its 95th, 50th, and 5th percentile values (reverse order
because of the negative correlation with 
). The scale and
location parameters � and � were set to their median values
(� � 2.32; � � 2.91). Again, there was little variation in the
distribution of responses within the population to different
images.

A previous study found that the probability distribution of
single-neuron responses was described by a gamma distribu-
tion (Franco et al. 2007), in agreement with our findings. They
also reported that population responses followed an exponen-
tial distribution, while we found a log-normal distribution gave
the best fit. However, our fitting procedure only included
responses greater than 0 spikes/s (see METHODS). Our short trial
durations together with the discrete nature of action potentials
left very low spikes rates poorly characterized, leading to an
artifactual excess of zeros. It is possible that data in which the
low end of the response distribution was better characterized
would lead to an overall description different from what we
found. Nevertheless, in our data set, for the range greater than
0 spikes/s, a log-normal distribution gave a better fit than an
exponential distribution.

Fig. 9. Contributions of high-selectivity neurons and high-dynamic-range neurons
to population sparseness. A: population sparseness based on response-modulations,
including all neurons in the population (659 neurons). B: population sparseness
after high-selectivity neurons were removed from the population. C: population
sparseness after high-dynamic-range neurons were removed from the population.
In each case, the top 10% of high-selectivity neurons or high-dynamic-range
neurons were removed from the data set, leaving a population size of 593 neurons
in both B and C.
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Although the histograms in Figs. 12A and Fig. 13A indicate
which probability distribution gave relatively the best fit, they
do not indicate in an absolute sense how good that best fit was.
That question was examined by comparing 1) Kolmogorov-
Smirnov (K-S) distance between the data and the best-fit
parametric distribution with 2) K-S distances between random
numbers generated from the best-fit distribution and the best-fit
distribution itself.

The idea was that the K-S distances based on the data and
the K-S distances based on random numbers would be com-
parable in size if the fit between the data and the parametric
probability distribution were good. On the other hand, dis-
tances based on the data would be much larger than distances
based on random numbers if the fit were poor.

For each single-neuron response or each population re-
sponse, the empirical cdf was determined from the data and the
K-S distance (Eq. 8) between the empirical cdf and the best-fit
parametric cdf was calculated. Next, random numbers were
generated from the best-fit distribution, and their cdf was
determined. The K-S distance between the random-number cdf
and the best-fit parametric cdf was then measured. The size of

the random number set was equal to the size of the data set. For
each data vector (each single-neuron response or each popula-
tion response), the random number procedure was repeated
1,000 times. Using those 1,000 replications, the fraction of
times that the data K-S distance was larger than the random-
number K-S distance was computed. Finally, an average frac-
tion over all data vectors was calculated. If a best-fit parametric
distribution perfectly described the data, that fraction would
have a chance level of 0.5. For poorer fits the fraction becomes
larger.

The results were as follows. For single-neuron data (both
responses and response-modulations), K-S distance between
the data and the best-fit gamma distribution was almost always
larger than the K-S distance between gamma-distributed ran-
dom numbers and the best-fit gamma distribution (0.91 fraction
of the time). This indicates that the gamma distribution did not
provide a very accurate description of the data, even though it
was the best among the parametric distributions tested. A better
description is likely to exist, although under a P � 0.05
criterion the hypothesis that the data are gamma distributed
cannot be rejected.

Fig. 10. Population sparseness when activities of each
neuron in the population were normalized with respect
to standard deviation of responses over all images,
rather than normalized with respect to mean response.
A: sparseness based on neural responses. B: sparseness
based on neural response-modulations.

Fig. 11. Zipf plots, showing response magnitude vs.
response rank on log-log coordinates. Only upper
tails are included (top 10% of response magnitudes).
Also shown are the best-fit lines for the initial portion
of the curves. Ai: plots based on responses. Aii: plots
based on response-modulations. Bi and Bii: same
plots as A, but based on normalized data.
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For population responses, the K-S distance between the
data and the best-fit log-normal distribution was larger than
the distance between log-normally distributed random num-
bers and the best-fit log-normal distribution 0.80 fraction of
the time. The log-normal distribution therefore provided
only a modestly good approximation to population re-
sponses.

For population response-modulations, K-S distance be-
tween the data and best-fit 
-stable distribution was larger
than the distance between 
-stable random numbers and
best-fit 
-stable distribution 0.38 fraction of the time. Given
this performance, the 
-stable distribution was a very good
description of population response-modulations.

Moving from unnormalized to normalized population re-
sults, probability densities for normalized population activ-
ities are shown in Fig. 13, C and D. In this case the best-fit
distribution was the log-logistic distribution, whose pdf is
given by:

f(x|�, �) �
e

�(log(x)��)
�

��1 � e
�(log(x)��)

� 
2 (21)

The median value of the scale parameter � was 0.340 with
interquartile range 0.022. The log-logistic distribution pro-
vided a good fit for these data, as the K-S distance between
data and the best-fit log-logistic distribution was larger than the
distance based on log-logistic random numbers about half the
time (0.46 fraction).

For normalized population response-modulations, the
best-fit distribution was the 
-stable distribution, although it
was not significantly better than the log-logistic distribution.
For the two 
-stable shape parameters, the median value of

 was 1.70 with interquartile range 0.08 while the median
value of  was 0.83 with interquartile range 0.24. The

correlation between the two parameters was 0.17. The

-stable distribution gave a good fit to these data, as the K-S
distance between data and the best-fit 
-stable distribution
was larger than distances based on 
-stable random numbers
0.28 fraction of the time.

Normalized single-neuron probability distributions are not
presented, as the normalization process has no effect on them.
Normalized single-neuron distributions would be essentially
identical to those in Fig. 12.

Pareto Analysis of the Tails

In the previous section we looked at the response pdfs as a
whole. Here, given the importance of the tails of the distribu-
tion for selectivity and sparseness, we focus on examining the
upper tail in more detail. When fitting pdfs to the complete
data, we may be generating models that fit well near the peak
of the data distribution but poorly on the tails. As there is little
data on the tails, they have a weak influence on the overall fit
of the probability model.

Based on higher kurtosis in population responses than in
single-neuron responses, we expect probability distributions
for population responses to have heavier tails than single-
neuron responses.

Heaviness of upper tails was quantified by fitting generalized
Pareto distributions (GPDs) (Eqs. 17 and 18) to tail data. A
separate GPD was fit for each neuron (single-neuron re-
sponses) or each image (population responses). Of particular
interest was the value of the parameter k of the best-fit
distribution. That parameter, known as the tail index, describes
the shape of the probability density tail. Larger values of k
indicate a heavier tail.

Histograms of the generalized Pareto tail index are shown
in Fig. 14Ai for response data. The mean value of the tail
index for population responses was not significantly differ-
ent from zero (k� � �0.05). The mean tail index for single-

Fig. 12. Probability distributions of single-neuron
activities. A: Kolmogorov-Smirnov (K-S) distances
for the best fit between data and different parametric
distributions. Smaller values indicate better fit.
Ai: K-S distances for single-neuron responses. The
gamma distribution gave best fit. Aii: K-S distances for
single-neuron response-modulations. Again, the
gamma distribution gave the best fit. B: best-fit gamma
pdfs covering a range of parameter values found for
different neurons. Peak values have been normalized
to 1.0. Bi: gamma pdfs for single-neuron responses.
Bii: gamma pdfs for single-neuron response-modulations.
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neuron responses was much smaller, being strongly negative
(k� � �0.43). The difference in the mean tail indices
confirms that population responses have heavier tails than
single-neuron responses. The difference was significant un-
der a one-tail t-test (P � 0.0001).

Population response-modulations also had heavier tails than
single-neuron response-modulations (Fig. 14Aii). The mean

value of the tail index for population response-modulations
(k� � 0.24) was much larger than that of single-neuron re-
sponse-modulations (k� � �0.44).

After normalization, population responses and response-
modulations still had heavier tails than single-neuron data. The
mean tail index for normalized population data was greater
than that of the single-neuron data (Fig. 14B).

Fig. 13. Probability distributions of population
activities. A: K-S distances for the best fit between
data and different parametric distributions. Smaller
values indicate better fit. Ai: K-S distances for
population responses. The log-normal distribution
gave the best fit. Aii: K-S distances for population
response-modulations. The 
-stable distribution
gave the best fit. B: best-fit pdfs covering a range
of parameter values fitted to population activities
for different images. Bi: log-normal pdfs for pop-
ulation responses. Bii: 
-stable pdfs for population
response-modulations. C: same as A, but using
normalized responses. Ci: K-S distances for pop-
ulation responses. The log-logistic distribution
gave the best fit. Cii: K-S distances for population
response-modulations. The 
-stable distribution
gave the best fit by a slight margin. D: best-fit pdfs
for normalized data. Di: log-logistic pdfs for pop-
ulation responses. Dii: 
-stable pdfs for population
response-modulations.
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Values of the tail parameter k correspond to qualitatively
different types of tails. For single-neuron responses and re-
sponse-modulations (k � 0), the Pareto analysis indicated that
probability distributions had finite upper tails. For unnormal-
ized population responses (k � 0), the tails were exponential.
Power law tails (k � 0) were found for normalized population
responses. Power law tails also occurred for population re-
sponse-modulations, both normalized and unnormalized.

Modeling

In this section we describe simulations that qualitatively
reproduced various aspects of the data.

Simulations reproducing greater population sparseness than
single-neuron selectivity. This was done by creating a popula-
tion of model neurons that were statistically inhomogeneous.
Each neuron had a different probability distribution of response
magnitudes when presented with a set of images. Postulating
that the pdf shape was different for each neuron goes beyond
saying that each neuron was most responsive to a different
critical feature.

The responses of each model neuron to a set of stimulus
images were defined by a gamma probability distribution (Eq.
19). To create an inhomogeneous population, the gamma
distribution was different for each neuron. This was achieved
by setting the two parameters in the gamma distribution a and
b to random values. The values of the two parameters were
themselves gamma distributed, so that for each neuron they
were set by the Matlab gamma random number generator with
the following characteristics: a � gamrnd(4, 0.5) and b �
gamrnd(2, 0.5). The number of model neurons and the number
of stimulus images were set to match the data.

This modeling resulted in single-neuron selectivity and pop-
ulation sparseness values presented in Fig. 15. It demonstrates

that a neural population with inhomogeneous response distri-
butions reproduces the observation that population sparseness
is greater than single-neuron selectivity (comparing Fig. 15A
with Fig. 15B). Normalizing neural responses with respect to
mean response had little effect on population sparseness (Fig.
15C). However, normalizing with respect to the standard de-
viation of responses led to a sharp drop in sparseness, below
single-neuron selectivities (Fig. 15D). This is the same pattern
seen when the data were normalized relative to mean response
(Fig. 4, C and D) or normalized relative to standard deviation
(Fig. 10). Again in this model we see the critical importance of
heterogeneity in the dynamic range of different neurons for
creating high population sparseness.

We examined the effects of including Poisson noise in the
model. This was done by replacing each value in the determin-
istic process by a Poisson-distributed random number having
the same mean value as the deterministic process. Introducing
this noise produced very minor effects on the model results
shown in Fig. 15, regardless of the number of trials that each
image was presented to a neuron.

We tried using a homogeneous neural population with
Poisson noise, in which every neuron had an identical
response probability distribution. This failed to replicate the
observation that population sparseness is greater than neural
selectivity. In our simulations under those conditions, pop-
ulation sparseness and single-neuron selectivity were within
2% of each other.

These simulations also produced heavier tails for the prob-
ability distribution of population responses than for single-
neuron responses. Tail heaviness was measured in the same
manner described above for the data, fitting a generalized
Pareto distribution to the upper tail (largest 10% of responses).
For single-neuron responses, the mean value of the tail index

Fig. 14. Upper tail heaviness for response probability
density functions, as quantified by Pareto tail indices.
Ai: Pareto tail indices calculated individually for the
upper tail of each single-neuron response (red) and
each population response (blue). Larger values of the
tail index indicate heavier tails. Aii: Pareto tail indices
calculated using response-modulations rather than re-
sponses. Bi and Bii: Pareto tail indices using normal-
ized data.
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was k� � �0.04. For population responses, it was k� � 0.12.
Larger values of the tail index indicate heavier tails.

The tail index observed in the data for single-neuron re-
sponses (k� � �0.43) was smaller than that produced by the
modeling (k� � �0.04). This indicates that the probability
distributions for single-neuron responses in reality had upper
tails that were much thinner than those of the gamma distri-
bution used in the modeling.

Simulations Varying Tail Heaviness

The Pareto tail analysis showed that population responses
have heavier tails than single-neuron responses, which was
reproduced by the modeling in the previous section. This
section examines whether various other differences between
population responses and single-neuron responses presented
above might be explained as consequences of tail heaviness.

The approach here was to take random numbers distributed
in accord with a GPD and subject them to the same analyses
methods used for the data. Two sets of random numbers were
generated that differed only in the heaviness of their tails. In
one set, the tail index k was set to �0.44 (lighter tail), and in
the other it was set to �0.05 (heavier tail), values determined
by experimental results. The other two parameters of the GPD
were held fixed and arbitrarily set to � � 1 and � � 0 (so that
no attempt was made in the random number sets to match mean
firing rates in the data). These sets of random numbers only
simulated the upper tails of the data, and not their full proba-
bility distributions.

Figure 16 gives the results when the two sets of random
numbers were subjected to some of the same analyses used
previously. Figure 16A shows kurtosis as a function of data set
size using Pareto random numbers, Fig. 16B shows maximum
response as a function of data set size, and Fig. 16C shows Zipf
plots of the random numbers. These correspond to Fig. 6, A and
B, and Fig. 11, respectively in the data analysis.

In each case, the differences between the lighter tail random
numbers (red) and heavier tail random numbers (blue) quali-
tatively captured the differences between single-neuron re-
sponses and population responses. There are obvious quanti-
tative differences, perhaps due to the fact that we only simu-
lated tail behavior and not the entire distribution and only
looked at average characteristics without including the heter-
ogeneity found in the data. Nevertheless, these simple simula-
tion results do point out the importance of tail characteristics in
determining the selectivity/sparseness properties of neural re-
sponses as well as other statistical properties we have been
concerned with.

DISCUSSION

These results quantify high sparseness/selectivity both in
single-neuron activities (Fig. 4, A and C) and in population
activities (Fig. 4, B and D). Inferotemporal single-neuron
selectivity and population sparseness were both substantially
higher than previously found in striate cortex with the same
kurtosis measure (Lehky et al. 2005), even when the infero-
temporal stimulus set size was adjusted (using Fig. 6A) to
match the smaller set used by Lehky et al. (2005).

This high selectivity or sparseness in inferotemporal cortex
need not be interpreted in terms of efficient coding for infor-
mation transmission. Although sparse coding theories applied
to V1 and other early visual structures have emphasized infor-
mation theoretic notions of efficient coding, sparseness may
contribute to other aspects of visual information processing
such as speed of learning or memory capacity (Földiák 2002)
that may be more relevant for the high-level visual represen-
tations in inferotemporal cortex (see also discussion by Lehky
et al. 2005).

Population sparseness was greater than single-neuron selec-
tivity. Although measurements of single-neuron selectivity
have sometimes been used as a proxy for population sparse-

Fig. 15. Selectivity results based on model simulations
using inhomogeneous neural populations. Neurons had
gamma-distributed responses over the set of stimulus im-
ages. The probability distribution for each neuron was
different, making the population inhomogeneous. A: sin-
gle-neuron selectivity for 674 model neurons. B: popula-
tion sparseness for 806 images. C: population sparseness
when activity of each neuron was normalized with respect
to mean response over all images. D: population sparseness
when activity of each neuron was normalized with respect
to standard deviation of responses over all images. Nor-
malized single-neuron selectivities are not shown because
normalization has no effect on them.
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ness, these data show that they are not the same. The obser-
vation that population sparseness is greater than single-neuron
selectivity contradicts an earlier study that reported that they
were the same (Franco et al. 2007). That different conclusion
may have been the result of a much smaller data sample in that
study (44 neurons, 20 stimulus images). As shown in Fig. 6, the
difference between neural selectivity and population sparse-
ness decreases for small samples. In addition, standard errors
increase when the sample size is small. A combination of a
smaller magnitude of the effect combined with larger standard
errors may have obscured observation of such a difference in
the earlier study.

Selectivity/sparseness was measured under a RSVP para-
digm, with each stimulus image presented for a duration of 105
ms. Previous work has shown that neural selectivity is depen-
dent on stimulus duration (Fig. 5 of Keysers et al. 2001), with
selectivity decreasing for very short presentations. However,

the data of Keyser et al. (2001) indicated that this decrease in
selectivity was not a significant effect until stimulus durations
fell below 42 ms, far below the speed we were using. More-
over, in those data there did not appear to be a change in
selectivity going from 111 ms to 222 ms, suggesting that
selectivity as a function of duration already plateaus at the
stimulus duration we were using. The ability to identify or
categorize rapidly presented images in psychophysical back-
ward masking tasks plateaus for stimulus durations beyond
�50 ms (Bacon-Macé et al. 2005; Lehky 2000). This again
suggests that our conditions were within the range where
duration effects on visual processing cease to be a major factor.

Neurons were heterogeneous in their characteristics, differ-
ing in spontaneous activity, selectivity, dynamic range, tail
heaviness, and their response probability distribution as a
whole (among properties we were concerned with). Because of
this heterogeneity, responses from neurons in a population
therefore do not represent independent and identically distrib-
uted (i.i.d.) observations often assumed in statistical analyses.

If all neurons had identical response probability distribu-
tions, then population sparseness and single-neuron selectivity
would necessarily be equal. The fact that sparseness and
selectivity are not equal is a prima facie indication of statistical
heterogeneity among neurons in the population. The question
arises of what is the specific nature of the heterogeneity
underlying high population sparseness. Normalizing neural
responses with respect to mean response was not sufficient to
destroy high population sparseness (compare Fig. 4, B and D).
On the other hand, when we normalized with respect to the
dynamic range of neurons (standard deviation of their re-
sponses), then high population sparseness disappeared (com-
pare Fig. 4B and Fig. 10). These observations are replicated in
the modeling (Fig. 15). Furthermore, removing neurons with
high single-neuron selectivities from the population did not
have a great effect on population sparseness (Fig. 9). It there-
fore appears that a critical requirement for high population
sparseness is to have an inhomogeneous population with di-
versity in the dynamic ranges of the component neurons. High
population sparseness is not dependent on having high single-
neuron selectivities. This last observation serves to dissociate
the concepts of “population sparseness” and “single-neuron
selectivity.” Possibly there are biophysical limits on how high
single-neuron selectivities can go, and dynamic range diversity
among neurons in a population is a mechanism for achieving
higher population sparseness that transcends those limits.

Besides increased sparseness, another possible advantage for
diversity in the dynamic range of inferotemporal neurons is
increased accuracy in the representations they form. Neural
modeling has shown that a mixture of different tuning curve
widths increases the precision of representations compared
with having uniform tuning curve widths (Wilke and Eurich
2002).

It is conceivable that a more diverse stimulus image set may
have changed the results reported here. Quantifying what
constitutes stimulus diversity for an image set or what consti-
tutes an unbiased sampling of all possible visual stimuli in the
environment is a difficult problem, particularly if the signifi-
cant stimulus variable may not be an image as a whole but
unknown critical features embedded within the image. What
we can report, however, are strong and unambiguous results
differentiating single-neuron selectivity and population sparse-

Fig. 16. Simulation results showing influence of tail heaviness. Random
numbers were generated with a generalized Pareto distribution and were
analyzed in the same manner as the data. Two values of the Pareto tail index
were used, k � �0.05 (heavier tail) and k � �0.43 (lighter tail). A: kurtosis
as a function of size of synthetic data set. B: maximum response as a function
of size of synthetic data set. C: response magnitude vs. rank. In all cases,
differences between the lighter-tailed distribution (red) and the heavier-tailed
distribution (blue) qualitatively mimicked differences seen in the data between
single-neuron responses and population responses.
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ness using a stimulus set that appears to be far more diverse
than in any previous study.

Training modifies the selectivity of inferotemporal neurons
(Booth and Rolls 1998; Kobatake et al. 1998; Logothetis et al.
1995). Such changes can occur even for passive viewing of
visual stimuli, where the images do not have any explicit
significance for the monkeys in terms of task performance
(Freedman et al. 2006). In this study, the monkeys repeatedly
viewed the stimulus set over a period of months under a
passive viewing task. Thus the process of measuring selectivity
may have perturbed selectivity to some extent. However, a
recent review of plasticity effects in inferotemporal cortex
concluded that adult learning introduced only small modula-
tions upon preexisting neural object representations (Op de
Beeck and Baker 2010). We therefore believe that the essential
selectivity properties we report are inherent characteristics of
inferotemporal responses and not created by exposure to the
stimuli during data collection.

Bowers (2009) has argued that the existing neurophysiolog-
ical data are consistent with a localist or “grandmother cell”
type of visual representation rather than sparse coding. In such
a localist representation, the activity of a single cell is sufficient
to uniquely identify an object. We believe that the data pre-
sented here do not support “grandmother cell” coding. The
Zipf plots (Fig. 11) show relative response magnitudes as a
function of rank order. On average, the second largest response
was almost the same size as the largest response (89.3% for
single-neuron responses, 79.5% for population responses).
This is not a characteristic of “grandmother cell” coding. For
larger stimulus set sizes, as occur under real-world conditions,
the difference between largest and second largest responses
would be even smaller.

“Grandmother cell” coding models generally include the
assumption of a hierarchy of cells with increasing selectivity.
The region we recorded from, anterior inferotemporal cortex
(AIT), is the last unimodal visual area, at the top of ventral
stream hierarchy. The primary projection of area TE in AIT is
to perirhinal cortex (Saleem and Tanaka 1996; Suzuki and
Amaral 1994), a polymodal area. Visual selectivity in perirhi-
nal cortex is not greater than in TE (Lehky and Tanaka 2007;
Naya et al. 2003). Thus it seems unlikely that there is some
“higher area” where “grandmother cells” are commonplace.
Nevertheless, it is still possible that grandmother cell encoding
could occur for a small number of special objects to which the
observer was highly exposed and which also had strong be-
havioral significance.

Tail heaviness can be viewed as the fundamental statistical
characteristic differentiating population responses and single-
neuron responses, with the observed difference in selectivity
being secondary to that. The ordering of selectivity/sparseness
in unnormalized data was, from lowest to highest: 1) single-
neuron responses � single-neuron response-modulations;
2) population responses; 3) population response-modulations. The
ordering of tail heaviness (tail index k in Fig. 14), from lightest to
heaviest, was identical to the ordering for selectivity.

Measured selectivity was dependent on the size of the data
set, increasing for larger data samples, either the number of
images for single-neuron selectivity, or the number of neurons
for population selectivity (Fig. 6, see also modeling in Fig. 16).
This behavior, predicted by Lehky et al. (2005), occurs as it

becomes more likely with larger data sets to hit a rare event on
the upper tail.

The effect of data set size was stronger for responses that are
more highly selective (or sparse). The heavy upper tail of
selective distributions provides a nonnegligible probability of
getting responses that are much larger than typical ones (those
near the peak of the distribution). The outlying “large” re-
sponses, although infrequent, significantly alter the response
vector as a whole. However, they can be missed if we only
have a small sampling of responses. On the other hand, low
selectivity responses with a thinner tail can be well character-
ized by the pattern of responses near the peak of the distribu-
tion, leading to a dense representation with less benefit from
collecting a large data set.

The heaviness of tails was directly examined by fitting
generalized Pareto distributions to tail data. Heavier tails were
indicated by a larger tail index k. Under a Pareto analysis, tails
fall into three qualitative categories. If k � 0 the tail is finite,
if k � 0 the tail is exponential, and if k � 0 the tail follows a
power law. For unnormalized results, the measured Pareto tail
indices indicated finite tails for single-neuron data (both re-
sponses and response-modulations), exponential tails for pop-
ulation responses, and power law tails for population response-
modulations. Observation of this power law relationship in the
data connects the neurophysiology with a broad body of
physical theory related to power laws (Newman 2005).

A finite tail for single-neuron response distributions means
that, as we add more images to the stimulus set, at some point
for each neuron we stop finding new images that produce a
larger response than any previous image. This is an indication
that the critical feature for each inferotemporal neuron is
simple enough that it is likely to occur within a modest
sampling of images.

[The statement that single-neuron responses stop increasing
as more images are added does not contradict the failure of the
maximum response vs. stimulus set size curve to asymptote for
single-neuron responses in Fig. 6B. There is a scatter in the tail
indices for different neurons (Fig. 14), with a small fraction of
them having positive values, indicating that they do not have
finite tails. The average maximum response over many neurons
will be dominated by that small fraction with nonfinite tails.]

A heavier-tailed responses for population data (either expo-
nential or power law tails) means that as we include more
neurons in a population being stimulated by one particular
image, we keep finding neurons that respond better to that
image than any previous neuron (with no end in sight with our
sample of on the order of 103 neurons). This suggests that there
is an indefinitely large number of different critical features
embedded in each image to which different neurons are tuned.
By “indefinitely large” we do not mean infinite, as any physical
system is obviously finite. Even though the number of critical
features in each image is large, the total number of critical
features coded for in inferotemporal cortex must be far larger
still, as most neurons do not respond strongly to each image.

Perhaps one way to see how a single image can generate a
large number of critical features is the following. Think of the
image as being randomly cut up into a jigsaw puzzle. Each
piece is a feature. You can then go back and cut the same
image into a different jigsaw puzzle, producing a different set
of features, and repeat the same process indefinitely. At the
end, all the pieces from all the different puzzles are pooled into
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a single pile, giving a vast array of different but overlapping
features generated from a single image. These features may not
be describable in a simple manner by a limited set of geometric
parameters.

Having a large number of neurons tuned to different critical
features would be at odds with structural models for object
representation that posit a small number of discrete, standard
shape primitives (Biederman 1987; Marr and Nishihara 1978).
These analyses therefore offer a constraint on models of object
representation.

Although the focus here has been on shape responses of
inferotemporal neurons, in many cases the visual processing of
objects requires spatial localization of stimuli (“where”) as
well as identification of “what” (Edelman 2002). Inferotempo-
ral neurons, in addition to being shape selective, are also
location selective (Op de Beeck and Vogels 2000), and loca-
tion information can be extracted from their responses (Lehky
and Sereno 2011; Sereno and Lehky 2011). It is therefore
possible that “where” information for object processing might
be represented internally within the ventral visual pathway
rather than involving the dorsal pathway. Examining this issue
would require further quantification of inferotemporal spatial
responses and how they interact with shape responses.

Overall, we find that the statistics of single-neuron responses
and population responses in inferotemporal cortex are very
different. This difference ultimately depends on statistical
heterogeneity in the responses of different neurons in the
population, most importantly on the existence of diverse values
for response dynamic range. On the basis of examination of tail
heaviness of probability distributions, we conclude that the
critical features for individual neurons are not very complex,
but there is an indefinitely large number of them. We suggest
that this finding constrains models of object representation.
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