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Bayesian inference with incomplete knowledge
explains perceptual confidence and its deviations
from accuracy
Koosha Khalvati 1, Roozbeh Kiani 2,3,4,6 & Rajesh P. N. Rao1,5,6✉

In perceptual decisions, subjects infer hidden states of the environment based on noisy

sensory information. Here we show that both choice and its associated confidence are

explained by a Bayesian framework based on partially observable Markov decision processes

(POMDPs). We test our model on monkeys performing a direction-discrimination task with

post-decision wagering, demonstrating that the model explains objective accuracy and pre-

dicts subjective confidence. Further, we show that the model replicates well-known dis-

crepancies of confidence and accuracy, including the hard-easy effect, opposing effects of

stimulus variability on confidence and accuracy, dependence of confidence ratings on

simultaneous or sequential reports of choice and confidence, apparent difference between

choice and confidence sensitivity, and seemingly disproportionate influence of choice-

congruent evidence on confidence. These effects may not be signatures of sub-optimal

inference or discrepant computational processes for choice and confidence. Rather, they arise

in Bayesian inference with incomplete knowledge of the environment.
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Making decisions about hidden states of the environment
based on noisy sensory information is critical for sur-
vival. Should an animal continue to graze after hearing

a rustling sound? Was the sound due to a stalking predator or the
wind? The outcome of such perceptual decisions is both a choice
and an expectation of success known as confidence. Confidence
plays a key role in guiding behavior in complex environments1–4

and is often critical for modeling behavior and understanding its
neural mechanisms in such environments5–10. However, unlike
sensory choices and their accuracy that are usually easy to mea-
sure, confidence is a subjective quality difficult to measure reli-
ably, unless special experimental procedures are employed2,11–17.
Experiments that make such measurements have often revealed
systematic discrepancies between subjective confidence reports
and experimentally measured accuracy15,16,18–22. These dis-
crepancies have been occasionally interpreted as evidence for
suboptimality of the decision-making process or for disparate
processes for computing choice and confidence. Contrary to those
interpretations, we show that a Bayesian framework with optimal
inference but incomplete knowledge about the environment can
explain choice accuracy, confidence, and their discrepancies in
experimental measurements.

Our model extends Partially Observable Markov Decision
Processes (POMDPs)23, which assume that subjects optimize a
reward function by adjusting their beliefs about stimulus identity
and the best choice based on two factors: sensory observations
and prior knowledge about environmental states24–26, which are
learned from past experience. The model enables us to simulate
temporal update of belief for a sequence of sensory observations.
These belief updates generate explicit links between the decision
maker’s confidence and choice accuracy. We demonstrate the
precision of our predictions about choice confidence by testing
them on monkeys performing a direction discrimination task
with post-decision wagering2, where both choice accuracy and
confidence were measured.

In addition to explicitly linking confidence and accuracy, our
model explains well-known discrepancies between these two
measurements. Some discrepancies arise in an optimal decision-
making process when the decision maker has incomplete
knowledge about the environment and needs to resolve uncer-
tainties about the reliability of observations. Others seem to exist
from an experimenter’s perspective because the exact information
used by the subject is hidden to the experimenter. Our POMDP
model explains commonly observed discrepancies between
accuracy and confidence such as the hard-easy effect6,19,27, higher
confidence with increased variability of sensory observations
despite reduction of accuracy16,28, different confidence ratings in
simultaneous versus sequential reports of choice and
confidence12,27,29, discrepancy between sensitivities of accuracy
and confidence (d0 vs. meta-d0)30,31, and the seemingly larger
effect of choice-congruent observations on confidence
reports15,20.

We conclude by showing that the Bayesian inference compo-
nent of our POMDP model can be implemented by the neural
mechanisms that integrate evidence toward a decision bound,
consistent with drift diffusion models (DDMs)32 or more gen-
erally, models based on bounded-accumulation of evidence. The
POMDP model commits to a choice when the value of the
expected improvement of accuracy with new observations is less
than the cost of making those observations. We show that this
termination criterion uniquely maps to a time-varying decision
bound for integration of evidence in the DDM (shown also by
Huang and Rao26). Such time-varying bounds match past beha-
vioral studies33,34 and can be implemented by the urgency signals
observed in electrophysiological recordings9,35,36. Overall, the

neural implementation of inference and choice in our POMDP
framework is both simple and plausible.

Results
We developed and tested our model using behavioral data from
monkeys performing a direction discrimination task with post-
decision wagering (Fig. 1a)2. On each trial, monkeys observed a
patch of randomly moving dots37 and decided about the net
direction of motion. The difficulty of the decision was varied
randomly from trial to trial by changing the percentage of
coherently moving dots (the “motion strength” or “coherence”)
and the duration of the motion stimulus (Fig. 1b). The stimulus
was followed by a delay period and at the end of the delay, the
fixation point disappeared (Go cue), signaling the monkey to
report its choice with a saccadic eye movement. On a random half
of trials, the monkey was given only the right and left direction
targets. Choosing the correct motion direction (right target for
rightward motion and left target for leftward motion) resulted in
a large reward (a large drop of juice) but choosing the incorrect
target resulted in no reward and a short timeout. On the other
half of trials, the monkey was offered a third target, in addition to
the direction targets, in the middle of the delay period. This third
target was a sure-bet option. The monkey could choose either the
direction targets or the sure-bet after the Go cue. Choosing the
sure-bet target guaranteed reward but the magnitude of the
reward (volume of the juice) was smaller than that for choosing
the correct direction target.

An optimal decision maker who desires to earn more reward
and maximize utility should choose the risky, high-paying direc-
tion targets when confident about motion direction and the sure-
bet option when doubtful about the correct direction. Monkeys
showed a similar behavioral pattern. They chose the sure-bet
option more often on more difficult trials, where motion strength
was low or motion duration was short (Fig. 1c). Further, when
they ignored the sure-bet option and chose the high-stakes
direction targets, their accuracy was higher compared to the trials
with similar difficulty without the sure-bet option when they had
to choose one of the direction targets (trials without sure-bet
target; Fig. 1b). These results indicate the presence of a mechanism
for assessment of expected decision outcome (confidence), and
reliance on this mechanism for guiding the opt-out behavior.

Modeling perceptual decision making with a POMDP. In
perceptual decision-making tasks, an ideal observer would infer
hidden states of the environment based on a sequence of sensory
observations to gain the maximum possible reward utility. This
problem can be solved using the general framework of POMDPs,
which combines Bayesian inference of hidden states with expec-
ted reward maximization23–25,38–40. Formally, a POMDP is a
tuple (S, A, Z, T, O, R) where S and Z are two sets containing the
states of the environment and observations, respectively. A is the
set of possible actions. T is a transition function that represents
the probability of entering a state s from a state s0 after per-
forming an action a: Tðs; s0; aÞ ¼ Pðsjs0; aÞ. Note that the envir-
onment is assumed to be Markovian, meaning that the next state
depends only on the current state and current action. O is the
observation function, determining the probability of making an
observation z given a state s, i.e., O(s,z)= P(z∣s). The current state
of the environment is not known to the decision maker and needs
to be inferred based on the history of observations and actions. A
POMDP starts with a prior probability distribution over states of
the environment, known as the initial belief b0, and infers the
posterior probability distribution (belief bt) of states after each

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25419-4

2 NATURE COMMUNICATIONS |         (2021) 12:5704 | https://doi.org/10.1038/s41467-021-25419-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


action and observation:

btðsÞ / PðztjsÞ ∑
s02S

Pðsjs0; at�1Þbt�1ðs0Þ ð1Þ
Finally, R is the reward utility function: R(st, at). We emphasize

reward utility instead of reward size, as the model optimizes the
benefit of reward (utility) and the utility of reward does not grow
linearly with reward size for a wide range of tasks and behaviors.
A policy π is a mapping from belief states (probability
distributions over states) to actions. The optimal policy π* is a

policy that maximizes the total expected reward utility. In a task
where the maximum number of steps is H, the optimal policy is
given by:

π� ¼ arg max
π

∑
H

t¼0
E½Rðst ; atÞjb0; π�: ð2Þ

We next define within the POMDP framework the concepts of
accuracy and confidence as used in the perceptual decision
making literature18. Similar to how accuracy is calculated for

Fig. 1 Motion direction discrimination with post-decision wagering. a Task design. On each trial, monkeys viewed a patch of randomly moving dots and
made a decision about the net direction of motion. Stimulus strength and duration varied randomly from trial to trial. On half of the trials, only the right and
left direction targets were shown (large red dots). The motion stimulus was followed by a delay period. The central fixation point (small red dot)
disappeared at the end of the delay (Go cue), instructing the monkey to report perceived motion direction with a saccadic eye movement to one of the two
direction targets. Choosing the correct target yielded a large reward, whereas choosing the incorrect target resulted in a short timeout. On the other half of
the trials, a third target (sure target, shown as a blue dot) appeared on the screen during the delay period. Choosing this target after the Go cue yielded a
guaranteed but smaller reward than choosing the correct direction target. b Accuracy as a function of motion strength and duration for the two monkeys
(M1 and M2). For the motion strength plots, trials are pooled across all durations. For the motion duration plots, trials are pooled across all strengths. Solid
lines show the accuracy on trials where the sure target was not presented (M1 motion strength plot: n= 6174 ± 112 per data point; M1 motion duration plot:
n= 3720 per data point; M2 motion strength plot: n= 5035 ± 56 per data point; M2 motion duration plot: n= 2530 per data point). Dashed lines show the
accuracy on trials where the sure target was shown but the monkey chose one of the high-stakes direction targets (M1 motion strength plot:
n= 4148 ± 1314 per data point; M1 motion duration plot: n= 2261 per data point; M2 motion strength plot: n= 3376 ± 917 per data point; M2 motion
duration plot: n= 1557 per data point). c Probability of choosing the sure target for different motion strengths and durations for monkeys M1 and M2 (M1
motion strength plot: n= 6195 ± 113 per data point; M1 motion duration plot: n= 4315 per data point; M2 motion strength plot: n= 5081 ± 79 per data
point; M2 motion duration plot: n= 3031 per data point). Error bars indicate standard error of the mean (s.e.m.).
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experimental data, choice accuracy for the POMDP model can be
defined as the fraction of trials in which the choice leads to
reward. Additionally, following previous definitions of confidence
as the expected likelihood of success in symmetric two-alternative
choice tasks where only one action leads to a reward2,6,12,18,40–42,
we define confidence as the expectation of the model that its
selected action at maximizes utility, i.e.:

Confidence ¼ P at ¼ arg max
a

Rðst ; aÞjbt ; π
� �

: ð3Þ

To be consistent with other studies, we limit the use of
confidence to actions that terminate the process of decision
making (e.g., the two direction choices in the motion direction
discrimination task).

POMDP model of the direction discrimination task. The
motion direction discrimination task has previously been mod-
eled using the POMDP framework24,26,40,43. However, in these
models, the subject’s confidence was either not modeled24,26 or
was obtained assuming the subject had an exact generative model
of the task40,43. Such knowledge, however, is unlikely in most
natural contexts and common task designs. For example, in the
direction discrimination task, subjects face a mixture of stimulus
difficulties across trials. They neither know the exact generative
function for the stimulus on each trial nor the exact set of motion
strengths used in the experiment. To model this situation, we use
the framework depicted in Fig. 2a consisting of two models: the
real model of the environment and the learned model used by the
decision maker (their internal model).

Following previous models24,43, we define the hidden state of
the environment for our POMDP to include both the unknown
direction and unknown coherence, combined into a single real-
value which we call "signed motion coherence" c: positive values
of the signed motion coherence indicate rightward motion and
negative values indicate leftward motion44. Specifically, the
momentary observations zt at times t for a trial with signed
coherence c are modeled as samples independently drawn from a
Gaussian distribution, N ðc;wzÞ, with mean μ= c and variance w2

z
(Fig. 2b).

The two main actions of our POMDP model are committing to
direction right or direction left. Also, action "observe” makes the
next observation available to update the model’s belief about c.
Finally, the action of choosing the sure-bet option is available
during the delay period on half of the trials. The decision maker
gets rright as the reward utility for committing to direction right if
and only if the direction of the hidden state is right (c > 0). rleft is
the reward utility given to the decision maker by committing to
direction left if and only if the direction of the hidden state is left
(c < 0). Choosing the sure-bet option, if available, always yields
reward utility of rsure.

The POMDP model begins each trial with a prior belief about
the signed coherence of the trial. Subjects are not explicitly
informed about the exact set of discrete motion coherence levels
used in the experiment. They only experience largely overlapping
distributions of motion energies on different trials45. Therefore, it
is most realistic to consider that the model’s prior spans a
continuous domain, obtained from observations across all trials
with various coherence levels and durations. Because the
logarithmic spacing of the discrete motion coherences used in
the experiments (0, 1.6, 3.2, 6.4, 12.8, 25.6, 51.2%) causes the mass
of the prior distribution to be largely concentrated in its central
peak around 0, our POMDP model uses a Gaussian approxima-
tion to this prior distribution, N ð0; σ0Þ (Fig. 2c).

Starting with a Gaussian prior (initial belief) b0 ¼ N ðμ0 ¼ 0; σ0Þ,
the model iteratively updates its belief about the hidden state of the

environment, i.e., the signed motion coherence c, following each
observation, zt, drawn from the distribution N ðc;wzÞ at time step t
(Fig. 2d). To be able to update the belief, knowledge of the true
observation variance, w2

z , is required. However, w
2
z is unknown to the

model. Therefore, we use σ2z to denote the model’s learned
observation variance. This means that the model assumes zt is
drawn from the Gaussian likelihood function PðztjcÞ ¼ N ðzt ; c; σzÞ.
A Gaussian prior and a Gaussian likelihood function together result
in a Gaussian posterior43,46 (Fig. 2d) for c given by:

bt ¼ Pðcjz1; ¼ ; ztÞ ¼ N ðμt; σ tÞ

μt ¼
σ2t�1zt þ σ2zμt�1

σ2t�1 þ σ2z
¼ σ�2

z

tσ�2
z þ σ�2

0
∑
t

j¼1
zj σ2t ¼

σ2t�1σ
2
z

σ2t�1 þ σ2z
¼ 1

tσ�2
z þ σ�2

0

ð4Þ
Since the reward only depends on choosing the correct motion

direction, the POMDP model’s choice depends on μt, and
consequently ∑t

j¼1 zj, being larger than zero for choosing the
rightward direction and less than zero for choosing the leftward
direction. A random choice is made in the unlikely event that μt is
exactly equal to 0. Moreover, according to equation (3), the
model’s confidence is the posterior probability of the chosen
direction, which is the sum of the posterior probabilities over all
motion coherences in that direction, i.e., Φ(μt/σt) when μt ≥ 0 and
Φ(−μt/σt) when μt < 0, where Φ(x) denotes the standard normal
cumulative distribution function43,47.

The POMDP approach can easily model termination of the
decision-making process and commitment to a choice by
assigning a cost (negative utility) to observation gathering and
belief update (via the action “observe”)24. Moreover, because the
hidden state does not change with actions within a trial in the
motion discrimination task, a one-step look-ahead search38 is
adequate to determine the optimal decision policy for non-
decreasing observation costs over time (instead of computing the
total expected reward utility to the end of the trial; see the proof
in Methods). The model halts new observations when the
expected increase in confidence is less than the ratio of the cost of
an observation and the reward utility for correct choice. The
expected increase in confidence after one more observation
depends on the current belief and the probability distribution of
the next observation according to the model. Specifically, when
the current belief is N ðμt ; σtÞ, the model assumes that the next
observation is a sample from N ðμt ; σzÞ, where σ2z is the learned
observation variance. Fig. 3a shows the expected increase in
confidence for a new observation as a function of two key
variables: the inferred μt and the elapsed time. The expected
increase in confidence from new observations is higher earlier in
the trial and for smaller inferred mean coherence, μt.

A constant observation cost over time, if present, would give
rise to a stopping criterion that matches an iso-gain contour.
These contours would effectively implement a time-varying
bound on μt for each motion direction (an upper bound and a
lower bound). Fig. 3b shows these collapsing bounds for a cost of
10−3 per observation (in our case, per 10 ms) when the reward
utility for a correct direction choice is set to 1. A policy for
termination of observations is especially critical in reaction-time
(RT) tasks where subjects have to decide when to initiate a
response. However, a termination policy could exist even in tasks
where stimulus duration is controlled by the experimenter,
causing early termination of the subject’s decision-making
process before stimulus offset, especially in long and easy
trials45,48.

The reward utility maximization principle also determines the
choice when the sure-bet option is available. As the reward for
the sure-bet option is guaranteed, the POMDP model compares
the expected reward utility for choosing each direction with the
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Fig. 2 The POMDP model of the direction discrimination task. a Our modeling framework depicting the real world generative model and the decision
maker’s model. In each trial, the state (here signed coherence c) is generated from a prior (here a discrete set selected by the experimenter). Given a value
for c for a trial, all of the observations zi in that trial are independent samples generated from an observation function (N ðμ ¼ c;wzÞ). While the decision
maker has full access to the observations, the prior distribution and the observation function are not known. Our POMDP model estimates these two
distributions as N ðμ0 ¼ 0; σ0Þ and N ðcz; σzÞ where σ0 and σz are learned from data (see text), and cz is the coherence which is estimated by the subject
using the belief N ðμt; σtÞ as described in the text. b Probability distribution of momentary observations for a motion coherence c is modeled as a Gaussian
distribution with mean μ= c and variance w2

z . There are multiple Gaussian distributions for different motion coherences. Positive and negative observations
indicate rightward and leftward motion directions, respectively. c The distribution of inferred coherence across all trials provides the initial belief state of
the POMDP model (blue histogram) at the beginning of each trial. The initial belief is approximated by a Gaussian function (red curve). d The POMDP
model sequentially updates its belief about the motion coherence based on new observations. Combining the belief at time t− 1 (green distribution) with
the acquired observation from the stimulus at time t (blue distribution) results in a new belief at t (red distribution). The expected likelihood that the
rightward choice is correct is the area under the updated belief distribution for positive sensory evidence (yellow region).

Fig. 3 Computation of choice and confidence in the POMDP model of the direction discrimination task. a The expected confidence gain for a new
observation as a function of inferred mean coherence, μt, and elapsed time, t. b An example POMDP decision policy when new observations are associated
with a constant cost. The yellow area represents the belief states where the optimal action is to continue observing. The purple area represents the belief
states where the POMDP model terminates and commits to a choice. c Confidence as a function of inferred mean coherence, μt, and time, t. d The ratio of
reward utilities for sure-bet and correct direction choices determines the POMDP policy for choosing the sure-bet option. The policy for sure-bet can be
illustrated as phase boundaries in the confidence plot of c. The blue region denotes combinations of inferred coherence and time for which the model would
choose the sure-bet target. The red region denotes (μt, t) for which direction targets are chosen. Thresholds for separating low and high confidence ratings
are thus the boundaries between blue (low confidence) and red (high confidence) regions. Solid white lines show the two decision termination bounds
where the model stops gathering more observations and commits to a decision. In these simulations σz= 2.0, σ0= 1.0, and the utility ratio= 0.63.
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reward utility for the sure-bet option in order to pick the final
action:

at ¼
left bt;left � rleft > bt;right � rright and bt;left � rleft > rsure
right bt;right � rright > bt;left � rleft and bt;right � rright > rsure
sure rsure ≥ bt;right � rright and rsure ≥ bt;left � rleft

8><
>:

ð5Þ
Because rright= rleft= rdirection in our task, the above policy

reduces to a comparison of the model’s confidence with the
reward utility ratio rsure/rdirection between the sure-bet and correct
direction choices. Since confidence increases with the absolute
value of inferred coherence, ∣μt∣, this reward utility ratio leads to a
time-varying boundary that determines the POMDP policy as a
function of inferred coherence and time in each direction (upper
and lower bounds). Figure 3c shows confidence as a function of
inferred coherence and elapsed time for an example POMDP
model and Fig. 3d shows the model policy for an example reward
utility ratio of 0.63.

With a constant observation cost, the model has up to four
degrees of freedom: (i) observation cost; (ii) the true observation
variance (w2

z), which shapes input samples available to the model;
(iii) the learned observation variance (σ2z), which the model
attributes to its inputs; and (iv) the learned variance of the prior
distribution (σ20). For an optimized POMDP model, however, σ20
and σ2z are uniquely determined by w2

z and observation cost. As
mentioned before, σ20 determines the prior belief, which should be
consistent with the overall distribution of states and consequently,
perceived observations. Moreover, σ2z should match the model’s
posterior belief with its average accuracy for each motion
duration. This is possible based on the feedback given about
motion direction choices (correct or wrong) after each trial (see
the next section for details on estimating these parameters). Such
a model, therefore, has two degrees of freedom: observation cost
and w2

z .
Note that correct posterior belief (matched with accuracy on

average) is not necessary for maximizing the reward utility in
choosing between the two directions because determining the
sign of the sum of observations is sufficient. However, it is
necessary for the wagering task where the expected reward utility
of choices needs to be computed (Eq. (5)).

Comparison of model predictions with experimental data. In
our task, the stimulus viewing duration was controlled by the
experimenter and subjects were required to maintain fixation
throughout the duration. As a result, the cost of acquiring new
observations while maintaining fixation on the stimulus could be
negligible. We verified this hypothesis by comparing the model
with two degrees of freedom (observation cost and wz) to a
POMDP that uses all observations in each trial with only wz as
the free parameter). They were not significantly different in
quality of fits even without penalizing the extra free parameter
(Vuong’s closeness test49, p= 0.16 for monkey M1 and p= 0.07
for monkey M2; see Methods).

We fit the model to each monkey’s accuracy on trials in which
the sure target was not shown (Fig. 4a) (R2= 0.95 and 0.88 for
monkeys 1 and 2, respectively) and obtained the observation
variance w2

z . Specifically, when there is no observation cost, the
average belief about the direction right is Φð ffiffi

t
p

c=wzÞ for trials
with duration t and signed coherence c. Therefore, as we did not
have access to observations in each trial, we modeled the
probability of choosing the direction right with a Bernoulli
distribution whose mean is Φð ffiffi

t
p

c=wzÞ (when c is negative, the
probability of choosing the direction right becomes less than 0.5).

Each monkey’s data were fit separately. For monkey M1, wz

was 0.90 while for monkey M2, it was 1.69. Based on these wz

values, we estimated the prior belief b0 ¼ N μ0; σ0
� �

as follows:
for any trial with true coherence c and duration t, we generated a
sample from N c;wz=

ffiffi
t

p� �
; the samples generated from all the

trials were used to fit the Gaussian N μ0; σ0
� �

via maximum
likelihood estimation (MLE)46.

To calculate σz, we fit the POMDP model’s confidence Φ(∣μt∣/
σt) to the accuracy in all trials that the sure-bet option was not
offered, using wz and σ0 estimated as above. In each trial, we
calculated∑t

i¼1 zi, the sum of the observations generated from the
actual coherence and the stimulus duration used in that trial.
Using the relationship between the sum of observations, μt and σt
in equation (4) we get Φðσ�2

z ∑t
i¼1 zi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tσ�2

z þ σ�2
0

p
Þ as the

subject’s belief about the direction right. We calculated a
maximum likelihood estimate of σz by fitting this belief to the
accuracy in all trials where the sure-bet option was not offered.
For the fitting, the direction right choice was modeled as a
Bernoulli distribution whose mean is
Φðσ�2

z ∑t
i¼1 zi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tσ�2

z þ σ�2
0

p
Þ, where the zi were sampled based

on the true coherence and duration used in the trials.
One can also try to make the fit more accurate by estimating σz

and σ0 iteratively. We can start with the values of σ0 and σz
obtained as described above, and then readjust σ0 based on this
estimated σz. The readjusted σ0 can be used to fit σz again. With
every such iteration, we found that the change in σ0 decreased.
We repeated this process until the change in σ0 became less than
our precision error. This process converged in less than 5
iterations for both monkeys. However, the readjusted σ0 values
did not significantly improve the goodness of fit of the belief to
the monkey’s choice. Nonetheless, we used these more accurate
values in our models: σ0 was 0.46 and 0.87, and σz was 1.60 and
3.59 for monkey M1 and M2, respectively.

Finally, an important point about our model fitting process is
that although the POMDP policy is deterministic, the stochas-
ticity needed to fit the trial-by-trial choice data comes from the
distribution of observations given the true stimulus.

Having estimated the model parameters based on trials without
the sure-bet target, we predicted the monkey’s confidence for
each motion coherence and duration (Fig. 4b). These predictions
suggested a monotonic increase in confidence with motion
coherence and duration, compatible with previous
studies2,4,16,50,51.

Since the model chooses the sure-bet option when confidence
(belief) is less than the reward utility ratio of the sure-bet and
correct direction choice (Eq. (5)), it predicts lower probability of
choosing the sure-bet target on trials with stronger motion and
longer durations. Since we do not know the exact utility of reward
volumes associated with the sure-bet and correct direction
choices, we added a new free parameter to the model that
represented the reward utility ratio and used this parameter as a
threshold that the confidence was compared to on trials in which
the sure-bet target was presented. Optimizing this parameter
(0.63 for monkey and 0.59 for monkey 2) in order to match the
predicted confidence of the POMDP model with the monkey’s
behavior provided a fit with R2= 0.90 and 0.82 for monkey M1
and monkey M2, respectively (Fig. 4c).

Since the model parameters are fully specified based on the
monkey’s accuracy on trials without the sure-bet target and the
probability of choosing the sure-bet target when it was presented,
we could provide quantitative predictions for the monkey’s
direction choice accuracy when the sure-bet target was presented
but not chosen. Figure 4d shows these predictions (gray dashed
lines), demonstrating that they closely match experimentally
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measured accuracy on trials where the monkey ignored the sure-
bet option (R2= 0.90 and 0.81 for monkey M1 and monkey M2,
respectively). Trials with 0% coherence were removed from this
accuracy analysis because a correct direction choice is undefined
on those trials and the monkey was rewarded randomly.

As stated above, we used data from all the trials to fit our
parameters (batch training of parameters). In reality, one expects
the brain to estimate σz based on the history of correct and
incorrect responses, with σz getting updated after each trial. We
found that a trial-by-trial update method for estimating

Fig. 4 The POMDP model captures the monkeys’ behavior. a The model was fit to each monkey’s accuracy on trials without the sure-bet option. Solid
lines are model fits and data points are the measured accuracy for each motion strength and duration for monkeys M1 and M2. b The model parameters
obtained from the fits in (a) were used to predict confidence for each motion strength and duration for each monkey. c Predictions of the POMDP model
about confidence were thresholded to fit the likelihood of choosing the sure-bet option (see Methods). d With the model parameters fully constrained by
accuracy on trials without the sure-bet target and the likelihood of choosing the sure-bet target when it was presented to the monkey, we predicted the
monkey’s accuracy on trials in which the sure-bet target was shown but ignored. Lines are model predictions. Data points are the same as in Fig. 1b, c. Error
bars indicate s.e.m.
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parameters based on the existing data led to results very similar to
the results based on the batch approach (see supplementary
materials for more details).

Because our POMDP model enables us to predict confidence
from accuracy, we explored if it could also explain five well-
documented discrepancies between accuracy and confidence.
Based on the model’s success, we suggest that these discrepancies
are neither anomalies of the decision-making process nor do they
necessarily indicate a divergence of the neural mechanisms that
compute choice and confidence. Rather, these phenomena are
expected signatures of a decision-making process that infers the
choice and its associated confidence in a unified framework.

Hard-easy effect. The hard-easy effect, which has been docu-
mented extensively19,27, is the tendency to overestimate the
likelihood of one’s success for difficult decisions and under-
estimate it for easy decisions. In the face of uncertainty about the
stimulus in a given trial, the model computes confidence across
all possible stimuli (marginalization). However, when the
experimenter measures accuracy for each stimulus strength, this
marginalization does not occur as the experimenter knows the
exact stimulus on each trial52. The model’s uncertainty about the
stimulus, therefore, causes overconfidence in difficult trials and
underconfidence in easy ones.

As shown in Fig. 5a, the POMDP model predicts this hard-easy
effect after marginalization over coherence. Since the model’s
Gaussian observation distribution closely approximates the true
observation distribution (especially for the low coherence levels,
Fig. 2b), it approximates well the confidence of the true generative
model, as shown in Fig. 5b. However, the model does exhibit a
small underconfidence bias since it considers the full range of
continuous coherence levels. As expected, this bias is larger in the
region where the coherence levels are further apart (and
consequently the observations overlap less), which in our task
are the easier trials (higher coherences; see monkey M1’s plot),
and for experiments with Monkey M2 where the task did not use
the 1.6% coherence level. Overall, these results illustrate how
differences between the real world model and the decision
maker’s internal model (in our case, discrete versus continuous
distribution for coherence; Fig. 2a) could create a bias in
confidence for an optimal decision maker.

Opposing effects of the variability of observations on choice
and confidence. A common observation in past studies has been
that increasing the variability of the stimulus reduces subjects’
accuracy but increases their confidence about their choices16,28,53.
Our POMDP model shows that this seemingly paradoxical effect
of stimulus variability arises naturally in an optimal inference

Fig. 5 POMDP model explains the hard-easy effect and the opposing effect of a sudden change in stimulus variability on accuracy and confidence.
a The hard-easy effect. Uncertainty about the strength of observed evidence makes the model more confident than warranted by accuracy on hard trials
and less confident than warranted by accuracy on easy trials (compare blue and red curves). The psychometric and predicted confidence functions for
subjects M1 and M2 are adopted from Fig. 4a, b. Error bars indicate standard error of the mean (s.e.m.). Data points are the same as in the motion strength
plots in Fig. 1b. bWhile the major reason for the hard-easy effect is marginalization over coherence by the decision maker, our POMDP model also predicts
a small underconfidence bias (red curve) compared to using a generative model (black curve) that assumes the exact set of coherence levels in the
experiment is given. c–e Sudden increase in stimulus variability following training with lower stimulus variability reduces accuracy (c) but boosts
confidence (d) and decreases the probability of sure-bet selection (e), or equivalently, increases the probability of sure-bet rejection. This dissociation
occurs because the model relies on the observation noise learned during the lower-variability training period to render choices on the subsequent higher
variability trials. f The increase in the probability of sure-bet rejection after a sudden increase in stimulus variability is illustrated here for two trials with the
same coherence and duration but different stimulus variability. Distributions of the sum of observations for low (black Gaussian curve) and high variability
(gray Gaussian curve) intersect at two points (red dotted lines). A high sure-bet rejection threshold on confidence (e.g., 85% in this example) learned
during training with low variability stimuli maps to two thresholds (dotted black lines) on the sum of observations that fall outside of the intersection
points. Given these fixed thresholds, the probability of sure-bet rejection is higher (larger blue filled areas under the curve) when stimulus variability is
suddenly increased. This explanation is consistent with ideas presented in previous work16,28,53.
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framework when the subject does not have access to the true
model of the environment (in this case, the true observation
noise).

Stimulus variability effects have been explored in tasks where
subjects were trained using a baseline (lower) stimulus variability,
before being tested on higher variability. Further, trials with
different levels of stimulus variability were randomly intermixed.
Consequently, our model postulates that subjects continued to
rely on the observation noise learned during initial training, and
used this model for choice and confidence in the high variability
trials. Higher variability (larger w2

z) decreases accuracy (Fig. 5c,
left plot) by generating more overlapping observations for
different motion directions.

Higher variability also generates extreme observations (far
from the mean) more often, including ones in favor of the
incorrect choice (e.g., negative coherence observations when the
true coherence is positive). These extreme observations, although
frequent in the high variability regime, are not expected based on
the observation noise learned during training in a low variability
regime. As a result, the POMDP model considers these extreme
observations highly discriminative, resulting in a higher con-
fidence with a concomitant decrease in the probability of
choosing the sure-bet option when presented16, especially in
high and medium difficulty level trials (Fig. 5d, e).

To further understand this phenomenon, we adopted the
intuitions and ideas suggested in previous work16,28,53. We explored
the change in probability of rejecting the sure-bet option (indicating
high confidence) in trials with a low coherence level c for a specific
stimulus duration t and no observation cost. Suppose the true
coherence is positive (the case where the coherence is negative is
similar). The sum of observations comes from a Gaussian
distribution with mean tc and variance tw2

z . Choosing or rejecting
the sure-bet option can be mapped to two thresholds on the sum of
observations, one for each direction. This mapping depends on σ0
and σz, and consequently wz (indirectly).

Figure 5f shows the distribution of the sum of observations for
two example stimuli with the same positive coherence level
(+6.4%, green dotted line) and duration (250 ms) but different
variability, with low variability shown as the black Gaussian curve
and high variability as the gray Gaussian curve. The plot also
shows the sure-bet selection/rejection thresholds (black dotted
lines) learned during training with the low variability curve for
this example with +6.4% coherence. The low and high variability
curves intersect each other at two points (red dotted lines). Note
that the sure-bet selection/rejection thresholds (black dotted lines,
fixed after training) are lesser than or greater than the intersection
points (red dotted lines), implying that these learned thresholds
are in the area where probability density for the higher variability
stimulus (gray curve) is higher. This means that the area under
the curve beyond these thresholds (blue filled areas), equal to the
probability of sure-bet rejection (indicating high confidence), is
larger for the high variability stimulus than the low variability
stimulus (narrower dark curve) used during training. These
results illustrate how higher confidence can be generated when
the stimulus becomes more noisy.

Discrepancy of sensitivity for accuracy (d0) and confidence
(meta-d0). The POMDP model also explains experimentally
observed differences between the sensitivity of accuracy and
confidence to observations, commonly quantified with d0 and
meta-d0, respectively30. d0 and meta-d0 are defined based on a
signal detection theory (SDT) framework. d0 quantifies the dif-
ference of sensory evidence distributions underlying the prob-
ability of correct and incorrect choices while meta-d0 is related to
the distribution of confidence ratings for those choices. For a

binary confidence rating (low or high confidence, similar to
rejecting or choosing the sure-bet option), meta-d0 contrasts the
probability of a high confidence rating for a correct response with
that of an error. Some studies have reported that confidence
ratings are not consistent with the sensitivity of the choice
accuracy (d0)30,54–56. However, for an SDT ideal observer meta-d0

and d0 have to be similar in the absence of variability in the
confidence rating threshold (Fig. 6a). Therefore, it has been
suggested that the different meta-d0 and d0 in experimental data
must be due to loss of information for confidence judgments or
different neural mechanisms for confidence and choice30,31.

In the absence of an observation cost, where the POMDP
model uses all available evidence, its d0 and meta-d0 match each
other, similar to SDT. That would be true regardless of whether
the decision maker does or does not have access to the exact
model of the environment. However, if there is an early
termination of information gathering, then meta-d0 could diverge
from d0. This discrepancy emerges in the model not because of
distinct mechanisms for choice and confidence, but because early
terminations of the decision-making process have quantitatively
distinct effects on the choice accuracy and the likelihood of high
confidence ratings for correct and incorrect choices. Because early
terminations curtail the use of evidence, they reduce accuracy
and, therefore, decrease d0. Further, in the face of uncertainty
about the reliability of evidence, early terminations are associated
with higher confidence (Figs. 3c and 6b). This combination
means that for a wide range of model parameter values, the model
makes more errors but it is also more confident about its choices
compared to a model without an observation cost. Critically, the
confidence is inflated more on error than correct trials (Fig. 6d,
reducing meta-d0. This reduction could be substantially larger
than the reduction of d0. Consequently, the model could generate
meta-d0 values smaller than its d0, even though it computes the
choice and confidence through the same optimal process.

Figure 6 illustrates these effects by simulating intermediate
coherence (+12.8%) trials with 400 ms duration and subjecting
the model choices and confidence to the d0 and meta-d0

calculations. Model parameters are inherited from Monkey M1
except for the addition of an observation cost (10−4/observation).
Early in the trial, observation noise can temporarily produce large
positive or negative inferred μt, and thus high confidence (Fig. 6b,
yellow lines illustrate mean ± 2 × s. d. of the inferred μt). Such
large μt are much less likely at later times because of the
correction of excessive early confidence with additional observa-
tions. These later corrections, however, are prevented if the
termination bounds (Fig. 6b, white lines) are reached earlier. Such
occasional early terminations reduce the model accuracy by only
2% for this motion coherence (from 81% with no observation cost
to 79%), but increase the overall probability of high confidence
choices by 19% (from 65 to 84%) (Fig. 6c). The corrective effect of
additional observations on confidence is more pronounced when
the initial choice is incorrect as new observations are more likely
to cancel the extreme noise that lead to early error choices.
Consequently, early terminations increase the fraction of high
confidence responses for incorrect choices by 39% (from 31 to
70%), whereas the increase for correct choices is 15% (from 72 to
87%) (Fig. 6d). This reduces the contrast of confidence for correct
and error choices, resulting in a reduction of meta-d0. This
reduction is larger than the very modest reduction of d0, bringing
the ratio of meta-d0 to d0 to 0.74, significantly below 1 (Fig. 6e).

The reduction of meta-d0 could happen even when the overall
confidence rating does not increase in the model, as meta-d0

depends on the contrast of confidence for correct and error choices,
which could be differentially affected by early terminations with or
without an overall confidence increase. Generally, meta-d0 to d0
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ratios below 1 are common for a wide range of POMDP model
parameters matching a common result in past behavioral studies31.
Further, the model predicts a mismatch between meta-d0 and d0 in
reaction-time tasks, where the decision maker initiates a response as
soon as reaching a decision. Overall, distinct d0 and meta-d0 values
can arise in the POMDP framework not because different
information shapes choice and confidence, but rather when the
decision-making process can stop due to a termination criterion
without utilizing all the available information. This important
alternative explanation has been largely neglected in past explana-
tions of mismatched meta-d0 and d0.

Sensitivity of confidence measurements to simultaneous versus
sequential reports of choice and confidence. The POMDP
model can also be applied to reaction-time tasks (besides fixed-
duration tasks), where subjects report their choice as soon as they
are ready. In these tasks, the experimenter may ask for either a

simultaneous or sequential report of choice and
confidence12,27,29. Past experiments have shown that for simul-
taneous reports of choice and confidence, confidence for incorrect
choices often increases with stimulus strength, compatible with
the predictions of bounded accumulation models such as the
DDM12,29. However, for sequential reports, confidence for
incorrect choices decreases with stimulus strength, compatible
with the predictions of signal detection theory11,27,29.

The POMDP model predicts both patterns (Fig. 6f, g). Consider
first the case of simultaneous report of confidence and choice. As
previously shown in Fig. 3c, a decision to stop gathering more
observations after a short period of time is associated with higher
confidence. Fig. 6b shows an example where observation noise may
cause the decision bound to be reached early in the trial leading to a
confident but incorrect decision (a large negative inferred mean
coherence when the true coherence is positive). When coherence is
high, incorrect decisions after many observations are unlikely.
However, as in our example, early extreme observations may cause

Fig. 6 POMDP model explains different values for d0 and meta-d0, and different patterns of confidence in reaction-time experiments. a A signal
detection theory framework predicts identical d0 and meta-d0 when the same observations inform both choice and confidence rating. The competing stimuli
(e.g., right and leftward motion of a particular coherence) give rise to two observation distributions. The c1 criterion is used for choosing right and left, and
the c2 criteria are used to report low or high confidence for each choice. d0 quantifies type 1 sensitivity: the distance between the distributions in units of
standard deviation. Meta-d0 quantifies type 2 sensitivity: the separation of the two distributions compatible with hit rate and false alarm rate of confidence
reports: p (high conf∣correct) and p high confjincorrectð Þ, respectively. In SDT, d0 and c1 fully constrain meta-d0 and an optimal meta-cognitive observer
must have equal d0 and meta-d030. b Observation noise could cause highly variable μt at the beginning of a trial, and thus temporarily produce excessive
confidence. This excessive confidence may become permanent if the decision-making process is stopped by reaching the termination bounds. Solid white
lines show the two decision termination bounds (observation cost, 10−4). Thresholds for separating low and high confidence ratings are shown as
boundaries between blue (low confidence) and red (high confidence) regions. The horizontal dashed line shows the boundary that separates right and left
direction choices based on the sign of the inferred coherence. Yellow dots and lines show mean ± 2 × s. d. (95% of the distribution mass) of the inferred
coherence for a particular stimulus strength (c=+12.8%) at a few different time steps (10 ms per step). Temporary excessive confidence due to early
termination is more prominent for the incorrect trials (negative μt in this simulation). c Early termination can cause a modest reduction of accuracy and a
marked increase of high-confidence ratings. d Early termination can cause a larger increase in the probability of high confidence ratings for incorrect than
correct choices. e Changes in accuracy (c) and confidence ratings (d) can lead to a larger drop in meta-d0 than d0. Model parameters are identical to those
for monkey M1, except for the observation cost. f For experiments with simultaneous reports of choice and confidence, our model predicts higher
confidence for incorrect choices on trials with stronger stimuli (red dashed line). This pattern is partly caused by lower decision times for stronger stimuli
and the dependence of model confidence on elapsed time (Fig. 3c). g In contrast, for sequential reports of choice and confidence, our model predicts
reduced confidence for incorrect choices for stronger stimuli (red dashed line). This is due to sensory and motor delays that render the last observations
inconsequential for the choice but the model uses those observations to refine its confidence report following the choice.
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early termination and incorrect confident choices in high coherence
trials. As a result, incorrect high coherence trials will have much
shorter duration and therefore higher confidence compared to low
coherence trials (Fig. 6f).

To explain the confidence pattern in sequential report of
confidence and choice, consider the difference between fixed-
duration and reaction-time tasks. In a fixed-duration task, the
subject may commit to a choice early in the trial if the cost of
gathering observations is higher than the increase in the expected
utility from gathering more observations. However, the trial does
not terminate with early commitment to a decision and the
subject has to wait till the end of the trial to obtain the reward. In
a reaction-time task, however, the subject controls the length of
the trial and has a greater incentive to commit to a choice early to
get the reward (assuming the choice is correct)57, in addition to
minimizing the overall cost of gathering observations. Further-
more, making faster decisions means more quickly moving to the
next trial (assuming a time penalty for an incorrect choice did not
occur) with the potential for more reward.

On the other hand, in a reaction-time task, even after selecting
the choice, observations may continue to be gathered if presented
by the experimenter. The sensory and motor delays in the neural
circuits underlying decisions usually amount to around 250ms or
more, leading to the availability of these extra observations to the
decision maker. These observations do not contribute to the choice
and they do not contribute to the confidence report when it is
simultaneous with the choice report. However, sequential report of
choice and confidence opens up the possibility of revising
confidence based on these last few post-choice sensory observations.

Confidence in incorrect trials is especially susceptible to such
revisions. In easy (i.e., high coherence) trials, when early extreme
observations may have led to an incorrect choice (e.g., Fig. 6b), the
post-choice observations are very likely to be in favor of the correct
choice, causing the subject to lower their confidence after making a
decision. In fact, since easy trials with incorrect choices are typically
very short, the post-choice observations might even lead to a change
of mind by the subject29,58, and consequently decreasing confidence
(lesser than 0.5 in some cases) as a function of increasing stimulus
strength (coherence) in incorrect trials (Fig. 6g).

Effects of choice-congruent and choice-incongruent evidence.
The last phenomenon we explore in this section is whether
confidence reports are more strongly influenced by evidence
congruent with the choice compared to incongruent evidence.
Previous studies have reported that whereas choice is shaped by
the balance of evidence for different options, confidence is more
strongly shaped by choice-congruent evidence15,20. These results
have been interpreted as support for processes that compute
confidence after the choice by readjusting the weight of evidence
based on the choice (a form of confirmation bias). Our POMDP
model demonstrates that this interpretation is not unique. Rather,
existing experimental results could be explained without assum-
ing distinct choice and confidence processes, or choice-dependent
re-weighting of evidence.

A key feature of analyzing data based on the POMDP
framework is to distinguish the observations used by the subject
and those analyzed by an experimenter who monitors the
subject’s behavior. Because the experimenter does not have access
to the subject’s observations as encoded in the nervous system,
analysis of data has to rely on the expected distribution of
evidence given stimulus properties (e.g., using filters on the
stimulus20) or recordings from the brain (e.g., electrocortico-
graphy or ECoG15). Such estimated observations could markedly
diverge from the actual observations used by the subject. A wide
variety of mechanisms could underlie such a divergence,

including decision bounds or other termination criteria unknown
to the experimenter, sampling rates that mismatch the stimulus
design, shifts in spatial or temporal attention during a trial, noise
in the representation of sensory information by neural responses,
or recording noise from the brain.

To clarify the significance of the divergence of observations
used by the decision maker and those the experimenter uses to
investigate behavior, consider the case where a decision maker
uses only a proportion of the observations analyzed by the
experimenter (n out of the total t samples, n < t). In this situation,
the t− n samples not used by the subject act as noise in the
analyses. Classification of choice based on stimulus fluctuations
reveals equal and opposing influence of stimuli supporting
different alternatives as both used and unused observations come
from the same distribution. However, conditional on the subject’s
choice, the proportion of choice-congruent observations is higher
in the portion of the stimulus used by the subject, compared to
the unused portion. This is simply because the sum of random
variables drawn independently from the same distribution being
positive is evidence in favor of each of these variables being
positive. If we reorder the observations in a way that z1,…,zn
become the ones used by the subject and zn+1,…,zt are the unused
ones (only to simplify the equations), we have:

∑
n

j¼1
zj > 0 ! 8 1≤ i≤ n& nþ 1≤ l ≤ t : Pðzi > 0Þ>Pðzl > 0Þ ð6Þ

And also:

∑
n

j¼1
zj > 0 ! 1

n
E ∑

n

j¼1
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>
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E ∑
t

j¼nþ1
zj
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ð7Þ

The inequalities of Eqs. (6) and (7) have a profound side effect
for quantification of the influence of individual observations on
confidence. If we divide observations based on whether they
support the choice, the ratio of total choice-congruent observa-
tions to total incongruent observations will be higher for the set of
observations used by the decision maker (the n samples) than
those used in the experimenter’s analyses (all t samples). As a
result, a classifier that uses all t observations to predict the
decision maker’s confidence has to give a larger weight to the
choice-congruent observations to compensate for the dilution of
congruent evidence caused by the unused stimulus samples.

To demonstrate this, we simulated a fixed-duration version of
the random dots task with binary confidence ratings (low vs.
high). For any stimulus strength and with n < t, a logistic classifier
fit to the proportion of high confidence ratings by the POMDP
model yielded larger weights for congruent than incongruent
observations (Fig. 7a). In contrast, a logistic classifier fit to right
and left choices based on stimulus fluctuations revealed equal and
opposing weights for positive and negative samples as both used
and unused observations come from the same distribution. As
expected from Eq. (7), the imbalance of the weights of the
confidence was more pronounced for smaller n. To further
demonstrate the inevitable imbalance of the weights, we
compared the prediction accuracy of the confidence classifier
with two-alternative classifiers: one forced to have balanced
weights for congruent and incongruent observations and a second
classifier that had access only to the congruent evidence (Fig. 7b).
Similar comparisons were used in past studies15. The confidence
classifier with balanced weights had a lower prediction accuracy,
especially for low n, where its accuracy was even lower than the
classifier that totally ignored incongruent observations.

With similar reasoning, choice-congruent observations gain a
higher weight in predicting confidence when the experimenter
uses a subset of the observations used by the subject
(Supplementary Fig. 2).
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Although the example above focuses on a particular source of
discrepancy between the observations used by the decision maker
and experimenter (different number of used samples), the
conclusion generalizes to other sources of discrepancy. Some of
these sources such as neural noise are almost always present and
quite difficult to correct the analyses for. Essentially, the
observations analyzed by the experimenter are almost always
noisy estimates of the observation used by the decision maker:
zexperimenter
j ¼ zsubjectj þ ζ , where ζ denotes noise with an often
unknown magnitude. The neural noise causes the same dilution
of choice-congruent evidence explained in the example above.
Consequently, the experimenter is bound to estimate a higher
weight for congruent samples in the analyses even when n= t
(Fig. 7c) and even though such weight imbalance may not exist
for the decision maker. Large enough noise can even make a
classifier that only uses choice-congruent observations better than
a balanced classifier (Fig. 7d).

Relationship between POMDP and drift diffusion models. A
simple mathematical model that has been extensively used to
provide quantitative fits to behavior and explain neural activity in
various brain regions is the drift diffusion model (DDM)32. DDM
assumes that each observation confers evidence in favor of one
choice and an equal amount of evidence against the other choice
(Fig. 8a). Integration of sensory evidence over time provides a
decision variable (DV) that tracks the total evidence in favor of
each choice. In most formulations of DDM, two bounds above
and below the initial value of the DV (+B and −B in Fig. 8a) act
as termination criteria for the decision. As soon as the DV
reaches one of these bounds, the decision-making process stops
and the choice associated with the bound is made. In cases where
the stimulus terminates before a bound is reached, the choice with
the most supporting evidence is selected45. For the direction
discrimination task, the decision variable, Vt, is updated with each
new sensory observation according to:

Vt ¼ Vt�1 þ zt ð8Þ
where Vt−1 is the DV at time t− 1 and zt represents the
momentary sensory observation drawn from a Gaussian dis-
tribution with mean c and variance w2

z . V0 is initialized to zero

when the prior probability and expected reward of the two
choices are equal. Therefore, prior to reaching a bound, Vt equals
the sum of observations ∑t

j¼1 zj at time t.
The DDM as described above has previously been linked to

probabilistic reasoning between two categories as in signal
detection theory1,59. These previous models explain choice
accuracy but the subject’s belief when there are multiple motion
coherence levels was not addressed. A later model by Drugo-
witsch et al.43 addressed this issue by adding Bayesian reasoning
on the drift rate of the DDM but the generative model was
assumed to be known and exact.

Our POMDP model allows for both a learned generative model
and a belief update rule that can be mapped to the DDM. Taking
the ratio of the two update rules in Eq. (4), we obtain:

μt
σ2t

¼ σ�2
z ∑

t

j¼1
zj ¼ σ�2

z Vt ð9Þ

where the second equality is based on the definition of the DV in
DDM (Eq. (8)). Thus, the Bayes update of the inferred coherence,
μt, can be achieved via addition in the DDM. This means that
there is a unique mapping from μt and σ2t of a POMDP model to
the Vt and t of the DDM.

This mapping holds in the presence of a bound in the
DDM6,60. Moreover, the termination criterion in the POMDP
model translates to a unique bound in the DDM. As shown in
Figs. 3b and 6b, the policy in the POMDP model can be expressed
as a bound in the space defined by inferred mean coherence, μt,
over time. This bound on μt has an equivalent bound on Vt in the
DDM. In general, if Θ0 tð Þ is the time-varying termination
criterion applied to μt in a POMDP model (as in Fig. 3b), the
equivalent bound, Θ tð Þ, on Vt in the DDM is given by:

Θ tð Þ ¼ Θ0 tð Þ
σ�2
z σ2t

¼ t þ σ2z
σ20

� �
Θ0 tð Þ ð10Þ

where the first equality derives from Eq. (9) and the second from
Eq. (4). Similarly, confidence ratings can be expressed as time-
varying boundaries in the DDM. Figure 8b shows the decision
bound and confidence rating boundaries based on the accumu-
lated evidence in the DDM derived to match the POMDP model
in Fig. 6b.

Fig. 7 POMDP model explains seemingly higher influence of choice-congruent evidence on confidence ratings. Discrepancy in the observations used by a
decision maker and those used by an experimenter studying the decision maker’s behavior could lead to biased interpretation of experimental results. a We
simulated a POMDP model that uses a fraction of observations available in a trial unbeknownst to the experimenter. The observations supporting opposing
choices equally inform the model’s behavior. However, an experimenter who uses a classifier to predict choices and confidence based on all observations in the
trial finds an apparently larger influence of choice-congruent observations on confidence. b Forcing the classifier to have balanced weights for all observations
causes lower prediction accuracy of confidence ratings, especially when the proportion of used evidence is low. In such cases, even a model that totally ignores
choice-incongruent observations performs better than the balanced model. However, the better performance of models with imbalanced weights does not
reflect the decision making process. It stems merely from the experimenter’s lack of knowledge about the observations used by the simulated model. c, d Same
as (a, b) but observations accessible to the experimenter are noisy estimates of observations available to the decision maker. Such noise reduces the prediction
accuracy of the experimenter’s classifier, but more importantly, it also causes imbalanced weights in the optimal classifier (c) and lower performance of the
balanced classifier (d). That is true even when both the decision maker and experimenter use all the available observations (see inset box in (c)). The noise in
these simulations comes from a zero-mean Gaussian distribution with a variance 25% larger than w2

z .
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Overall, both the inference process and the termination
criterion of the POMDP model can be implemented with a
DDM, suggesting that the neural circuitry for integration of
sensory evidence could effectively be implementing the POMDP
policy explained in this paper.

Discussion
We present a Bayesian framework based on POMDPs that
accounts for choice and confidence in perceptual decision-
making tasks. Our framework explains the effects of observation
cost and task structure on choice and confidence. It also eluci-
dates how the observation noise learned by a Bayesian decision
maker may systematically differ from the veridical observation
noise, and how this difference influences prior beliefs and con-
fidence. We use our framework to explain the emergence of
commonly observed discrepancies between confidence and choice
accuracy. Further, we show how our POMDP model can be
mapped to bounded evidence accumulation models4,32,61 and
potentially be implemented by the same cortical and sub-cortical
neural networks implicated in the decision-making process62,63.

We tested our model using the behavioral data of monkeys
performing a direction discrimination task with post-decision
wagering2. The monkeys’ choice accuracy provided quantitative
predictions about subjective confidence. These predictions fit the
monkey’s opt-out behavior in our task, indicating that the
monkey’s confidence matches the POMDP framework. Predic-
tion of confidence purely based on choice accuracy is a remark-
able feat for a computational framework, especially considering
systematic discrepancies between the two18.

Discrepancies between accuracy and confidence have been
commonly considered as evidence for suboptimal decision-
making or distinct processes that underlie choice and con-
fidence. Our POMDP framework challenges these interpretations
by showing that a normative Bayesian decision maker optimizing
a reward function elicits the same discrepancies between con-
fidence and accuracy as those identified in humans and experi-
mental animals. We explored five common discrepancies in this
paper. Two of them arise from the decision maker’s incomplete
knowledge of the environment. The first one is the hard-easy
effect, where decision makers are over-confident for difficult
choices and under-confident for easy choices6,27. This effect arises
from the model marginalizing over the unknown stimulus

strengths and the model’s approximation of a discrete set of sti-
mulus strengths by a Gaussian model. The second discrepancy is
the opposing effects of stimulus variability on choice and con-
fidence, where subjects become less accurate but paradoxically
over-confident about more variable stimuli16. This effect arises
from another form of incomplete knowledge about the environ-
ment: attribution of the observation noise learned in environ-
ments with low variability to newly experienced conditions with
higher variability.

The other three discrepancies between accuracy and confidence
are explained by our model as arising from the experimenter’s
incomplete knowledge of the subjects’ decision-making process.
The third discrepancy is the inequality of d0 and meta-d0, which
has attracted much attention lately as experimental support for
distinct processes underlying choice and confidence30. We show
that this difference could arise even when a unitary process
shapes both choice and confidence, as in our model. A cost-based
termination criterion for the decision-making process could affect
accuracy and confidence differently. Whereas the overall accuracy
decreases due to early termination, confidence can increase
especially for incorrect choices, causing unequal d0 and meta- d0.
It is therefore impossible to uniquely interpret meta-d0 in the
absence of accurate knowledge about the form of the termination
criterion. However, common task designs for measuring choice
and confidence often preclude such knowledge.

It is also important to mention that in the presence of obser-
vation cost, meta-d0 depends on the confidence rating threshold
in the POMDP model. This sensitivity questions one of the key
assumptions in the definition of meta-d0—independence of meta-
d0 from the confidence rating criterion—and cautions against
interpretations of meta-d0 results without knowing the variability
of confidence rating thresholds across subjects in an experiment.

The fourth discrepancy is based on the observation that con-
fidence reports differ in experiments that interrogate confidence
simultaneously with the choice12 or after the choice29. This dif-
ference arises in our model because sequential reports of choice
and confidence allow revising one based on information unused
for the other. For example, when confidence reports follow the
choice, sensory observations in the processing pipeline that were
unavailable at the time of the choice could change confidence29.

The fifth discrepancy that the model explains is the hypothesis
that confidence is more strongly influenced by choice-congruent
observations than choice-incongruent observations15,20.

Fig. 8 The POMDP policy can be implemented by a drift diffusion model (DDM) with collapsing bounds. a (Left panel) In the standard DDM, the
decision variable (DV) is the sum of observations over time. The process stops when the DV reaches one of the static decision bounds (+B or −B). (Right
panel) Graphical model for a POMDP. For each time step (indicated by the subscripts 0, 1, ..., t− 1, t), r is the reward gained due to action a in hidden state
s. z is the observation in hidden state s. The POMDP model infers a posterior probability distribution over hidden states at each time step based on past
observations and actions. In the motion discrimination task, the actions are committing to a choice or making another observation. The model commits to a
choice when the expected increase in the probability of a correct response is not worth the cost of an extra observation. b The time-varying bounds on μt in
the POMDP policy map (e.g., solid white lines in Fig. 6b) have equivalent time-varying bounds on the DV in the DDM (Eq. (10); white lines in this panel).
Similarly, the low and high confidence regions (blue and red regions respectively) of the POMDP policy map in Fig. 6b have equivalents in the DDM as
shown here.
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Although these experimental results could indicate post-choice
re-weighting of observations for calculation of confidence, they
could also arise from the experimenter’s incomplete or inaccurate
knowledge of the exact observations used by the decision maker.
Many factors could engender such inaccuracy, including neural
noise, which is often inaccessible to the experimenter, device
noise, which is difficult to eliminate for electrophysiological and
imaging techniques, or termination criteria for the decision-
making process, which the experimenter may be unaware of or
unable to identify.

To clarify our conclusion, we do not imply that dual or hier-
archical processes for choice and confidence could not exist. Nor
do we exclude the possible existence of mechanisms that revise
confidence by post hoc choice-dependent re-weighting of the
observations. Rather, we conclude that existing experimental
results are insufficient to support such mechanisms as they are
also compatible with simpler, more parsimonious mechanisms in
which a unitary process underlies both choice and confidence. It
is further illuminating that the unitary process explored in this
paper is based on POMDPs, a normative Bayesian framework
based on expected reward maximization. In light of our POMDP
model, existing experimental results should be carefully recon-
sidered and better experiments should be developed to test the
necessity of more complex or disparate mechanisms for choice
and confidence.

We applied the POMDP framework to a fixed-duration task
where the stimulus duration was controlled by the experimenter.
The framework can also be used to model animal and human
behavior in reaction-time tasks24 (as in Section “Sensitivity of
confidence measurements to simultaneous versus sequential
reports of choice and confidence”). In fact, reaction-time tasks
might offer better opportunities to study choice and confidence.
When analyzing fixed-duration tasks, long stimulus durations are
problematic because a multitude of mechanisms, including
decision bounds, time-varying attention, or task engagement,
could cause partial use of sensory information unbeknownst to
the experimenter. Short stimulus durations are not immune to
misinterpretations either. Short stimuli can cause neural
responses that last longer than the stimulus duration64–66, pro-
viding an opportunity for selective sampling. Moreover, short-
term mnemonic mechanisms and active revision of choice and
confidence provide additional opportunities for dissociating the
observations used by the decision-making process from those
assumed by the experimenter. Reaction-time task designs where
subjects control the stimulus viewing duration, combined with
monitoring and manipulation of neural responses in sensory and
decision-making circuits, would improve experimental control
and enable more accurate interpretation of experimental results67.

We conclude by noting that simple bounds on decision vari-
ables, as employed in traditional models of decision making,
might not be sufficient to capture the types of complex policies
(mappings of beliefs to actions) required in dynamic environ-
ments and in tasks more complex than the random dots task. In
such cases, the POMDP model offers a powerful and flexible
framework for decision making as it allows (i) arbitrary prob-
ability distributions for the prior and observation functions, (ii)
arbitrary state transition functions conditioned on the decision
maker’s actions, and (iii) policies that are not restricted to bounds
on decision variables and that implement arbitrary mappings of
beliefs to actions24,25,68,69. Testing these more general attributes
of the POMDP model in animal and human experiments remains
an important direction for future research.

Methods
Direction discrimination task with post-decision wagering. Complete details of
our decision making task involving two macaque monkeys (M1 and M2) are

provided in a previous publication2. All training and data collection procedures
conformed to the National Institutes of Health Guide for the Care and Use of
Laboratory Animals and were approved by the University of Washington Animal
Care Committee. The two monkeys were trained to report the net direction of
motion of a stimulus of randomly moving dots, a fraction of which moved in a
particular direction37. Each trial began with the appearance of a fixation point (FP)
on the screen (Fig. 1a). Shortly after the monkey fixated the FP, two red dots
appeared on the two sides of the monitor to indicate the two possible directions of
motion in the trial (direction targets). After a short delay, the random dots stimulus
appeared for 100–900 ms. Motion direction and strength (fraction of coherently
moving dots) varied randomly from trial to trial. The random dots stimulus was
followed by another delay. Then, on a random half of trials, a third target (called
the sure target) appeared on the screen in the middle of this delay period. At the
end of the delay, the FP disappeared, signaling the monkey to make its choice by
making a saccadic eye movement to one of the targets. Choosing the correct
direction target (right target for rightward motion and left target for leftward
motion) resulted in a large reward (a drop of juice), whereas choosing the incorrect
direction target resulted in a timeout. On the trials where the sure target was
presented, the monkey could opt out of making a direction discrimination decision
by choosing the sure target. The sure target was guaranteed to yield reward but the
reward magnitude was smaller than that for the correct direction target (reward
ratio, ~0.8).

We analyzed the data from the two monkeys separately. Monkeys M1 and M2
contributed 86,622 and 60,733 trials respectively to the dataset.

Model fits. We used 10 ms time steps in our model fits and simulations because it
offered a fine enough temporal resolution to explain the experimental data while
keeping the computations manageable. All fits were based on maximum likelihood
estimation (MLE). A detailed description of our model fitting procedure can be
found in Section “Comparison of model predictions with experimental data” in the
main text. We also tested the POMDP model with non-zero observation cost. This
model, with two parameters (wz and observation cost), was fit to the monkey’s
choices on trials without the sure-bet target. Similar to the fitting procedure above
for the zero-cost case, σ0 and σz were obtained by an iterative process that fit the
average belief to average accuracy for each time step and σ0 was estimated based on
the overall observation distribution. Because there is no closed-form equation for
probability of choices in this model, we used grid search for the free parameters
and estimated choice probability using particle filtering with 20,000 samples70. The
grid resolution for cost was 10−5 while for wz, it was 0.01.

One-step look-ahead search as the optimal strategy. For our results, we used
one-step look-ahead search. Here we show that for an unbiased 2-alternative
decision-making task such as ours, one-step look-ahead search results in the
optimal POMDP policy for a non-decreasing observation cost over time. First, note
that due to the symmetry of the task for direction choices, the optimal decision
maker picks the choice with the highest belief. This means that when considering
whether to terminate or continue acquiring observations, an optimal decision
maker compares the observation cost and the resultant expected confidence
(belief).

Second, the entropy, i.e. �bright log ðbrightÞ � bleft log ðbleftÞ, has an inverse
relationship with confidence. The expected information gain (i.e., decrease in
entropy) decreases with more samples (here observations)71. As a result, the
expected increase in confidence decreases with the number of observations as well.
This means that if the expected increase in confidence with one more observation is
less than the cost of the observation, the expected increase in confidence with k
more observations is less than k times the cost of one observation. Thus, if the cost
of observations is non-decreasing over time, comparing the expected confidence
with the cost of an observation at the current time is enough to maximize the
expected total reward. In other words, if the next observation is not worth its cost,
making more observations would not be worth the cost either. Importantly, this
holds for any observation function and state space as long as the probability
distribution for observations does not change with time, which is true in our task
(coherence does not change within a trial).

Vuong’s statistical test. To test whether the monkey’s observation cost was
negligible in our task, we used Vuong’s closeness test which compares the goodness
of fit of two models, u1 and u2, based on their likelihood ratio and number of
parameters49. With N data points in a data set, the Z-statistic of this test is:

Z ¼ LRðu1; u2Þffiffiffiffi
N

p
w

ð11Þ

where LRðu1; u2Þ ¼ L1 � L2 � 0:5ðK1 � K2ÞlogN . L1 and L2 are the log like-
lihoods, K1 and K2 are the number of parameters of u1 and u2, respectively, and w
is the mean of the squares of the pointwise log-likelihood-ratios between the two
models. We used Vuong’s test to compare the fits of the zero-cost and non-zero-
cost POMDP models to our experimental data. There was no significant difference
between the two models, even without penalizing the non-zero-cost POMDP
model for having one more parameter (i.e., with LR(u1, u2)= L1− L2).
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Simulations for increased stimulus variability. We used the POMDP model with
parameters fit to Monkey M1’s data. For the low variability regime, the standard
deviation of observations was wz= 0.9 and the learned standard deviation was
σz= 1.6. For the high variability regime, the standard deviation of observations was
wz= 1.5 without changing σz or any other parameter in the POMDP model.

Simulations for simultaneous and sequential reports of choice and confidence.
We used the following POMDP model parameters: wz= 0.4, σz= 0.75, and σ0= 5
with the 7 discrete coherence levels used in our monkey experiment and a constant
observation cost of 2 × 10−3 per 10 ms to simulate the reaction-time task with
20,000 trials for each coherence. In the simultaneous report version of the model,
both confidence and choice were calculated from the observations received prior to
the model reaching its decision termination bounds. In the sequential report ver-
sion, calculation of confidence continued to be influenced by observations during a
250 ms non-decision time after the choice.

Exploring the effect of cost on sensitivity measurements and confidence
report. We compared the POMDP model obtained from Monkey M1 with a model
with similar parameters (wz, σz, and σ0) but with an observation cost of 10−4 added
to establish decision termination bounds in trials with coherence of 12.8% and
duration of 400 ms. The confidence report was in the form of a binary rating (low
or high) with a threshold of 0.63 applied to the belief about the choice. The
sensitivity (d0) and meta-d0 were both 1.79 for zero observation cost. Increasing the
cost to 10−4 decreased d0 to 1.66 and meta-d0 to 1.23. We used 1 million samples to
ensure the results were robust. The code from30 was used to calculate meta-d0 .
Slightly higher prior standard deviation (σ0= 0.75) was used for better visualiza-
tion of the effect in Fig. 6b. Qualitatively similar results are obtained for other
motion coherence levels and durations.

Prediction power of choice-congruent and choice-incongruent observations.
First, we simulated the random dots motion discrimination task with one coher-
ence (wz= 1, c= 10.0%), one duration (800 ms) and a binary confidence rating of
low or high with a POMDP model that had an exact model of the world (i.e., with
the true wz and c) but used the first n observations out of t= 80 (step size= 10 ms)
observations. For each n, the confidence threshold was set to a value that made the
probability of high confidence around 0.5.

To generate data points for Figures 7a, b, we trained logistic regression
classifiers to predict the simulated choices and confidence ratings. Ten million trials
were simulated for these analyses to ensure robust and accurate results. Our
classifiers were implemented using the scikit-learn Python library72. For
choice, the features of our classifier were the sum of positive observations and the
sum of negative observations throughout each trial, including those beyond the first
n samples used for simulating choice and confidence. For confidence, the features
were the sum of choice-congruent observations and the sum of choice-incongruent
observations throughout each trial. For the balanced classifier, to ensure balance of
weights, we used a classifier with a feature consisting of the sum of all observations
signed according to the choice (positive for choice-congruent and negative for
choice-incongruent) as one feature.

For generating Figs. S2a and S2b, we repeated the above analysis with the same
parameters but with the simulations using all t= 80 observations and the classifiers
(representing the experimenter) using only n of those observations.

For Figs. 7c, d, S2c, and S2d we added zero-mean Gaussian noise with a
standard deviation of 1.12 to the observations used in our classifiers to mimic the
noisy estimate of a subject’s observations used by an experimenter.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data analyzed in this study are available from R.K. (roozbeh@nyu.edu) upon
reasonable request. Source data are provided with this paper.

Code availability
All code supporting the findings of this study are available at: https://github.com/
koosha66/POMDP-Confidence73.
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