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We live in an age when our phones incorporate real-time traffic updates to

help us navigate complex urban environments, Roombas map the layout of

our apartments to optimize their cleaning strategies, and cars are beginning

to drive themselves. But, amazing though today’s artificial cognition systems

may seem, the genuine mystery is the flexibility and adaptability with which

their precursors and creators – brains – acquire and use knowledge. For at

least two centuries, psychologists and cognitive scientists have studied

human and animal behavior in an effort to better understand the faculties

that support natural cognition: multisensory integration, working memory,

value-based decision-making, and analogical reasoning. They have helped

organize our thinking about the likely algorithms the brain uses, and

suggested which central brain regions might be involved in executing them.

Thus, it may seem like the stage is set for neurophysiologists to work out

neural mechanisms underlying cognitive processes. However, despite tre-

mendous progress over the past half century in understanding peripheral

sensory and motor systems, the sheer complexity of central brain circuits has

meant that cognition has retained most of its veils. For this issue, we asked

contributors to define the experimental and theoretical challenges that

cognition poses to neuroscience researchers, and to offer suggestions for

how the field might productively tackle the complexity that comes with

working on this frontier.

The classical approach to understanding the neural basis of cognition has

relied on recording neural activity in animals performing well-controlled

behavioral tasks, and searching for single neuron correlates of specific

cognitive processes in brain regions thought to be responsible for those

functions. A surprising degree of insight has been gleaned from this approach,

and the chapter by Brody and Hanks provides an overview of progress its

modernized version has enabled in understanding the neural underpinnings

of one well-established cognitive function — perceptual evidence accumu-

lation. Buried just underneath the apparently simple findings uncovered by

searching for single neuron correlates of cognitive processes, however, were

hints that they did not represent the entire picture. In one example, motor

cortex was found to develop representations of specific sensory stimuli when

those stimuli became contextually relevant for behavioral decisions [1].

Cumming and Nienborg highlight a related finding in the field of perceptual

decision-making: perplexingly, behavioral decisions appear to be far more

correlated with fluctuations in the activity of one or a few sensory neurons than

one would expect. As these authors detail, an emerging view is that feedback-

related entrainment of activity in sensory areas shapes these dynamics. The

central role of cognitive feedback in shaping sensory representations is also

highlighted by Lehky and Tanaka. They argue that in object recognition, this
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feedback represents high-level expectation of possible

sensory inputs based on task information that can assist

in object interpretation. More broadly, such unexpected

mixing of sensory, motor, contextual and decision variables

across cortical areas suggested that neural coding underly-

ing even the simplest cognitive processes is much more

complex and diverse than naı̈ve models that rely on the

segregation of such functions in the brain might assume.

Rich and complex task-relevant neural representations

thus arise from the involvement of both local and distrib-

uted networks.

The recent ability to simultaneously monitor activity of

large groups of neurons has given us an even deeper look

at the richness and complexity of neural representations

in cognitive tasks. Advances in high-density probe design

and the increased sensitivity of genetically encoded ac-

tivity indicators have enabled population recordings from

hundreds, and even thousands, of neurons simultaneous-

ly. Parallel advances in statistical analyses of multivariate

time series data, such as methods discussed by

Poorahmadi and Noorbaloochi, have made it possible

to extract meaning from this deluge of data. Such

approaches have recapitulated and extended the findings

from seminal single neuron recordings that the activity of

neuronal populations often displays many scales of spatial

and temporal variability that go beyond what would be

directly expected from the underlying task timescales

[2–4]. It may seem then, that this added complexity of

circuit dynamics should make the goal of deciphering the

neural basis of cognitive function particularly vexing.

However, it has been posited that some circuit dynamics

have a negligible effect on a given computation. Indeed,

when population activity is described as trajectories in

activity state space, relatively low-dimensional dynamics

are often found to be informative for task-specific compu-

tations [5,6]. Although Fetsch correctly cautions us not to

rush to conclude that any ‘‘interesting’’ dynamics consti-

tute a mechanism for an actual biological neural computa-

tion, recent studies have lent support to the notion that

certain modes of dynamics are specifically dedicated to

encoding task-relevant information [7,8]. In one example,

characterizing the effect of transient optogenetic suppres-

sion of network activity in a working memory task, Li et al.
demonstrated that when the perturbation was performed

early during the delay period, the detailed dynamics of

activity recovered fully selectively along the hypothesized

task-relevant mode [7]. What this emerging conceptual

framework of activity mode-specific dynamics suggests is

that one way to reign in the complexity of the neural code

then is by separating those aspects of complex neural

representations that can, or should, be explained given a

particular task, away from the remaining — sometimes

known as ‘‘null space’’ — dynamics.

A powerful theoretical avenue for identifying the explain-

able aspects of the neural code that can complement
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clever combinations of experimental and computational

approaches is to model circuit dynamics in systems built

to perform a particular computational building block.

Deneve and Chalk highlight the utility of this approach:

by starting with a network designed for efficient temporal

processing of sensory stimuli, they demonstrate that some

variability of neural responses can arise simply as a result

of coordinated computation across the network. Taking a

second approach, which seeks to exploit particular known

properties of biological neural networks, Wang and

Kennedy, in turn, detail how key aspects of the structural

organization of the primate cortex naturally constrain

network dynamics to mirror the hierarchy of timescales

(from brief in sensory areas to more persistent in prefron-

tal cortex) found in the brain. Fusi et al. combine both

approaches by designing systems that can flexibly cate-

gorize inputs, for instance in a context dependent man-

ner, but requiring the readout of such categorization to be

linear (a constraint that confers greater biological plausi-

bility). The central characteristic of such systems is that

inputs need to be represented in high dimensions, and the

authors demonstrate that this can be achieved through the

mechanism of non-linear mixed selectivity — a frequently

observed aspect of neural representations in higher order

cortical areas. Miller takes a similarly dual approach by

parsing out two central building blocks of more complex

computations: neural selectivity and gain control, and

developing simple models for how these computations

can naturally occur within canonical cortical architecture.

Overall, these theoretical approaches should greatly ad-

vance our understanding of complex neural computations

by detailing the associated core neural responses and

identifying surprising features of network dynamics.

The above-mentioned theoretical and experimental

efforts are being applied in simpler, more tractable sys-

tems that may more readily provide insights into the

neural mechanisms underlying some cognitive processes,

and four chapters in this volume highlight several diverse

approaches to attaining tractability. Schneidman sum-

marizes insights derived from statistical models of the

responses of small networks of sensory neurons and

speculates about how these may extend to larger net-

works and brain areas deeper in the processing stream.

Gjoergjieva et al. discuss the prospect of being able to

model the dynamics of larger circuits on the basis of a

comprehensive understanding of intrinsic and synaptic

time scales for individual neurons and small circuits.

Golub et al. describe an elegant way of bringing an entire

sensorimotor system under direct experimental control

through the clever use of brain–computer interfaces

(BCI). The authors argue that studying how an animal

can alter the dynamics of even just the subset of neurons

that can be observed in an experiment, we will eventually

be able to get at the neural mechanisms behind many

cognitive computations. Finally, Haberkern and

Jayaraman discuss recent behavioral and physiological
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evidence in support of broadly relevant elements of

cognitive processing in insects. Insect brains confer the

advantages of stereotyped topography, small size, and, in

the case of Drosophila, exquisite genetic access, which

can make them more tractable for mechanistic studies of

basic cognitive computations. In their diverse ways, these

chapters highlight the advantages that these smaller

systems offer in understanding the underlying neural

circuit computations, and point to signs that the principles

extracted from such research may be broadly applicable.

The universe of known complexity of neural computation

is already large enough to occupy the field for many

decades, so it may seem rash to simultaneously seek to

understand the neural implementation of still more com-

plex cognitive functions. Koechlin provides a blueprint of

a comprehensive model for adaptive behavior in real-

world open-ended environments, and its algorithmic so-

lution comprises a daunting set of interacting cognitive

processes. If, as has been postulated recently [9], the low

dimensionality of task-related neural dynamics observed

in experiments to date is a reflection of the simplicity of

the contemporary behavioral tasks, and yet we are only

barely beginning to understand these dynamics, would

we not drown in irreducible big data if we tackle some-

thing even more complex? The answer to this question

remains to be revealed, but one possibility is that if the

added task complexity is more ‘naturally relevant’, then

what now seems like unwieldy null space dynamics will

take on a more interpretable form. Two articles in this

volume provide hope that engaging animals in relevant, if

more complex, ways can indeed bring about informative

changes to neural representations. Drawing on recent

findings, Dudman and Krakauer argue that neural dy-

namics in the basal ganglia track and predict kinematic

parameters of movement execution when actions are

under motivational control. They suggest that a more

restrictive view of the basal ganglia’s role in the control of

action selection stems from an uncoupling of these neural

dynamics from movement kinematics in over-trained

animals performing less demanding tasks. Along similar

lines, Kolling et al. discuss how the conflicting interpreta-

tions of the neural representation in the anterior cingulate

cortex are beginning to be disentangled in specifically

tailored behavioral tasks.

So how do we proceed with adding just the right type of

cognitive complexity to behavioral tasks? Tervo et al.
advocate one possible avenue. These authors propose

that we build on the intuition widely adopted by the

cognitive and computer science communities that ani-

mals approach complex environments by attempting to

create hierarchical models of the environment’s latent

structure. Developing behavioral tasks that have complex

hierarchical relationships would thus be one way to add

‘‘natural’’ complexity. Of course, the ability to bring the

underlying cognitive process under experimental control
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will depend not only on whether an animal’s solution to

the added complexity is of the expected nature, but also

on whether the experimenter can identify the exact

structured abstraction the animal represents and uses

to solve the task. Some ideas for how to best do that

could come from fields with a rich tradition of rigorous

behavioral control. Fetsch articulates the case for com-

bining clever behavioral designs, careful analyses of be-

havioral data and normative behavioral modeling that

enabled the fields of psychophysics and motor control

to isolate and study specific behavioral component pro-

cesses. The advantage of such an approach is made clear

in the chapter by Wolpert and Flanagan, which outlines

advances in the field of sensorimotor learning enabled by

a combination of thoughtful behavioral approaches and

computational modeling. However, Barack and Gold

caution that many complex strategic factors that can

contribute to task performance at times remain ignored

even in psychophysics experiments. As the complexity of

cognitive functions under study increases, it may become

progressively more important to supplement the rigorous

approaches to behavior discussed by these authors with

experimental frameworks that permit direct behavioral

access to the computations involved.

We hope that the diverse articles in this issue will give the

reader a sense for ways, in which experimental and theo-

retical approaches to probe the neural basis of complex

computations have evolved over the past few decades of

systems neuroscience. Gomez-Marin and Mainen caution,

however, that it may be too early to pick winning strate-

gies, and advocate for an open-ended and multi-pronged

approach that draws freely from other fields as appropriate.

Yamins and DiCarlo discuss just such an example of cross-

pollination in their chapter on deep neural networks — a

powerful approach from artificial intelligence that may

help model and predict neural responses in visual cortex

and beyond. In turn, Daniels et al. suggest that information

theoretic analysis may help bridge the explanatory gap

going from information processing at small scales, such as

at the level of individual neurons, to more collective

phenomena associated with, say, the interactions of neural

populations and multiple brain regions.

Conclusion
The last half of the twentieth century witnessed a cogni-

tive revolution, with insights from psychology, linguistics

and neuroscience contributing to the recognition that

many feats of natural intelligence require non-associa-

tionist explanations [10]. This notion has fostered a robust

debate on what cognition actually is, what its components

might be, and what it would take to link it to processes in

the brain. While consensus about the central role of some

cognitive faculties may be emerging in the cognitive

science community, it is yet to be met by a comprehen-

sive understanding of how the brain gives rise to these

phenomena. Contemporary neuroscientists attempting to
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reverse engineer the brain and its ability to give rise to

cognition are simultaneously equipped with enviable

tools — dense multiunit recording; circuit perturbation

methods; high dimensional quantification of behavior; a

century of statistical tools to tease out insights from large

datasets — and the bewildering requirement of wielding

these tools to tackle one of the greatest scientific myster-

ies. The challenge we face though is not just in picking

the right technical approaches to find answers to ques-

tions in cognition. In an era increasingly dominated by

powerful genetic tools in model organisms, Gomez-Marin

and Mainen warn against too restrictive a focus on mech-

anistic experiments when the boundaries of cognition

have yet to be fully explored. Overall, continuing the

discussion about the advantages of, and limitations inher-

ent in, the existing set of conceptual, experimental and

analytical tools will be crucial for developing a roadmap

for the next generation of experimental and theoretical

studies in systems and cognitive neuroscience to tackle

the complexity of cognition.
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