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Kiani R, Esteky H, Mirpour K, Tanaka K. Object category struc-
ture in response patterns of neuronal population in monkey inferior
temporal cortex. J Neurophysiol 97: 4296–4309, 2007. First pub-
lished April 11, 2007; doi:10.1152/jn.00024.2007. Our mental repre-
sentation of object categories is hierarchically organized, and our
rapid and seemingly effortless categorization ability is crucial for our
daily behavior. Here, we examine responses of a large number (�600)
of neurons in monkey inferior temporal (IT) cortex with a large
number (�1,000) of natural and artificial object images. During the
recordings, the monkeys performed a passive fixation task. We found
that the categorical structure of objects is represented by the pattern of
activity distributed over the cell population. Animate and inanimate
objects created distinguishable clusters in the population code. The
global category of animate objects was divided into bodies, hands, and
faces. Faces were divided into primate and nonprimate faces, and the
primate-face group was divided into human and monkey faces. Bodies
of human, birds, and four-limb animals clustered together, whereas
lower animals such as fish, reptile, and insects made another cluster.
Thus the cluster analysis showed that IT population responses recon-
struct a large part of our intuitive category structure, including the
global division into animate and inanimate objects, and further hier-
archical subdivisions of animate objects. The representation of cate-
gories was distributed in several respects, e.g., the similarity of
response patterns to stimuli within a category was maintained by both
the cells that maximally responded to the category and the cells that
responded weakly to the category. These results advance our under-
standing of the nature of the IT neural code, suggesting an inherently
categorical representation that comprises a range of categories includ-
ing the amply investigated face category.

I N T R O D U C T I O N

The mental representation of object categories has been a
source of general and perpetual interest in cognitive neuro-
science. Several imaging studies have investigated this repre-
sentation in humans (e.g., Aguirre et al. 1998; Allison et al.
1994; Chao et al. 1999; Epstein and Kanwisher 1998; Gauthier
et al. 1999, 2000; Haxby et al. 2001; Kanwisher et al. 1997;
Martin et al. 1996; McCarthy et al. 1997) and suggest that
several object classes such as faces, houses, animals, and tools
are represented in human temporal cortex. However, the use of
a limited (and potentially biased) stimulus set and posing a
presumed category structure limits the scope of many of these
studies. Studies at the level of single cells in non-human
primates share these shortcomings. Although the existence of

face-selective cells in the inferior temporal (IT) cortex of naive
monkeys is well established (Bruce et al. 1981; Desimone et al.
1984; Kiani et al. 2005; Perrett et al. 1982; Rolls and Tovee
1995; Tsao et al. 2006), the generality of the finding to the
representation of other object categories is unknown.

In monkeys trained to categorize stimuli into a few arbitrary
groups, some single cells in the prefrontal cortex show re-
sponses covering most stimuli in one of the learned categories
(Freedman et al. 2001, 2002). In humans, some cells in medial
temporal lobe structures such as the hippocampus respond
categorically (Kreiman et al. 2000; Quiroga et al. 2005). Both
prefrontal cortex and medial temporal lobe structures receive
visual input about objects from IT cortex. Although the stim-
ulus selectivity of IT cells is affected by training for visual
categorization (Baker et al. 2002; Sigala and Logothetis 2002),
responses of single IT cells appear to represent individual
stimuli rather than the learned categories (Freedman et al.
2003; Vogels 1999). Taken together, these studies suggest that
object categories could be represented in the polymodal asso-
ciation cortices downstream of the IT cortex. Although some
types of categorization may rely on the prefrontal cortex and
medial temporal structures, it is conceivable that certain classes
of visual categories would be represented in the IT cortex.
Given our rapid and seemingly effortless ability for categori-
zation of natural objects (Li et al. 2002; Thorpe et al. 1996),
natural categories provide plausible candidates.

A possibility, which has not been tested extensively, is that
object categories are represented by response patterns over a
large population of IT cells. According to this hypothesis,
objects that belong to the same category would tend to elicit
similar population response patterns. We therefore asked
whether, for a large (�1,000) set of natural object images
rather than arbitrary and limited sets of object images, re-
sponses of a population of IT cells (rather than single units)
represent the categorical structure of objects. Responses to the
stimuli were examined during a fixation task to investigate
object categories independent of artificially imposed or task-
dependent requirements. Furthermore, the use of a large stim-
ulus set with many categories allowed us to examine the
representation of object categories in a data-driven fashion
without prior assumption of any particular category structure.
We found that response patterns distributed over the IT cell
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population represented many animate categories, as well as the
structure among them.

M E T H O D S

Three macaque monkeys (M. mulatta) were used, two for single-
cell recordings and one for behavioral experiments. All experimental
procedures complied with the guidelines of the National Institutes of
Health and the Iranian Society for Physiology. The monkeys were
raised in human houses and then in zoos before they were brought to
the laboratory. Therefore it is likely that they had encountered many
animate and inanimate objects in the course of their life.

Recordings and stimuli

In a preparatory aseptic surgery, a block for head fixation and
recording chamber were anchored to the dorsal surface of the skull.
The position of the recording chamber was determined stereotaxically
referring to the magnetic resonance images (MRIs) acquired before
the surgery. Action potentials of single cells were recorded extracel-
lularly with tungsten electrodes (FHC, ME) from the IT cortex, on the
right side for one monkey (monkey 1) and on the left side for the other
monkey (monkey 2) while the monkeys were performing a fixation
task. The electrode was advanced with an oil-driven manipulator
(Narishige) from the dorsal surface of the brain through a stainless
steel guide tube inserted into the brain down to 10–15 mm above the
recording sites. Recording positions were evenly distributed at ante-
rior 15–20 mm (monkey 1) or 13–20 mm (monkey 2) over the ventral
bank of the superior temporal sulcus and the ventral convexity up to
the medial bank of the anterior middle temporal sulcus with 1-mm
track intervals (Fig. 1). The recording was not biased by response
properties. The action potentials from a single neuron were isolated in
real time by a template matching algorithm (Worgotter et al. 1986).

Responses of each cell were tested with 1,124 � 71 (mean � SD;
median, 1,084) stimuli presented in a pseudorandom order. The
stimulus set was repeated 9 � 2 (median, 10) times for each recording
site. The sequence of stimuli changed randomly in each repetition, and
also for different recording sites, to avoid any consistent interaction
between successively presented stimuli. The stimuli were colorful

photographs of natural and artificial objects isolated on a gray back-
ground. The size of the larger dimension (vertical or horizontal) of
each stimulus was �7° of visual angle.

The monkey had to maintain fixation within �2° of a 0.5° fixation
spot presented at the center of the display. The eye position was
measured by an infra-red eye-tracking system (i_ rec, http://staff.aist.
go.jp/k.matsuda/eye/), which allowed a precision of 1 deg or less for
the measurement of eye position. The presentation of stimulus se-
quence started after the monkey maintained fixation for 300 ms. Each
stimulus lasted for 105 ms and was followed by another stimulus
without intervening gap. The sequence stopped when 60 stimuli were
presented or when the monkey broke the gaze fixation. The monkey
was rewarded with a drop of juice every 1.5–2 s during the fixation.
It has been shown that cells in the monkey IT cortex preserve their
stimulus selectivity in rapid serial presentations as fast as 14–28
ms/stimulus (Edwards et al. 2003; Foldiak et al. 2004; Keysers et al.
2001). Also backward masking has a minimal effect on the initial part
of neuronal responses when the stimulus onset asynchrony is �80 ms
(Kovacs et al. 1995; Rolls and Tovee 1994).

Data analyses

The data set consisted of all the cells with reliable unit isolation
throughout the stimulus presentation, regardless of the cell’s stimulus
selectivity (n � 674). The spontaneous activity was measured in a
200-ms window immediately before the sequence of stimulus presen-
tation initiated, and its SD was calculated across different sequences.
We measured the neural activity for each stimulus presentation in a
140-ms window starting 71 ms and ending 210 ms after the onset of
the stimulus. Responses to the last two stimuli in each sequence did
not enter the analysis. To minimize the contamination of neural
activity measurement by responses to the previous stimuli, we ex-
cluded presentations with large activity (exceeding the spontaneous
activity by 2 � SD) in the 50-ms period immediately after the
stimulus onset. This resulted in exclusion of 15% of the presentations.
However, neither the contamination correction nor the exact size of
the window was crucial to the results. Due to our rapid stimulus
presentation paradigm we could not assess how our results might have
changed by taking into account very late responses of the cells.

Similarity of response patterns measured with degree
of correlation

Responses elicited in the population of cells were used to calculate
a measure of similarity between stimuli (Fig. 2). First, the mean
responses of a cell to the set of stimuli were arranged in a vector and
were normalized by subtracting the mean response of the cell from the
vector and then dividing it by its Euclidean length. The response
normalization for single cells canceled the bias due to different
baseline activity and different ranges of firing rates in different cells.
Changes in the method of normalization did not change the basic
results. Second, for any pair of stimuli, we calculated Pearson’s
correlation coefficient (r) between patterns of responses evoked by the
stimuli in the cell population. The distance (or dissimilarity) between
two stimuli was quantified by 1 – r (neural distance). Two stimuli with
similar response patterns in the cell population therefore have a small
distance. The use of correlation coefficient as a measure of distance
has the advantage of focusing on the population response pattern and
discounting effects that nonspecifically change the firing rate of the IT
population (e.g., contrast or luminance of the stimulus). Nevertheless,
similar results were obtained with other distance metrics, such as
Euclidean distance, which do not specifically measure the pattern
similarity.

Multidimensional scaling and cluster analyses

Multidimensional scaling (MDS) (Young and Hammer 1987) was
used to visualize the distribution of stimuli based on the neural

FIG. 1. Positions of recording sites in 2 monkeys. Left: lateral views of the
recorded hemispheres. Vertical lines indicate the anterior-posterior extent of
the recording sites. Right: representative coronal sections. Recorded regions
are indicated by gray. Recording sites were evenly distributed. ls, lateral
sulcus; sts, superior temporal sulcus; amts, anterior middle temporal sulcus; rs,
rhinal sulcus.
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distances (Fig. 4). Both classic MDS and nonlinear dimensionality
reduction methods (Tenenbaum et al. 2000) showed segregation of
categories in a low-dimensional space. Results of nonlinear MDS are
shown in Fig. 4.

We also applied agglomerative cluster analysis (Johnson 1967) to
the neural distances (Figs. 5 and S2,1 Tables 1 and 2, and supplemen-
tary program). The results shown here were obtained by measuring the
distance between nodes by averaging distances of all pairs of stimuli
under the two nodes. Varying the method of distance calculation
(average, largest, shortest, and others), however, did not change the
basic properties of the tree structure. MDS and clustering analyses of
1-r have previously been used (Eifuku et al. 2004; Lehky and Sereno
2007).

We listed 23 intuitive object categories, based on human conven-
tion, with �12 category members in the stimulus set (see Table 1).
For each of them and also for higher categories made of them, we
examined whether there was a corresponding node in the tree. Two
indices were defined for this purpose: ratio 1 � (number of category
members under the node)/(total members of the category), ratio 2 �
(number of category members under the node)/(total stimuli under the
node).

The average of the two ratios was used as a score for the match
between the category and the node. We searched for the node with the

maximum score for each category. To determine the mean value and
variation of the score expected by chance clustering of the stimuli we
repeated the same procedure for a group of randomly selected stimuli
of the same size as the category (Monte Carlo method). The match of
the higher categories (see Table 2) with the nodes was examined by
the same method.

Cluster analysis on stimulus similarity in low-level features

We also applied cluster analysis to the physical similarity between
stimulus images (Fig. 6A). Physical similarity was measured by sum
of absolute differences in red, green, and blue values over the pixels
of two images, sum of absolute difference in intensity over all pixels,
and sum of absolute differences in coefficients of Wavelet transfor-
mation of stimulus images. We used a biorthogonal wavelet (Dau-
bechies 1992) from the Wavelet Toolbox of Matlab (bior 5.5 with 7
levels of decomposition), but similar results were obtained with other
wavelets as well.

Similarity of the stimuli was also measured by outputs of a
population of modeled V1 simple cells, and modeled V1 complex
cells (Fig. 6A). The receptive fields of simple cells were simulated by
Gabor filters of different orientations (0, 90, �45 and 45°), sizes
(0.3–1.2° in steps of 0.1°), and contrast selectivity (preferring light-
ness or darkness at the center of the receptive field) for cells without
color selectivity. To introduce color information, we replaced the
intensity contrast with red-green or blue-yellow. Cells were distrib-
uted over the stimulus image with 0.04° intervals between the recep-
tive field centers of adjacent cells. Negative values in outputs were
rectified to zero. Each of the images was presented to the model
separately. The receptive fields of complex cells were modeled by
MAX operation (Lampl et al. 2004; Riesenhuber and Poggio 1999) on
outputs of neighboring simple cells with similar orientation selectiv-
ity. Simple cells were divided into four groups based on their recep-
tive field size (0.3–0.4, 0.4–0.6, 0.6–0.9, and 0.9–1.2°), and each
complex cell pooled responses of neighboring simple cells in one of
these groups. The spatial range of pooling varied in the four groups
(4 � 4, 6 � 6, 9 � 9, and 12 � 12 for the four groups, respectively)
(Riesenhuber and Poggio 1999). Similarity of responses evoked by
two stimuli in the population of modeled cells was calculated either by
the same method used for the responses in the IT cell population or by
calculating the absolute value of difference in outputs of individual
cells and summing over all cells. The results obtained by the latter
method are shown in Fig. 6A, but similar results were obtained by the
former method as well.

Cluster analysis on responses of model units tuned to
randomly selected complex features

To examine whether the representation of object categories was a
feature that could emerge without category knowledge in a population
of units selective for complex features, we created model units with
complex feature selectivity based on the hierarchical object recogni-
tion model of Riesenhuber and Poggio (1999) (Fig. 6B and the
rightmost set of bars in Fig. 6A). This model effectively combines
several experimental findings and consists of a hierarchy of units with
increasingly complex stimulus selectivity and invariance. Units either
perform template matching on their input to develop more complex
pattern-specificity from simpler features (S units), or they perform a
nonlinear operation (MAX) to develop invariance by pooling over
units tuned to the same feature but at different positions or scales (C
units). A hierarchy of units with these operations leads to C2 units,
which are tuned to partially complex features and are invariant to
changes in position and scale (roughly similar to V4 neurons). The
model was implemented with 256 C2 units as described in Riesen-
huber and Poggio (1999), except that due to the difference of image
sizes in the two studies, S1 and C1 units’ receptive field sizes were
similar to the simple and complex V1 cells described in the preceding1 The online version of this article contains supplemental data.

FIG. 2. Examples of correlation between response patterns evoked in the
674 cells by 3 pairs of stimuli. F, 1 of the cells, and the x and y values of each
F represent the normalized responses of the cell to the stimulus pair. The 3
pairs share a common stimulus, which is shown at the left. The Pearson’s
correlation coefficient (r) was 0.35, 0.20, and –0.20 for A–C, respectively. All
3 correlations are significant.
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text. The final stage of the hierarchy consisted of shape-tuned units
(STUs), which were selective to the images in our stimulus set. Each
STU received inputs from 32 C2 units that were most strongly
activated by its preferred stimulus. We randomly selected 674 images
from our stimulus set, and tuned the STUs to these images. The tuning
width of the STUs was adjusted so that their response sparseness and
response distribution matched the average of the recorded IT cells.
The exact tuning width of STUs or the number of C2 units connected
to each STU was not crucial for our basic results.

Selectivity of single cells for object categories

The selectivity of single cells for object categories was examined
based on the 13 categories located at the lowest level in the tree of Fig.
5. We will refer to these 13 categories as “the lowest-level catego-
ries.” Responses to individual presentations of all the stimulus mem-
bers within each category were pooled for the analysis. A cell was
regarded category-selective if responses to the best category were
significantly larger than responses to any of the other categories
(Newman-Keuls post hoc, P � 0.05) (similar to the 2 cells in Fig. 7,
A and B). A cell was also regarded selective to a combination of
categories if responses to any category within the combination were
significantly (P � 0.05) larger than responses to any of the categories
outside of the combination (similar to the cell in Fig. 7C).

To visualize the overlap of response magnitude distributions be-
tween categories, the mean responses to individual stimuli were
plotted against the normalized stimulus rank for each category (Fig. 7,
right). The stimuli of each lowest-level category were ranked accord-
ing to the magnitudes of mean responses, and the rank was normalized
by the number of stimuli within the category. A normalized rank of
one represents the stimulus that evoked the largest response within the
category. To average these magnitude-rank profiles across the cells
(Fig. 8, left), the mean responses to individual stimuli were first
normalized by the maximum response in each cell, and then averaged
across cells. In Fig. 8, the stimuli were divided into two groups, those
in the preferred category (or preferred category combination) and
those in the remaining categories.

In Fig. 8A, right, the normalized mean responses to the individual
stimuli were averaged over 10–20 cells preferring the same category
in each monkey. The magnitude-rank profiles were then averaged
across categories and monkeys. In Fig. 8B, right, the normalized mean
responses to individual stimuli were averaged among 11 or 20 cells
selective to human faces in each monkey. The magnitude-rank profiles
were then averaged for the two monkeys. Monkey and nonprimate
faces were excluded in Fig. 8B to allow comparison with previous
studies.

We measured the significance of differences between responses to
suboptimal categories (Fig. 9) by comparing responses of a cell to
different categories. For each cell, the lowest-level categories were
ranked based on their average response magnitude, responses to
individual presentations were pooled across stimuli belonging to each
category, and the significance of difference in response magnitude
was calculated for each pair of category rank (Wilcoxon test,
significance defined as P � 0.05). The proportion of cells showing
a significant difference for each category-rank pair is presented for
the 255 category-selective cells (Fig. 9A) and for the other 419
cells (Fig. 9B).

Correlation of mean response patterns between categories

For further evaluation of the contribution of cells without maximal
responses to a category to the discrimination of the category (Fig. 10),
we used a correlation analysis similar to the one employed by Haxby
et al. (2001). The analysis was done in two stages. First, the members
in each of the lowest-level categories were randomly divided into two
equally sized groups, and the mean responses of each cell to each
half-category group was calculated by averaging the normalized mean

responses to individual stimuli. Mean responses of 674 cells to each
half-category formed a response pattern. Second, the pairwise corre-
lation of these response patterns was calculated for all possible pairs
of categories (n � 91). The procedure was repeated 1,000 times with
different random divisions of the categories, and the mean value of the
correlation coefficient was obtained. Note that the correlation was
calculated for responses to categories in this analysis, while the neural
distances that were used for the previous analyses (e.g., the clustering
analysis) were based on the correlations of response patterns to
individual stimuli.

We performed three versions of the described correlation analysis.
1) The correlation was calculated for the responses of all 674 cells
(Fig. 10, �). 2) The correlation was calculated after removing the cells
that maximally responded to either of the two categories involved in
each correlation calculation (Fig. 10, 1). 3) Finally, the responses of
the cells that did not respond maximally to either of the paired
categories were decorrelated by shuffling the mean response values
across cells. The cells maximally responding to either of the paired
categories were not shuffled. The correlation was calculated for the
combination of shuffled and nonshuffled data points (Fig. 10, ■ ).

Spatial distribution of cells with similar
categorical selectivity

To examine whether there was clustering of cells with similar
category selectivity, we compared responses of cell pairs with differ-
ent spatial distances in the recording region. The position of the
recording sites were estimated based on the location of the guide tube,
the reading of the manipulator, the estimated distribution and location
of gray matter, and the depth of ventral brain surface (detected by a
characteristic noise on arrival of the electrode tip to the ventral
cortical surface). Cell pairs were grouped according to the distance of
recording sites in the three-dimensional space: same recording site,
�0.5 mm, 0.5 � 1 mm, 1 � 0.5 mm, and so on. Cell pairs were
excluded from the analysis when one of the cells was located in the
lower bank of STS and the other one in the convexity of IT.

The similarity of the cells’ responses was quantified by the coeffi-
cient of correlation between mean responses to individual stimuli
(stimulus correlation, Fig. 11, left) or between mean responses to the
lowest-level categories (category correlation, Fig. 11, right). The
mean response to a category was obtained by averaging mean re-
sponses to individual stimuli in the category.

Behavioral experiment

A third monkey was used for a preliminary behavioral examination
of the monkey’s perceptual categories (Figs. 12 and S4). Prior to the
experiment, the monkey was trained extensively for more than a year
on a serial delayed matching-to-sample task with stimuli that were not
included in our stimulus set. For the behavioral test, we selected 44
stimuli from the 1,084 in our set. The monkey, sitting comfortably in
a monkey chair without head restraint, started each trial by pressing a
lever. A fixation point appeared for 400 ms at the center of the display,
followed by a sample stimulus that was shown for 300–500 ms. After
a 1,000- to 1,300-ms delay, a test stimulus appeared for 300–500 ms.
If the test stimulus was identical to the sample the monkey had to
release the lever, within 700 ms of the test stimulus onset, to obtain
reward. If the test stimulus did not match the sample, the monkey had
to keep pressing the lever until the appearance of a third stimulus,
which was always identical to the sample. The monkey was rewarded
only based on the identity of the stimuli not their membership in a
particular category. We gradually introduced the 44 stimuli to the
monkey and started the data collection when the mean performance
reached 80%. During the data collection, we adjusted the length of the
stimulus presentation and delay periods, within the specified ranges,
to keep the monkey’s performance at 80–85%. Because the focus of
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our analysis was on nonmatch trials (see following text), such trials
were presented slightly more frequently (50–65%, average: 55%).

We calculated the probability of correct discrimination for each
nonmatch stimulus pair, as an estimate of their perceptual distance for
the monkey (Sands et al. 1982). There were 13–48 repetitions (mean,
29.7) for each stimulus pair in the data set. Kruskal’s nonmetric
multidimensional scaling was performed on the resulting discrimina-
tion matrix (Fig. S4); it is equivalent to running MDS on the confusion
matrix (Sands et al. 1982). Note that, our choice of a small subset (n �
44) of the stimuli is dictated by practical limitations. Testing all
possible nonmatch pairs of the 1,084 stimuli would require several
years of data collection.

R E S U L T S

We recorded activity from 674 neurons, in multiple data-
collection sessions, in the anterior IT cortex of two macaque
monkeys (Fig. 1) while the monkeys performed a fixation task.
Responses of each neuron were examined with �1,000 color-
ful photographs and paintings of natural and artificial objects.
The monkeys had not been trained for any categorization task
previously.

We will first explain that response patterns distributed over
the IT cell population represented our intuitive category struc-
ture. Then the distributed nature of the category representation
will be shown.

IT response patterns form category clusters

Different cells in IT cortex increased or decreased their
firing rate to different stimuli so that each stimulus elicited a
particular pattern of response over the population of recorded
cells. The response pattern is defined by the set of response
magnitudes in the 674 cells. Stimuli that are closer to each
other in our hierarchical category structure elicited more sim-
ilar response patterns. This tendency is illustrated by the scatter
plots in Fig. 2 for three exemplar stimulus pairs. For each pair
of stimuli, the similarity of population response patterns was
measured by Pearson’s correlation coefficient (r) of normalized
response patterns evoked by the two stimuli (see METHODS). The
coefficient was 0.35, 0.20, and –0.20 for the pairs shown in
Fig. 2, A–C, respectively. The correlation coefficients varied
from �0.31 to 0.54 across the stimulus set (Fig. 3). Generally,
animate and inanimate objects evoked negatively correlated

responses while animate objects evoked positively correlated
responses. Within the group of animate objects, the highest
correlations belonged to stimuli in the same intuitive category.

To visualize the relationship between the similarity of stim-
uli in our intuitive category structure and the similarity of the
neural response patterns, we first used a MDS analysis. MDS
has been used to infer the internal representation of stimuli
based on neuronal responses or behavioral data (Cutzu and
Edelman 1998; Hasselmo et al. 1989; Op de Beeck et al. 2001;
Sugihara et al. 1998). MDS allows us to generate a low-
dimensional layout of the stimuli based on the similarity of
response patterns. We used 1 – r as a measure of distance
between two stimuli (neural distance). Using a correlation
coefficient has the advantage of focusing on the population
patterns of responses rather than nonspecific response changes.
The 1,084 stimuli were plotted in a low-dimensional space
with interstimulus distances approximating the original neural
distances.

The stimuli were roughly divided into four category clus-
ters—faces, bodies, hands, and inanimate objects—that can be
appreciated even in a two-dimensional (2D) projection of the
space (Fig. 4A). Each of these clusters was further divided into
smaller groups in other projections: faces were divided into
human, monkey, and nonprimate animal faces (Fig. 4B), and
bodies were also divided into several subgroups (Fig. 4C). The
Scree plot (the percentage of unexplained variance plotted
against the number of dimensions) indicates that 2D projec-
tions of the space can explain only �35% of the variance in the
data (Fig. S1). Therefore it is important to note that each 2D
map captured only a small part of the structure that appeared in
a higher dimensional space.

IT categories resemble human-intuitive categories

To better understand the organization of the objects in the
high dimensional space and to further examine the category
structure reconstructed from the neural distances, we con-
ducted an agglomerative cluster analysis of the neural dis-
tances. The analysis started with 1,084 nodes corresponding to
1,084 stimuli that were consistently used in the experiments.
The nodes were connected to each other step by step to make
larger nodes. In each step, the two nodes with the smallest
distance were connected to make a new node, and all the
stimuli were connected to a single node after 1,083 steps. The
whole reconstructed tree is shown as a supplementary program.
A one-dimensional alignment of the stimuli based on the tree
is also shown in Fig. S2. The tree shows several levels of
organization. In the first branching, the stimulus set was di-
vided into animate and inanimate object groups. The animate
object group was further divided into several meaningful cat-
egories, as expected from the MDS analysis.

To objectively determine which categories appeared in the
tree, we listed 23 intuitive categories, based on human con-
vention (see Table 1), that had �12 category members in the
stimulus set and examined whether they and their combinations
had significantly corresponding nodes in the tree. For each
category, we calculated two ratios for each node in the tree: the
fraction of category members that were located under the node
(Ratio 1) and the fraction of stimuli under the node that were
members of the category (Ratio 2). We then selected the node
that gave the maximum averaged value of the two ratios. The

FIG. 3. Distribution of the correlation coefficients for the population re-
sponse patterns. For each pair of the 1,084 stimuli, the correlation was
calculated for the response patterns evoked by the 2 stimuli across the recorded
cells.
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match was regarded as significant if the value exceeded by 4
SD the chance value calculated by a Monte Carlo method for
randomly selected stimulus groups of the same size as the
category and more than half of the category members were
under the node (Ratio 1 � 0.5).

Many animate object categories at several hierarchical levels
had significantly matching nodes (Fig. 5 and Tables 1 and 2).
The tree also reconstructed positional relations among the
animate object categories in our intuitive category structure:
the global category of animate objects was divided into bodies,
hands, and faces, and the categories of bodies and faces were
divided into meaningful subcategories. Faces were divided into
primate and nonprimate faces, and the primate face group was
divided into human and monkey faces. For bodies, human,
birds, and four-limb animals clustered together, whereas lower
animals such as fish, reptile, and insects made their own
cluster. Thus the cluster analysis formally showed that the
similarity of population response patterns reconstructed a large
part of our intuitive category structure, including the global
division into animate and inanimate objects as well as further
hierarchical subdivisions of animate objects. However, with
the exception of cars, there were no nodes matching categories
of inanimate objects (Table 1). Importantly, unlike imaging
and psychological studies that indicate the representation of
manmade object classes such as tools in the temporal cortex of
humans (Chao et al. 1999; Martin et al. 1996; Moore and Price
1999; Tranel et al. 1997), such categories were not represented
in the monkey’s IT. The lack of representation for inanimate
categories is consistent with the lack of relevance of such

categories for the monkey and magnifies the significance of the
represented animate categories.

The tree in Fig. 5 was reconstructed based on responses of
all 674 cells recorded from the two monkeys. The trees that
were constructed for individual monkeys showed all the basic
properties seen here: the first division into animate and inani-
mate objects, subdivision of animate objects into faces and
bodies and further subdivision of faces and bodies into subcat-
egories. The scores for categories, listed in Table 1 for the
combined data, were well correlated between the two monkeys
(r � 0.8, P � 10-6). Hereafter, the 13 categories located at the

FIG. 4. Arrangement of the stimuli in a low-dimensional space based on
multidimensional scaling (MDS) on the neural distances (1 – r) of the stimuli.
Each point represents 1 of the stimuli. A–C represent 3 different projections of
the space as denoted by the axis labels. All 1,084 stimuli are shown in A,
whereas only faces and bodies are shown in B and C, respectively. The
categories that are labeled here were found to have significantly matching
nodes in the tree shown in Fig. 5.

TABLE 1. Degrees of match between intuitive object categories
and nodes in the tree reconstructed from responses of inferior
temporal (IT) cells

Ratio 1 Ratio 2 Score Chance
No. of
Stimuli

Animal face 0.38 0.94 0.66* 0.52 42
Monkey face* 0.97 0.81 0.89* 0.52 39
Human face* 0.97 0.98 0.98* 0.53 64
Hand* 0.93 1.00 0.96* 0.52 27
Bird body 0.16 1.00 0.58* 0.53 56
4-limb animal body* 0.57 0.88 0.73* 0.55 103
Human body* 0.95 0.93 0.94* 0.52 40
Butterfly* 0.53 1.00 0.76* 0.51 17
Other insects 0.19 1.00 0.59* 0.52 27
Reptile* 0.84 0.41 0.63* 0.52 19
Fish* 0.87 1.00 0.93* 0.51 15

Car* 0.87 0.83 0.85* 0.52 23
Tree 0.15 1.00 0.58* 0.51 13
Leaf 1.00 0.02 0.51 0.51 12
Flower 0.14 1.00 0.57 0.52 22
Fruit 0.12 1.00 0.56 0.51 17
Vegetable 0.11 1.00 0.56 0.51 18
Food 0.07 1.00 0.53* 0.52 44
Furniture 0.16 1.00 0.58* 0.52 25
Lamp 0.19 1.00 0.60* 0.51 21
Common tool 0.11 1.00 0.56 0.52 27
Kitchen utensil 1.00 0.03 0.52 0.51 19
Home appliance 0.15 1.00 0.58* 0.51 13

Ratio 1 � (number of category members under the node)/(number of all
members in the category). Ratio 2 � (number of category members under the
node)/(number of all stimuli under the node). Score � (ratio 1 � ratio 2)/2,
with the asterisk indicating that the value is significantly larger than the chance
value. Chance � chance score expected from random clustering of stimuli,
estimated by Monte-Carlo simulation. No. of stimuli � number of stimuli
belonging to the category. The asterisk after category name indicates that the
match is satisfying both of the following criteria: the score is significantly
larger than the chance value, and Ratio 1 � 0.5.

TABLE 2. Degrees of match between combined categories and
nodes in the tree reconstructed from responses of IT cells

Ratio 1 Ratio 2 Score Chance

Primate face* 0.97 0.91 0.94* 0.55
Face* 0.86 0.89 0.87* 0.57
Face � hand* 0.91 0.75 0.83* 0.58
4-limb animal � bird body* 0.83 0.83 0.83* 0.57
4-limb animal � bird � human body* 0.87 0.85 0.86* 0.59
Insect 0.41 0.90 0.65* 0.52
Fish � reptile* 0.85 0.74 0.80* 0.52
Insect � fish � reptile* 0.71 0.85 0.78* 0.54
Body* 0.86 0.90 0.88* 0.64
Animate* 0.94 0.90 0.92* 0.72
Inanimate* 0.94 0.91 0.92* 0.76

Legends are similar to Table 1
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lowest-level in the tree of Fig. 5 will be referred to as “the
lowest-level categories.”

Low-level features cannot account for the
categorical structure

To test whether the reconstruction of category structure was
due to similarity of stimuli in low-level features, we applied the
cluster analysis to low-level physical similarity (e.g., color) of
the stimuli or similarity in responses of modeled V1 cell
population. The modeled V1 cells had size and orientation
selectivity, and some of them were color selective.

The trees that were built based on these similarity measures
failed to show the categories (Fig. 6A). Therefore the repre-
sentation of category structure in the population responses of
IT cells appears to be a result of visual information processing
after V1.

Randomly selected complex features cannot account for the
categorical structure

We then examined whether the representation of category
structure emerges trivially in a population of units tuned to
various, but randomly selected, complex features. We tested
this possibility by creating 674 STUs based on the hierarchical
object recognition model of Riesenhuber and Poggio (1999).
Each STU was tuned to a randomly selected stimulus, from our
stimulus set, through adjusting its input connections from
V4-like units (C2 units) in the model. The broadness of tuning
of STUs was adjusted to match that of actual IT cells. Hence
for individual STUs, the sparseness of responses and the
information about the identity of stimuli were comparable with
those of actual IT cells. We did not necessarily regard this
model as the best model to simulate the real monkey IT; we
used it only to create 674 model units tuned to complex
images.

The population response patterns of STUs did not show any
meaningful grouping of stimuli as demonstrated by the mixed
distribution of categories in a 2D stimulus projection based on
the MDS analysis (Fig. 6B). The tree reconstructed from the

responses of the STUs also failed to represent the categories
(Fig. 6A, rightmost set of bars). Similar results were obtained
for the C2 population in the model. Because of the position and
size invariance of C2 units and STUs, the failure cannot be
attributed to the lack of invariance. These results suggest that
the reconstructed object category structure based on the re-
sponses of actual IT cells reflects something about the monkey
IT cortex beyond the representation of a randomly selected set
of complex features.

Category membership can be read out by means of a
linear classifier

Different categories elicited easily separable population re-
sponse patterns in IT cortex. Full classification of the stimuli
into different categories in the tree can be performed reliably
even by a linear classifier. We used a simple two-layer per-
ceptron network (Duda et al. 2001) with 674 cells in the input
layer and the significant lowest-level categories in the output
layer. The magnitudes of mean responses to each stimulus
were introduced to the input units, and the output unit yielding
the largest value was taken as the classification result. The
network was trained by adjusting its connection weights until
it achieved a perfect classification for a training data set.

After training with a random selection of 50% of the stimuli,
the network correctly classified 86 � 3% of the remaining
stimuli. This performance is not simply the result of a large
degree of freedom in the parameters of linear classifier or a
result of the high dimensionality of the response space. When
stimuli were randomly assigned to 10 groups of the same sizes
as the 10 categories, the performance of the linear classifier
decreased to 50 � 3% [the 50% chance performance is because
one group corresponding to the “other inanimate objects”
included about a half of the stimuli (Table 1)].

Single-cell responses are less clearly categorical than
population responses

To examine properties of the category representation in IT
cell population, we determined the selectivity of individual

FIG. 5. The tree reconstructed based on the
neural distances. Red circles indicate the nodes
significantly matching the categories. Blue cir-
cles indicate the nodes that had scores (see
METHODS) significantly larger than chance
score but included fewer than half of the cat-
egory members. The blue nodes were added to
indicate category combinations significantly
matching the higher nodes. Five examples of
category members are shown for each of the
lowest-level categories, except for “other inan-
imate objects” (the rightmost node). The thir-
teen categories located at the lowest level are
referred to as “the lowest-level categories”
throughout this paper.
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cells to the lowest-level categories or their combinations. Ten
of the lowest-level categories were significant in the tree of
Fig. 5, and the rest were added to indicate the category
combinations significantly matching the higher nodes.

Some cells (184/674) discriminated stimuli in one of the
categories from those in any of the other categories: responses
to the category were significantly larger than responses to any
other category (Newman-Keuls post hoc, P � 0.05; Table 3).
Figure 7 illustrates responses of a cell that responded selec-
tively to human bodies (A) and another cell that responded
selectively to bodies of four-limb animals (B).

In addition to selectivity for the lowest-level categories,
many cells discriminated a combination of categories from
others (145 cells, 186 combinations): responses to any category
within the combination were significantly larger than responses
to any of the categories outside the combination (P � 0.05).
Many of these combinations (67/186) matched significant

higher-level nodes in the tree shown in Fig. 5 (Table 3),
although these nodes were only a very small fraction (1.3%) of
all possible combinations of the lowest-level nodes. Figure 7C
shows responses of a cell that selectively responded to bodies
of humans, birds, and four-limb animals.

In summary, a total of 255 cells (38% of 674 cells) were
selective to a category or a combination of categories. The
number is smaller than the sum of the two abovementioned
category-selective groups (184 � 145) because 74 cells showed
selectivity to both a single category and a combination of
categories (as did the cell in Fig. 7B).

The categorical selectivity of single cells was imperfect
compared with that of the cell population as a whole. For single
cells, the distribution of response magnitudes for the preferred
category (or category combination) largely overlapped with the
distribution of responses to other categories (Figs. 7, rightmost
column for the example cells, and 8A, left). This was true even
for the cells selective to the face categories (Fig. 8B, left),
although a previous study (Tsao et al. 2006) has shown that
there may be a cluster of cells in more posterior parts of
monkey IT cortex with near perfect face-selectivity. Unlike
this overlap in single-cell responses, when responses to indi-
vidual stimuli were averaged over 10–20 categorical cells
preferring the same category in each monkey (tested for mon-
key faces, human faces, human bodies, or hands), the overlap
largely disappeared (Fig. 8, right). These results suggest that
partial deficits in categorical selectivity of individual cells can
be compensated by averaging responses over a small popula-
tion of cells preferring the same category.

FIG. 6. Object categories were represented by the responses of inferior
temporal (IT) cell population but not by low-level image similarity or by model
unit responses. A: average match of the intuitive categories with the best
representative nodes of the trees formed by different distance measures (1).
The match was quantified by the node score ((Ratio 1 � Ratio 2)/2), and
averaged over all the significant categories of Fig. 5. �, expected scores for
chance-level clustering of stimuli. Error bars represent SE. STUs, shape-tuned
units in the HMAX model. These units were tuned to 674 stimuli randomly
selected from the stimulus set. B: arrangement of the stimuli in the stimulus set
according to MDS analysis on the response patterns of STUs did not replicate
the clustering of stimuli based on the real IT cell population (compare with Fig.
4A).

TABLE 3. Number and response properties of cells selectively
responding to the categories identified in the tree of Fig. 5.

Category
Number
of Cells

Averaged
Maximum
Response,
Spikes/s*

Average
Spontaneous

Response,
Spikes/s

Animal face 13 37.3 6.3
Monkey face 19 32.4 6.3
Human face 54 39.5 7.6
Hand 26 38.8 5.5
Bird 2 51.0 7.8
Four-limb animal 5 32.8 4.7
Human body 36 28.3 4.6
Butterfly 10 53.7 11.5
Other insects 3 49.1 2.8
Reptile 3 40.6 6.1
Fish 5 52.4 6.4
Car 8 28.2 5.6
Other inanimate objects 0

Primate face 10 40.8 6.1
Face 37 39.3 6.7
Face � hand 4 62.5 12.1
Four-limb � bird body 0
Four-limb � bird � human body 5 35.8 8.9
Insect 2 22.9 1.2
Fish � reptile body 3 41.3 5.0
Insect � fish � reptile body 0
Body 0
Animate (face � body � hand) 6 49.9 10.3
Inanimate 0

*The mean firing rate in the 140-ms response window to the best stimulus
for individual cells was averaged over the cells that responded selectively to
the category.
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Responses to suboptimal categories contribute to the
category representation

Another aspect of the distributed nature of category repre-
sentation in IT cortex is significant difference of neural re-
sponses even for categories that a neuron is not maximally
responsive to. For each cell, we compared the magnitude of
responses (Wilcoxon test) for all pairs of the lowest-level

categories after ranking the categories according to the cell’s
mean category responses. The proportion of cells with signif-
icant difference (P � 0.05) for each rank pair is shown for the
255 category-selective cells and for the other cells in Fig. 9.
Significant differences were widely distributed over different
rank combinations. For example, �50% of cells showed sig-
nificantly different responses for a rank difference of five

FIG. 7. Three examples of category-selective cells. Ex-
ample responses to individual members of the preferred
category (left), the averaged responses to the lowest-level
categories (middle), and the magnitude of responses to
individual stimuli of the lowest-level categories plotted
against the normalized stimulus rank within each category
(right) for a cell preferring human bodies (A), 4-limb animal
bodies (B), and the combination of human bodies, 4-limb
animal bodie, and bird bodies (C). Left and middle: hori-
zontal bars indicate the stimulus presentation period. Middle
and right: the best categories are shown in red. The cate-
gories that evoked responses significantly smaller than the
best category but significantly larger than other categories
(bird and reptile in B; reptile, fish, and other insects in C)
are shown in blue. Gray indicates other categories. Normal-
ized rank of 1 indicates the stimulus that evoked the largest
response within the category.

FIG. 8. The overlap of average response magnitudes of stimuli in the
preferred category (black lines) with responses to other stimuli (gray lines) for
all the categorical cells (A) and for cells selective to human faces (B). A and B,
left: mean responses to individual stimuli were normalized by the maximum
mean response in each cell, and then responses to stimuli of the same
normalized rank were averaged across cells. Normalized rank of 1 indicates the
largest response in the stimulus group. A, right: normalized mean responses to
the same stimulus were averaged over 10–20 cells preferring the same
category in each monkey (performed for monkey faces, human faces, human
bodies, or hands). The resulting magnitude-rank curves were then averaged
across categories and monkeys for the figure. B, right: similar to A but the
normalized mean responses to individual stimuli were averaged among 11 or
20 cells selective to human faces in each monkey. Monkey faces and nonpri-
mate faces were excluded in B to allow comparison with previous studies.

FIG. 9. Many IT cells showed significant differences in their responses to
suboptimal categories. For each cell, the lowest-level categories were ranked
based on the average response magnitude, and the significance of difference in
response magnitudes was calculated for each pair of category ranks (Wilcoxon
test, significance defined as P � 0.05). Individual trial responses pooled for all
the stimuli belonging to each category were used for the comparison. The
proportion of cells that showed a significant difference for each category-rank
pair is color-coded for the 255 category-selective cells (A) and the remaining
419 cells (B).
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between categories among the category-selective cells (Fig.
9A). This high probability of significant difference implies that
not only responses to the best categories but also those to other
categories, ranging from suboptimal to the worst, carry infor-
mation. For the cells without sharp category selectivity, a rank
difference of eight was enough to achieve significant difference
in 50% of cells (Fig. 9B).

The presence of categorical information in responses to
suboptimal categories was also demonstrated by examining the
correlations in the population response patterns to each cate-
gory. In this analysis, each lowest-level category was randomly
divided into two groups of equal size, responses of each cell to
individual stimuli were averaged across stimuli in each half-
category, and the correlation of averaged responses were cal-
culated for all possible pairs of categories across the cell
population. The response to a half-category was more similar
to, or more correlated with, responses to the other half of the
same category than another category (Fig. 10, �). This was true
even after removing the cells that maximally responded to
either of the categories in the pair (Fig. 101), meaning that a
category can be potentially discriminated from another one
even in the absence of maximally responsive cells. For exam-
ple, images of four-limb animal bodies were discriminated
from images of fish even without the cells selective to either
category. As a complementary test, when we shuffled the mean
responses of cells with suboptimal responses to the two cate-
gories without shuffling the responses of maximally responsive
cells, the strength of correlation was significantly reduced (P �
0.0002, Fig. 10, ■ ).

Cells with similar category selectivity make multiple small
clusters in IT cortex

Cells located close to each other in the IT cortex tended to
have similar stimulus and category selectivity. This similarity
can be quantified by the correlation of responses of the two
cells. We measured the correlation either for mean responses to
individual stimuli (stimulus correlation) or for mean responses
to the lowest-level categories (category correlation). The aver-
age magnitude of stimulus correlation was higher for pairs with
�1 mm distance (Fig. 11, left), consistent with the previous
finding of local clustering of cells with similar stimulus selec-
tivity (Fujita et al. 1992; Tamura et al. 2005; Tsunoda et al.
2001; Wang et al. 1996, 1998; Yamane et al. 2006). The
category correlation had a similar tendency, but showed stron-
ger correlation values (Fig. 11, right) compared with stimulus
correlations.

Cells with similar category selectivity were usually found in
the same penetration, and clusters of cells in neighboring
penetration sites (1-mm interval on our grid system) were
rarely selective to the same category. This is reflected in the
small change in the category correlations beyond 1 mm in Fig.
11. Instead of creating a big spatial cluster, cells with similar
category selectivity appeared in multiple small clusters distrib-
uted over the recorded region, as shown for the global face
category and global body category in Fig. S3. This may be
another aspect of the distributed representation of object cate-
gories in the IT cortex. However, the number of cells recorded
in each hemisphere (322 cells in the 1st monkey and 352 cells

in the 2nd one) was not large enough to let us draw strong
conclusions about the topography of categorical representation
in IT. It is also important to note that our analysis in Fig. 11
measured the spatial extent of clusters by making the assump-
tion that such clusters were spherical. It is possible that the
topography of IT consists of nonspherical neural clusters with
similar category selectivity that extends in one spatial dimen-
sion for distances �1 mm. A finer and more extensive sam-
pling of IT cortex is required to test this possibility.

FIG. 10. Within- and between-category correlations of population response
patterns. Each lowest-level category was randomly divided into 2 halves, and
mean responses of every cell to each half were calculated. The correlation of
the mean responses across the population of cells was calculated for all
possible pairs of categories (n � 91). The procedure was repeated 1,000 times
with different random divisions of the categories, and the mean value of
correlation coefficient was obtained for each of the category pairs. �, corre-
lations calculated over the 674 cells. 1, correlation coefficient calculated after
excluding the cells maximally responding to either of the paired categories. ■ ,
correlation coefficient for all the cells but after shuffling of the responses for
the cells that did not respond maximally to either of the 2 categories. Error bars
represent 95% confidence interval. The figure is symmetrical around the
diagonal; all the bars are shown for convenient visual comparison. HF, human
face; MF, monkey face; AF, animal face; HD, hand; HB, human body; 4L,
four-limb animal; BD, bird; RP, reptile; FS, fish; BF, butterfly insects; IS, other
insects; CA, car; OB, other inanimate objects.
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Behavioral object confusion reflects IT category structure

The monkey’s perceptual categories were examined by an-
alyzing the probability of confusion between stimuli for a third
monkey in a delayed matching-to-sample task. The task re-
quired discrimination of stimulus pairs based on their identity.
We chose 44 stimuli from the stimulus set that was used in the
recording experiments. The frequency of the erroneous re-
sponses (confusion) in this task can be influenced by the
categorical similarity between stimuli (Sands et al. 1982):
stimuli belonging to the same category or to closely related
categories can be more often confused with each other.

The pattern of confusions between the stimuli corroborates
the results based on IT responses. The 44 stimuli included 11
categories at the lowest level of the tree in Fig. 5; human faces,
monkey faces, nonprimate animal faces, four-limb-animal bod-
ies, bird bodies, fish, insects, reptiles, and other inanimate
objects. Each category had four stimuli except the category of
other inanimate objects, which had eight stimuli. The small
number of stimuli reflects practical limitations in the length of
experiments (see METHODS). We collected 51,806 trials in 27
sessions of data collection. Figure 12 shows the neural dis-
tances between stimulus pairs plotted against the probability of
correct discrimination in nonmatch trials. Note that the prob-
ability of correct discrimination equals 1 � (probability of
confusion). The probability of a correct discrimination was
larger for stimulus pairs that elicited more distinct response
patterns in IT (r � 0.44, P � 10-6).

Using the MDS analysis, we projected the 44 stimuli on a
2D space according to the correct discrimination rates (Fig.
S4). The stimuli in each of the lowest-level categories occupied
a smaller region compared with the region occupied by the
higher-level face or body categories.

D I S C U S S I O N

Representation of categories and category structure

We found that the similarity of population response patterns
evoked by object images in the monkey IT cortex was corre-
lated with the distance between their categories in the intuitive
category structure. The images of objects selected from the
same category tended to evoke similar response patterns,
whereas those of objects belonging to more distant categories
evoked disparate patterns. The response pattern here is defined
by the distribution of magnitudes of responses over the cell
population. The correlation between the category distance and
the response pattern similarity was strong enough for us to find
the category structures in the distribution of stimuli plotted in
a low-dimensional space according to the degree of similarity
of the response patterns (Fig. 4). The reconstruction of cate-
gory structure was verified by an agglomerative clustering
analysis (Figs. 5 and S2 and supplementary program). The
match between the category and stimuli under the node was as
large as 0.86 on average for the significant lowest-level cate-
gories in Fig. 5 (Table 1). The information about categories can
be easily read out from the activity of IT cells. For example,
when a linear classifier, in which the 674 IT cells were
connected to 10 output units with different connection weights,
was trained with a half of the stimuli, it classified the remaining
object images with nearly 90% accuracy.

Hung et al. (2005) have recently shown that membership of
stimuli in a set of predefined categories can be extracted from
responses of a population of IT cells. However, the small size
and stimulus homogeneity of the categories and, more impor-
tantly, the pose of a predefined set of categories leave it unclear
whether an inherently categorical representation of objects
exists in IT. We provide the evidence for such a categorical
representation for animate objects and show that responses of
a population of IT cells represent both the individual categories
and the intuitive relationship of the categories.

FIG. 11. Response correlations for pairs of cells with various distances
from each other. The Pearson’s correlation coefficients were calculated based
on mean responses to the 1,084 individual stimuli (left) or based on averaged
mean responses to the lowest-level categories. Distances between recording
sites were divided into 11 bins, and the correlation coefficient was averaged
over cell pairs within each distance bin. The averaging was performed
separately in each monkey. Error bars represent s.e.m. Note that, unlike the
neural distance, which was based on the response correlations for stimulus
pairs across the neural population, this analysis is based on the response
correlation for cell pairs across the stimulus set.

FIG. 12. Probability of correct discrimination of stimulus pairs in a delayed
matching-to-sample task plotted against the neural distance of stimulus pairs.
A 3rd monkey performed the task with 44 stimuli selected from the stimulus
set.
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It is important to note that the MDS and cluster analyses
revealing the grouping and cluster tree were data-driven in that
they did not require prior specification of any category struc-
ture. The intuitive category structure was only used post hoc
for quantitative assessment of the similarity between the IT
stimulus clusters and our intuitive categories. The processes to
make the MDS maps and the tree were completely data-driven.
When we view the arrangements, we immediately notice that
the clustering of objects appear to match with our intuitive
categories. To quantify this, we listed 23 intuitive categories
existing in the stimulus set with �12 category members and
examined the match of the categories and their higher catego-
ries with the nodes in the tree. Categories at several hierarchi-
cal levels, especially those of animate objects, had significantly
matching nodes. We conclude that response patterns over a
large population of the monkey IT cortex reconstruct intuitive
object categories and their structure. We do not intend to
assume that the monkeys had all of the categories identified in
the tree. It might be unlikely that the monkeys had the category
of cars, for example. However, Sands et al. (1982) showed
evidence suggesting that monkeys have the categories of hu-
man faces and monkey faces, discriminating them from each
other and also combining them as a higher category and
discriminating human and monkey faces from other objects.
Our own preliminary behavioral test performed on a monkey
with a subset of the stimuli (n � 44) demonstrates that the
distance of the stimulus pairs in the response space of IT is
correlated significantly with the probability of confusing the
stimuli in a delayed match-to-sample task (Fig. 12). The
behavioral test also suggests that monkeys have a category
structure similar to that of humans for animate objects (Fig.
S4). These results indicate that the category structure of mon-
keys correlates, at least partly, with that of humans.

Distributed nature of the representation

Although �40% of IT cells showed significantly larger
responses to stimuli in one category (or a combination of
categories) than to stimuli in any of the remaining categories,
the distribution of responses of each cell to the preferred
category and other categories overlapped substantially (Fig. 8,
left). The information that each cell carried about object cate-
gories was limited. The overlap in the magnitude of responses
largely disappeared when responses to individual stimuli were
averaged over 10–20 cells preferring the same category (Fig. 8,
right). The averaging was effective because the mismatch
between the cells’ stimulus selectivity profile and the preferred
category was different in different cells. In other words, cells
that were selective to a category complemented each other.
Pooling of the responses to individual stimuli among cells with
similar category selectivity, therefore, increased the informa-
tion about the category membership of the stimuli (Vogels
1999). Because cells with similar category selectivity also
clustered locally in the cortex (Fig. 11), the increase of infor-
mation could be achieved by pooling the neural responses
based on cortical position of the cells.

The results in the present study also indicate that the infor-
mation about categories is largely distributed over the cell
population. Single cells showed significantly different magni-
tudes of responses between many pairs of nonpreferred cate-
gories (Fig. 9). For example, some cells that maximally re-

sponded to human faces significantly discriminated bird bodies
from inanimate objects. Correspondingly, the similarity of
response patterns to stimuli in a category was maintained not
only by the cells that maximally responded to the category but
also by other cells that responded to the category with medium
and weak responses (Fig. 10). Such suboptimal category se-
lectivity helped the tree in Fig. 5 capture the appropriate
relative positions of categories, e.g., fish were farther from
monkey faces than four-limb animal bodies. The suboptimal
category selectivity may thus underlie the perceptual structure
of our hierarchical category system. The suboptimal category
selectivity may also help the simultaneous classification of an
individual stimulus at multiple category levels. For instance,
although a human face is classified into the human-face cate-
gory by the strongest responses in human-face cells, it can be
classified into the global-face category based on submaximal
responses in cells tuned to other face categories. Moreover,
responses distributed over cells that are tuned to various
animate categories can be used to classify the stimulus into the
animate-object category.

How does the category structure emerge from
feature selectivity?

Previous studies have shown that individual IT cells respond
to moderately complex features of object images (Brincat and
Connor 2004; Desimone et al. 1984; Fujita et al. 1992; Ito et al.
1994, 1995; Kobatake and Tanaka 1994; Tanaka et al. 1991).
An important question that arises is whether responding to a set
of moderately complex features by IT cells would automati-
cally result in the representation of the category structure. To
examine this possibility, we tuned a population of shape-tuned
model units (STUs), which simulate monkey IT cells (Riesen-
huber and Poggio 1999), to a set of randomly selected images
from the stimulus set used in the present study. Both the MDS
and clustering analysis failed to reconstruct the category struc-
ture from outputs of the STUs (the rightmost set of bars in Fig.
6A and the distribution in Fig. 6B). This result suggests that the
monkey’s IT cortex does something more than just respond to
a random selection of moderately complex features. There are
a huge number of such features that IT cells could potentially
be tuned for. However, IT cells do not randomly select their
favorite features. Instead, they may select the features that are
useful for the purposes of the monkey’s behavior. Categorical
discrimination of object images may be one of the factors that
dictate what features the cells should be tuned for.

The images of objects belonging to the same category or
close categories in Fig. 5 may appear more similar to each
other than those of objects belonging to distant categories. This
intuitive impression, however, has to be more formally defined.
The failure of reconstructing the category structure from the
similarity of images in low-level features indicates that the
similarity of stimuli in low-level features did not underlie the
success of reconstruction based on IT response patterns. The
failure with the outputs of STUs tuned to randomly selected
object images also suggests that the similarity of stimulus
images in terms of randomly selected complex features did not
underlie the categorical clustering of IT response patterns. Our
results suggest that the monkey IT specifically adapts complex
features for the purpose of object categorization. The visual
system may have found these features, through postnatal ex-
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perience and possibly through evolutionary processes, and
have implemented them in the selectivity of neurons in the IT
cortex and its afferent stages (Baker et al. 2002; Kobatake et al.
1998; Logothetis et al. 1995; Miyashita 1988; Sakai and
Miyashita 1994; Sigala and Logothetis 2002).

A C K N O W L E D G M E N T S

We thank M. Noorbakhsh for technical assistance and M. N. Shadlen, B.
Jagadeesh, A. L. Fairhall, N. Kanwisher, B. J. Wark, and T. D. Hanks for
helpful discussions and comments on earlier versions of the manuscript.

G R A N T S

This research was supported by a collaborative research grant from RIKEN
Brain Science Institute and a Grant-in-Aid for Scientific Research on Priority
Areas–Higher-Order Brain Functions–from Japanese Ministry of Education,
Science and Technology.

R E F E R E N C E S

Aguirre GK, Zarahn E, D’Esposito M. An area within human ventral cortex
sensitive to “building” stimuli: evidence and implications. Neuron 21:
373–383, 1998.

Allison T, McCarthy G, Nobre A, Puce A, Belger A. Human extrastriate
visual cortex and the perception of faces, words, numbers, and colors. Cereb
Cortex 4: 544–554, 1994.

Baker CI, Behrmann M, Olson CR. Impact of learning on representation of
parts and wholes in monkey inferotemporal cortex. Nat Neurosci 5: 1210–
1216, 2002.

Brincat SL, Connor CE. Underlying principles of visual shape selectivity in
posterior inferotemporal cortex. Nat Neurosci 7: 880–886, 2004.

Bruce C, Desimone R, Gross CG. Visual properties of neurons in a polysen-
sory area in superior temporal sulcus of the macaque. J Neurophysiol 46:
369–384, 1981.

Chao LL, Haxby JV, Martin A. Attribute-based neural substrates in temporal
cortex for perceiving and knowing about objects. Nat Neurosci 2: 913–919,
1999.

Cutzu F, Edelman S. Representation of object similarity in human vision:
psychophysics and a computational model. Vis Res 38: 2229–2257, 1998.

Desimone R, Albright TD, Gross CG, Bruce C. Stimulus-selective proper-
ties of inferior temporal neurons in the macaque. J Neurosci 4: 2051–2062,
1984.

Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992.
Duda RO, Hart PE, Stork DG. Pattern Classification. New York: Wiley,

2001.
Edwards R, Xiao D, Keysers C, Foldiak P, Perrett D. Color sensitivity of

cells responsive to complex stimuli in the temporal cortex. J Neurophysiol
90: 1245–1256, 2003.

Eifuku S, De Souza WC, Tamura R, Nishijo H, Ono T. Neuronal correlates
of face identification in the monkey anterior temporal cortical areas. J Neu-
rophysiol 91: 358–371, 2004.

Epstein R, Kanwisher N. A cortical representation of the local visual
environment. Nature 392: 598–601, 1998.

Foldiak P, Xiao D, Keysers C, Edwards R, Perrett DI. Rapid serial visual
presentation for the determination of neural selectivity in area STSa. Prog
Brain Res 144: 107–116, 2004.

Freedman DJ, Riesenhuber M, Poggio T, Miller EK. Categorical represen-
tation of visual stimuli in the primate prefrontal cortex. Science 291:
312–31, 2001.

Freedman DJ, Riesenhuber M, Poggio T, Miller EK. Visual categorization
and the primate prefrontal cortex: neurophysiology and behavior. J Neuro-
physiol 88: 929–941, 2002.

Freedman DJ, Riesenhuber M, Poggio T, Miller EK. A comparison of
primate prefrontal and inferior temporal cortices during visual categoriza-
tion. J Neurosci 23: 5235–5246, 2003.

Fujita I, Tanaka K, Ito M, Cheng K. Columns for visual features of objects
in monkey inferotemporal cortex. Nature 360: 343–346, 1992.

Gauthier I, Skudlarski P, Gore JC, Anderson AW. Expertise for cars and
birds recruits brain areas involved in face recognition. Nat Neurosci 3:
191–197, 2000.

Gauthier I, Tarr MJ, Anderson AW, Skudlarski P, Gore JC. Activation of
the middle fusiform “face area ” increases with expertise in recognizing
novel objects. Nat Neurosci 2: 568–573, 1999.

Hasselmo ME, Rolls ET, Baylis GC. The role of expression and identity in
the face-selective responses of neurons in the temporal visual cortex of the
monkey. Behav Brain Res 32: 203–218, 1989.

Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P.
Distributed and overlapping representations of faces and objects in ventral
temporal cortex. Science 293: 2425–2430, 2001.

Hung CP, Kreiman G, Poggio T, DiCarlo JJ. Fast readout of object identity
from macaque inferior temporal cortex. Science 310: 863–866, 2005.

Ito M, Fujita I, Tamura H, Tanaka K. Processing of contrast polarity of
visual images in inferotemporal cortex of the macaque monkey. Cereb
Cortex 4: 499–508, 1994.

Ito M, Tamura H, Fujita I, Tanaka K. Size and position invariance of
neuronal responses in monkey inferotemporal cortex. J Neurophysiol 73:
218–226, 1995.

Johnson SC. Hierarchical clustering schemes. Psychometrika 2: 241–254,
1967.

Kanwisher N, McDermott J, Chun MM. The fusiform face area: a module
in human extrastriate cortex specialized for face perception. J Neurosci 17:
4302–4311, 1997.

Keysers C, Xiao DK, Foldiak P, Perrett DI. The speed of sight. J Cog
Neurosci 13: 90–101, 2001.

Kiani R, Esteky H, Tanaka K. Differences in onset latency of macaque
inferotemporal neural responses to primate and non-primate faces. J Neu-
rophysiol 94: 1587–1596, 2005.

Kovacs G, Vogels R, Orban GA. Cortical correlate of pattern backward
masking. Proc Nat Acad Sci USA 92: 5587–5591, 1995.

Kobatake E, Tanaka K. Neuronal selectivities to complex object features in
the ventral visual pathway of the macaque cerebral cortex. J Neurophysiol
71: 856–867, 1994.

Kobatake E, Wang G, Tanaka K. Effects of shape-discrimination training on
the selectivity of inferotemporal cells in adult monkeys. J Neurophysiol 80:
324–330, 1998.

Kreiman G, Koch C, Fried I. Category-specific visual responses of single
neurons in the human medial temporal lobe. Nat Neurosci 3: 946–953,
2000.

Lampl I, Ferster D, Poggio T, Riesenhuber M. Intracellular measurements
of spatial integration and the MAX operation in complex cells of the cat
primary visual cortex. J Neurophysiol 92: 2704–2713, 2004.

Lehky SR, Sereno, AB. Comparison of shape encoding in primate dorsal and
ventral visual pathways. J Neurophysiol 97: 307–319, 2007.

Li FF, VanRullen R, Koch C, Perona P. Rapid natural scene categorization
in the near absence of attention. Proc Nat Acad Sci USA 99: 9596–9601,
2002.

Logothetis NK, Pauls J, Poggio T. Shape representation in the inferior
temporal cortex of monkeys. Curr Biol 5: 552–563, 1995.

Martin A, Wiggs CL, Ungerleider LG, Haxby JV. Neural correlates of
category-specific knowledge. Nature 379: 649–652, 1996.

McCarthy G, Puce A, Gore JC, Allison T. Face-specific processing in the
human fusiform gyrus. J Cog Neurosci 9: 605–610, 1997.

Miyashita Y. Neuronal correlate of visual associative long-term memory in
the primate temporal cortex. Nature 335: 817–820, 1988.

Moore CJ, Price CJ. A functional neuroimaging study of the variables that
generate category-specific object processing differences. Brain 122: 943–
962, 1999.

Op de Beeck H, Wagemans J, Vogels R. Inferotemporal neurons represent
low-dimensional configurations of parameterized shapes. Nat Neurosci 4:
1244–1252, 2001.

Perrett DI, Rolls ET, Caan W. Visual neurones responsive to faces in the
monkey temporal cortex. Expl Brain Re 47: 329–342, 1982.

Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual
representation by single neurons in the human brain. Nature 435: 1102–
1107, 2005.

Riesenhuber M, Poggio T. Hierarchical models of object recognition in
cortex. Nat Neurosci 2: 1019–1025, 1999.

Rolls ET, Tovee MJ. Processing speed in the cerebral cortex and the
neurophysiology of visual masking. Proc Biol Sci 257: 9–15, 1994.

Rolls ET, Tovee MJ. Sparseness of the neuronal representation of stimuli in
the primate temporal visual cortex. J Neurophysiol 73: 713–726, 1995.

Sakai K, Miyashita Y. Neuronal tuning to learned complex forms in vision.
Neuroreport 5: 829–832, 1994.

Sands SF, Lincoln CE, Wright AA. Pictorial similarity judgments and the
organization of visual memory in the rhesus monkey. J Exp Psychol:
General 111: 369–389, 1982.

4308 R. KIANI, H. ESTEKY, K. MIRPOUR, AND K. TANAKA

J Neurophysiol • VOL 97 • JUNE 2007 • www.jn.org

 on July 3, 2007 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


Sigala N, Logothetis NK. Visual categorization shapes feature selectivity in
the primate temporal cortex. Nature 415: 318–320, 2002.

Sugihara T, Edelman S, Tanaka K. Representation of objective similarity
among three-dimensional shapes in the monkey. Biol Cybern 78: 1–7, 1998.

Tamura H, Kaneko H, Fujita I. Quantitative analysis of functional clustering
of neurons in the macaque inferior temporal cortex. Neurosci Res 52:
311–322, 2005.

Tanaka K, Saito H, Fukada Y, Moriya M. Coding visual images of objects
in the inferotemporal cortex of the macaque monkey. J Neurophysiol 66:
170–189, 1991.

Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for
nonlinear dimensionality reduction. Science 290: 2319–2323, 2000.

Thorpe S, Fize D, Marlot C. Speed of processing in the human visual system.
Nature 381: 520–522, 1996.

Tranel D, Damasio H, Damasio AR. A neural basis for the retrieval of
conceptual knowledge. Neuropsychology 35: 1319–1327, 1997.

Tsao DY, Freiwald WA, Tootell RB, Livingstone MS. A cortical re-
gion consisting entirely of face-selective cells. Science 311: 670 – 674,
2006.

Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M. Complex objects are
represented in macaque inferotemporal cortex by the combination of feature
columns. Nat Neurosci 4: 832–838, 2001.

Vogels R. Categorization of complex visual images by rhesus monkeys. II.
Single-cell study. Eur J Neurosci 11: 1239–1255, 1999.

Wang G, Tanaka K, Tanifuji M. Optical imaging of functional organi-
zation in the monkey inferotemporal cortex. Science 272: 1665–1668,
1996.

Wang G, Tanifuji M, Tanaka K. Functional architecture in monkey infero-
temporal cortex revealed by in vivo optical imaging. Neurosci Res 32:
33–46, 1998.

Worgotter F, Daunicht WJ, Eckmiller R. An on-line spike form discrimi-
nator for extracellular recordings based on analog correlation technique.
J Neurosci Methods 17: 141–151, 1986.

Yamane Y, Tsunoda K, Mastumoto M, Phillips AN, Tanifuji M.
Representation of the spatial relationship among object parts by neurons
in macaque inferotemporal cortex. J Neurophysiol 96: 3147–3156, 2006.

Young FW, Hammer RM. Scaling History, Theory and Applications. New
York: Erlbaum, 1987.

4309OBJECT CATEGORY STRUCTURE IN MONKEY IT CORTEX

J Neurophysiol • VOL 97 • JUNE 2007 • www.jn.org

 on July 3, 2007 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


 
Figure S1. Scree plot of the MDS analysis. The percentage of unexplained variance of the neural 
distances between stimulus pairs is plotted against the number of dimensions used in the MDS 
analysis. The arrows indicate values for one to ten dimensions. 

 



 

Fig. S2.  The arrangement of 1084 stimuli, which were consistently used in our 

experiments, according to the agglomerative clustering analysis. The analysis produced a 

2D tree structure with stimuli arranged along one dimension and the branching of 

the tree represented in the orthogonal dimension. The stimuli are ordered from left to 

right in each row and then from top to bottom. The complete tree is available as a 

supplementary program.   
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Figure S3. Distribution of category selectivity in the 3D cortical space. The d΄ index was calculated for each cell for the 
discrimination of the global face category from other stimuli, and also for the discrimination of the global body category 
from other stimuli. The d΄ index was calculated based on the following formula 
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where μ(g) and σ2(g) are the mean and variance of responses to stimuli in the category and μ(ng) and  σ2(ng) are those to 
other stimuli. The mean and variance for each stimulus group were calculated from mean responses to individual stimuli. 
A larger d΄ implies better discrimination. AP, the anterior-posterior position relative to the ear bar; ML, the medial-



lateral position (right hemisphere in monkey K and left hemisphere in monkey S); Depth, the distance from the 
horizontal plane traversing the dorsal apex of the brain. We used a grid system with 1mm spacing between the holes to 
control the AP and ML position of the guide tube and electrode. The circles in the figure mark some of the category-
selective neural clusters. Cells with similar category selectivity were usually clustered tightly in space. The selectivity to 
the same category sometimes spread across penetrations to form larger clustering, but, as a whole, the selectivity to the 
categories appeared repeatedly at several segregated positions distributed over a large part of the recorded region.  
 
 



 
 

Fig. S4. Two-dimensional arrangement of the 44 stimuli used in the behavioral experiment. The MDS was 
performed on the probability of correct discrimination for the non-match stimulus pairs. 



 
Supplementary Program. The supplementary program shows the detail structure of the 
tree created by agglomerative clustering analysis on the responses of IT cells (see 
Methods). It can be downloaded from  
 
http://www.shadlen.org/roozbeh/Research/Categorization/tree.zip 
 
 
The program runs on Windows operating system. Expand the zip file “tree.zip” in a 
folder. Make sure that the executable file “clusterviewer.exe” and the data file “HCA.dat” 
both show in the folder, and the images are in the subfolder “ImageSet”. Run the 
executable file. You will see the structure of the tree on the left pane of the program. The 
highest node of the tree is shown on the top. Below the highest node are the tree branches 
which lead to individual images. Individual image nodes are indicated by 8 digit 
numbers. Other nodes are assigned 4-digit numbers. The numbers are used just to 
facilitate differentiation of the nodes from each other, and to allow easy navigation 
through the tree. They don’t carry any special meaning. You can expand or collapse each 
branch of the tree to see its full or simplified structure. When you click on each of the 
nodes on the tree the list of images under the node will be shown on the right pane. It 
may take a few seconds to a couple of minutes to load the images, depending on the 
speed of your computer. The images are arranged from left to right in each row and the 
rows are ordered from top to bottom. Clicking on the highest node produces a list similar 
to Fig. S2.  
 
 




