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SUMMARY

A fundamental challenge in studying the frontal lobe is
to parcellate this cortex into ‘‘natural’’ functionalmod-
ules despite the absence of topographic maps, which
are so helpful in primary sensory areas. Herewe show
that unsupervised clustering algorithms, applied to
96-channel array recordings from prearcuate gyrus,
reveal spatially segregated subnetworks that remain
stable across behavioral contexts. Looking for natural
groupings of neurons based on response similarities,
wediscovered that the recorded area includesat least
two spatially segregated subnetworks that differen-
tially represent behavioral choice and reaction time.
Importantly, these subnetworks are detectable dur-
ing different behavioral states and, surprisingly, are
defined better by ‘‘common noise’’ than task-evoked
responses. Our parcellation process works well on
‘‘spontaneous’’ neural activity, and thus bears strong
resemblance to the identification of ‘‘resting-state’’
networks in fMRI data sets. Our results demonstrate
a powerful new tool for identifying cortical subnet-
works by objective classification of simultaneously
recorded electrophysiological activity.

INTRODUCTION

Sensory and motor cortices of the primate brain are often char-

acterized by the presence of topographic maps. For example,

primary visual cortex (V1) contains maps of retinotopic space,

orientation preference, and ocular dominance (Engel et al.,

1994; Katz et al., 1989; LeVay et al., 1975; Van Essen et al.,

1984; Wiesel and Hubel, 1974). The boundaries of V1 defined

by each of these maps coincide precisely with each other and

with architectonic borders as well, reinforcing the notion that

V1 is a distinct cortical area with a specific set of functions.

Historically, topographies of this nature have been crucial in

advancing our understanding of the organization and function

of the cerebral cortex (e.g., Felleman and Van Essen, 1991; Hu-
bel and Livingstone, 1987; Mishkin et al., 1983; Zeki and Shipp,

1988).

In contrast, parcellation of the cortex into functional modules is

more challenging in association areas where spatial topography

may be indistinct or missing altogether. Some areas of the

prefrontal cortex (PFC) can be broadly defined by zones of

anatomical projections (Carmichael and Price, 1994; Petrides

and Pandya, 1999; Preuss, 2007) or general trends in physiolog-

ical properties. For example, studies in monkeys and humans

suggest localization trends within PFC based on sensory input

modality (Romanski and Goldman-Rakic, 2002), responses to

reward versus punishment (Monosov and Hikosaka, 2012),

actual versus hypothetical reward outcomes (Abe and Lee,

2011), and a hierarchy of cognitive control (Badre and D’Espo-

sito, 2009). But outside the frontal eye fields (FEFs) (Bruce

et al., 1985), and possibly the frontal lobe ‘‘face patches’’ (O’Sca-

laidhe et al., 1997; Tsao et al., 2008), sharp boundaries and

salient physiological distinctions are rare in PFC. In general, sin-

gle units recorded in PFC exhibit multiplexed signals of great va-

riety, and neighboring neurons show little evidence of common

physiological features that are characteristic of columnar organi-

zation in more primary sensory and motor areas.

Here we take a fundamentally different approach to detecting

topographic boundaries in PFC. We hypothesized that our

limited knowledge concerning topographic organization in fron-

tal cortex may arise from several related limitations of traditional

methods for characterizing neuronal activity. First, previous

studies have largely relied on a small number of electrodes (usu-

ally one), leading investigators to focus on the response proper-

ties of individual neurons rather than the population. Second,

neural responses are usually characterized by their mean—the

first statistical moment of a distribution. Higher moments, espe-

cially trial-to-trial fluctuations and response correlations across

the population, are frequently not studied, primarily due to lack

of simultaneous recordings. And third, neural responses are

typically characterized only with respect to task events that are

of interest to the experimenter. By breaking these conventional

boundaries, it may be possible to discover organizational princi-

ples and topographies that have been unknown heretofore.

We approached this problem from a somewhat agnostic

perspective. We bypassed some basic limitations of single unit

recording by employing multielectrode (Utah) arrays to record
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Figure 1. Large-Scale Multielectrode Recordings from the Prearcuate Gyrus during a Direction Discrimination Task

(A) Behavioral task. Monkeys viewed the random dot motion for 800 ms and, after a variable delay, reported the perceived motion direction with a saccadic eye

movement. Correct responses were rewarded with juice after a short hold period. The strength and direction of motion varied randomly from trial to trial.

(B) Behavioral performance. The three psychometric functions depict performance for the three monkeys (T, V, and C), averaged across all sessions. Psy-

chophysical thresholds were 9.3% coherence for monkey T, 17.9% coherence for monkey V, and 51% coherence for monkey C. Monkey C’s perceptual

sensitivity was poor relative to most animals; threshold remained high despite months of training. The results in this paper, however, do not depend upon

perceptual sensitivity. Our only requirement is that the animal was under behavioral control during task performance, which is demonstrated by the regular

psychometric function.

(C) Target area (blue box) for implantation of the multichannel electrode array on the prearcuate gyrus. Arcuate (as) and principal (ps) sulci are marked with red

dashed lines on the surface of a typical macaque brain (University of Wisconsin Brain Collection).

(D) The actual location of each array with respect to arcuate and principal sulci. The white squares show the ground pins. In monkey C, the array could not be

placed at the concavity of arcuate sulcus due to the unusually short distance between the arcuate and the posterior termination of the principal sulcus. Dashed

lines at the end of a sulcus indicate the sulcus extends in this direction beyond our craniotomy.
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simultaneously from tens to hundreds of units at regularly

spaced intervals across a specific region of PFC. Second, we

used unsupervised algorithms to identify natural groupings of

neurons based on their response covariation, both task driven

and task independent. Finally, we projected the objectively iden-

tified groupings of neurons back onto the arrays to determine

whether theywere spatially segregated in a topographic manner.

We report recordings from the prearcuate gyrus, a region of

PFC that carries visual, cognitive, and eye movement-related

signals in a variety of behavioral tasks (Constantinidis and Gold-

man-Rakic, 2002; Hussar and Pasternak, 2009; Kiani et al., 2014;

Kim and Shadlen, 1999; Lennert and Martinez-Trujillo, 2013;

Mante et al., 2013). The prearcuate gyrus is traditionally divided

into the ‘‘core’’ FEF, located in the rostral bank and lip of the

arcuate sulcus, and area 8Ar, located between the arcuate sul-

cus and the posterior tip of principal sulcus (Gerbella et al.,

2007; Schall, 1997; Stanton et al., 1989). Area 8Ar offers a conve-

nient target for dense multielectrode arrays because it is rela-

tively flat. It is unknown if area 8Ar is a homogenous piece of

cortex or divides further into smaller subregions. Moreover, elec-

trophysiological recordings are generally considered insufficient

to detect the boundary between FEF and 8Ar or to explore sub-
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divisions of area 8Ar, because the neurons appear to have similar

response properties across the prearcuate gyrus (Constantinidis

and Goldman-Rakic, 2002; Hussar and Pasternak, 2010; Kim

and Shadlen, 1999).

Here we show that the recorded population in area 8Ar is not

homogenous and can be divided into smaller subnetworks

based on task-independent covariation of neural responses.

The subnetworks are spatially segregated within the prearcuate

gyrus, revealing a topography that is defined at the population

level by measurements of large-scale, simultaneous recordings.

The prearcuate subnetworks may reflect novel areal boundaries

within area 8Ar or pronounced interanimal variation of known

boundaries (see Discussion). Our new approach will be valuable

for detecting boundaries of both kinds as large-scale array and

optical recordings become increasingly common in the future.

RESULTS

We used 96-channel multielectrode arrays to record from neural

populations in area 8Ar of the prearcuate gyrus (Figure 1) while

our subjects, three macaque monkeys, performed a direction

discrimination task (Britten et al., 1992; Kiani et al., 2008). On
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Figure 2. Spatial Topography in Prearcuate

Gyrus

(A) 2D depiction of recorded units based on

response correlations in an example session. In

this depiction, each point represents one unit, and

the Euclidean distances between units represent

the dissimilarity of their responses (1�, correlation

coefficient) across the session. Isomap MDS was

used to create this map.

(B) Unexplained variance as a function of the

number of MDS dimensions suggests that the

dissimilarity matrix is low dimensional. Two di-

mensions capture a large fraction of variance

across sessions (mean = 61.2%). Gray lines

represent individual sessions. The thick black line

is the average. The red line represents the example

session in (A).

(C) The units of the example session in (A) are

colored according to a 2D color map in which hue

represents radial angle and saturation represents

eccentricity.

(D and E) 2D depictions of example sessions in the

other monkeys.

(F–H) Projection of the unit colors onto the

recording electrodes reveals spatial topography

(clustering of colors) within the recording area.

White squares correspond to ground pins or to

electrodes that failed to record a unit in the de-

picted session. If an electrode recorded frommore

than one unit, the average color of the units is

projected onto that electrode.
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each trial the monkey viewed a patch of randomly moving dots

for 800ms. After a delay period of variable length, themonkey re-

ported the perceived motion direction by making a saccadic eye

movement to one of the two available targets. All monkeys were

trained on the task before implantation of the recording arrays

and showed stable performance throughout the experiments.

The multielectrode array covered 4 3 4 mm of the cortical

surface and enabled us to record simultaneously from multiple

single- andmultineuron units in a significant portion of the prearc-

uate gyrus. Consistent with previous studies (Constantinidis and

Goldman-Rakic, 2002; Hussar and Pasternak, 2009; Kiani et al.,

2014; Kim and Shadlen, 1999; Lennert and Martinez-Tru-

jillo, 2013; Mante et al., 2013; Robinson and Fuchs, 1969),

we observed a variety of response properties in different epochs

of the direction discrimination task, including visual, decision-

related, and perisaccadic signals (see Figure S1 available online).

To explore the presence of functionally specialized circuits

within the population of recorded units, we searched for natural

groupings of neurons based on temporal covariation of activity

over the entire course of an experiment. To do so, we first quan-

tified the responses of each unit as a vector of time-varying firing

rates in 30ms bins from the beginning to the end of the recording

session as described in Experimental Procedures (note that we
Neuron 86,
ignore task events in this first-pass anal-

ysis). Then we measured the dissimilarity

of physiological activity for each possible

pair of units as one minus the Pearson’s

correlation (r) of their firing rate vectors
(Equation 2). Thus our dissimilarity index (1-r) varies between

0 and 2 for perfectly correlated and perfectly anticorrelated units,

respectively.Wewill use the term ‘‘dissimilaritymatrix’’ to refer to

the set of dissimilarity indices for all possible pairs of units on a

given array. Compatible with previous studies in visual cortex

(Smith and Kohn, 2008) and PFC (Constantinidis and Gold-

man-Rakic, 2002; Leavitt et al., 2013), response dissimilarity

increased with distance between recording electrodes and

decreased with the duration of the spike count measurement

window (Figure S2).

Having calculated the dissimilarity matrix for a given experi-

ment, we visualized the dissimilarities between units using multi-

dimensional scaling (MDS). Figure 2A shows a MDS map for an

example session from monkey T. Each point in the map repre-

sents one unit, and the Euclidean distance between any two

units represents the pairwise response dissimilarity of those

two units—as well as possible for a 2D projection. Thus, neigh-

boring units in a map are more strongly correlated than distant

units. Figures 2C–2E illustrate oneMDSmap from eachmonkey,

with each unit colored according to a 2D color map that will be

used in subsequent analyses. Plotting the unexplained variance

of the dissimilarity matrix as a function of the number of MDS di-

mensions showed that four dimensions were often adequate to
1–15, June 17, 2015 ª2015 Elsevier Inc. 3
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explain the dissimilarity matrix (Figure 2B). The 2D projections

captured a large portion of the variance (61.2%) and are highly

informative about the structure of the dissimilarity matrix.

The distribution of units in the MDSmaps does not appear ho-

mogeneous, suggesting that the units can be divided into phys-

iologically distinct clusters (SigClust, p < 10�8 for each illustrated

experiment). We will refer to these clusters as subnetworks, or

‘‘subnets’’ for short. For 14 of the 25 recording sessions (56%),

the neural data clustered into two statistically distinct subnets

(SigClust, p < 0.05). The remaining 11 sessions showed the

same trends, even though they were not individually significant

(MDS maps not shown, but see spatial maps for all sessions,

Figure S3).

Interestingly, the subnets appear to occupy distinct regions of

the recording array (Figures 2F–2H). Note that the physical loca-

tion of the units on the array played no role in our calculation of

the dissimilarity index; note also that a spatial map cannot be

directly inferred from the mere presence of clusters in Figures

2C–2E. Projecting the units back onto the recording arrays, how-

ever, reveals that the units that clustered together in the MDS

maps also tended to form spatial clusters on the array. Further-

more, the locations of the clusters were highly consistent from

one session to another in each monkey (Figure S3), revealing a

characteristic spatial topography based on response covariation

among prearcuate units.

Subnet Identity Is Driven by Correlated Noise,
Not by Task-Related Activity
A potential explanation of the subnets is that they are driven

solely by task-related events. The response vectors used for

our first-pass calculation of dissimilarity indices are a contin-

uous function of time across the entire experiment, including

all trial epochs as well as the intertrial interval. Thus units that

respond strongly to onset of the targets might cluster in one

subnet, while units that are more active before and after sac-

cadesmight form a different subnet. Even if we restrict our anal-

ysis to a particular trial epoch, correlated responsiveness (and

thus subnet clusters) might still emerge due to differential tun-

ing of units to visual motion direction or to saccade direction

and amplitude. We therefore conducted two further analyses

to explore the effect of task-related events on our subnet

classifications.

In the first analysis, we recalculated response dissimilarities as

described above, restricting the analysis to single time epochs

during the trial. To analyze the motion-viewing interval, for

example, we created a new response vector for each unit by

concatenating responses from the motion-viewing interval

across the entire experiment, excising all other intervals. We per-

formed this analysis separately for six nonoverlapping time

epochs (see Experimental Procedures) which capture different

aspects of neural activity in the direction discrimination task,

including responsiveness to visual target onset, motion stimulus,

decision formation, pre- and post-saccadic activity, and sponta-

neous activity during the intertrial interval. Despite these differ-

ences, the structure evident in the MDS plots was consistent

across all epochs, including the intertrial interval (example exper-

iment, Figures 3A–3F) and was consistent with the dissimilarity

structure calculated for the entire session (Figure 2C). Conse-
4 Neuron 86, 1–15, June 17, 2015 ª2015 Elsevier Inc.
quently, the spatial topography on the arrays was also replicated

independently for each epoch (Figure S4). These data suggest

that subnet clustering does not derive primarily from task-related

signals such as visual input, motor output, decision-making, or

motor planning.

To quantitatively assess the consistency of response dissim-

ilarities across trial epochs, we calculated an ‘alignment score’,

which is simply the correlation coefficient of the dissimilarity

matrix for a particular epoch with the dissimilarity matrix for

the entire session. Figure 3G shows that the alignment scores

were consistently high for all temporal epochs, confirming the

impression gleaned from visual inspection of the MDS plots.

The high alignment scores did not result simply from overlap

of data for the individual epochs with whole-session data. We

obtained similarly high alignment scores from dissimilarity

matrices calculated for nonoverlapping trial epochs (data not

shown). Also, the consistency of response dissimilarities was

not due simply to a lack of neural responses. Visual target

onset, motion viewing, saccade preparation, and execution

significantly modulated the activity of the prearcuate population

(Constantinidis and Goldman-Rakic, 2002; Hussar and Paster-

nak, 2010; Kim and Shadlen, 1999). Importantly, the analyses in

Figure 3 confirm that task-related changes in activity exert little

effect on the subnets defined by the structure in response

covariation.

In the second analysis, we further explored task-driven effects

by breaking the responses of individual neurons into task-

evoked and residual components. The task-evoked responses

for individual neurons are defined as the expectation of response

magnitude (average response) for each unique combination of

motion strength, motion direction, and saccade, which are the

task parameters that are controlled or monitored by the experi-

menter. The residual responses of individual neurons are the

trial-to-trial fluctuations around the corresponding means. In

essence, we composed two new response vectors for each

unit in each experiment, one composed of the response expec-

tation (the average response) in each time bin with trial-to-trial

variability removed, and the other composed only of the trial-

to-trial residual activity following subtraction of the mean from

each time bin. We then recalculated response dissimilarities for

each component—task-evoked and residuals.

The response dissimilarities based on residuals align closely

with the whole-session response dissimilarities, both qualita-

tively for individual experiments (Figure 4A, upper row—recall

that the color of each data point is maintained from the whole-

session analysis) and quantitatively across all experiments

(Figure 4B). Using the residual responses of individual epochs

establishes statistically significant subnets in 9–12 sessions

(36%–48%), depending on task epoch. The slight drop com-

pared to whole-session maps is due to the reduced data avail-

able for the analysis. Because the MDS maps for all temporal

epochs are well aligned to the whole-session maps, the spatial

topography obtained by projecting units back onto the array is

maintained as well (Figure S5, upper row). In contrast, response

dissimilarities based on task-evoked components (the expecta-

tion) are poorly alignedwith whole-session data (Figure 4A, lower

row; Figure 4C), although the alignment scores are significantly

above zero, p < 0.05). Unsurprisingly given the MDS plots,
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Figure 3. Topography in the MDS Plots, and Thus Spatial Topography on the Arrays, Is Stable across Task Epochs

Same experiment as in Figure 2C.

(A–F) MDS plots calculated independently for six temporal epochs in the task (see Experimental Procedures). Each unit inherited the same color assigned to it in

the whole-session MDS map in Figure 2C. Thus, clustering of units with similar colors indicates that the observed topography is preserved across task epochs.

(G) To quantify the preservation of topography, we calculated the correlation of the whole-session dissimilarity matrix with epoch-based dissimilarity matrices

(alignment score). The bars show the average alignment scores across sessions. Error bars represent 95% confidence intervals.
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task-evoked average responses also fail to fully replicate the

spatial topography on the array (Figure S5, lower row).

Thus, it is highly unlikely that task-evoked responses in indi-

vidual neurons underlie the existence of spatially topographic

subnets. Rather, the subnets exist mainly because of what is

commonly termed ‘‘correlated noise’’ in traditional electrophys-

iology experiments. The consistency of the noise structure sug-

gests that it can be informative about network connectivity (Kohn

et al., 2009; Ringach, 2009; Tsodyks et al., 1999), even though

the functional benefit is not obvious. We revisit this issue in the

Discussion.

The Signal that Underlies Subnets Is Temporally
Broadband
To better characterize the nature of the residual noise signals

that underlie the subnets, we recalculated the dissimilarities of

the residual signals within nine temporal frequency bands,

from 0.01 Hz to 16.7 Hz (see Supplemental Information), and

measured their alignment to whole-session response dissimilar-

ities. MDS plots for all temporal frequency bands exhibit clus-

tering that is similar to whole-session clustering (Figure S6A),

an impression that is confirmed quantitatively by the alignment

scores (Figure S6B). Although the best alignment with whole-

session data was obtained for 1-4 Hz (roughly delta-band), the

alignments were generally good across all frequencies.
Subnets and Response Dissimilarities Are Stable across
Different Tasks
Because task-related effects were minimal in the analyses pre-

sented above, we hypothesized that the subnets for a particular

array would be stable across behavioral tasks. We tested this

hypothesis by analyzing data obtained from the same arrays

in a visually-guided, delayed saccade task (Figure 5A; see

Experimental Procedures). This task differed from the direction

discrimination task in several ways: only one target was pre-

sented on the screen on each trial, the location of the target

varied substantially from trial to trial, the monkey never viewed

the random dot stimulus, and at the time of saccade there was

no uncertainty about reward. Figure 5B depicts the MDS plot

and spatial topography map for an example experiment in

monkey T, which are qualitatively similar to equivalent data

from the direction discrimination task (Figures 2C and 2F). Fig-

ure 5C shows quantitatively that the dissimilarity matrices

calculated from the delayed saccade task are highly aligned

with those obtained from the direction discrimination task,

across multiple experiments in each animal (Mantel’s test,

monkey T, r = 0.73, p < 0.001; monkey V, r = 0.54, p <

0.001; monkey C, r = 0.62, p < 0.001). Moreover, the dissimilar-

ities in the delayed saccade task, like those in the discrimina-

tion task, were driven largely by correlated noise (residuals)

as opposed to task-evoked responses (Figures S8B–S8D)
Neuron 86, 1–15, June 17, 2015 ª2015 Elsevier Inc. 5
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Figure 4. CommonNoise Is theMain Under-

lying Factor for the Topography

(A) 2D plots of units based on task-evoked and

residual responses for the example session in

Figure 2C. Themeasured neural responses in each

trial epoch consisted of a task-evoked component

(the mean across trials with similar motion direc-

tion, motion strength, and choice) and a residual

component (the variation around the mean). We

recomputed dissimilarities for all six temporal ep-

ochs based on the task-evoked and residual

components. MDS plots are shown for three ep-

ochs. The unit colors are inherited from Figure 2C.

MDS maps are largely preserved for residual re-

sponses, but not for task-evoked responses.

(B) Alignment scores of dissimilarity matrices for

the residual responses with those for the whole-

session responses in six temporal epochs. The

bars show average alignments across sessions.

(C) Alignment scores of dissimilarity matrices for

the task-evoked responses with those for whole-

session response across the same sessions. Error

bars represent 95% confidence intervals.
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and were substantially independent of task epoch (Figure S8B,

upper row).

The Subnets Exhibit Different Physiological Properties
The existence of spatially segregated neural clusters in our study

raises the possibility that neurons in different parts of prearcuate

cortex have physiologically distinct signatures. Previous record-

ings, as well as our own data, suggest that neurons of the prearc-

uate gyrus reflect formation of decision variables and represen-

tation of visual stimuli in the direction discrimination task (Hussar

and Pasternak, 2010; Kiani et al., 2014; Kim and Shadlen, 1999;

Mante et al., 2013). To determine whether these properties are

distributed differentially across prearcuate subnets, we used

K-means analysis of the response dissimilarities to divide the re-

corded units into two mutually exclusive populations, and we

projected these populations onto the arrays to visualize their

spatial topography (Figures 6A–6C, one example session for

each monkey). We then used a logistic model to assess how
6 Neuron 86, 1–15, June 17, 2015 ª2015 Elsevier Inc.
well population activity within each sub-

net predicted trial-to-trial variation in the

monkey’s upcoming choice and reaction

time (RT) (see Supplemental Experi-

mental Procedures). On average, units in

subnet-1, the subnet closest to the

arcuate sulcus, were more predictive of

the monkey’s upcoming choice through-

out the motion-viewing and delay periods

(Figure 6D; t test, p = 0.004 in the 150 ms

window before the Go cue), and thus

provided a better representation of the

growing decision variable (Shadlen and

Newsome, 1996). The subnets were also

differentially informative about the mon-

key’s RT (Figure 6E). Although the task

was not a RT task, we still observed vari-
ation in themonkey’s RT following the Go cue. Interestingly, sub-

net-1, whichwas a better predictor of themonkey’s choices, was

also a better predictor of RT (ANOVA, p = 0.006 in the 150 ms

window before the Go cue).

The differential representation of the decision-making process

by the subnets may appear at odds with our finding above that

common noise rather than task-evoked responses underlies

the observed topography (Figure 4). We note, however, that

the matrix of task-evoked response dissimilarities was weakly

but significantly correlated with the matrix of residual response

dissimilarities, averaged across all monkeys and sessions (align-

ment score, ranging from 0.11 ± 0.02 in the postsaccadic epoch

to 0.26 ± 0.02 in the motion-viewing epoch; data not shown).

That is, pairs of units that show stronger noise correlation also

tend to have stronger signal correlation. Thus, knowing the noise

correlation of a pair of units offers a weak indication of how the

neurons will cooperate in task-related computations (Kenet

et al., 2003).
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Figure 5. MDS Maps and Spatial Topog-

raphy Are Invariant to Task Modifications

(A) We recorded neural responses while the mon-

key performed a second task: visually guided de-

layed saccade. In this task, after the acquisition of

the fixation point by the monkey, a single target

was presented on the screen. The monkey made a

saccadic eye movement to the target after the Go

cue.

(B) The 2D MDS plot and the projected topog-

raphy on the array for an example session in

monkey T. The topography is very similar to that

observed in other sessions where the monkey

performed a direction discrimination task (e.g.,

Figure 2F).

(C) The alignment score of the average ‘‘elec-

trode-based’’ dissimilarity matrices (see Experi-

mental Procedures) across the two tasks. The

bars show the alignment score for each monkey.

Error bars represent 95% confidence intervals

for the alignment between the two dissimilarity

matrices.
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Task-Induced Variations of Response Dissimilarities
Previous studies have shown that noise correlation can be

modulated by spatial attention, context or adaptation (Cohen

and Maunsell, 2010; Cohen and Newsome, 2008; Mitchell

et al., 2009; Müller et al., 1999), and that response variance is

reduced by engagement in a task (Churchland et al., 2010; Pur-

cell et al., 2012). It is important to realize that our findings do not

contradict these previous studies. We have shown that structure

in dissimilarity matrices is largely independent of temporal

epoch, including the intertrial interval, but this finding is consis-

tent withmodulation in the overall level of dissimilarity across trial

epochs, as long as the structure is not disturbed. Figure 7A, for

example, depicts the complete dissimilarity matrix for each tem-

poral epoch of the experiment illustrated in Figure 2C. The units

are segregated by subnet along both the ordinate and the ab-

scissa to facilitate visual comparison of dissimilarity within sub-

nets (upper right and lower left quadrants) and across subnets

(upper left and lower right). The overall level of dissimilarity did

not change much during the task-related epochs (Constantinidis

and Goldman-Rakic, 2002) but varied notably between the inter-

trial interval (the colors are cooler overall for the intertrial interval)

and the five task-related epochs (warm colors). Nevertheless,

the structure in the dissimilarity matrices—higher dissimilarity

across subnets compared to within subnets—is evident for

each epoch (Figure 7B) as well as for the whole-session matrix,

and all temporal frequencies (Figure S10). It is this structure that

is captured by the MDS plots.

Results from Motor Cortex Are Consistent with Those
from Prearcuate Cortex
To extend the scope of our findings, we performed a dissimilarity

analysis on data obtained from two multielectrode arrays in a

fourth monkey, one placed in the primary motor cortex (M1)

and another in the dorsal premotor cortex (PMd) (Figure 8A).

The monkey was trained to perform the same direction discrim-

ination task, but reported its choices with reaching movements

instead of eye movements. The monkey held its left hand on
the fixation point throughout the trial, and the random dot patch

was presented above the fixation point to avoid occlusion by the

hand. The task sequence was similar to that illustrated in Fig-

ure 1A. We recorded neural activity during task performance

as usual (task-engaged period), but we also recorded during

extended periods between task blocks (rest periods, 15–

60min). The animal rested calmly in the primate chair in the semi-

dark test room during these periods, but without engagement in

any behavioral task.

For each recording day, and for all possible pairs of recorded

units, we calculated the response dissimilarity matrices sepa-

rately for the task-engaged periods and the resting periods.

The MDS maps from an example experiment (Figure 8B)

show clear segregation between the PMd and M1 populations

during both periods. For all seven experiments, the response

dissimilarity matrices were highly aligned between the task-

engaged and rest periods (left-most bar, Figure 8C), confirming

the qualitative impression from the example MDS plots. Thus

subnet identification is not dependent on attention, arousal

states, or specific behavioral events associated with task

performance.

Furthermore, three key features of dissimilarity structure in

prearcuate cortex were largely preserved in M1 and PMd. First,

dissimilarity structure was temporally broadband, persisting

across three orders of magnitude of temporal frequency (right

bars, Figure 8C). Second, the dissimilarity structure was mainly

driven by residual fluctuations of neural activity around the

task-evoked mean responses (Figure 8D, left panel) rather than

by the means themselves (Figure 8D, right panel). The align-

ments are generally lower than those for the prearcuate gyrus

(Figures 4B and 4C), suggesting a difference across areas.

Nonetheless, the difference in the alignment of the residual and

task-evoked dissimilarity matrices with the resting period

dissimilarity is evident qualitatively and highly significant statisti-

cally (p < 10�8, three-way ANOVA with response type, session,

and epoch as the main factors). Finally, the structure of the

dissimilarity matrix was largely preserved across all task epochs,
Neuron 86, 1–15, June 17, 2015 ª2015 Elsevier Inc. 7
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Figure 6. Differential Physiological Proper-

ties of the Two Subnets

(A–C) Average layout of the two subnets across the

sessions for each monkey. We used K-means

clustering to objectively divide the recorded units

into two subnets in each session. The subnets

were assigned magenta (subnet-1) and green

colors (subnet-2) and projected back onto the ar-

rays. The average maps across the sessions are

shown for each monkey. The electrodes with in-

between colors contributed to different subnets

across experiments.

(D) Choice prediction accuracy based on a logistic

regression analysis (see Supplemental Experi-

mental Procedures) of the population responses of

subnet-1 and subnet-2.

(E) RT prediction accuracy based on a linear Ridge

regression analysis of the population responses of

the two subnets. Subnet-1 is a better predictor of

both choice and RT. RTs were measured from the

Go cue.

(F) Choice predictive responses were more

distributed in subnet-1. In each session we

ranked individual units of subnet-1 and subnet-2

based on their choice prediction accuracy and

then measured the effect of the exclusion of best

units on the choice prediction accuracy of the

population response. The arrow indicates pre-

diction accuracy of subnet-1 after exclusion of its

ten best units. The analysis focuses on the

150 ms window immediately before the Go cue.

The shaded areas represent SEM across ses-

sions.

Please cite this article in press as: Kiani et al., Natural Grouping of Neural Responses Reveals Spatially Segregated Clusters in Prearcuate Cortex,
Neuron (2015), http://dx.doi.org/10.1016/j.neuron.2015.02.014
especially around the time of hand movement and during the

intertrial interval (data not shown).

Somewhat surprisingly, the resting-state maps were in fact

more effective at segregating M1 and PMd, emphasizing our

observations that task-related events are not the primary driver

of dissimilarity structure and subnet identification (Figure S11).

Unfortunately, the number of functional electrodes in these ex-

periments was too low to investigate the spatial topography of

potential subnets within a single array, but the parcellation of

the cortex into M1 and PMd was clear.

DISCUSSION

We have shown that the recorded neural population in prearcu-

ate gyrus is inhomogeneous and consists of at least two subnets.

The responses of neurons within each subnet aremore positively

correlated with each other and less so with neurons in the other

subnet. For each animal, the pattern of correlations across the

neural population was largely stable and easily detectable in

different tasks and all task epochs, including the intertrial inter-

val. This pattern was consistent despite significant variation in

the amplitude of response correlations across epochs. We also

discovered that the functionally defined subnets are spatially

segregated in the cortex and are mainly segregated by what is

traditionally considered ‘‘noise’’ rather than by the commonly
8 Neuron 86, 1–15, June 17, 2015 ª2015 Elsevier Inc.
studied task-evoked responses. These properties hold for motor

cortex (M1/PMd) recordings as well.

The basic properties revealed by our subnet analysis—spatial

segregation, invariance across behavioral tasks, and adequate

definition by spontaneous and task-independent neural activity

fluctuations—make our technique an appealing tool for objective

parcellation of cortex. It is particularly advantageous in associa-

tion cortices for two reasons. First, it provides an objective way

to group neurons for subsequent analyses; it avoids the ‘‘dou-

ble-dipping’’ bias caused by emphasizing differences in task-

evoked responses following selection of neurons based on the

same task-evoked responses (Kriegeskorte et al., 2009). Second,

our technique provides easy demarcation of cortical regions of in-

terest in awake, behaving animals. Traditionally, parcellation of

cortex has depended heavily on anatomical techniques that

cannot be applied in live subjects: cyto-,myelo-, and chemoarch-

itectonic markers, anterograde and retrograde tracers, and elec-

tron microscopy (Amir et al., 1993; Gerbella et al., 2007; Levitt

et al., 1993; Rockland and Lund, 1983). More recently, technical

advances have enabled cortical parcellation based on fMRI

BOLD responses (Power et al., 2011; Vincent et al., 2007), optical

imaging, diffusion weighted imaging, and electrocorticography

(ECoG) (Hacker et al., 2012; He et al., 2008) in living subjects.

To our knowledge, however, our study is the first to do so based

on spiking activity in association cortex.
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Figure 7. Overall Response Dissimilarity Levels Vary across Task Epochs, but the Structure of the Dissimilarity Matrix Is Stable

(A) The pairwise dissimilarity matrices for all recorded pairs of units in the example session of Figure 2C. Response dissimilarities are measured separately for

different task epochs. To facilitate visualization, the units are ordered based on the subnet membership. Arrows indicate the border between the two subnets

for this session. The cooler colors during the intertrial interval indicate that dissimilarity is overall lower (response correlation is higher).

(B) Average response dissimilarities within and between the subnets in different task epochs across sessions. Error bars indicate SEM across sessions.
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Possible Origins of Correlated Subnet Activity
In the humanMRI literature, long-range interareal anatomical con-

nections are emphasized as a source of correlated variability that

defines resting state networks (reviewed by Van Dijk et al., 2010),

a view that is consistentwith the ubiquitous feedforward and feed-

back pathways connecting cortical areaswith eachother andwith

subcortical structures (Felleman and Van Essen, 1991; Markov

et al., 2013, 2014). Interareal coordination is particularly striking

in the case of cerebrocerebellar resting-state circuits for which

correlated variability is likely to depend on polysynaptic connec-

tions through intermediate structures such as the pons (Habas

et al., 2009; Krienen and Buckner, 2009; O’Reilly et al., 2010).

For several reasons, however, we suggest that intrinsic con-

nectivity, especially intra-areal lateral connections, plays a
crucial role in defining the subnets described in this paper.

First, stability across tasks and task epochs indicates that

the subnets are substantially independent of sensory (or other

task-dependent) inputs to the prearcuate gyrus. Although

shared input driven by visual stimuli has been shown to modu-

late the magnitude of pairwise correlations between visual

areas (e.g., Jia et al., 2013), our data show that the basic struc-

ture of the prearcuate correlation matrix is independent of task

epoch and task-evoked responses, and, therefore, unlikely to

originate from shared task-related inputs. Similarly, the sub-

nets are independent of motor and decision-related outputs.

Among possible task-independent factors, we can rule out

slow hemodynamic and neuromodulatory factors as sole

causes of correlation structure since the subnets are well
Neuron 86, 1–15, June 17, 2015 ª2015 Elsevier Inc. 9
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Figure 8. Motor Cortex Data Are Similar to

the Prearcuate Data and ExtendOur Results

to the Resting State

(A) Two multielectrode arrays were implanted in

the left primary motor cortex (M1) and dorsal

premotor cortex (PMd) of a monkey trained for a

direction discrimination task with reaching move-

ments as the operant response. The gray squares

show the array locations with respect to major

sulci (as, arcuate sulcus; cs, central sulcus; spcd,

superior precentral dimple).

(B) MDS plots of an example session. M1 and PMd

are well segregated both during the direction

discrimination task and in rest periods between

the task-engaged blocks of trials.

(C) Alignment score of the resting and task-

engaged dissimilarity matrices. Response dis-

similarity matrices were calculated for the com-

bined population across the two arrays. Alignment

scores were calculated for the broadband data

(unfiltered, leftmost bar) and for the same fre-

quency bands depicted in Figure S6 for the pre-

arcuate data. The matrices are well aligned for the

resting and task-engaged periods (left bar), and

the signals underlying the alignment are distrib-

uted across temporal frequency bands spanning

three orders of magnitude (right bars).

(D) Common noise is themain factor underlying the

structure of dissimilarity matrices and segregation

of M1 and PMd subnets in this analysis. Alignment

scores show the correlation between the resting

period dissimilarity matrix and the task-evoked

(right) and residual dissimilarity matrices (left).

Conventions are similar to Figures 4B and 4C.
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defined across a wide range of temporal frequencies (Figures

S6, S7, and S10).

The second line of evidence is anatomical. A large portion of

synapses within a local area of cortex arises from neurons within

the same area (intrinsic), not from projections from outside the

area (extrinsic). Local horizontal axons and collaterals provide

more than half of the excitatory synapses onto pyramidal neu-

rons (Boucsein et al., 2011; Stepanyants et al., 2009), and are

thought to coordinate information processing and response dy-

namics across cortical columns (e.g., Stettler et al., 2002). To the

best of our knowledge, lateral connections in 8Ar have not yet

been studied, but in the neighboring dorsolateral PFC (areas

46 and 9), lateral connections are organized in patches with di-

mensions of a few hundred microns to a few millimeters, roughly

consistent with the dimensions of the subnets in our study (Levitt

et al., 1993).

Finally, modeling studies suggest a prominent role for intrinsic

connections in shaping subnets. The topology of connections

within a neural circuit molds emergent network dynamics (Buz-

sáki et al., 2004; Larremore et al., 2011; Ringach, 2009), espe-

cially in the absence of external inputs (Galan, 2008). In general,

knowledge of network connectivity enables predictions about

the correlational structure of the neural responses (Pernice

et al., 2012; Trousdale et al., 2012), even though the converse

is not true (Kispersky et al., 2011; Sporns, 2012; Trong andRieke,

2008). Networks that exhibit approximate balance between

excitation and inhibition are particularly straightforward in this
10 Neuron 86, 1–15, June 17, 2015 ª2015 Elsevier Inc.
respect because response correlations are shaped primarily

by the first order connections between neurons rather than

by higher-order, polysynaptic chains of intrinsic connections

(Trousdale et al., 2012). Networks with balanced excitation and

inhibition are likely to be a dominant feature of cortical architec-

ture: they account well for computations known to be carried out

in the cortex (Isaacson and Scanziani, 2011), and they produce

response variability statistics that correspond closely to those

of cortical neurons (Shadlen et al., 1996; van Vreeswijk and Som-

polinsky, 1996). Considered together, our current data, coupled

with prior anatomical and modeling results, support the role of

intrinsic connections as a key determinant of functional subnets

defined by dynamic patterns of activity correlation.

Relation of the Subnets to Previous Studies of Area 8Ar
At first glance, the spatial boundary detected by our subnet anal-

ysis appears reminiscent of the traditionally defined boundary

between the ‘‘core’’ FEF and area 8Ar (Gerbella et al., 2007;

Stanton et al., 1989). The FEF lies mostly on the anterior bank

of the arcuate sulcus, but can sometimes emerge from the sul-

cus onto the lip of the prearcuate gyrus (Bruce and Goldberg,

1985; Seidemann et al., 2002), consistent with the close spatial

association between subnet 1 and the arcuate sulcus in mon-

keys T and C (Figures 2F–2H and Figures 6A–6C). This potential

association between subnet 1 and the FEF is further suggested

by the stronger saccade- anddecision-related signals in subnet 1

(Figure 6D).
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Arguing against this association, however, are the electro-

physiological results from monkey V. For this subject, the func-

tional boundary between the subnets lies directly atop the

prearcuate gyrus, and is oriented roughly orthogonally to the

nearest point in the arcuate sulcus (Figures 2G and S3). This

boundary cannot be reconciled with the standard conceptions

of FEF/8Ar. Considering the data as a whole, we suspect that

the prearcuate subnets are revealing a functional subdivision

separate from the core FEF. With data from only three monkeys,

however, this conclusion is tentative and must be considered

further in future studies.

Possible Relation of the Subnets to Resting-State fMRI
Measurements
The methodology employed in this paper is closely related to the

techniques that led to the discovery of resting-state networks

in functional imaging studies of the human and monkey brain

(Greicius et al., 2003; Vincent et al., 2007), and more recently to

large-scale parcellation of the cortex based on ‘‘functional con-

nectivity’’ (e.g., Power et al., 2011). Functional connectivity of

two brain voxels is defined as the correlation (or a closely related

function) of blood oxygen-level-dependent (BOLD) responses of

the voxels. The parcellation techniques, which group together

the voxels with covarying BOLD responses, reveal a series

of large-scale modules—visual, somatosensory, motor, etc.—

consistent with the known large-scale anatomical divisions of

the cortex (Honey et al., 2009; Vincent et al., 2007). Interestingly,

this large-scale parcellation based on BOLD seems to reflect

large-scale electrophysiological properties as well, since the

BOLD response fluctuations are closely related to local field po-

tentials and spiking activity within each voxel (Logothetis et al.,

2001; Schölvinck et al., 2010). Moreover, the BOLD response

correlations across voxels can be mapped to the correlation of

the slow cortical potentials in the corresponding locations, as

evidenced by ECoG (Hacker et al., 2012; He et al., 2008).

Our results extend these findings in two ways. First, we show

that at a small spatial scale, closer to that of cortical columns and

intrinsic functional modules, the application of functional con-

nectivity techniques leads to a parcellation similar in robustness

and consistency to those observed at much larger spatial scales

in functional imaging and ECoG studies. Recall that our record-

ings were made at 400 micron intervals within a 43 4 mm patch

of prearcuate gyrus, which roughly corresponds to a single PET

or fMRI voxel and is significantly smaller than the spacing of

ECoG electrodes. The similarity of results across different tech-

niques hints at shared fundamental principles and a repeated hi-

erarchical organization across different spatial scales (Ganmor

et al., 2011).

The second extension relates to the underlying neural events.

The fMRI and ECoG signals originate from multiple neural (and

possibly nonneural) sources that are difficult to separate from

each other (Leopold and Maier, 2012; Logothetis et al., 2001;

Moore and Cao, 2008). In contrast, we directly recorded the

spiking activity of neurons and avoided the ‘‘inverse problem’’

of decomposing the recorded signal into its constituent events.

The underlying neural events in our recordings are thus unitary

(spikes) and unambiguous in their location. Our ability to identify

a functional boundary from unsupervised analysis of spiking ac-
tivity—even during the intertrial interval (Figures 3 and 8) and

during extensive periods of rest from any aspect of task per-

formance (Figures 8 and S11)—suggests a potential neural

substrate for the resting state networks identified in functional

imaging studies. Networks and parcellation schemes proposed

from neuroimaging data will be most compelling if they can be

linked definitively to spiking activity of cortical neurons. More

definitive links, however, will require simultaneous recordings

from a broader expanse of cortex, which can be obtained by im-

planting multiple microelectrode arrays.

EXPERIMENTAL PROCEDURES

We recorded from populations of neurons in the prearcuate gyrus of three ma-

caque monkeys performing two different tasks: a direction discrimination task

and a delayed saccade task. We also recorded fromM1 and PMd of a monkey

performing a direction discrimination task with reaching responses. All

training, surgery, and recording procedures conformed to the National Insti-

tutes of Health Guide for the Care and Use of Laboratory Animals and were

approved by Stanford University Animal Care and Use Committee.

Behavioral Tasks

Direction Discrimination

Figure 1A illustrates the sequence of events in a single trial of the direction

discrimination task for prearcuate recordings. Each trial began with the

appearance of a central fixation point (FP; 0.3� diameter) at the center of the

monitor. The monkey was required to maintain gaze within ±1.5� of FP so

long as it was visible on the screen. Eye position was measured with a scleral

search coil (CNC Engineering, Seattle). After a short delay, two targets ap-

peared on the monitor. In 21 of 25 sessions the two targets were placed on

opposite sides of the screen. In the remaining sessions both targets were

placed contralateral to the recorded cortex. After a brief delay the random

dots appeared on the screen. The difficulty of the task was controlled by

changing the percentage of dots moving coherently in the same direction (mo-

tion strength) (Britten et al., 1992; Kiani et al., 2008). The motion strength was

chosen randomly on each trial from a set of values that was tailored for each

monkey to obtain the full range of performance accuracy from chance (0.5)

to nearly perfect (�1.0) (Figure 1B). The motion stimulus stayed on the screen

for 800 ms and was followed by a variable length delay period (300–1,500 ms,

median = 677ms). The FP disappeared at the end of the delay period (Go cue),

signaling the monkey to report the perceived direction of motion with a

saccadic eye movement to the corresponding target. The monkey maintained

gaze on the target (Figure 1A, ‘‘Hold’’) until the outcome of the trial was re-

vealed (reward or not, 500–1,000 ms following the operant saccade in most

sessions).

Delayed Saccade

After the monkey fixated the FP, a single target appeared on the screen. The

location of the target varied from trial to trial and spanned eccentricities up

to 25� in each of several directions. The FP disappeared after a variable delay

(280–1,300 ms, median = 808 ms), signaling the monkey to make a saccadic

eye movement to the target location.

Neural Recording

Multichannel microelectrode arrays (Blackrock Microsystems, Salt Lake

City) with 96 electrodes (length = 1.5 mm; spacing = 0.4 mm; impedance

�0.5 MOhm) were implanted in the prearcuate gyrus (Figure 1C). The array

was positioned between the anterior bank of the concavity of the arcuate sul-

cus and the posterior tip of principal sulcus in monkeys T and V (Figure 1D). In

monkey C the array was placed between the superior branch of arcuate sulcus

and dorsal bank of principal sulcus due to anatomical constraints. Neural spike

waveforms were saved online (sampling rate, 30 kHz) and sorted offline

(Plexon Inc., Dallas). We used customized algorithms to remove recording ar-

tifacts that were registered by a large number of electrodes. Also, we merged

spike waveform clusters that were judged to be redundant based onwaveform

shapes, firing rates and interspike intervals. We identified 100–250 single units
Neuron 86, 1–15, June 17, 2015 ª2015 Elsevier Inc. 11
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and multiunits in each session (median = 219). The spacing of the electrodes

was large enough to make recording of the same unit by neighboring elec-

trodes unlikely (Egert et al., 2002). Throughout the paper we use the term

‘‘units’’ to refer to both isolated single neurons andmultiunits. All units were re-

tained in our analyses to maximize the spatial coverage of the recorded area

and increase the chance of revealing spatial topography.

The direction-discrimination data set included 8, 7, and 11 recording ses-

sions from monkeys T, V, and C, respectively. The delayed-saccade data

set included 4, 3, and 2 sessions from the three monkeys. The sessions

were chosen based on three factors: large number of trials per session

(>1,000), high quality of recordings, and large number of units to provide

maximal coverage of the array surface. Relaxing these criteria to increase

the number of sessions did not change the results. Although the electrode

array remained in a nominally fixed position after surgical insertion, the re-

corded units frequently changed from one session to another, due, presum-

ably, to small movements of cortex relative to the array.

Behavioral Data Analysis

We fit a cumulative Weibull distribution function to the monkey’s choices,

PðcorÞ= 1� 0:53 exp

�
�
�
C

a

�b�
; Equation 1

where PðcorÞ is probability correct, C is motion strength, a is psychophysical

threshold (the value of C that confers 82% correct responses), and b is a

parameter that governs the shape of the function, especially its steepness.

The monkey’s RT was calculated as the delay between the Go cue and

saccade initiation. We defined saccade initiation as the time when eye velocity

exceeded 15�/s.

Neural Data Analysis

For each session, we identified natural physiological groupings of the recorded

units based on the dissimilarity of their responses. The response dissimilarity

of a pair of units is defined as

dij = 1� rð r!i ; r
!

jÞ Equation 2

where r
!

i and r
!

j are the response vectors of units i and j, and rð r!i ; r
!

jÞ is
Pearson’s correlation. The response dissimilarity, therefore, reflects covaria-

tion of neural responses and can take any value between 0 (perfect correlation)

and 2 (perfect anticorrelation). For the whole-session analyses (e.g., Figure 2)

we defined the neural response vector for each unit in 30 ms nonoverlapping

bins from the beginning of the session to its end, independent of task epochs,

visual stimuli, and themonkey’s behavior. The neural response vector varied in

other analyses, as explained below. Using Equation 2, we calculated dissimi-

larity for all possible pairs of units in a given experiment; throughout the paper,

we refer to this set of metrics as the dissimilarity matrix for the corresponding

experiment.

To visualize the relationship between units and investigate their grouping,

we applied MDS to the dissimilarity matrix. MDS creates a low-dimensional

representation that retains the pairwise relationships as much as possible.

Each point on our MDS maps (Figure 2A) represents a recorded unit. All units

were included in the analysis to maximize the coverage of the recording array.

The Euclidean distance between units on theMDSmap reflects how the neural

responses of those units covary—shorter distances suggest higher correla-

tions. We used a nonlinear MDS technique (Isomap), (De’ath, 1999; Tenen-

baum and Freeman, 2000), but we obtained similar results with other MDS

methods. Our 2D MDS maps captured 49.2%–82.9% of variance of the

dissimilarity matrix (mean = 61.2%). Figure 2B illustrates the average Scree

plot across sessions.

To explore the spatial relationships of units on the cortical surface we chose

a unique color for each unit based on its location in the 2D MDS map and a

spatially smooth 2D color map (Figures 2C–2E). This color was then assigned

to the location of the electrode that recorded the unit (Figures 2F–2H and S3).

The locations with similar colors, therefore, recorded units that were close to

each other on the MDS map. When more than one unit was recorded on a sin-

gle electrode, the colors for the individual units were averaged, and the color

corresponding to the average was assigned to that electrode location.
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For the epoch-based analysis (Figures 3 and S4), we only used the neural

responses coming from a single trial epoch. Six different epochs are used

in this paper: target onset (50–300 ms after target onset), motion viewing

(300–800 ms after motion onset), delay period (50–250 ms after motion

offset), presaccadic period (250–50 ms before the saccade), postsaccadic

period (50–250 ms after the saccade), and intertrial interval (150–400 ms after

the eye left the target window). The response intervals were chosen to be

representative of the response dynamics of the recorded units; our results

do not depend strongly on the exact temporal boundaries of these intervals.

Within each epoch the responses could be measured as the total spike count

or as a vector of spike counts in successive 30ms windows that tile the epoch

window. The results do not critically depend on which option was used. To

calculate epoch-specific dissimilarity metrics, data from a particular epoch

were concatenated together across all trials of a session, omitting data

from all other epochs. Dissimilarity was then calculated on the concatenated

data using Equation 2.

To visualize the match of the spatial topographies across epochs, we

created MDS maps independently for each epoch (Figure 3), but borrowed

the color of the units from the whole-session MDS map for that monkey (Fig-

ure 2C). Thus, clustering of units with similar colors in the newmaps indicates a

good match of an epoch map to the original whole-session map. MDS maps

were created only for visualization of the data. To quantify the alignment of

dissimilarity matrices we calculated their correlation (alignment score) and

used Mantel’s test (Mantel, 1967) to assess the significance of the correlation.

Exclusion of the aborted and/or error trials did not significantly influence the

conclusions.

The high correlation of dissimilarity matrices across epochs (Results)

suggests minimal influence of task parameters on response dissimilarities.

We looked for the source of these effects by breaking the responses of in-

dividual units into two components: a task-evoked component calculated

as the average response across all trials with similar motion direction,

motion strength, and choice; and a residual component calculated as

the fluctuation of the response around that mean on each trial. Similar re-

sults were obtained if the residual responses were normalized by the

standard deviation of responses of the trials with similar choice, motion

direction, and strength (Bair et al., 2001). Task-evoked and residual

responses were calculated for the epoch durations explained above. To

ensure reliability, we excluded conditions with fewer than 30 trials. The

excluded conditions consisted mainly of erroneous choices on medium-

and high-coherence trials. We recalculated the epoch-based dissimilarity

matrices for each response component (task-evoked and residual) and

measured their alignments to the whole-session dissimilarity matrix

(Figure 4).

To test whether the dissimilarity matrices (and thus potential physiolog-

ical groupings) were consistent across tasks, we measured the alignment

between response dissimilarity matrices in the direction discrimination

and delayed saccade tasks (Figure 5). The data sets for the two tasks

were collected in different recording sessions in order to maximize the trial

counts per data set. Because the recorded units could change from one

session to the next, our comparison of dissimilarity across the two tasks

was limited in accuracy. To make the comparison as accurate as possible,

we reduced between-session variation by first calculating an average

dissimilarity matrix across all sessions of a particular task before measuring

the alignment of dissimilarity matrices between tasks. Specifically, we first

calculated the average response dissimilarity of all pairs of units recorded

by each pair of electrodes in a given session (electrode-based dissimilarity).

For each monkey, each task, and each pair of electrodes, we then averaged

these dissimilarities across all sessions to provide the best estimate for the

dissimilarity of the neural population recorded by each pair of electrodes.

Finally, we measured the alignment of these average response dissimilar-

ities between the two tasks.
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Buzsáki, G., Geisler, C., Henze, D.A., and Wang, X.J. (2004). Interneuron

Diversity Series: circuit complexity and axon wiring economy of cortical inter-

neurons. Trends Neurosci. 27, 186–193.

Carmichael, S.T., and Price, J.L. (1994). Architectonic subdivision of the orbital

and medial prefrontal cortex in the macaque monkey. J. Comp. Neurol. 346,

366–402.

Churchland, M.M., Yu, B.M., Cunningham, J.P., Sugrue, L.P., Cohen, M.R.,

Corrado, G.S., Newsome, W.T., Clark, A.M., Hosseini, P., Scott, B.B., et al.

(2010). Stimulus onset quenches neural variability: a widespread cortical phe-

nomenon. Nat. Neurosci. 13, 369–378.

Cohen, M.R., and Maunsell, J.H. (2010). A neuronal population measure of

attention predicts behavioral performance on individual trials. J. Neurosci.

30, 15241–15253.

Cohen, M.R., and Newsome, W.T. (2008). Context-dependent changes in

functional circuitry in visual area MT. Neuron 60, 162–173.

Constantinidis, C., and Goldman-Rakic, P.S. (2002). Correlated discharges

among putative pyramidal neurons and interneurons in the primate prefrontal

cortex. J. Neurophysiol. 88, 3487–3497.

De’ath, G. (1999). Extended dissimilarity: a method of robust estimation of

ecological distances from high beta diversity data. Plant Ecol. 144, 191–199.

Egert, U., Heck, D., and Aertsen, A. (2002). Two-dimensional monitoring of

spiking networks in acute brain slices. Exp. Brain Res. 142, 268–274.

Engel, S.A., Rumelhart, D.E., Wandell, B.A., Lee, A.T., Glover, G.H.,

Chichilnisky, E.J., and Shadlen, M.N. (1994). fMRI of human visual cortex.

Nature 369, 525.
Felleman, D.J., and Van Essen, D.C. (1991). Distributed hierarchical process-

ing in the primate cerebral cortex. Cereb. Cortex 1, 1–47.

Galan, R.F. (2008). On how network architecture determines the dominant pat-

terns of spontaneous neural activity. PLoS ONE. http://dx.doi.org/10.1371/

journal.pone.0002148.

Ganmor, E., Segev, R., and Schneidman, E. (2011). Sparse low-order interac-

tion network underlies a highly correlated and learnable neural population

code. Proc. Natl. Acad. Sci. USA 108, 9679–9684.

Gerbella, M., Belmalih, A., Borra, E., Rozzi, S., and Luppino, G. (2007).

Multimodal architectonic subdivision of the caudal ventrolateral prefrontal cor-

tex of the macaque monkey. Brain Struct. Funct. 212, 269–301.

Greicius, M.D., Krasnow, B., Reiss, A.L., and Menon, V. (2003). Functional

connectivity in the resting brain: a network analysis of the default mode hy-

pothesis. Proc. Natl. Acad. Sci. USA 100, 253–258.

Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C.F., Menon, V.,

and Greicius, M.D. (2009). Distinct cerebellar contributions to intrinsic connec-

tivity networks. J. Neurosci. 29, 8586–8594.

Hacker, C.D., Snyder, A.Z., Sharma, M., Bundy, D.T., Daitch, A.L., Szrama, N.,

Pahwa, M., Gaona, C.M., Corbetta, M., and Leuthardt, E.C. (2012). The elec-

trophysiology of resting-state fMRI networks. In Society for Neuroscience

Meeting, New Orleans.

He, B.J., Snyder, A.Z., Zempel, J.M., Smyth, M.D., and Raichle, M.E. (2008).

Electrophysiological correlates of the brain’s intrinsic large-scale functional ar-

chitecture. Proc. Natl. Acad. Sci. USA 105, 16039–16044.

Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R.,

and Hagmann, P. (2009). Predicting human resting-state functional connec-

tivity from structural connectivity. Proc. Natl. Acad. Sci. USA 106, 2035–

2040.

Hubel, D.H., and Livingstone, M.S. (1987). Segregation of form, color, and ste-

reopsis in primate area 18. J. Neurosci. 7, 3378–3415.

Hussar, C.R., and Pasternak, T. (2009). Flexibility of sensory representations in

prefrontal cortex depends on cell type. Neuron 64, 730–743.

Hussar, C., and Pasternak, T. (2010). Trial-to-trial variability of the prefrontal

neurons reveals the nature of their engagement in a motion discrimination

task. Proc. Natl. Acad. Sci. USA 107, 21842–21847.

Isaacson, J.S., and Scanziani, M. (2011). How inhibition shapes cortical activ-

ity. Neuron 72, 231–243.

Jia, X., Tanabe, S., and Kohn, A. (2013). g and the coordination of spiking ac-

tivity in early visual cortex. Neuron 77, 762–774.

Katz, L.C., Gilbert, C.D., and Wiesel, T.N. (1989). Local circuits and ocular

dominance columns in monkey striate cortex. J. Neurosci. 9, 1389–1399.

Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., and Arieli, A. (2003).

Spontaneously emerging cortical representations of visual attributes. Nature

425, 954–956.

Kiani, R., Hanks, T.D., and Shadlen, M.N. (2008). Bounded integration in pari-

etal cortex underlies decisions even when viewing duration is dictated by the

environment. J. Neurosci. 28, 3017–3029.

Kiani, R., Cueva, C.J., Reppas, J.B., and Newsome, W.T. (2014). Dynamics of

neural population responses in prefrontal cortex indicate changes of mind on

single trials. Curr. Biol. 24, 1542–1547.

Kim, J.N., and Shadlen, M.N. (1999). Neural correlates of a decision in the

dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2, 176–185.

Kispersky, T., Gutierrez, G.J., and Marder, E. (2011). Functional connectivity in

a rhythmic inhibitory circuit using Granger causality. Neural Sys. Circ. 1, 9.

Kohn, A., Zandvakili, A., and Smith, M.A. (2009). Correlations and brain states:

from electrophysiology to functional imaging. Curr. Opin. Neurobiol. 19,

434–438.

Kriegeskorte, N., Simmons, W.K., Bellgowan, P.S., and Baker, C.I. (2009).

Circular analysis in systems neuroscience: the dangers of double dipping.

Nat. Neurosci. 12, 535–540.
Neuron 86, 1–15, June 17, 2015 ª2015 Elsevier Inc. 13

http://dx.doi.org/10.1371/journal.pone.0002148
http://dx.doi.org/10.1371/journal.pone.0002148


Please cite this article in press as: Kiani et al., Natural Grouping of Neural Responses Reveals Spatially Segregated Clusters in Prearcuate Cortex,
Neuron (2015), http://dx.doi.org/10.1016/j.neuron.2015.02.014
Krienen, F.M., and Buckner, R.L. (2009). Segregated fronto-cerebellar cir-

cuits revealed by intrinsic functional connectivity. Cereb. Cortex 19, 2485–

2497.

Larremore, D.B., Shew, W.L., Ott, E., and Restrepo, J.G. (2011). Effects of

network topology, transmission delays, and refractoriness on the

response of coupled excitable systems to a stochastic stimulus. Chaos

21, 025117.

Leavitt, M.L., Pieper, F., Sachs, A., Joober, R., and Martinez-Trujillo, J.C.

(2013). Structure of spike count correlations reveals functional interactions be-

tween neurons in dorsolateral prefrontal cortex area 8a of behaving primates.

PLoS ONE 8, e61503.

Lennert, T., and Martinez-Trujillo, J.C. (2013). Prefrontal neurons of opposite

spatial preference display distinct target selection dynamics. J. Neurosci.

33, 9520–9529.

Leopold, D.A., and Maier, A. (2012). Ongoing physiological processes in the

cerebral cortex. Neuroimage 62, 2190–2200.

LeVay, S., Hubel, D.H., and Wiesel, T.N. (1975). The pattern of ocular domi-

nance columns in macaque visual cortex revealed by a reduced silver stain.

J. Comp. Neurol. 159, 559–576.

Levitt, J.B., Lewis, D.A., Yoshioka, T., and Lund, J.S. (1993). Topography of py-

ramidal neuron intrinsic connections in macaque monkey prefrontal cortex

(areas 9 and 46). J. Comp. Neurol. 338, 360–376.

Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., and Oeltermann, A. (2001).

Neurophysiological investigation of the basis of the fMRI signal. Nature 412,

150–157.

Mante, V., Sussillo, D., Shenoy, K.V., and Newsome, W.T. (2013). Context-

dependent computation by recurrent dynamics in prefrontal cortex. Nature

503, 78–84.

Mantel, N. (1967). Ranking procedures for arbitrarily restricted observation.

Biometrics 23, 65–78.

Markov, N.T., Ercsey-Ravasz, M., Van Essen, D.C., Knoblauch, K., Toroczkai,

Z., and Kennedy, H. (2013). Cortical high-density counterstream architectures.

Science 342, 1238406.

Markov, N.T., Vezoli, J., Chameau, P., Falchier, A., Quilodran, R., Huissoud, C.,

Lamy, C., Misery, P., Giroud, P., Ullman, S., et al. (2014). Anatomy of hierarchy:

feedforward and feedback pathways in macaque visual cortex. J. Comp.

Neurol. 522, 225–259.

Mishkin, M., Ungerleider, L.G., and Macko, K.A. (1983). Object vision and

spatial vision—2 cortical pathways. Trends Neurosci. 6, 414–417.

Mitchell, J.F., Sundberg, K.A., and Reynolds, J.H. (2009). Spatial attention de-

correlates intrinsic activity fluctuations in macaque area V4. Neuron 63,

879–888.

Monosov, I.E., and Hikosaka, O. (2012). Regionally distinct processing of re-

wards and punishments by the primate ventromedial prefrontal cortex.

J. Neurosci. 32, 10318–10330.

Moore, C.I., and Cao, R. (2008). The hemo-neural hypothesis: on the role of

blood flow in information processing. J. Neurophysiol. 99, 2035–2047.

Müller, J.R., Metha, A.B., Krauskopf, J., and Lennie, P. (1999). Rapid adapta-

tion in visual cortex to the structure of images. Science 285, 1405–1408.

O’Reilly, J.X., Beckmann, C.F., Tomassini, V., Ramnani, N., and Johansen-

Berg, H. (2010). Distinct and overlapping functional zones in the cere-

bellum defined by resting state functional connectivity. Cereb. Cortex 20,

953–965.

O’Scalaidhe, S.P., Wilson, F.A., and Goldman-Rakic, P.S. (1997). Areal segre-

gation of face-processing neurons in prefrontal cortex. Science 278, 1135–

1138.

Pernice, V., Staude, B., Cardanobile, S., and Rotter, S. (2012). Recurrent inter-

actions in spiking networks with arbitrary topology. Phys. Rev. E Stat. Nonlin.

Soft Matter Phys. 85, 031916.

Petrides, M., and Pandya, D.N. (1999). Dorsolateral prefrontal cortex: compar-

ative cytoarchitectonic analysis in the human and the macaque brain and cor-

ticocortical connection patterns. Eur. J. Neurosci. 11, 1011–1036.
14 Neuron 86, 1–15, June 17, 2015 ª2015 Elsevier Inc.
Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A.,

Vogel, A.C., Laumann, T.O., Miezin, F.M., Schlaggar, B.L., and Petersen, S.E.

(2011). Functional network organization of the human brain. Neuron 72,

665–678.

Preuss, T.M. (2007). Evolutionary specializations of primate brain systems. In

Primate Origins: Adaptations and EvolutionM, J. Ravosa andM. Dagasto, eds.

(New York: Springer), pp. 625–675.

Purcell, B.A., Heitz, R.P., Cohen, J.Y., and Schall, J.D. (2012). Response vari-

ability of frontal eye field neurons modulates with sensory input and saccade

preparation but not visual search salience. J. Neurophysiol. 108, 2737–2750.

Ringach, D.L. (2009). Spontaneous and driven cortical activity: implications for

computation. Curr. Opin. Neurobiol. 19, 439–444.

Robinson, D.A., and Fuchs, A.F. (1969). Eyemovements evoked by stimulation

of frontal eye fields. J. Neurophysiol. 32, 637–648.

Rockland, K.S., and Lund, J.S. (1983). Intrinsic laminar lattice connections in

primate visual cortex. J. Comp. Neurol. 216, 303–318.

Romanski, L.M., and Goldman-Rakic, P.S. (2002). An auditory domain in pri-

mate prefrontal cortex. Nat. Neurosci. 5, 15–16.

Schall, J.D. (1997). Visuomotor areas of the frontal lobe. In Cerebral Cortex,

K.S. Rockland, A.J. Peters, and J. Kaas, eds. (New York: Plenum Press).

Schölvinck, M.L., Maier, A., Ye, F.Q., Duyn, J.H., and Leopold, D.A. (2010).

Neural basis of global resting-state fMRI activity. Proc. Natl. Acad. Sci. USA

107, 10238–10243.

Seidemann, E., Arieli, A., Grinvald, A., and Slovin, H. (2002). Dynamics of de-

polarization and hyperpolarization in the frontal cortex and saccade goal.

Science 295, 862–865.

Shadlen, M.N., and Newsome, W.T. (1996). Motion perception: seeing and

deciding. Proc. Natl. Acad. Sci. USA 93, 628–633.

Shadlen, M.N., Britten, K.H., Newsome, W.T., and Movshon, J.A. (1996). A

computational analysis of the relationship between neuronal and behavioral

responses to visual motion. J. Neurosci. 16, 1486–1510.

Smith, M.A., and Kohn, A. (2008). Spatial and temporal scales of neuronal cor-

relation in primary visual cortex. J. Neurosci. 28, 12591–12603.

Sporns, O. (2012). From simple graphs to the connectome: networks in neuro-

imaging. Neuroimage 62, 881–886.

Stanton, G.B., Deng, S.Y., Goldberg, M.E., and McMullen, N.T. (1989).

Cytoarchitectural characteristic of the frontal eye fields in macaque monkeys.

J. Comp. Neurol. 282, 415–427.

Stepanyants, A., Martinez, L.M., Ferecskó, A.S., and Kisvárday, Z.F. (2009).
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Supplemental Experimental Procedures 
 

Length constant of dissimilarity 
It has been reported previously that the correlation of neural responses depends on spatial 
distance between the recorded units (Constantinidis and Goldman-Rakic, 2002; Leavitt et 
al., 2013; Smith and Kohn, 2008). We calculated the length constant of dissimilarity by 
fitting an exponential function to the curves that relate dissimilarity between units to 
inter-electrode distance (Fig. S2): 

dij = d∞ − β exp −
Lij
τ

⎛
⎝⎜

⎞
⎠⎟

       Eq. S1  

where β , d∞ , and τ  are model parameters, and Lij  is the physical distance between 
recording electrodes on the array. d∞  defines the asymptotic dissimilarity for widely 
separated units. τ  is the length constant of the equation and defines the distance at which 
dij  increases by 63% of the difference between d0  and d∞ , where d0  is the expected 
dissimilarity of units recorded on the same electrode.  

 
Temporal structure of the signal that underlies the subnets 

We explored the dependence of the response dissimilarity matrix on temporal frequency 
(Fig. S6 and S7) by creating 9 different frequency bands: 0.01-0.06 Hz, 0.06-0.13 Hz, 
0.13-0.26 Hz, 0.26-0.52 Hz, 0.52-1.04 Hz, 1.04-2.08 Hz, 2.08-4.17 Hz, 4.17-8.33 Hz, 
8.33-16.67 Hz. Note that 16.67 Hz is the Nyquist frequency for our 30 ms response 
window. We calculated the dissimilarity matrix for each frequency band using two 
different methods: by applying a 3rd order Butterworth bandpass filter to the response 
vector of individual units before calculating correlations; and by performing Fourier 
transform on the response vector and zeroing coefficients outside the target band. The 
end results of the two methods were highly compatible. We present the former in this 
paper because it does not generate ‘ripples’ in the firing rate vectors. For each frequency 
band, we calculated the MDS maps for visual assessment, and we measured 
quantitatively the alignment of the filtered and unfiltered dissimilarity matrices.  

 
Physiological properties of the subnets 

Our initial visual inspections of the MDS maps indicated the presence of inhomogeneity 
in the neural population and thus the possibility that the recorded population could be 
divided into distinct sub-networks (‘subnets’) of physiologically related units. We used 
K-means clustering (MacQueen, 1967) to objectively divide the population into two 
subnets. Further, we tested the significance of this division using SigClust (Liu et al., 
2008). The significance of the divisions was tested in 2-dimensional MDS projections 
(see Results).  Our use of K-means to specify two significantly different populations was 
conservative.  In some experiments, there are indications that the recorded neural 
population may in fact comprise more than two spatially segregated clusters. Because of 
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the high dimensionality of the dataset, however, proving the existence of more than two 
clusters is statistically implausible. Demonstrating a finer grain clustering in area 8Ar 
will require higher density recording techniques. 
We compared the physiological response properties of the subnets using three different 
metrics (Fig. 6): the prediction accuracy for the monkey’s choices based on the 
population responses in each subnet, the prediction accuracy for the monkey’s reaction 
time, and the frequency of choice predictive and choice ‘postdictive’ units in each subnet. 
We employed a logistic regression model to predict the monkey’s choice based on the 
neural responses: 

logit P choice( )⎡⎣ ⎤⎦ = β0 + βiri
i=1

n

∑       Eq. S2  

where ri  is the response of unit i, n is the number of units in the subnet, and the β
coefficients are model parameters. The model was cross-validated by fitting to 90% of 
trials and predicting the remaining 10% in each session (10-fold cross-validation). To 
generate the time-varying accuracy functions in Figure 6, we first fit the model separately 
to the neural responses measured in a 150 ms window centered at each moment in time. 
Then, we averaged the temporal profiles of prediction accuracy across sessions. The p-
value for the difference of choice prediction accuracy of the two subnets was obtained by 
running a t-test in the time window immediately before the Go cue.  
We employed a linear Ridge regression model to predict the monkey’s RT: 

RT = β0 + βiri
i=1

n

∑          Eq. S3 

where, once again, ri  is the response of unit i, n is the number of units in the subnet, and 
the β  coefficients are fitted model parameters (Ridge parameter=1000).  Again, we 
employed a 10-fold cross-validation method. The predictions were performed separately 
for choices to each target location, and the goodness of the predictions was measured by 
calculating the correlation of predicted and actual RTs. A 150 ms sliding window was 
used for the time varying plots in Figure 6. To test whether one subnet predicted RT 
significantly better than the other, we performed a two-way, nested ANOVA with subnet 
and target location as main factors and the correlation of predicted and actual RTs as the 
dependent variable. The test was performed on responses measured during the time 
window immediately prior to the Go cue. 

Finally, we compared ‘postdictive’ encoding of target choice by the two subnets.  
‘Postdictive’ encoding refers to signals that arise during the temporal interval after the 
operant choice is made but before the reward is delivered.  These signals, which appear to 
comprise a memory trace of the recently made eye movement, have been described 
previously by other groups (Tsujimoto et al., 2010) and in these prearcuate data by 
Reppas and colleagues (Reppas and Newsome, 2008).  Postdictive responses are 
frequently the strongest signals carried by the prearcuate neurons. We assessed 
postdictive selectivity during a 250 ms window after the operant saccade and 
immediately before reward delivery (t-test, p<0.05). A χ2-test was used to test the 
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difference in the distribution of choice-related units in the two subnets. The statistical 
tests in this paper assume independence across sessions. The sessions from different 
subjects are indeed independent of each other but the sessions from the same subject 
overlap because some of the units are likely to be the same from session to session. This 
overlap violates the independence assumption and calls for development of new 
techniques for quantifying overlap and upward correction of p-values. However, due to 
the strength of our results and their consistency across the three animals, such a 
correction is highly unlikely to influence our conclusions. 

Some care must be taken to distinguish predictive and postdictive responses. A predictive 
cell whose activity is informative about an upcoming saccade (t-test, p<0.05 for firing 
rates in a 250 ms window immediately before the operant saccade) can appear to encode 
saccade direction postdictively if it also generates predictive activity before the ‘exit’ 
saccade that follows reward delivery at the end of the trial.  Exit saccades at the end of 
the trial typically return the animal’s gaze to the location of the fixation point—a saccade 
exactly opposite in direction and amplitude to the operant saccade.  Thus the signal 
during the postdictive interval will appear to change polarity, or ‘flip’, in comparison to 
the selectivity immediately prior to the operant saccade.  Following the conservative 
procedure of Reppas and colleagues (Reppas and Newsome, 2008), we excluded all 
‘flipper’ cells from our population analysis of postdictive signals.  For units exhibiting 
postdictive signals, we quantified the size of the effect by measuring the area under the 
ROC curve (Green and Swets, 1966) computed from responses following saccades to 
each of the two targets. 

 
Supplemental Results 

 
The signal that underlies subnets is temporally broadband 

Results presented in the main text show that the subnets do not arise primarily from task-
related events or processes, nor from task engagement per se (the subnets exist during the 
inter-trial interval as well). We can also rule out trivial factors such as spiking noise, 
which results primarily from failures of transmission at individual synapses and is 
therefore independent across neurons (Rieke et al., 1997).  The driving factor underlying 
the subnets must be some fundamental aspect of neuronal circuitry within the prearcuate 
gyrus, intrinsic connectivity being a prime candidate (Barnett et al., 2009; Galan, 2008; 
Pernice et al., 2012; Robinson, 2012; Sporns, 2011; Sporns et al., 2000).  We cannot, 
however, rule out a priori a role for slower processes such as hemodynamic (Moore and 
Cao, 2008) or neuromodulatory differences between subnets.  To shed light on these 
possibilities, we explored how response dissimilarities vary across temporal frequency 
bands. 

We recalculated the dissimilarities within nine temporal frequency bands, from 0.01 Hz 
to 16.7 Hz (see Supplemental Experimental Procedures; 16.7 Hz is the Nyquist frequency 
for our 30 ms response window), and measured their alignment to whole-session 
response dissimilarities.  The MDS plots for different temporal frequency bands reveal 
clustering that is similar to whole-session clustering (Fig. S6A), an impression that is 
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confirmed quantitatively by the alignment scores (Fig. S6B).  Although the best 
alignment with whole-session data was obtained for 1-4 Hz (roughly delta-band), the 
alignments were generally good across all frequencies.  Note that the magnitude of 
correlation of pairs of neurons was dependent on temporal frequency (Fig. S10), as 
expected from past research (e.g. He et al., 2010b; Smith and Kohn, 2008), even though 
the structure of the correlation matrix across the population was largely independent of 
temporal frequency (Fig. S6, S7, and S10). The magnitude of the pairwise correlations 
can vary between frequency bands while the overall pattern of pairwise correlations is 
maintained. That is, if pair A is more strongly correlated than pair B, that order is 
maintained across frequency bands even if the absolute magnitude of the correlations 
change.  Preservation of high alignment scores and color clusters in the MDS plots means 
that, within each frequency band, spatial topography on the array resembles the whole-
session topography illustrated in Figure 2F (Fig. S7).  
The peak alignment in the delta band was not due to an overabundance of signal power in 
that band. The power spectrum of response magnitudes (in 30 ms bins across an entire 
experiment) had a 1/fβ shape with greatest power at the lowest frequencies, as expected 
from prior results (Bedard et al., 2006; He et al., 2010a; Leopold and Logothetis, 2003; 
Teich et al., 1997).  

 
Additional differences in physiological properties of subnets 

Not only were the responses of subnet-1 better predictors of choice and RT (see main 
text), subnet-1 also exhibited a more distributed neural representation of choice 
information. For each subnet, we tested whether choice predictive power was spread 
across many units, or was dependent on a select few predictive units.  To test this, we 
excluded each unit from the population one-by-one in descending order of predictive 
power, and used the logistic model to predict the monkey’s choice from the rest of the 
population. For this analysis we focused on the 150 ms window immediately before the 
Go cue. Exclusion of a small number of units from subnet-2 caused choice predictive 
accuracy to drop rapidly, whereas subnet-1 was significantly more resilient to the 
exclusion of its best units (Fig. 6F). Moreover, subnet-1 yielded better predictive activity 
with its 10 best units excluded than did subnet-2 with no units excluded (arrow, Fig. 6F).  
In addition to assessing choice predictive activity, we also measured choice ‘postdictive’ 
activity— a retrospective coding of choice during an interval that follows the operant 
saccade but precedes the time of potential reward delivery (Tsujimoto et al., 2009, 2010) 
(see Supplemental Experimental Procedures).  Choice-related neurons were distributed 
differentially across the subnets. More than half of the units of subnet-1 (51%) exhibited 
choice-related responses (either predictive or postdictive), whereas only 26% of the units 
in subnet-2 yielded choice-related responses (χ2-test, p<10−8).  However, a larger fraction 
of choice-related units in subnet-2 showed postdictive selectivity as compared to subnet-1 
(78% vs. 68%; χ2-test, p=8×10-6). 
 

Additional control analyses of neural data 
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We performed additional control analyses to test whether the structure of the dissimilarity 
matrix for a given experiment could be explained simply by differences in overall firing 
rates across units or the recorded cortical layers within an experiment. The first concern 
is that if firing rates vary considerably across the array, the known relationship between 
firing rates and the magnitude of correlated variability between neurons (de la Rocha et 
al., 2007) might provide a trivial explanation for the structure of dissimilarity matrix. 
This was not the case.  For the example experiment in Figs. 2C-F, 3 and 4 we calculated a 
matrix of the difference in average firing rate between all pairs of units on the array, and 
used our alignment score to compare the matrix of firing rate differences to the matrix of 
correlation dissimilarities. For all trial epochs, the alignment score was very small (< 
0.06, data not shown), demonstrating that variation in firing rate, per se, cannot explain 
the structure in the dissimilarity matrix.  

The data from monkey V allow us to reject an alternative interpretation of the subnet 
analysis, related to laminar organization.  The arrays were implanted on relatively flat 
cortex of the prearcuate gyrus, and the 1.5 mm long electrodes would generally be 
expected to sample cells from lower layer 3, layer 4, and upper layer 5.  Along the edge 
of the array nearest to the arcuate sulcus, however, some electrodes may have 
preferentially sampled layer 2 and upper layer 3 due to the changing orientation of the 
cortex as it folds into the arcuate sulcus.  If the upper layers have different noise 
characteristics than the lower layers, the pattern of subnets observed in monkeys T and C 
might result from this differential sampling.  However, the subnet boundary in monkey 
V, which lies squarely atop the prearcuate gyrus, argues strongly against this 
interpretation.   
This conclusion is further supported by similarity of indices that have been suggested to 
depend on laminar location of recorded neurons: overall firing rates (see above) and 
magnitude of pairwise correlations. If different parts of the array are recording from 
different layers of cortex one might expect to see a topographical organization because 
neurons in different layers show different levels of noise correlation (Hansen et al., 
2012). The overall level of correlation was comparable across the two subnets (Fig. 7B), 
making it unlikely that the topography on the array is a simple byproduct of different 
recording depths across the array.  
 

Shared visual and motor response fields contribute to, but do not fully explain, 
topography based on dissimilarity 

Visuomotor topography has been previously reported for area 8Ar, with central RF’s 
situated ventrally on the prearcuate gyrus and peripheral RF’s situated dorsally (Robinson 
and Fuchs, 1969; Suzuki and Azuma, 1983). Although we were not able to reliably detect 
this trend within the 4x4 mm patches of cortex beneath our arrays (data not shown), we 
nevertheless explored the possibility that shared RF location might contribute to our 
measured dissimilarity matrices (Fig. S9). In the delayed saccade task, we measured the 
visual and motor response fields of each unit (when possible).  Visual responses were 
calculated as firing rate in a 150 ms window that started 50 ms after target onset, minus a 
baseline firing rate measured in a 150 ms window immediately before target onset. Peri-
saccadic motor responses were calculated as firing rate in a 150 ms window that started 
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100 ms before saccade initiation, minus a baseline firing rate measured in a 150 ms 
window starting 400 ms before the saccade. We defined the center of the visual RF of 
each unit to be the target location that elicited the largest visual response, and the center 
of the motor RF to be the target location associated with the largest peri-saccadic 
response. Although our delayed saccades included target eccentricities up to 25 degrees, 
we were unable to locate the RF center for some units because they did not elicit robust 
visual or motor responses—presumably, in some cases, because their RFs lay beyond the 
tested region. For this analysis, we focused only on units that showed significant visual or 
motor activity relative to the baseline (t-test, p < 0.05 for the best target location, 
Bonferroni corrected). We calculated a matrix of distances between RF centers for all 
pairs of neurons with well defined RFs in a given experiment, and then calculated the 
alignment of this matrix with the matrix of response dissimilarities for the same pairs 
(Fig. S9C). The analysis was performed separately for visual and motor RFs. The RF 
distances were weakly but significantly correlated with the response dissimilarities. The 
significance of this correlation suggests that shared RFs contribute modestly to the 
structure of the subnets. However, the small size of the effect suggests that overlapping 
RFs, like task-related events (Fig. 4C), explain only a small portion of the total subnet 
structure. 
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Figure S1, related to Fig. 2 and 3. Prearcuate units exhibit diverse responses during the 
direction discrimination task. Responses of six example units from the session of Fig. 2C are 
shown. The responses are aligned to different task events and are grouped based on the 
chosen target (T1 or T2). A-B) Two units that preferred T1 choices and were predictive of the 
monkey’s choice during the motion viewing epoch. Unit A had a sharp phasic visual response to 
target onset and a sharp motor response prior to and immediately after the operant saccade. 
Unit B exhibited a more tonic visual response to target onset and was inhibited below baseline 
on trials in which the monkey ultimately chose T2. C-D) Two units that preferred T2 choices and 
were predictive of the upcoming choice during motion viewing. Unit C lacked visual responses 
to target onset but responded strongly around the time of the saccade. In contrast, unit D 
exhibited a strong visual response but lacked a motor response. E-F) Two units that were not 
predictive of the monkey’s upcoming choice but, nonetheless, exhibited strong modulation of 
responses in different task epochs. Unit F is an example of a choice-postdictive unit (see 
Supplemental Experimental Procedures), which encodes the direction of the recently made 
operant saccade during the temporal interval between the saccade and receipt (or not) of the 
reward. The shaded areas represent SEM across trials.
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Figure S2, related to Fig. 2. Response dissimilarity varies systematically with the distance 
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Procedures). Dashed lines are fits to the exponential function of Equation S1.
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Figure S3, related to Fig. 2. Spatial topography is stable across sessions. All direction-discrimination sessions are 
depicted for each monkey. Conventions are similar to Fig. 2F-H. The sessions in which the recorded population could 
not be explained as a single cluster are marked with asterisks (SigClust p<0.05). The red asterisk marks the example 
session that is used in Figures 2C, 3, 4, and 7.  Session-to-session similarity of the spatial maps is evident 
qualitatively, even for sessions in which the clustering was not statistically significant (no asterisks).  Precise 
quantitative comparison of these trends across sessions (using our alignment score) is not feasible because the units 
on the array frequently differed across sessions, due presumably to slight shifts in the position of the array over time. 
However, we can calculate a coarser measure—the average dissimilarity across recording sessions of all units 
recorded by particular pairs of electrodes within sessions. This measure is still suboptimal because the number of 
electrodes that actually recorded some signal could vary from day to day. Nonetheless, the alignment scores of these 
electrode-averaged dissimilarities are 0.5±0.1 (mean±s.d.) for monkey T, 0.5±0.2 for monkey V, and 0.4±0.2 for 
monkey C, indicating strong consistency of the maps across sessions.
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Figure S4, related to Fig. 3. Spatial topography on the array is stable across task epochs. 
Panels A-F show the array projections of the MDS maps for the same experiment and task 
epochs illustrated in Fig. 3A-F. However, unlike Fig. 3 where the units inherited their color from 
the whole session MDS map (Fig. 2C), in this figure the units are assigned new colors based on 
the circular color map of Fig. 2 and then projected onto the array. The similarity of the array 
projection with that in Fig. 2F indicates that the topography is largely invariant across task 
epochs.
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Figure S5, related to Fig. 4. Spatial topography on the array stems from response fluctuations 
around task-evoked means. The six panels show the array projection of the residual and 
task-evoked MDS maps in Fig. 4A. The units are recolored according to the circular color map of 
Fig. 2 before projection on the array.  Spatial topography is evident in the residuals (top row) but 
not in the task-evoked means (bottom row).
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Figure S6, related to temporal frequency analysis. The signal underlying subnet structure is temporally 
broadband (see the corresponding sections in Results and Supplemental Information). A) Two-
dimensional MDS plots based on band-pass filtered neural responses for the example session of Fig. 
2C. The neural responses across the session were band-pass filtered with nine different frequency 
bands, four of which are illustrated by MDS plots. The filters spanned three orders of magnitude, 
ranging from 0.01 Hz to 16.67 Hz, which is the Nyquist frequency for our 30 ms analysis window. B) 
The alignment score of the band-pass filtered response dissimilarities with the whole-session response 
dissimilarity. The bars show the average alignment across all 25 experimental sessions. Error bars 
represent 95% confidence intervals.

14



0.01-0.07 Hz 0.13-0.26 Hz 2.08-4.17 Hz 8.33-16.67 Hz

Figure S7, related to temporal frquency analysis. Spatial topography on the array is broadband 
(see the corresponding sections in Results and Supplemental Information). The four panels show 
the array projection of band-pass filtered MDS maps in Fig. S6A. The units are recolored 
according to the circular color map of Fig. 2 before projection on the array.
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Figure S8, related to Fig. 5. The spatial topography in the delayed saccade task is best 
explained by common noise rather than task-evoked responses. A) Two-dimensional MDS plot of 
an example session (same as Fig. 5B). B) MDS plots based on task-evoked and residual 
responses in three different task epochs. Conventions are similar to those in Fig. 4A. C-D) 
Alignment of residual and task-evoked response dissimilarities to the whole-session response 
dissimilarities. Conventions are similar to those in Fig. 4B-C.
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Figure S9, related to Fig. 5. Shared visual and motor response fields contribute to, but do not fully 
explain, topography based on dissimilarity. A) Several target locations (mostly contralateral) were 
tested in the delayed saccade task, enabling us to measure the response fields of the recorded 
units. The blue points show the target locations for the example session of Fig. 5. Only one target 
was shown in each trial. B) The magnitudes of visual and motor responses of two example units are 
depicted for various target locations. Visual responses were calculated as firing rate in a 150 ms 
window that started 50 ms after target onset, minus a baseline firing rate measured in a 150 ms 
window immediately before target onset. Peri-saccadic motor responses were calculated as firing 
rate in a 150 ms window that started 100 ms before saccade initiation, minus a baseline firing rate 
measured in a 150 ms window starting 400 ms before the saccade. For some target locations the 
unit responses go below baseline, hence the negative numbers. The RF center, defined as the 
target location associated with the highest response, is marked with a black asterisk. C) The 
distances between RF centers were calculated to create a RF distance matrix (see Supplemental 
Information). The alignment of this distance matrix with the whole-session response dissimilarity 
matrix is shown for the three monkeys. Only units with significant visual or motor responses 
contributed to the analysis. Error bars represent 95% confidence intervals.
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Figure S10, related to Fig. 7. Spike-spike coherence of neighboring units that belong to the same 
subnet (green) and to different subnets (magenta). Shaded areas indicate standard errors across 
sessions. The results are compatible with those of Fig. 7 and indicate that subnet identities persist 
across all epochs and temporal frequencies.
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Figure S11, related to Fig. 8. MDS maps of the seven simultaneous recording sessions from the M1 and 
PMd arrays. M1 and PMd units segregate from each other both during the direction discrimination task 
(bottom row) and in rest periods between the task-engaged blocks (top row). In the rest periods (15-60 
min) the monkey sat calmly in his chair in front of a blank monitor in a semi-dark room. Session 1 is the 
example depicted in Fig. 8B.
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