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Elapsed Decision Time Affects the Weighting of Prior
Probability in a Perceptual Decision Task
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Decisions are often based on a combination of new evidence with prior knowledge of the probable best choice. Optimal combination
requires knowledge about the reliability of evidence, but in many realistic situations, this is unknown. Here we propose and test a novel
theory: the brain exploits elapsed time during decision formation to combine sensory evidence with prior probability. Elapsed time is
useful because (1) decisions that linger tend to arise from less reliable evidence, and (2) the expected accuracy at a given decision time
depends on the reliability of the evidence gathered up to that point. These regularities allow the brain to combine prior information with
sensory evidence by weighting the latter in accordance with reliability. To test this theory, we manipulated the prior probability of the
rewarded choice while subjects performed a reaction-time discrimination of motion direction using a range of stimulus reliabilities that
varied from trial to trial. The theory explains the effect of prior probability on choice and reaction time over a wide range of stimulus
strengths. We found that prior probability was incorporated into the decision process as a dynamic bias signal that increases as a function
of decision time. This bias signal depends on the speed–accuracy setting of human subjects, and it is reflected in the firing rates of neurons
in the lateral intraparietal area (LIP) of rhesus monkeys performing this task.

Introduction
Decision making is an integrative process that combines evi-
dence, prior knowledge, and expected rewards and costs. Proba-
bility, or some other measure of belief, furnishes a common
framework for combining these factors (Jaynes, 2003). Thus, it
has been suggested that there is a probabilistic evaluation of
sensory signals in the brain (Barlow, 1969; Carpenter and Wil-
liams, 1995; Zemel et al., 1998; Rao, 2004; Jazayeri and
Movshon, 2006; Ma et al., 2006; Gold and Shadlen, 2007; Beck
et al., 2008). Ultimately, the combined information that bears
on a decision appears to converge at the level of single neurons
(Platt and Glimcher, 1999; Schall and Thompson, 1999; Glim-
cher, 2003; Romo et al., 2004; Sugrue et al., 2004; Gold and
Shadlen, 2007; Platt and Huettel, 2008; Rorie et al., 2010).
Together, these ideas suggest that neurons in the brain com-
bine probabilistic signals into a decision variable (DV). This
raises the question of how the brain converts a spike rate into
units of probability or degree of belief. In its most basic form,
this can be addressed by examining how a neural representa-
tion of a DV incorporates probability associated with prior
knowledge—that is, prior probability.

The dominant theories for the incorporation of prior probability
into a decision process involve fixed changes of either the DV or
decision rule (Edwards, 1965; Link and Heath, 1975; Carpenter and
Williams, 1995; Gold et al., 2008; Ratcliff and McKoon, 2008; Simen
et al., 2009). Consistent with these theories, prior probability has
been shown to have a static representation in the brain (Basso and
Wurtz, 1998; Platt and Glimcher, 1999). However, it is unclear how
the brain combines this type of representation of prior probability
with other sources of information, which may confer more or less
leverage on the decision. Some information sources are more reliable
than others. For example, sampling two red balls in a row from one
of two urns that contain a 90:10 mixture of red/white balls is a reli-
able cue that the urn in question contains more red balls. In contrast,
the same evidence would be less reliable if the urns contained 55:45
mixtures. This is a common situation for a decision maker: in addi-
tion to uncertainty about the hypothesis, there is uncertainty about
the reliability of the evidence.

We propose that, when a subject is deliberating based on a
stream of evidence of unknown reliability, the brain can exploit
the elapsed time of the decision process to combine prior proba-
bility with the representation of the evidence in a way that gives
less weight to the evidence when it is less reliable. Many decisions
can be explained by the accumulation of evidence to a criterion
level or “bound.” If the evidence and bound share units of prob-
ability, then the latter would establish the probability of a correct
decision, regardless of decision time or stimulus strength. Stron-
ger and weaker stimuli would lead to faster and slower accumu-
lations of probability to the same level, and decision accuracy
would not depend on elapsed time.

More typically, however, stronger stimuli result in both faster
and more accurate choices than weaker stimuli (Link, 1992; Rat-
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cliff and Rouder, 1998; Ratcliff and Smith, 2004; Palmer et al.,
2005), as depicted in psychometric functions. Thus, the bound
does not represent a fixed amount of probability but a threshold
on some other quantity, such as neural activity. Depending on the
stimulus, the bound represents a different probability of a correct
choice. The relationship between the accumulated evidence and
probability of a correct choice changes with elapsed decision
time. Thus, when considering stimuli of mixed reliability, more
rapid decisions are associated on average with more reliable
evidence and slower decisions are associated with less reliable
evidence.

In principle, the brain could exploit this relationship when
combining prior probability with accumulated sensory evidence.
At shorter elapsed decision times, when the evidence on average
corresponds to higher reliability, prior knowledge would be in-
corporated as a smaller bias signal relative to a fixed amount of
accumulated evidence. At the longer elapsed decision times,
when the evidence on average corresponds to lesser reliability,
prior knowledge would be incorporated as a larger bias signal
relative to that same amount of accumulated sensory evidence.
Because the relationship between the accumulated evidence and
probability changes with time, this would allow the influence of
prior knowledge to be constant in terms of probability. We show
that the brain incorporates this regularity when weighting prior
probability in a direction discrimination task.

Materials and Methods
Behavioral task. Two human (one female, one male) and four rhesus
monkey (two female, two male) subjects were trained to perform a mo-
tion discrimination task. A chin rest and forehead bar were used to
stabilize the heads of the human subjects for the duration of each exper-
imental session; a head post was used for the same purpose for the mon-
keys. Stimuli were presented on a computer monitor (75 Hz frame rate)
using the Psychophysics Toolbox for Matlab (Brainard, 1997). Eye posi-
tion was monitored in humans using the EyeLink infrared video tracking
system (sampling rate, 250 Hz) and in monkeys using a scleral search coil
(1 kHz). Trials began with the appearance of a single dot that the subject
was required to fixate. After a variable delay (at least 500 ms for the
monkeys), two bright red choice targets appeared at an equal distance
from the fixation point and 180° apart. After a variable delay, the
random-dot motion stimulus appeared in an aperture 5–10° in diameter
that was either centered at the fixation point or located up to 10° eccen-
tric, along a direction orthogonal to the axis formed by the choice targets.
The motion stimulus consists of sets of randomly positioned dots, which
are shown for one video frame and then updated 40 ms later (e.g., dots in
frame 1 were updated in frame 4; dots in frame 2 were updated in frame
5, and so forth). To update, each dot is either displaced by 14.4 min arc (i.e.,
6.0°/s) with probability C, termed the motion coherence (coh), or replaced at
a random location. The dot density was 16.7 dots � deg�2 � s�1.

For each trial, there were two possible directions of motion, differing
by 180° and corresponding to the directional axis formed by the choice
targets. Motion strength (the percentage of coherently moving dots) was
chosen randomly from a set, C � {0, 3.2, 6.4, 12.8, 25.6, 51.2}. For one of
the human subjects, an alternative set was used, C � {1.6, 3.2, 6.4, 12.8,
25.6, 51.2}. The subject’s task was to determine the direction of coherent
motion, which it indicated by making a saccade to the appropriate choice
target (e.g., right target for rightward motion, left target for leftward
motion). The subjects could indicate a decision at any time after motion
onset. Subjects received positive feedback for all correct choices and on a
random percentage of the trials determined by the prior probability (see
below) when there was no net motion (0% coherence). The positive
feedback for monkeys was a liquid reward; for humans, it was a morale-
enhancing auditory tone.

We changed the prior probability of the direction of motion in differ-
ent blocks of trials. In neutral prior probability blocks, each of the two
directions of motion was shown with 50% probability. In unequal prior

probability blocks, one of the directions was shown with 80% probability
and the other with 20% probability. By convention in the unequal priors
blocks, we define positive motion coherence as the direction of higher
probability and negative motion coherence as the direction of lower
probability. In the neutral priors blocks, positive is defined to correspond
to the rightward direction. In a small subset of neurons for one monkey,
we used a pair of intermediate priors (67 and 33%; four cells for 67% and
five cells for 33%). We observed intermediate effects, consistent with the
conclusions drawn from the larger dataset. These data are not included in
the analyses.

For the humans, we provided verbal instructions specifying the prior
probability. Blocks with different prior probabilities were collected in
different sessions. Because we could not usefully provide verbal instruc-
tions for the monkeys, we developed a routine to help them recognize the
change in prior probability. Sessions always started with a neutral prior
probability block consisting of 200 – 400 trials. Next, we presented a
block of trials with unequal prior probability. The prior was chosen to
favor the direction that the monkey chose less often in the preceding
neutral prior block; those biases were generally small (equivalent to
�1.7 � 0.2% coh, on average). The unequal priors block was signaled
with 20 cue trials consisting of 100% coherence motion in the direction
of the higher prior. These cue trials were followed by 300 – 600 trials in the
new condition, or until the session had to be stopped as a result of the
monkey’s failure to perform the task or the loss of adequate neural iso-
lation. Finally, in some experiments, a third block of trials was shown
with the prior probability favoring the opposite direction of motion. This
block was also signaled with cue trials as above. Even with this structured
technique, the monkeys generally did not adjust their bias immediately.
Logistic regression applied to a moving window of �30 trials indicates
that this adjustment took �200 trials to reach stability for the first change
and �300 trials for the second, so we analyzed only the trials after these
adjustment periods.

The monkeys were trained to achieve a similar, stable speed–accuracy
regime, suitable for neural recording. We used a combination of rewards
and penalties to counter the natural tendency of monkeys to respond
with short latencies. To minimize anticipation, a random interval drawn
from a truncated exponential distribution (range, 500 –3000 ms; mean,
1200 ms) separated presentation of choice targets and random dot mo-
tion. For all monkeys, a timeout penalty was added to the standard in-
tertrial interval. This penalty was graded to punish faster errors (duration
range, 400 – 4000 ms). For one monkey, reward was conditionally de-
layed so that, although reward was always given for correct choices, it was
delivered no sooner than 1000 ms after motion onset. For another mon-
key, in some training sessions, reward size was adjusted to encourage fast
and slow reaction time (RT) at easy and difficult trials. This protocol was
used only for a subset of the training and was not used when recording
behavioral or physiological data. For most data presentation, behavior
was combined across all monkeys; similar results were found in each
individually.

The human subjects were trained to work in two different speed–
accuracy regimes. This was achieved using verbal instructions and exten-
sive practice. First, the humans were trained to perform the task at a
single speed–accuracy set point with neutral priors for the two directions
of motion until they reached a stable psychometric threshold and RTs
were stable for multiple sessions (at least six sessions for each subject).
When switching speed–accuracy regimes for the neutral priors case, sub-
jects were told to operate in a different speed regime by responding faster
or slower. We monitored RTs on a session-by-session basis to assess
stability in the new regime, requiring at least two sessions of adjustment
with the switch. Unequal priors sessions for a given speed–accuracy re-
gime always followed neutral priors sessions for the same regime. For the
unequal priors sessions, subjects were instructed to maintain their gen-
eral speed regime; they were not given additional instructions about a
specific target RT. The subjects were naive to the theory being tested and
its predictions.

All training, surgery, and experimental procedures were in accordance
with the National Institutes of Health Guide for Care and Use of Labora-
tory Animals and were approved by the University of Washington Animal
Care Committee or Human Subjects Committee.
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Behavioral analyses. Behavioral data were fit using a bounded accumu-
lation model. The model works by accumulating momentary evidence to
an upper bound (�A) or a lower bound (�A), corresponding to the two
direction choices. We refer to the accumulated evidence as the decision
variable in this model. Positive evidence favors one choice and negative
evidence favors the other choice. As described above, when the priors are
unequal, we define the positive direction to be the one with higher prior
probability. The momentary evidence gathered in each time step is
drawn from a Gaussian distribution with unit variance for 1 s and
mean � determined by a linear transform of the motion strength: � �
kC, where C is the motion strength, and k is a free parameter that
scales the motion strength appropriately. This relationship is reason-
able because the expected difference in firing rates between direction-
selective neurons in the middle temporal area (MT; also known as
area V5) is known to vary linearly, on average, as a function of motion
strength (Britten et al., 1993). Both the momentary evidence and the
decision variable of this model can be related to neural responses
(Mazurek et al., 2003; Shadlen et al., 2006). The bound reached first
by the accumulated evidence determines the choice, and the decision
time is determined by how long it takes to reach that bound. RT is a
combination of this decision time with an additional stimulus-
independent nondecision time, tnd. This basic model with three free
parameters (k, A, and tnd) must be modified to explain the effect of
prior probability on choice and RT (strategies 2 and 3, below).

We use three strategies to analyze the effect of prior probability on
behavior. The first, logistic regression, offers a descriptive (i.e., atheoreti-
cal) measure of the magnitude of the choice bias:

P� � �1 � exp����0 � �1C � �2I	
��1, (1)

where P� is the probability that the subject chooses the direction favored
by the prior, C is motion strength (with sign indicating motion direction
according to the convention described above), and I is an indicator vari-
able (1 for the block with unequal prior and 0 otherwise). The �i are fitted
coefficients. �0 represents the behavioral bias under neutral priors, which
was negligible in these experiments, �1 represents the effect of motion on
the log odds of a “positive direction” choice, and �2 quantifies the bias
attributable to the prior. It is convenient to represent the prior-induced
bias as an equivalent change in motion strength, �2/�1. Statistical tests of
the null hypothesis (no effect of prior) are based solely on �2 {H0:�2 � 0}.

The second strategy is to alter the parameters of the bounded accumu-
lation model by permitting an offset of the starting point of the DV. This
essentially implements a static bias signal. It introduces one additional
free parameter (V0) in addition to the three described above for the
bounded accumulation model.

The third strategy instantiates our theory of a time-dependent bias
signal, �(t), that is determined by a subject’s accuracy at a given
elapsed decision time. This falls within a class of models with a dy-
namic bias signal (DBS). Unless otherwise indicated, we use DBS to
refer to the particular formulation of �(t), derived in accordance with
our theory, as follows. We first calculate a time-dependent accuracy
(TDA) function from the neutral prior condition, which is simply the
subject’s accuracy as a function of elapsed decision time across the
ensemble of stimuli, that is, Pc(t). A fine-grained estimate of the TDA
function is obtained directly from the bounded accumulation model
fit to the neutral prior data.

We next postulate a mapping between the value of the decision vari-
able V(t) at the bounds (�A) and the log posterior odds (LPO) of a
correct choice as a function of terminating the process at time t, which is
simply the log odds of the TDA function at that time. Because we
consider the mapping in log space, it simplifies the combination of
probabilities. Under this idea, the log odds of the prior probability
simply adds to the LPO represented by the DV at that time. The
implementation rests on an approximation that the LPO at any par-
ticular time is a linear function of the DV at that time. In fact, the
relationship is nonlinear, but the approximation is reasonable. It
simplifies the representation of the prior to be a fraction of the bound
height. Under this implementation, the prior effectively pushes the
DV closer to the positive bound (by our sign convention) by the

fraction of the LPO corresponding to the bound at the given elapsed
decision time. Thus, the dynamic bias signal is as follows:

��t	 �

log� �P

1 � �P�
log� Pc�t	

1 � Pc�t	
� A�t	, (2)

where P is the prior probability that motion will be in one direction (the
one we call positive by convention). The expression contains an addi-
tional parameter, �, that scales the prior probability, P, to account for the
possibility that a subject misestimates the prior.

Notice that the log term in the numerator of Equation 2 is a constant.
This makes sense because the prior is fixed for the duration of the deci-
sion—actually for the duration of a block of hundreds of decisions. How-
ever, the “bias signal” �(t) increases monotonically as a function of time
because the LPO of a correct choice diminishes with longer decision
times. An intuitive rationale for the nature of this relationship stems from
three considerations. (1) Each sample of momentary evidence is propor-
tional to the log of the likelihood ratio (LLR) of drawing that sample
under the two possible directions (Gold and Shadlen, 2001). (2) For a
fixed motion strength, the constant of proportionality between sample
and LLR is also fixed. This second consideration implies that, under
neutral priors, the bound height corresponds to the LPO of making a
correct choice for any one motion strength at any time. A flat bound
therefore implies that the LPO is constant as a function of time. (3) The
LPO of making a correct choice varies with motion strength. This is
clearly illustrated by the logistic psychometric function. If accuracy
changes with motion strength, by definition the LPO changes as well.
Together, these three considerations imply that the same bound repre-
sents a different LPO for each coherence (Link, 1992; Shadlen et al.,
2006). Nevertheless, each stopping time is associated with a different
mixture of coherences. In particular, longer stopping times are associated
with a larger fraction of low coherence stimuli. Thus, if the decision has
not terminated yet, it is increasingly likely that the evidence is less reli-
able. The equation above for �(t) was derived precisely to take this rela-
tionship into account in determining the bias signal that is added to the
DV for a given prior probability.

The full computation for the propagation of the decision variable,
V(t), can be expressed by the following equations:

d� � kCdt � dW, (3)

V�t	 � � �t	 � ��t	. (4)

Equation 3 is a stochastic differential equation that describes drift diffu-
sion: C is motion strength, k is the fitted drift coefficient, and W is a
standard Wiener process. Equation 4 furnishes the DV as the sum of drift
diffusion [the solution to Eq. 3, subject to �(0) � 0] and the dynamic bias
signal (Eq. 2). The process terminates when the DV reaches one of the
decision bounds, �A(t). Note that the decision bounds are constant for
the standard model; they change with time only for the alternative model
with urgency described below.

We fit the choice and RT data from both neutral and unequal priors
conditions with our DBS model using just four degrees of freedom (k, A,
tnd, and �). These parameters were fit simultaneously to the full dataset.
We calculated the probability of the DV crossing the upper or lower
bound at each time using a numerical solution for the Fokker–Planck
equation (Chang and Cooper, 1970; Press et al., 1988; Kiani and Shadlen,
2009). All fits were performed using the method of maximum likelihood
on the choices and mean RTs. We compared the fits of the model with
those obtained using an alternative “static bias signal” model in which
�(t) is replaced by a static offset to one of the decision bounds. This
model also has four degrees of freedom (k, A, tnd, and the offset V0). Note
that this parameterization is equivalent to a model with two independent
bounds. Comparisons between the DBS and static bias signal models
were based on the Bayes information criterion (BIC), �2� � k log(n),
where � is the maximized log likelihood of the model, k is the number of
free parameters, and n is the number of data points. This final term is a
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correction that penalizes extra free parameters, so it is constant when
comparing models that have the same number of free parameters. When
comparing two models, the one with a lower BIC criterion is preferable.
The difference in the BIC scaled by 0.5 approximates the log of the Bayes
factor, the likelihood that one model is better than another (Kass and
Raftery, 1995). A Bayes factor larger than 10 indicates strong evidence in
favor of a model, and a value larger than 100 is considered decisive
(Jeffreys, 1961). When comparing models, we report the approximate
Bayes factor. For all comparisons performed, the value corresponds to a
Bayes factor that should be considered decisive.

When we altered the speed–accuracy regime (see Fig. 5), we estab-
lished a new estimate of parameter A for our DBS model under neutral
priors in the new regime. Importantly, we fit only the neutral priors data
with this single parameter change. We used the TDA function from these
data to derive �(t) in this new regime. Then holding all other parameters
to their original values, we predicted the choices and RTs under the
unequal priors. In this way, the unequal priors data in the new speed–
accuracy regime were not used in any way to determine the values of the
free parameters of the model. These predictions are shown by the dashed
curves in Figure 5. The fraction of the variance reported in Results (R 2)
compares the predicted curves to the mean RTs and choice frequencies.

The alternative static bias signal model does not give a prescription for
how much to change the offset when altering the speed–accuracy set
point. Therefore, to examine how well it can explain the data in the new
speed–accuracy regime, we performed an entirely new fit. To gauge the
quality of this fit, we also performed new fits to the data in the new
speed–accuracy regime with our DBS model (instead of the prediction-
based approach described in the preceding paragraph). This provides a
fair comparison because both models are allowed four degrees of free-
dom in each speed–accuracy regime.

We further tested whether the pattern of behavior we observed could
be explained with a static bias signal model combined with a nonbiased
time-dependent bound collapse. A symmetric bound collapse could im-
plement an “urgency” signal that acts as a soft deadline for deciding
(Churchland et al., 2008; Cisek et al., 2009). The time-dependent bound
collapse was modeled as a hyperbolic function, so that the magnitude of
the bound (before addition of the bias signal) was described by the fol-

lowing equation: �A�t	� � a � u�

t

t � 	1/ 2
. Other parameterizations

may work as well, but this particular choice has been found to be reason-
able for monkeys performing the motion discrimination task (Church-
land et al., 2008). Because the bound collapse brings both bounds
closer to zero in a symmetric manner, it alone cannot account for the
asymmetric effects of prior probability on choice and RT. Neverthe-
less, we wanted to test whether such an elaboration could improve the
fit of a static bias signal model to the behavioral data compared with
our DBS model. We compared our DBS model with collapsing
bounds to the static bias signal model with collapsing bounds using
the BIC, as described above.

Neural recordings. Fifty-two neurons were recorded in the lateral in-
traparietal area (LIP) of two rhesus monkeys while they performed the
reaction time motion discrimination task. These were two of the four
monkeys that were trained to perform the behavioral task. We used
standard methods for extracellular recording of action potentials from
single neurons (Roitman and Shadlen, 2002). Neurons were selected
using anatomical and physiological criteria. Stereotaxic coordinates
combined with structural magnetic resonance imaging (MRI) scans
were used to identify LIP and to direct the placement of recording
electrodes. We believe the majority of neurons recorded in this study
were located in the ventral portion of LIP (Lewis and Van Essen,
2000). This assessment is based on (1) registration of recording loca-
tions to each monkeys’ MRI and comparison to a standard flat map
[Caret software (Van Essen et al., 2001)] and (2) the response prop-
erties of adjacent regions.

Once the proper anatomic location was identified, neurons were se-
lected if they exhibited spatially selective persistent activity during
memory-guided saccades (Hikosaka and Wurtz, 1983; Gnadt and Ander-
sen, 1988). In this screening task, monkeys fixated a central fixation point
while a target was flashed briefly (200 ms) in the periphery and then

extinguished. This was followed by a delay of 500 –2000 ms during which
the monkey was required to remember the location of the flashed target.
After this delay, the fixation point was extinguished and the monkey was
required to make a saccade to within 3° of the location of the flashed
target. By varying the location of the target from trial to trial, we identi-
fied the spatial location that caused the largest response in the neuron
during the memory period; this spatial location is termed the response
field (RF). Once the RF was determined, we performed repeated trials of
the memory saccade task in which the target was placed at one of two
locations, one inside the RF and one outside the RF. Neurons were in-
cluded if the average spike rate during the memory period was signifi-
cantly greater ( p � 0.05, two-tailed t test) for inside-RF trials than for
outside-RF trials.

The stability and selectivity of the neuron was reassessed throughout
the recording session using two tasks: the memory saccade task and a
visual saccade task that was identical to the memory saccade task
except that the target remained illuminated throughout the trial. Vi-
sual or memory saccade trials were randomly interleaved with trials of
the motion discrimination task. If a neuron appeared to have changed
or lost its spatial selectivity or memory activity, the experiment was
discontinued.

Neural analyses. Peristimulus time histograms (PSTHs) were gener-
ated by combining responses across all cells using 10 ms bins. PSTHs
were aligned to two different events: motion onset and saccade initiation.
When aligning to motion onset, the time period within 100 ms of saccade
initiation was excluded to avoid contamination of the averages with peri-
saccadic activity. Similarly, when aligning to the saccade, the time period
within 210 ms of motion onset was excluded to avoid contamination
from the dip in firing rate that follows motion onset. Trials were
grouped by direction and strength of motion with strong motion
consisting of 51.2% coh, medium motion consisting of 6.4, 12.8, and
25.6% coh, and weak motion consisting of 0 and 3.2% coh. For phys-
iological analyses, Tin motion refers to the direction associated with
the target in the RF of the recorded cell. Tout motion refers to the
opposite direction.

To measure a bias signal from the neural recordings, we compared
responses on the neutral and unequal priors blocks. For all neurons, data
were collected in the neutral prior probability condition. However, for
many neurons, data were collected in just one of the two possible unequal
prior probability conditions: either the prior favoring Tin or the prior
favoring Tout. We estimated both a static and dynamic component of the
neural bias signal. The static component is that part of the bias signal that
does not depend on elapsed decision time. To analyze this, we examined
whether there was a change in the average excursion of the LIP responses,
that is, the difference between the level of activity at the start of motion
integration and at the coalescence of responses at the end of decision
formation. This difference was estimated directly from mean firing rates
�200 ms after motion onset and �60 ms before saccade initiation for Tin

choices. These times correspond to the neural signatures of these pro-
cesses for this dataset (see Fig. 6) and are consistent with previous studies
(Roitman and Shadlen, 2002; Huk and Shadlen, 2005; Churchland et al.,
2008).

We used three methods to analyze the dynamic component of the
neural bias signal, which corresponds to the part that depends on elapsed
decision time. All three are based on estimates of the effect of prior
probability on the buildup rate of the neural responses, and all begin with
estimates of a buildup rate on a trial-by-trial basis. By estimating a
buildup rate for each trial individually, we are able to sidestep an “attri-
tion” artifact that arises when estimating firing rates from averages over
many trials. Because RT is broadly distributed even for the same motion
strength and prior condition, such averages comprise different trials at
different times. For example, as time elapses and some trials complete,
attrition of these trials from the average tends to bias the average rate to
lower values. Our single-trial approach avoids this bias by forming esti-
mates of the buildup rate from individual responses and then averaging
these.

For each trial, we estimated the firing rate function by convolving the
spike train with an 
-like function: (1 � e (�t /g ))e (�t /d ), where d � 20 ms
and g � 1 ms. We extracted an estimate of buildup rate for each trial by
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applying linear regression to these smoothed rate functions in the epoch
from 200 ms after motion onset to 60 ms before saccade initiation for
Tout choices and 100 ms before saccade initiation for Tin choices. This
time period was chosen based on the epoch of decision formation in
which LIP reflects the integration of motion evidence (coherence and
direction). Our data would place the end of this epoch �60 ms before
saccade initiation, consistent with previous studies (Roitman and
Shadlen, 2002; Huk and Shadlen, 2005; Churchland et al., 2008). How-
ever, to mitigate concern about including any part of a possible stereo-
typed perisaccadic burst in the estimates of buildup rate, we excluded a
full 100 ms before the saccade for Tin choices.

The first analysis is a simple test of the hypothesis that a dynamic bias
signal is present under unequal priors, without stipulating its exact form.
For every neuron, we calculated the average buildup rate for each motion
strength, direction, and prior probability condition. To analyze the in-
fluence of prior probability on buildup rate, we compared these values
averaged across the population of cells for each motion strength and
direction (see Fig. 7a,b). When comparing the neutral with each unequal
priors condition, we included only the cells with data collected in the
corresponding unequal priors condition (n � 37 neurons for neutral
compared with prior favoring Tin; n � 38 neurons for neutral compared
with prior Tout). In addition, each cell was required to have at least five
trials in the particular condition of interest (i.e., direction and strength of
motion) to be included in the average for that condition. No cells were
entirely excluded based on that requirement. Statistical hypotheses con-
cerning the effects of coherence and priors on buildup rates were evalu-
ated using two-way ANOVA, with coherence and priors as the two
factors. We also included an interaction term to determine whether the
effect of priors on the buildup rate depended on motion strength. Below,
we describe more stringent statistical analyses of the full neurally derived
bias signals.

The remaining two analyses achieve a piecewise linear approximation
to the first derivative of the time-dependent bias signal. The first ap-
proach borrows from the analysis described in the preceding paragraph.
In particular, we estimated the slopes from individual trials, but we re-
stricted this to a 150 ms sliding window. The slope was estimated every 25
ms for all trials that contained the full sliding window for that particular
time point. For this analysis, we used the 0% coherence motion condi-
tion, because it afforded the longest RT. Similar trends were observed for
other motion strengths. We calculated the difference in the average slope
measured in this way between the neutral and unequal priors trials for the
same time points (see Fig. 7c,d). The difference provides a piecewise
approximation of the rate of change of the neural bias signal.

The second approach is based on the buildup rates calculated for each
motion strength (see Fig. 7a,b). Because the different motion strengths
are associated with different RTs, we can use this as leverage to estimate
the time dependence of the neural bias signal. For each motion strength,
we calculated the difference in the average buildup rate under neutral and
unequal priors using only neurons that were recorded in both condi-
tions. This was done separately for the unequal prior that favored the Tin

choice and the unequal prior that favored the Tout choice. This difference
in buildup rate caused by the prior at each motion strength can be viewed
as a linear approximation to the rate of change of the bias signal for the
RTs associated with that motion strength. To combine these linear ap-
proximations at each time during decision formation, we calculated a
weighted average based on the percentage of trials that had not yet ter-
minated at that time for each motion strength. This provides an approx-
imation of the rate of change of the neural bias signal. The integral of this
rate of change converts it into an estimate of the dynamic component of
the bias signal itself, in units of spike rate. Adding the static component
described above yields a neurally derived estimate of the full bias signal
(see Fig. 7e,f ).

We tested the statistical significance of this bias signal using a nonpara-
metric bootstrap analysis. We determined the sampling distribution of
the neurally derived bias signal by calculating it in the same way as de-
scribed above while resampling with replacement from the set of trials in
the neutral and unequal priors conditions. The number of resampled
trials was selected to match the number of trials used in each condition
for the non-bootstrap analysis. This procedure was repeated 1000 times

to generate an estimate of the sampling distribution. We could then test
whether the bias signal was significant based on examining the 95%
confidence interval (CI) determined from the bootstrap method. We
used the same analysis to confirm that the neurally derived bias signal
remained significant when controlling for a possible confound of sub-
jects’ choices. For this, we derived an estimate of the neural bias signal
from Tin and Tout choices separately and combined the estimated bias
signals from each. Using the same bootstrap procedure, we found that
this signal was also significant.

We also examined the effect of prior probability on the neural response
in the 200 ms before motion onset. In addition to determining the effect
on mean firing rate, we tested whether variations in the responses in this
epoch were correlated on a trial-by-trial basis with responses at the start
of decision formation (�200 ms after motion onset). For each neuron,
we standardized the responses for each prior probability condition in the
analyzed epochs. We then tested whether the standardized responses
between the two epochs were correlated, using Pearson’s correlation
coefficient.

To predict the change in behavior from the neurally derived bias signal
(see Fig. 8b), we used the k, A, and tnd parameters of the bounded accu-
mulation model fit to the behavior data obtained under neutral priors.
However, instead of using the dynamic bias signal of this model [�(t)],
we substituted the neurally derived bias signal. As described above, this
signal consists of the static component of the neural bias signal—that is,
the measured change in LIP excursion—and the dynamic component of
the neural bias signal derived from the change in buildup rates for each
motion strength. Because we have an estimated bias signal for both the
high and low unequal priors conditions, we averaged the magnitude (i.e.,
the absolute value) of these signals to make the behavioral prediction. To
map this to the model, we expressed the neurally derived bias signal as a
percentage change of the bound height. This was calculated using the
ratio of estimated neural bias signal to the measured LIP excursion in the
neutral priors condition. The measured LIP excursion is the difference in
firing rate at the start and end of the decision process— effectively, the
neural bound.

We used logistic regression to test for a possible trial-by-trial associa-
tion between the neural signatures of the dynamic bias signal and the
monkeys’ choices. The logistic model is as follows:

P� � �1 � exp����0 � �1C � �2sgn�L	 � �3z0 � �4zbu	
�
�1, (5)

where P� is the probability of a Tin choice, C is the signed motion
strength, L is the log of the prior odds [sgn( L) is its sign: �1, 0, or �1],
and the z terms are transformed neural responses computed from spike
rate at the beginning of decision formation (z0) and buildup rate during
decision formation (zbu). Because the buildup rate is affected by the
motion strength, we calculated its z-scores within signed motion strength
conditions in addition to within cell and prior probability condition. The
�i are fitted coefficients (maximum likelihood). Equation 5 permits tests
of whether variation in the neural parameters (z) exert an influence on
choice in the presence of the explanatory variables (C and L). We also
performed an expanded version of the regression that included an addi-
tional z-score term based on the firing rate in the 200 ms epoch before
motion onset.

Results
We trained two humans and four monkeys (Macaca mulatta)
to perform a reaction time version of a two-choice direction
discrimination task (Fig. 1). Task difficulty was controlled by
manipulating the percentage of coherently moving dots on a
trial-by-trial basis. Because a range of motion strengths were ran-
domly interleaved, subjects lacked knowledge of the reliability of
evidence they would receive on each trial. Subjects were in-
structed to determine the net direction of coherent motion and to
indicate a choice by making an eye movement to the correspond-
ing target. The motion stimulus remained visible until saccade
initiation. We manipulated the prior probability of the direc-
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tion of motion in blocks of trials (range,
200 –1000 trials per block).

We begin by describing the effects of
prior probability on subjects’ behavior.
Model fits to the subjects’ choices and RTs
support the theory that the influence of
prior probability depends on elapsed time
during decision formation. We then pres-
ent two additional tests of the predictions
of this theory. The first is that the effect of
prior probability depends on the speed–
accuracy regime that a subject applies.
The second is that the effect of prior prob-
ability on neurons involved in decision
making depends on elapsed time during
decision formation. We tested the first
prediction in human subjects by altering
their speed–accuracy tradeoff. We tested
the second prediction in rhesus monkeys
by measuring neural activity from area
LIP, an area shown previously to repre-
sent prior probability in a saccade task
(Platt and Glimcher, 1999) and to repre-
sent a DV for the motion discrimination
task (Shadlen and Newsome, 2001; Roit-
man and Shadlen, 2002; Hanks et al.,
2006; Gold and Shadlen, 2007; Kiani and
Shadlen, 2009; Rorie et al., 2010).

The behavioral effects of
prior probability
For all subjects and under all conditions, the strength and direc-
tion of stimulus motion governed the pattern of choices and RTs.
Here and throughout, we refer to the strength of motion as a
percentage of coherently moving dots and use the sign to indicate
direction. When the prior probability was equal for the two di-
rections of motion, stronger positive motion led to a higher pro-
portion of positive choices, whereas stronger negative motion led
to a lower proportion of positive choices (Fig. 2, filled symbols).
Stronger motion in either direction also led to faster RTs (Fig. 2,
filled symbols). These observations are consistent with previous
studies using this task in monkey and human subjects (Roitman
and Shadlen, 2002; Palmer et al., 2005; Cohen and Newsome,
2009).

When the prior probability favored one direction over the
other, there was a shift in the choice and RT functions (Fig. 2,
open symbols). By convention, we defined the positive direction
of motion to be the one favored by the prior. Thus, at a given
stimulus strength, subjects made more choices corresponding to
the positive direction of motion. In addition, RTs decreased for these
choices, and RTs increased for the choices corresponding to the neg-
ative direction of motion.

We applied a model of bounded evidence accumulation to
understand the pattern of choices and RT (Fig. 3a). This frame-
work explains a large range of psychophysical experiments in
both humans and monkeys (Laming, 1968; Link, 1992; Ratcliff
and Rouder, 1998; Gold and Shadlen, 2002; Ratcliff and Smith,
2004; Palmer et al., 2005; Bogacz et al., 2006; Kiani et al., 2008). In
the model, noisy sensory evidence is accumulated over time into
a DV that undergoes diffusion with drift until reaching an upper
or lower bound that terminates the process and establishes the
choice. The drift rate is proportional to motion strength, thus
biasing the diffusion toward the positive or negative bound. In

its simplest form, considered here, the model involves just
three parameters (see Materials and Methods). When the prior
probability was neutral—that is, equal for the two directions
of motion—this simple model explained the choices and mean
RTs (Fig. 2, solid curves), consistent with previous studies
(Mazurek et al., 2003; Palmer et al., 2005).

When the prior probability favors one direction, how does
this knowledge affect the decision process? As shown by the open
symbols in Figure 2, it causes a shift in the RT and choice func-
tions. Our goal is to understand why the shift has the particular
magnitude observed and what the pattern of changes in both the
RT and choice functions tells us about the mechanism. In partic-
ular, we aim to identify a signal that is added to the DV to cause
this bias in behavior. To develop our argument, we need to share
an intuition about why a bias signal added to the DV might
change as a function of decision time although the prior proba-
bility is fixed throughout the duration of the decision—indeed,
throughout the block of trials.

A dynamic model of bias is motivated by the fact that, under
neutral priors, accuracy decreases as a function of decision time
across the ensemble of stimuli presented (Fig. 4a,b). This is a
straightforward consequence of the longer RTs associated with
more difficult trials. As can be appreciated from the choice and
RT functions, weaker stimuli, which yield lower accuracy, also
result in longer RTs on average. Because this full relationship,
termed the time-dependent accuracy (TDA) function, describes
how accuracy changes as a function of decision time, it links
elapsed time during the course of a decision to the average reli-
ability of the sensory evidence gathered up to that point. When
the criterion or bound on the DV for choice commitment re-
mains unchanged between weaker and stronger stimuli, a differ-
ence in accuracy implies different levels of evidence reliability for
the same magnitude of the DV. In particular, it shows that the

Figure 1. Task design. The subjects discriminated between two possible directions of motion in dynamic random dot displays.
The subjects could respond at any time after onset of the random dot motion by making a saccadic eye movement to one of the
choice targets. The elapsed time from motion onset to saccade initiation is the reaction time. The proportion of coherently moving
random dots determines the motion strength and hence the reliability of the evidence bearing on the direction decision. This was
fixed for a given trial but drawn randomly across different trials from a set of motion strengths spanning a range of difficulties. In
different blocks of trials, the prior probability of the direction of motion was either neutral (50:50) or favored one of the directions
(80:20). For neural recordings in the monkeys, one choice target was placed in the response field of a single LIP neuron, and the
other target was placed in the opposite hemifield.
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same magnitude DV corresponds on average to a greater level of
evidence reliability at shorter elapsed decision times and a lower
level of evidence reliability at longer elapsed decision times (Kiani
and Shadlen, 2009). To exploit this temporal structure, subjects
could incorporate prior probability into the decision process as a
dynamic bias signal added to the DV that depends on the TDA
function (Fig. 3b).

We computed the dynamic bias signal as the probabilistic
combination of the prior probability with the odds of a correct
choice. These odds are implied by the TDA function for a given

elapsed decision time. The prior adds an amount to the DV that
corresponds to a fraction of the log odds of a correct choice at that
given decision time (see Materials and Methods). Although the-
oretically this alone should provide a prescription for the dy-
namic bias signal, we also introduced an additional parameter
that scales the prior probability to account for the possibility that
a subject fails to adequately acquire or incorporate this knowl-
edge perfectly. Later, we will discuss the use of this parameter. We
found that this model describes the pattern of behavior observed
when prior probability was manipulated (Fig. 2, dashed curves).

Figure 2. A DBS model explains choices and RTs when the prior probability of motion direction is altered. The top row shows the effect of motion strength and prior probability on choices. The
proportion of positive choices is plotted as a function of motion strength. The sign of motion strength connotes direction. For the blocks with unequal prior, the positive direction is the one favored
by the 80:20 or 20:80 prior (see Materials and Methods). Filled and open symbols depict the choice proportions for the neutral and unequal prior conditions, respectively. The bottom row shows the
effect of motion strength and prior probability on mean reaction time. Filled and open symbols follow the same convention as the choice functions. Error bars are SEM; many are smaller than the
symbols. For all the choice and RT functions, the solid and dashed curves show the DBS model fits to the data in the neutral and unequal priors conditions, respectively. The left two columns show
data from individual human subjects (2400 and 2785 trials, respectively). The right column shows aggregate data from four rhesus monkeys (36,687 trials).

Figure 3. Bounded accumulation of evidence model. Momentary evidence for one of the alternatives and against the other is distributed as a unit-variance Gaussian with mean proportional to
motion strength. This momentary evidence is accumulated over time. The accumulated evidence, termed the decision variable, resembles a random walk or drift-diffusion process. We have shown
a smoothed version of the DV for this schematic. The process terminates with a positive or negative choice when the DV reaches the upper or lower bound, respectively, at �A or �A. In the motion
discrimination task, we believe the momentary evidence is represented predominantly in MT and other motion-selective areas, whereas LIP carries a representation of the accumulated evidence that
forms the DV. a, Neutral priors. The DV begins midway between the bounds, and the DV is biased only by the momentary evidence, which induces a drift proportional to the motion coherence. b,
Unequal priors. Prior probability adds an additional bias to the DV. This added bias signal is not known. Here, it is depicted as an increasing function of decision time. In the example, it causes an earlier
decision for the positive direction.
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Moreover, for both human subjects, the model assigned a bias
estimate that was within 85% of the actual prior (� � 0.88 and
0.85 for subjects SK and LH, respectively); for all four monkeys,
the model assigned a level of bias within 75% of the actual prior
(mean � � 0.80 � 0.01).

We also performed fits to the data that allowed a bias signal to
be added as a static offset with the magnitude of that offset as a
free parameter. This is the standard assumption for the incorpo-
ration of prior probability in a decision (Edwards, 1965; Link and
Heath, 1975; Carpenter and Williams, 1995; Gold et al., 2008;
Ratcliff and McKoon, 2008; Simen et al., 2009). This static bias
signal model can be compared directly with our DBS model be-
cause the models have the same number of free parameters (see
Materials and Methods). The DBS model provided a better fit to
the data than the static bias signal model in all cases (BIC, Bayes
factor �10 8 for both human subjects and �10 6 for all four mon-
keys; see Materials and Methods). We take this as evidence in
favor of the idea that the brain exploits elapsed time to combine
probabilistic representations.

To some readers, it might seem counterintuitive to use a dy-
namic signal to represent a stationary prior. One possibility we
have yet to consider is that a stationary signal representing prior
probability is added to another dynamic signal that has nothing
to do with bias. For example, it has been suggested that the ter-
minating bounds are themselves dynamic, collapsing symmetri-
cally, to cut short less informative trials (Ditterich, 2006). Such
collapsing bounds [equivalent to a time-dependent urgency sig-
nal added to competing accumulators in (Churchland et al.,
2008)] would not induce a choice bias, but perhaps it would allow

a static bias signal to explain the data. We therefore compared our
DBS model with one with a static bias signal. Both models were
allowed two additional degrees of freedom to incorporate sym-
metric collapsing bounds (see Materials and Methods). We
found that, when bounds were allowed to collapse, our DBS
model remained superior to the static bias signal model for both
the humans and the monkeys (BIC, Bayes factors �10 6 in all
cases; see Materials and Methods).

Based on these observations, we conclude that subjects were
aware of the change of prior probability and that they incorpo-
rated this information into the decision by adding (or subtract-
ing) a time-varying quantity to the decision variable. The added
signal appears to be indexed to the log odds of a correct choice as
a function of decision time under neutral priors.

A psychophysical test: change of the speed–accuracy regime
Because our DBS model depends critically on the relationship
between evidence reliability and elapsed decision time that is
implied by the TDA function, altering this relationship provides a
strong test of the theory. This was accomplished by instructing
our human subjects to perform the direction discrimination task
in a faster speed–accuracy regime. After several practice sessions
using neutral priors, both subjects achieved a new set point in
both speed and accuracy (Fig. 5, filled symbols). Decisions were
both faster and less accurate, on average, compared with the
slower regime. The reduction in accuracy suggests that decisions
made under the speed instruction were based on less accumu-
lated evidence. Indeed, this tradeoff between speed and accu-
racy was consistent with a change in the decision bound
combined with the same model parameters that were derived
from the slower speed–accuracy regime (Fig. 5, solid curves),
consistent with previous studies (Reddi et al., 2003; Palmer et al.,
2005). Importantly, trials with matching RTs in the two speed–
accuracy regimes were associated with different levels of accu-
racy, as shown by the TDA functions in Figure 4 (both under
neutral priors). The change in the TDA reflects a combination of

Figure 4. TDA functions. The probability of a correct choice is plotted as a function of reaction
time for the neutral priors condition. Graphs are from two human subjects who were tested in
two different speed–accuracy regimes. The solid and dashed traces show the higher accuracy
and faster speed regimes, respectively. Faster speed led to reduced accuracy at all decision times
and a change in the shape of the TDA functions.

Figure 5. The DBS model explains the effects of prior probability in different speed–accuracy
regimes. Symbols show the observed choice proportions and mean RT in a faster speed regime
for two human subjects (2400 and 3125 trials). Data from blocks with neutral and unequal priors
are shown by the filled and open symbols, respectively. Same plotting conventions as Figure 2.
Solid curves are model fits to the data in the neutral prior probability condition. All parameters
except the decision bound were fixed to the values used to fit data in the higher-accuracy
regime. So, there is just one degree of freedom in the fit. Dashed curves are predicted choice and
accuracy functions for the unequal prior condition (data shown by open symbols). These theo-
retical predictions are obtained from the DBS model with parameters established by fits to the
data from the high-accuracy regime and the neutral priors data from the faster-speed regime.
For details, see Results.
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factors: a change in the level of accumulated evidence required to
terminate decisions and the different mixture of stimulus
strengths contributing to each RT in the two regimes. The new
TDA, ascertained under neutral priors, leads to a new prescrip-
tion for incorporation of unequal priors in the decision process.

According to our hypothesis, the new relationship between
elapsed decision time and accuracy ought to affect the dynamic
incorporation of prior information into the decision process. The
change in decision bound invoked to explain the neutral priors
data in the high-speed regime is symmetric for the two choices, so
it causes no bias itself. However, it induces a change in the map-
ping between accuracy and the DV (i.e., accumulated evidence)
as a function of elapsed time. In the high-speed regime, the prior
should exert more leverage on the decision because the accumu-
lated evidence is less reliable at all times. The prior does not
change, of course. It is the evidence, in this new regime, that
supports a smaller probability of a correct answer. The TDA func-
tion thus establishes the shape and magnitude of the dynamic
bias signal that should be added to the accumulated evidence as a
function of elapsed decision time. This leads to a quantitative
prediction for choice and RT under unequal priors (Fig. 5, dashed
curves).

The observed pattern of choices and RT for the two human
observers supports these predictions. Similar to the other speed–
accuracy regime, there was a shift in the choice and RT functions
when the prior probability favored the positive direction of mo-
tion (Fig. 5, open symbols). However, the effect of the prior on
choices was greater in the high-speed regime. These differences
were statistically reliable for both subjects (Table 1). Most impor-
tantly for our theory, the magnitude and pattern of changes in
choice proportions and RTs conformed reasonably well to the
predictions of the theory (subject 1, R 2 � 0.80; subject 2, R 2 �
0.78). Note that the dashed curves in Figure 5 are not fits to the
data (open symbols); instead, the prediction comes entirely from
model parameters determined by the high-accuracy fits and the
bound change associated with the neutral priors data for the
high-speed regime.

Although we have already compared our DBS model with a
static bias signal model for the high-accuracy regime, it is also
illuminating to perform this comparison using data from the
high-speed regime. It is important to note that the standard static
bias signal model does not provide a prescription for how much
to change the bias offset in different speed–accuracy regimes. So,
from the start it does not have the same explanatory power as our
DBS model. We therefore compared models by allowing each to
fit the data from the high-speed regime with all four parameters
in each model free. This is the same analysis we described above
for the high-accuracy data. For both human subjects, our DBS
model provided a better fit to the data than a static bias signal
model (BIC, Bayes factors �10 15; see Materials and Methods).
Following similar logic as described for the high-accuracy fits, we
also compared models with symmetric (unbiased) time-
dependent bound changes. Again, our DBS model remained su-
perior to a static bias signal model (BIC, Bayes factors �10 15).

Measurement of the bias signal in neurons
A neural correlate of a DV has been demonstrated previously in
LIP of monkeys trained to indicate their direction decision with a
saccadic eye movement (Roitman and Shadlen, 2002). We there-
fore tried to discern the changes in this neural correlate when the
prior probability favored one of the directions over the other. We
recorded from 52 LIP neurons in two of the monkeys whose
behavioral results were described above.

On the blocks of trials using the neutral prior, we observed the
pattern of changes in LIP firing rate similar to previous reports
(Fig. 6a) (Roitman and Shadlen, 2002; Churchland et al., 2008).
Just after motion onset, there was a dip in activity, followed by a
rise or fall in the responses that reflected the direction and
strength of motion as well as the decision for Tin or Tout. This
decision-related activity is apparent from �200 ms after motion
onset. As shown previously, this is the latency from a change in
stimulus motion to a change in the response of LIP neurons
whose RF overlaps the choice target (Roitman and Shadlen, 2002;
Huk and Shadlen, 2005; Kiani et al., 2008). It is much longer than
the latency of a simple visual response to a light in the RF (Bisley

Table 1. Behavioral bias measured for the choice behavior of both human subjects
for each speed–accuracy regime

Subject

High-accuracy regime Fast-speed regime

Bias CI Bias CI

SK 5.1% coh 3.1– 6.3% 10.8% coh 9.1–12.6%
LH 4.1% coh 3.1–5.0% 8.3% coh 6.9 –9.8%

The bias was in favor of the choice associated with 80% prior probability.
a

b

c

Figure 6. A neural correlate of a decision variable in LIP. Average firing rates of LIP neurons
are shown as a function of time during decisions for neutral (a) and unequal (b, c) priors. Each
neuron was recorded in the neutral and one or both of the unequal priors conditions. One of the
choice targets (Tin) was in the response field of the neuron, and the direction of coherent motion
either supported this or the opposite choice (Tout). On the left side of the graphs, response
averages are aligned to the onset of random dot motion. On the right side of the graphs,
response averages are aligned to saccade initiation. Trials are grouped by motion strength
(color) and direction (solid and dashed for motion toward Tin and Tout, respectively) with only
correct choices contributing to these averages. Response averages are calculated in 10 ms bins.
For all conditions, motion evidence (strength and direction) affects the response averages from
� 210 ms after motion onset until �60 ms before saccade initiation. This defines the epoch in
which decision formation is reflected in the LIP firing rate. a, Neutral priors block. b, Prior
probability favors the direction rewarded by choosing Tin (80:20 prior). c, Prior probability favors
the direction rewarded by choosing Tout (20:80 prior).
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et al., 2004). We are interested in the neural responses accompa-
nying evidence accumulation, beginning at this time and ending
�60 ms before saccade initiation. For Tin choices, this decision
end point is marked by a common level of firing rate, regardless of
motion strength and RT (Roitman and Shadlen, 2002). These
features, which are consistent with the bounded accumulation
mechanism, were also apparent in blocks of trials using unequal
priors (Fig. 6b).

To ascertain a bias signal from the neural recordings, we com-
pared responses on the neutral and unequal priors blocks. We
sought evidence for two aspects of a bias signal: (1) a change in the
average excursion of firing rate from beginning to end of the
decision and (2) a change in buildup rates during decision for-
mation. Note that a change in excursion is mathematically equiv-
alent to a starting point offset and also to a static component of
the bias signal. The higher prior caused a subtle decrease of 3.7
[95% CI, 0.1–7.3 spikes per second (sp/s)] in the excursion,
which was borderline significant ( p � 0.05). Based on the excur-
sion of LIP firing rate measured in the neutral prior condition,
this static change is equivalent to a reduction of that excursion by
�9%. The lower prior caused a larger but less reliable increase in
the excursion (5.6 sp/s; 95% CI, �1.6 to 12.8 sp/s; p � 0.13).

Interestingly, the level of activity at the beginning of the deci-
sion appears to be established in part by the level of firing rate
before the motion stimulus was shown. The firing rate in the
epoch 200 ms preceding motion was 4.6 � 1.1 sp/s greater when
the prior favored Tin than when it favored Tout ( p � 0.01), al-
though only the latter was significantly different from the firing
rate under neutral priors ( p � 0.01 for neutral prior vs prior
favoring Tout; p � 0.42 for neutral prior vs prior favoring Tin). In
addition, variation in the firing rate in this epoch was correlated
on a trial-to-trial basis with the firing rate at the beginning of
decision formation (r � 0.26; p � 0.001; data not shown; see
Materials and Methods). This is consistent with previous findings
that have demonstrated a neural correlate of prior probability in
LIP when a monkey is simply presented two choice targets, before
a decision is formed (Platt and Glimcher, 1999).

More importantly for ascertaining a neural signature of the
dynamic bias signal predicted by our theory, we also examined
whether there was a change in the rate of response buildup in this
epoch. This is the slope of the coherence- and time-dependent
ramping activity evident in Figure 6. A change in buildup rate
would effectively implement a dynamic component of the bias
signal because the influence of the prior on spike rate would
change as time elapses during the trial.

The higher prior caused an increase in the buildup rate (Fig.
7a) ( p � 0.01, ANOVA). This implies that the change in firing
rate attributable to the prior is not constant but increases as a
function of time; in other words, there is an increasing bias signal.
The lower prior (i.e., bias against the Tin direction) caused a
decrease in the buildup rate (Fig. 7b) ( p � 0.01), although the
effect is not as pronounced as for the high prior. This regression-
based analysis of buildup rates establishes a crude neural correlate
of prior probability, without recourse to the theory we are ad-
vancing. We note, however, that the change in buildup rate
caused by the prior was more prominent at lower motion
strengths ( p � 0.01). This observation is consistent with a time-
dependent increase in the magnitude of the bias signal because
the decisions with longer duration tend to be those made on the
lower coherence trials.

To achieve a better sense of the time dependence of this effect,
we used a sliding window to estimate the difference in buildup
rates between neutral and unequal priors trials as a function of

time during the trial (see Materials and Methods). We focused on
the 0% coherence motion strength for this analysis because these
trials have the longest decision times. The results of this analysis
are depicted in Figure 7, c and d. When the prior favored Tin, the
difference in buildup rates was more prominent as time elapsed
during decision formation. This indicates that the bias signal is
not just increasing but accelerating as a function of elapsed deci-
sion time. When the prior favored Tout, as expected the difference
in buildup rates was of opposite sign, and the magnitude of the
difference in buildup rates also increased at later times during the

a b

c d

e f

Figure 7. LIP responses exhibit a dynamic bias signal when prior probability is unequal. a,
Effect of motion strength and prior probability in favor of Tin on buildup rates. The buildup rate
is the slope of the firing rate versus time function from the time corresponding to the start of
motion integration (see Materials and Methods). Positive motion strengths correspond to mo-
tion in the Tin direction favored by the prior (i.e., toward). For each neuron, the buildup rate was
calculated at each motion strength, direction, and prior condition. The points are averages�SE
across the population of neurons tested in both blocks (n � 37 neurons). Black and red symbols
are for neutral and 80:20 prior, respectively. The prior caused an increase in the buildup rates,
mainly for the weaker motion strengths. b, Effect of motion strength and prior probability in
favor of Tout on buildup rates. Positive motion strengths correspond to motion in the direction
favored by the prior (i.e., toward Tout). Same conventions as in a (n � 38 neurons studied in
both blocks). The prior caused a decrease in the buildup rates, mainly for the weaker motion
strengths. The strongest coherences (51.2%) are not shown in a and b; there were no reliable
effects of priors on buildup rates at that motion strength. c, d, Time-dependent effect of prior
probability on buildup rate. This analysis uses only the trials with 0% coherence motion. The
buildup rate was estimated in a sliding time window (width, 150 ms; time on abscissa indicated
window midpoint). The difference in buildup rates for neutral and unequal prior are shown as a
function of time (window starting points separated by 25 ms). The graph begins at the start of
the motion-dependent buildup, and the graph stops when there are less than half of trials
remaining in the averages. c, When the prior favored Tin, there was an increase in the buildup
rate as a function of time compared with the neutral prior. d, When the prior favored Tout, there
was a decrease in the buildup rate as a function of time compared with the neutral prior. e, f,
Neurally derived estimate of the bias signal. This is based on a weighted average of the effect of
priors on the buildup rates for each motion strength, as shown in a and b. The weight of each
motion strength is based on the percentage of trials that have not yet terminated, as a function
of time. The integral of this piecewise rate of change function provides an estimate of the
dynamic component of the neural bias signal. The neurally derived bias signal (solid curve) is the
sum of this dynamic component and a static component estimated from the change in LIP
excursion (see Materials and Methods). The thin gray line shows a linear bias signal extrapo-
lated from the unweighted average of the effect of priors on the buildup rates for each motion
strength. The dashed lines show the boundaries of the 95% CI on the neurally derived bias signal
(bootstrap). e, When the prior favored Tin, the estimated bias signal is positive and increasing as
a function of time. f, When the prior favored Tout, the estimated bias signal is negative and
decreasing.
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trial. This analysis confirms that the prior probability adds (or
subtracts) a time-dependent signal to the spike rate of LIP, and it
provides a direct estimate of the shape of this signal.

We used a second technique to derive the dynamic compo-
nent of the bias signal using the responses at all motion strengths.
The difference in buildup rate caused by the prior at each motion
strength is a linear approximation to the rate of change of the bias
signal. Because the different motion strengths are associated with
different RTs, at each time we calculated an “average” of these
linear approximations, weighting them by the percentage of trials
that had not yet terminated for each coherence (see Materials and
Methods). This provides a piecewise function for the rate of
change of the bias signal. To derive the bias signal, one simply
integrates the piecewise rate of change function and adds the static
offset component derived from the analysis of excursions (above; see
Materials and Methods). This yields the neurally derived dynamic
bias signal shown in Figures 7, e and f. To test whether this bias signal
was significant, we used a bootstrap procedure to establish confi-
dence intervals for the full bias signal and its dynamic component
alone. Both were significant at all times ( p � 0.05). A similar analysis
also showed that the neurally derived bias signal remains significant
when restricting the analysis to trials ending in the same saccadic
choice (see Materials and Methods; p � 0.05).

The neurally derived bias signal resembles the bias signals
proposed on theoretical grounds to explain the shifts of choice
and RT functions. Both increase with elapsed decision time (Fig.
8a). A more informative analysis is to incorporate the neurally
derived bias signal into the bounded diffusion model that was
used to explain the monkeys’ choices and RTs. To achieve this, we
expressed the neural bias signal as a fraction of the excursion to
bound under neutral priors. We then attempted to predict the
behavior under non-neutral priors using this neurally derived
bias signal. This is the same strategy we used to make predictions
for our human subjects in the fast speed–accuracy regime. We
derive a model for the bounds and decision variable under neu-
tral priors and attempt to predict the behavior by adding a bias
signal. Here, we use the neurally derived bias signal instead of one
derived from the TDA function. As shown in Figure 8b, the shift in
choice and RT predicted from the neurally derived bias signal are
in reasonable agreement with the monkey’s behavior (R 2 �

0.87). The dashed curves corresponding
to unequal priors data are predictions, not
fits. Only data from neutral priors were
used for the fit (solid curves).

As a final test of our idea, we examined
whether the neurally derived bias signal
influenced the monkey’s choices on a
trial-by-trial basis. To assess this, we used
single-trial measures of the firing rate at
the beginning of decision formation and
the rate of response buildup during deci-
sion formation. For both measures, we
standardized responses for each neuron to
remove the effect of experimentally con-
trolled variables: prior probability, stimu-
lus motion strength, and direction (see
Materials and Methods). What remains
are the residual variations in initial firing
rate (z0) and the buildup rate (zbu) during
decision formation expressed in units of
SD. Using logistic regression, we deter-
mined whether trial-by-trial variation in
these measures alters the log odds of a

Tin choice beyond the explanatory power of the stimulus and
prior probability (Eq. 3). We found that both the initial firing
rate and buildup rate during decision formation had signifi-
cant leverage on choices (z0, �3 � 0.30, p � 0.001; zbu, �4 �
0.97, p � 0.001).

Because other studies have shown a neural correlate of choice
bias in LIP before decision formation (Seidemann, 1998; Platt
and Glimcher, 1999; Shadlen and Newsome, 2001; but see Gold et
al., 2008), we wanted to test whether variability in the firing rate
before motion onset had additional explanatory power on
choices. We therefore included an additional term, �5zpre, in the
logistic regression (Eq. 5), where zpre is the standardized response
in the 200 ms epoch before motion onset. We found that this
parameter did not have significant leverage on choices (�5 �
�0.02, p � 0.51), whereas the effects of z0 and zbu did not change
appreciably (�3 � 0.31, �4 � 0.97, p � 0.001 for both). This
suggests that any impact of the pre-motion responses on choices
is mediated via the dynamic bias signal.

Discussion
We have found that human and nonhuman primates incorporate
information about prior probability into a perceptual decision by
adding a dynamic bias signal to the DV. By dynamic, we mean
that the bias signal offsets the DV by a different amount as a
function of time. This seems peculiar at first blush because prior
probability is a constant function of time. The strategy is sensible,
however, when the decision time depends on the reliability of the
evidence and the DV is not in units of probability. In this case, the
mapping between the DV and probability changes with time. A
dynamic bias signal allows a decision maker to assign appropri-
ately greater leverage to high-quality evidence while letting the
prior exert more leverage on the decision when evidence is less
reliable.

We found that a bounded accumulation model that incorpo-
rates this strategy describes the effect of prior probability on
choice and RT in humans and monkeys. The idea provides a
principled theory for how prior probability should affect choices
and RTs when the mapping between decision time and the reli-
ability of evidence is altered. We found that these predictions
were satisfied when human subjects were instructed to change

a b

Figure 8. The neurally derived bias signal predicts the effect of the unequal prior. a, Comparison of neurally derived bias signal
with the one predicted from our DBS model. Both signals are plotted as a fraction of the bound height. The signals are of
comparable magnitude but differ to some degree in shape. b, Predicted choice and RT functions derived from the neurally derived
bias signal. The symbols show the same choice proportions and RTs for the monkeys as shown in Figure 2 (same conventions). The
solid traces are fits of the bounded accumulation model to the data obtained in the neutral prior probability condition. Behavioral
predictions for the unequal prior probability condition were made by substituting the neurally derived bias signal for the model-
derived bias signal in the bounded accumulation framework (see Materials and Methods). These predictions are shown by the
dashed curves.
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their speed–accuracy set point. Finally, we found that a neural
correlate of a dynamic bias signal is added to LIP responses in
monkeys performing the task. The source of this signal is un-
known, but it may be related to other time-dependent signals
reported in LIP associated with timing and urgency (Leon and
Shadlen, 2000; Janssen and Shadlen, 2005; Maimon and Assad,
2006; Churchland et al., 2008). However, unlike these dynamical
signals, what is added to one accumulator (e.g., for rightward
choices) must be subtracted from the other.

Our theory amends the dominant view that prior probability
is incorporated into the decision process as a static change of
either the DV or the decision bound (Edwards, 1965; Link and
Heath, 1975; Carpenter and Williams, 1995; Platt and Glimcher,
1999; Gold et al., 2008; Ratcliff and McKoon, 2008; Simen et al.,
2009). An important inspiration for a static bias signal comes
from the sequential probability ratio test (SPRT) (Wald, 1947;
Wald and Wolfowitz, 1947). In SPRT, a bound on the accumu-
lated LLR as represented by the DV entails that the accuracy is
constant as a function of decision time. Thus, the TDA function is
flat. In that situation, the prior should exert the same influence on
the DV regardless of decision time. This is a special case of the
theory we propose here, and there is experimental support for it
in decision tasks similar to ours using a fixed motion strength for
all trials (Simen et al., 2009).

An advantage of our proposal is that probability is implicitly
represented in a learned association between brain state and be-
havioral consequence. Unlike SPRT, in which the DV is in units
of LLR, the DV of the brain is naturally expressed in units of spike
rate, which arise from computations on quantities such as mo-
tion energy (Adelson and Bergen, 1985; Born and Bradley, 2005).
We are suggesting that the brain forms an association between the
state of the DV at a given time and the probability that it will lead
to a correct choice. Absent information about reliability itself, the
brain can exploit knowledge learned by the association of its own
DV and the probability of a correct decision.

Theses are the conditions that apply in our experiments and in
many other situations in which a subject makes a decision based
on a stream of evidence that is presumed to arise from one source
but the reliability of the source is unknown. If the subject were to
know the reliability of that stream of evidence, then the decision
process could exploit this information to weight the prior appro-
priately. For example, if the subject knows she will be shown a 0%
coherence motion stimulus, an appropriate strategy is to choose
the direction favored by the prior and to answer immediately.

In contrast, our strategy is useful when the reliability is un-
known, what might be called uncertainty about uncertainty.
When subjects face a stream of evidence with uncertain reliabil-
ity, a decision rule induces an association between the state of the
DV at a given decision time and the probability of a correct
choice. In that case, elapsed time confers information about the
reliability of the evidence (Kiani and Shadlen, 2009). A dynamic
bias signal may be viewed as a method to marginalize over the
distribution of evidence reliability at a given stopping time for a
bounded accumulation process. Thus, our theory is consistent
with a Bayesian approach under the idea that the subject’s knowl-
edge of evidence reliability comes from elapsed decision time.

The method by which the brain determines the association
between the state of the DV and the probability of a correct choice
remains an open question. Although we propose our idea as a
step toward a normative theory, it is perhaps more appropriate to
view it as a principled heuristic. Our specific proposal, as pre-
sented above, assumes that the association is formed with the
expected performance for a given elapsed decision time under

neutral priors. However, the addition of a bias signal could po-
tentially affect this computation as well. For example, prior
knowledge might promote the adoption of a different speed re-
gime or the desire for a different TDA than the one that results
from our proposal. Our theory does not yield a full normative
solution to this problem. Nevertheless, by incorporating the new
information about prior probability into an existing, acceptable
framework that permits calibration of that information, our the-
ory provides a sensible and straightforward approach.

This theory is an advance beyond less principled heuristics.
Within the context of bounded accumulation or drift-diffusion
mechanisms, one might consider whether a bias changes the
starting point or drift rate of the process. Although a starting
point offset provides the normative solution when the conversion
of the DV to units of probability remains constant for the entire
trial duration, this solution is not appropriate when accuracy is
time dependent. Thus, it is not surprising that starting point
offset is inconsistent with the pattern of choice and RT in our
subjects. A change in drift rate introduces a bias signal that
changes linearly with time (Ashby, 1983; Diederich and Buse-
meyer, 2006). Such an increase in drift rate is a reasonable ap-
proximation to the dynamic component of the bias signal we
propose. However, our proposal provides a principled rationale
for how much influence the prior has on the DV. Unlike the other
proposals, which identify parameters to fit, our theory specifies
the magnitude of the change in behavioral bias in the face of a
prior and predicts the change in this magnitude under different
conditions, such as a change in speed–accuracy regime. This bra-
vado is mitigated somewhat by our need to fit the subjects’ inter-
nal estimate of the prior. However, it is not surprising that
subjects should underestimate the prior (� � 1), because there is
good reason to bias a prior toward neutral [a prior on prior
probability (Good, 1983)]. Whatever the reason, it appears that
our human subjects held the same biased prior across different
speed–accuracy regimes.

The idea we propose could be extended to more complex
decisions and to other changes in reward structure affecting costs
and risk. The central idea is that the state of a DV at the time of
decision termination is associated with a set of benchmark out-
comes. If a neural firing rate (e.g., in LIP) represents a DV, then
the association specifies the scaling of firing rate to the units of
this benchmark, as a function of decision time. In the formula-
tion pursued here, the benchmark outcome is the odds of a cor-
rect choice when the DV is at the termination bound, so the
scaling is from the DV relative to a bound into units of log odds.
The benchmark could also include the incentives and costs asso-
ciated with different choices. Thus, asymmetric rewards should
also give rise to a dynamic bias signal when there is uncertainty
about the reliability of the evidence.

Recent studies examined the effects of just such a manipula-
tion using a fixed stimulus duration version of the motion dis-
crimination task in monkeys (Feng et al., 2009). In this fixed
duration design, behavioral data cannot distinguish static bias
offsets from dynamic bias signals. However, recordings from LIP
provided evidence for a static offset without providing evidence
for a dynamic bias signal (Rorie et al., 2010). We think that per-
forming the same manipulation with an RT version of the task
may allow a more sensitive test of our theory.

There is ample reason to believe that elapsed time might in-
fluence the computations that underlie decision processes. Pro-
longed deliberation comes with the cost of time. To mitigate this
cost, time-dependent signals that implement “decision urgency”
have been suggested as a way to impose a soft deadline for decid-
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ing (Churchland et al., 2008; Cisek et al., 2009). In addition to
being used to reign in overextended deliberation, elapsed time
also seems to play a role in evaluation of sensory evidence. Sub-
jects have been found to use a combination of accumulated evi-
dence and viewing time to determine their level of confidence;
that is, the same amount of accumulated evidence seems to afford
different levels of confidence depending on the time taken to
accumulate that evidence (Kiani and Shadlen, 2009). Based on
our results, it appears that a similar strategy is used when com-
bining accumulated evidence with prior information. This sup-
ports the more general conclusion that the brain can exploit
elapsed decision time to calibrate neural representations of prob-
abilistic quantities. Thus, an inherent malleability exists in the
mapping between spike rates and probabilities, and this mallea-
bility depends, at least partly, on time.
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