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Abstract

The aim of statistical decision theories is to understand how evidence, prior knowledge, 
and values lead an organism to commit to one of a number of alternatives. Two main 
statistical decision theories, signal detection theory and sequential analysis, assert that 
decision makers obtain evidence—often from the senses—that is corrupted by noise 
and weigh this evidence alongside bias and value to select the best choice. Signal detec-
tion theory has been the dominant conceptual framework for perceptual decisions near 
threshold. Sequential analysis extends this framework by incorporating time and intro-
ducing a rule for terminating the decision process. This extension allows the trade-off 
between decision speed and accuracy to be studied, and invites us to consider decision 
rules as policies on a stream of evidence acquired in time. In light of these theories, 
simple perceptual decisions, which can be studied in the neurophysiology laboratory, 
allow principles that apply to more complex decisions to be exposed.

The goal of this chapter is to “go beyond the data” to postulate a number of unifying 
principles of complex decisions based on our fi ndings with simple decisions. We make 
speculative points and argue positions that should be viewed as controversial and pro-
vocative. In many places, a viewpoint will merely be sketched without going into much 
detail and without ample consideration of alternatives, except by way of contrast when 
necessary to make a point. The aim is not to convince but to pique interest.

The chapter is divided into two main sections. The fi rst suggests that an intention-
based framework for decision making extends beyond simple perceptual decisions to a 
broad variety of more complex situations. The second, which is a logical extension of 
the fi rst, poses a challenge to Bayesian inference as the dominant mathematical founda-
tion of decision making.
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A Common Framework

Progress in understanding the neurobiology of decision making stems from 
simple experimental paradigms. Several pivotal studies (reviewed in Gold and 
Shadlen 2007) have emphasized tasks in which decision making reduces to a 
choice among actions. These studies have exploited the fact that when a deci-
sion bears on a particular act, the steps toward formation of the decision (i.e., 
the decision process) affect the neurons in the higher-level association areas 
of the brain that are identifi ed with motor planning. Here, we suggest that the 
success of this enterprise is a consequence of a principle of brain organization, 
and we explore some of the extensions of these principles.

Intentional Organization

Information fl ow in the brain is effectively channeled into structures that are 
organized in terms of behavior. To a visual neuroscientist, it might seem that 
the point of visual processing is to elaborate more complex features and scene 
properties, as well as to generalize over invariants for purposes of object clas-
sifi cation and recognition. Although the initial stages of visual processing can 
be considered automatic and oriented toward extraction of features, we think 
it is mistaken to assume that the goal of visual processing is the automatic 
extraction of such features. Viewed from the perspective of decision making, 
information in the sensory cortex merely supplies evidence bearing on propo-
sitions. The way this evidence is organized—the transformation of information 
and the functional architecture in support of maps—facilitates and constrains 
the accessibility of this evidence. We would be mistaken, however, to identify 
the representation of the sensory data as giving rise directly to perception ( He 
et al. 1996;  Naccache et al. 2002;  Jiang et al. 2006). Perception, like decision 
making, arises by asking and answering questions that bear on specifi c propo-
sitions. Importantly, evidence-gathering mechanisms are organized in the brain 
in association with structures that control the body. This constrains the pos-
sible meanings of information and connects the analysis of vision to embod-
ied perception, affordances, and intentionality ( Gibson 1950;  Merleau-Ponty 
1962;  Churchland et al. 1994;  Rizzolatti et al. 1997;  Clark 1997;  O’Regan and 
 Noë 2001;  Cisek 2007).

Lessons from the Intraparietal Sulcus

Let us consider the organization of the posterior parietal lobe of the 
rhesus monkey.

Sensory modality specifi c. The posterior/lateral bank of the intraparietal sul-
cus seems to receive predominantly visual input. The regions anterior and me-
dial to it receive somatosensory and proprioceptive input. The more anterior 
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parts of the sulcus (toward the temporal lobe) appear to receive auditory input 
( Poremba et al. 2003). Based on connectivity with frontal structures and input 
from sensory structures, the emerging picture is a regional organization (cm 
scale) respecting sensory modality and an area organization (mm scale) respect-
ing modes of motor function ( Petrides and  Pandya 1984;  Cavada and  Gold-
man-Rakic 1989;  Lewis and  Van Essen 2000a, b;  Colby and  Goldberg 1999).

Gnosis versus praxis. Neurologists recognize that loss of parietal function 
leads to a loss of appreciation for the signifi cance of contralateral space. The 
frame of reference for the designation “contralateral” can be the visual fi eld, 
body, or an external landmark such as an object. Importantly, it is the knowl-
edge of space (gnosis), not the ability to move around in the space (praxis), that 
is affected, at least at a gross level ( Critchley 1953).

At a fi ner level of resolution (e.g., millimeters), it is becoming clear that 
the areas comprising this part of the brain have more specifi c associations with 
motor regions. The lateral intraparietal area (LIP), for example, is connected 
to structures involved in moving the gaze and therefore probably also in shift-
ing spatial attention. Neurons in this area seem to be concerned with places in 
space, especially when the place contains a potential target of an eye move-
ment. The parietal reach region (PRR), which is only millimeters away from 
LIP, is connected to frontal lobe structures involved in reaching movements. 
Its neurons respond to places in extrapersonal space, especially when the place 
contains a potential target of a reach. The anterior intraparietal region (AIP) 
connects to frontal lobe structures that control the shape of the hand. Neurons 
in AIP respond to the shapes of objects. Although there is heterogeneity of neu-
ron response preferences in each of these areas, there is an emerging support 
for the concept that these areas associate visual information with particular 
modes of utilizing that information (Anderson and  Buneo 2002;  Scherberger 
and  Andersen 2007; Scherberger et al. 2003; cf.  Levy et al. 2007).

The three parietal areas—LIP, PRR and AIP—are not motor in the tradi-
tional sense: their activity does not cause an immediate movement of a body 
part, nor do they encode movement parameters such as force, velocity, or ten-
sion. Instead, we think they allow us to know that something is present as 
well as an intended purpose. Their activity might be viewed as an interroga-
tion or query of the evidence in the visual cortex. They effectively construe 
this information as evidence for (or against) embodied hypotheses and propo-
sitions—statements about what the body might do to its world. We refer to 
this as an “intentional architecture” for information fl ow. It does not provide 
answers to complex problems in perception (e.g., constancies, segmentation, 
binding of parts of objects into wholes) but it does tell us where in the brain we 
might look for neural correlates of these capacities, and it adds constraints to 
problems in perception that could pave the way to progress (e.g., Shadlen and 
 Movshon 1999).
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We know far less about regions of the parietal lobe that receive predomi-
nantly auditory information ( Poremba et al. 2003). It seems reasonable to pre-
dict that further research will expose the organization of the parietal lobe as 
being in the service of gathering specifi c forms of information (i.e., particular 
sensory submodalities) to guide potential action.

Challenges and Extensions to Intentional Architecture

When a decision about a state of the world necessitates a particular action, it 
may not be surprising to some that a slightly elaborated sensorimotor integra-
tion area, like LIP, might represent the evolving decision variable. However, 
we should be surprised by this! After all, we do not feel as if we make deci-
sions with our eye movements but instead make decisions about the stimulus 
and then communicate the outcome of the decision in whatever way we are 
instructed. We decide that motion is rightward, for example, and then com-
municate this by making an eye movement, pushing a button, or making a 
verbal response.

If decisions are made by neurons that are connected to specifi c action mo-
dalities, then there are at least three challenges: First, if a decision can be made 
by eye, hand, or verbal response, what prevents these systems from reaching 
different decisions? Second, the design seems wasteful: why not make the deci-
sion in some central spot and allow a “central executive” to deliver the answer 
to whatever motor modality is used to communicate the outcome? Third, how 
do we make a decision if the mode of response is not specifi ed ahead of time?

Agreement is natural. In many instances, decisions are determined by the 
evidence from the environment or the noisy evidence in sensory maps. If dif-
ferent effector systems examine the same evidence, they will naturally reach 
the same conclusion. This statement rests on an assumption about the source 
of variability in the decision process, an assumption that is likely to hold when 
accuracy is valued. Recall that for diffi cult perceptual decisions, the variations 
in choice rendered from trial to trial are explained by considering the signal 
and noise affecting the decision. As long as the noise is in the stimulus or in 
the sensory representation, it will explain the choice. Therefore, even if several 
decision makers work in parallel, as long as they access the same evidence, 
they will reach the same decision. This is because both the signal and the noise 
that determine the outcome of a single decision can be traced to the sensory 
evidence. If eye, hand, and language access the same evidence, they reach the 
same conclusion, correct or incorrect.

This is actually a quantitative argument. It boils down to an analysis of the 
noise contributions in brain regions that represent momentary evidence and 
areas that represent the decision variable. When accuracy is a desired goal, evi-
dence is allowed to accumulate before the decision is terminated with a choice. 
Consequently, the noise introduced by neurons that represent the decision 
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variable (e.g., neurons in LIP) does not contribute substantially to the error 
rate. In contrast, under speed stress, the decision terminates after very little 
averaging. In these circumstances, noise at the level of the decision makers 
can actually affect which choice is made. In that case it ought to be possible for 
different motor response modalities to reach different decisions, which, in the 
absence of further coordination among the response modalities, would result 
in incongruent responses. However, coordination of responses is feasible, and 
there is plenty of information in the decision outcome to provide a basis for it. 
For example, different modalities may reach their decisions at different times, 
and we might know that the fi rst process to terminate could be an outlier and 
choose to delay until a few more systems weigh in.

One might argue that this parallel intentional architecture is ineffi cient. 
That may be true from the perspective of energy conservation, but it seems 
highly effi cient to us from an evolutionary perspective. It allowed our brains 
to develop complex higher functions (contingency, deliberation) using a minor 
variation on a theme already developed for sensorimotor integration. No new 
wiring scheme was required!

In any case, our experiments tell us that when the action mode is known in 
advance, the high-level intentional structures represent partial information. If 
there were a central executive, it seems to pass on its deliberations to neurons 
concerned with motor planning while the decision evolves ( Gold and Shadlen 
2000, 2003;  Spivey et al. 2005). Thus, it does not act as a central executive 
in that setting.

Abstract decisions. It is not diffi cult to understand how the intentional archi-
tecture can be extended to explain abstract decisions. In fact it helps to con-
sider a simple case: a perceptual decision among two alternatives performed in 
a setting in which the action used to communicate the decision is not specifi ed 
until after the decision is made.

Consider a monkey trained to decide between leftward and rightward mo-
tion of a random dot kinematogram. This is the same task as the one used to 
study neurons in LIP except for one important difference: there are no choice 
targets shown during the period of motion viewing. The monkey will ultimate-
ly communicate a choice by making an eye movement to a target, but it does 
not know where they will appear. When they do appear, one is red and the other 
is green. The monkey is trained to make an eye movement to the red target if 
the motion is rightward and to the green if it is leftward.

Monkeys can perform this task about as well as the version of the task 
described in our earlier work. When they do, it is clear that they have decided 
about right- or leftward direction and not which way they will make an eye 
movement. Indeed, on each trial, the monkey seems to embrace the proposi-
tion, “right” or “left.” In this case, structures in the oculomotor pathways do 
not represent a decision variable. Instead, the brain seems to make the kind of 
abstract decision that does not involve intention. Or does it?
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To picture this decision process, consider the accumulation of evidence to-
ward a commitment to a plan, only here it is not a plan to make a particular eye 
movement but instead to select a red or a green target when they appear. We 
can think of the motion as instructing the implementation of a rule: when two 
targets appear, make an eye movement toward the red (or green) one. We have 
no trouble imagining neurons that accumulate evidence toward implementing 
this plan or rule, and we can imagine that this rule is enacted by selecting the 
appropriate circuits in the brain that allow a simple sensorimotor decision to 
ensue. Choose a target for an eye movement based on its color. This is just a 
decision to make a certain kind of decision.

Functional and anatomical considerations. Where would we expect to fi nd 
such neurons? They should be in areas of the brain that project to the associa-
tion areas. A reasonable candidate for the neurons in the red/green motion task 
are the parts of the dorsolateral prefrontal cortex (area 46) that project to area 
LIP ( Cavada and  Goldman-Rakic 1989). Neurons with the requisite properties 
have been found in this area, but experimental evidence is not all that compel-
ling in our view. The problem with the experiments is that there is currently no 
way to sample neurons in A46 effi ciently, based on their projection pattern to 
LIP (or other areas).

Although our hypothesis is not able to be tested at the present, there is some 
support for the idea that some A46 neurons carry on the kind of computations 
we have in mind.  Wallis et al. (2001) described neurons in A46 that represent 
rules, and we have shown in one monkey that some neurons in A46 accumu-
late evidence for direction in this task ( Gold and Shadlen 2001b). However, 
we view these studies with healthy skepticism because there is no obvious 
clustering of response patterns in A46 indicative of a functional architecture. 
Thus the reports (including ours) are based on a small fraction of randomly 
encountered neurons that happen to bear on the hypothesis. This concern about 
electrophysiology in A46 is not limited to the study of decision making.

Nonetheless, there are many parts of the association cortex in the nonhuman 
primate that map other association areas. They could achieve the computation 
we are proposing. The important conceptual point is that the computations 
underlying abstract decisions, which are not tied to specifi c actions, are prob-
ably similar formally to the computations we have studied in a simpler context: 
accumulation of information for a purpose and the representation of a plan to 
enact. In this case, the plan is to implement a rule.

If-then logic. Let us take this one step further. Consider that the plan of action 
is to enable a variety of circuits, not just one eye movement to red/green, but 
also several possible rules. This is then a means to establish a nested logical 
fl ow. It is a way for the brain to implement an if-then logic. Indeed, it does 
not seem improbable to consider that more areas that map the areas that select 
the sensorimotor circuits allow further nesting of this if-then logic. We are 
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only hinting at the variety of functions that this functional architecture could 
achieve. Our main point is that the intentional architecture studied in simple 
decision-making tasks is likely to share common features and principles with 
the brain architecture that gives rise to complex functions. Figure 4.1 illustrates 
this scheme. The 25 million years of evolution between macaque and humans 
has probably served to expand the cortical mantle in the service of this nested 
intentional architecture. This seems far more likely to have occurred than the 
evolution of brand new principles of neural computation.

Value-based Decisions

Our research on perceptual decisions has focused on the way the brain com-
bines evidence across time as well as from multiple sources. We have also 
studied the effect of prior probability in these tasks and see a clear connec-
tion (in our human studies) with asymmetric reward schedules, which should 
also promote a bias. These studies emphasize decisions that are based primar-
ily on the evidence. Value-based decisions, on the other hand, emphasize the 
component of decision making that is predicated on weighting alternatives 
based on expected utility. These are often the types of decisions that mimic 
foraging for food.

It is not controversial to assert that, at the level of formalisms, evidence- 
and value-based decisions are fundamentally similar. Just about any theory 
of decision making posits that the decision variable or the criterion to which 
it is subjected is affected by values placed on the choices and their probable 
outcomes. How similar is the neurobiology in these cases? We argue that it is 
likely to be very similar. This is controversial for two reasons. First, the kinds 
of quantities that are involved in value-based decisions are poorly understood 
and seem to be quite different from the kind of information that is represented 
in the visual cortex. Second, the patterns of behavior observed in value-based 
decisions are thought by many to require a stage of strategic (i.e., deliberate) 
randomness in the decision-making process. We believe that this is incorrect 
and perhaps misguided.

Quantities in Value-based Decisions

All decisions are ultimately decisions about value. In evidence-based deci-
sions, the value is in being correct. As such, value is implicitly represented in 
the decision variable (DV) and the criterion that is applied to it. In this way, 
the quantities that underlie the decision itself are similar in the two situations. 
What differ are the sources of signals that inform those quantities.

The representation of value and its association with places, features, foods, 
etc. seems to be conveyed by dedicated structures. Evidence from several 
groups point to the orbitofrontal cortex (OFC). A recent study from  Padoa-
Schioppa and  Assad (2006) asserts that the value or utility of a potentially 
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rewarding experience is represented in units that would combine naturally with 
evidence: the fi ring rate encodes a quantity that contributes linearly to choice 
preference in units of log odds (see also  Deaner et al. 2005;  Gold and Shadlen 
2001a). Thus the basic framework for making decisions is likely to be pre-
served. On the other hand, elucidation of mechanism will force us to study 
processes in brain regions like the OFC, anterior cingulate cortex, amygdala, 
and striatum, which presumably represent valence and establish termination 
rules ( McCoy and  Platt 2005;  McCoy et al. 2003;  Paton et al. 2006;  Lo and 
 Wang 2006;  Kawagoe et al. 2004;  Watanabe et al. 2003;  Tremblay and  Schultz 
1999;  Hikosaka and  Watanabe 2000;  Montague and  Berns 2002).

We note one fi nal point, which is also relevant to the following section: The 
kinds of quantities that contribute to the DV (and criteria for terminating) are 
not limited to evidence, priors, and value of reward or punishment. They also 
include premiums and penalties for taking time, for exploration, or for persist-
ing. How a premium for exploration is calibrated against evidence is an open 
question, but it is likely to be no more mysterious than the standard mix of 
ingredients in decisions. In the end, all quantities in the DV add in units of a 
common currency, namely spike rate.

Randomness (of Choice) Arises from Noise Not Strategy

The conversion from DV to the expression of choice is commonly treated dif-
ferently for evidence- and value-based decisions. Here, however, is a peculiar 
distinction, which we think is incorrect: less than perfect performance is at-
tributed to noise in evidence-based decisions but to probabilistic behavioral 
response in value-based decisions. Consider a binary decision between options 
A and B. In both evidence- and value-based decisions, a DV summarizes the 
merits of A relative to B. For one type of decision, the DV is based mainly 
on evidence; for the other it is based primarily on utilities. We have already 
pointed out that a single framework (and a common neurobiology) can accom-
modate both DVs. The DV has some relationship with probability.

Both evidence- and value-based decisions appear to be stochastic from the 
point of view of the experimentalist. The sigmoid curve in Figure 4.2 could 
describe the probability that a monkey chooses rightward as a function of the 
strength of motion evidence to the right, or it could describe the probability of 
choosing the red location based on the experienced value of this choice as in-
ferred from recent history of food collection. Neither behavior appears stochas-
tic for extreme values of the x-variable. Near the middle of the graph, however, 
the responses are distributed probabilistically. Indeed a sequence of answers—
especially from a practiced and highly motivated subject—appears nearly in-
distinguishable from the sequence of heads and tails produced by a weighted 
coin. Current theories of evidence- and value-based decisions diverge in their 
accounts of the neurobiological mechanism underlying this phenomenon.
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For value-based decisions, the brain represents a quantity related to relative 
utility of one of the choices. It is assumed that this value is explicitly converted 
to a probability, which then governs a process that is formally identical to fl ip-
ping a coin (Figure 4.3). The specifi c mathematical operations are not impor-
tant to the argument here, save for one: there is a conversion of a number (or 
vector) to a probability. For two choices this is like inverting a logistic to a pa-
rameter p (and 1 – p), which is realized as a random event (a so-called Bernoulli 
trial). For more than two choices, the idea naturally extends to inversion of a 
vector to a multinomial parameter p1,p2,…,pn , also realized as a random event. 
Thus, even when the relative utility of one choice is registered by the brain as 
the better choice, it is not always selected. Contrast this to the following.

For evidence-based decisions, the DV represents a quantity related to the 
likelihood that one proposition is true. Rather than converting this to a prob-
ability, the brain simply makes the best choice it can. Again, the details of the 
computation are not important. If the quantity is proportional to the log likeli-
hood ratio, then zero marks the criterion at which evidence favors one or the 
other choice. However, any quantity that is monotonically related to relative 
likelihood will do, as long as it is accompanied by the appropriate criterion. 
The randomness to the behavior results because the DV is noisy. This is con-
sistent with all accounts of neurophysiology, especially in the regime in which 
decisions are diffi cult; that is, a weak rightward stimulus gives rise to a repre-
sentation of evidence that is noisy. Although a perfect transducer would always 
favor a right- over leftward direction, the fact is that on some fraction of trials, 
the brain represents a value with the wrong sign relative to the criterion.

Contrast the two ideas: in value-based decisions, the brain knows what 
the better option is but behaves randomly, depending on how much better. In 
evidence-based decisions, the brain makes the best choice it can, based on the 
available evidence, which may be faulty. Is this distinction artifi cial or real?
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Figure 4.2 Choice function. The support might be evidence for choice “A” or an 
expected value that is associated with “A.”
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We propose that such a distinction does not exist in the brain. The repre-
sentation of a DV is noisy, whether it is constructed from sensory evidence 
or from knowledge of reward values. This is a fact of neurobiology ( Softky 
and  Koch 1993; Shadlen and  Newsome 1994, 1998). This noise underlies the 
apparent randomness of choices in both evidence- and value-based decisions. 
Thus the neurobiology of these two types of decision is similar, and the seem-
ingly stochastic behavioral response in neither of them is due to an explicit 
random number generator in the brain. In addition to the noise in the DV, there 
are other sources that contribute to the variability of behavioral responses. For 
instance, the subject often tries to reach a balance between exploitation of the 
existing knowledge and exploration of new possibilities. Exploration is more 
prominent in value-based decisions when the reward values can change (e.g., 
 Sugrue et al. 2004). A tendency to explore the environment should not be mis-
taken with a deliberate randomization of behavior; it should just remind us of 
the complexity of the decision process. The DV can incorporate the anticipated 
costs and dividends associated with exploration and persistence. The random 
number generator in Figure 4.2 should be regarded as a mathematical conve-
nience, rather than a neurally motivated computational principle, to lump mul-
tiple sources of variability together. Indeed, it spells out the wrong principle.

What led to the idea of a random stage in value-based decisions? The main 
reason was an absence of noise in psychological theories. Signal/noise relations 
have a long tradition in sensory physiology ( Hecht and  Mintz 1939;  Barlow et 
al. 1971;  Parker and  Newsome 1998) and in psychophysics ( Green and  Swets 
1966;  Cohn et al. 1975;  Tanner 1961;  Thurstone 1959;  Link 1992), but they are 
generally absent from psychological theories of choice ( Luce 1959;  Herrnstein 
1961; Herrnstein and  Vaughan 1980;  Kahneman 2002, but see  Manski 1977). 

evidence
about state

prior
probability

decision
variable

criterion

choose
better option

decision
variable

choose
probabilistically

evidence
about value

prior
probability

convert to
probability

coin flip
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Figure 4.3 Components of simple decisions. (a)  Flow used to explain perceptual- and 
evidence-based decisions. A decision variable is established from the evidence. A crite-
rion is applied to achieve the best choice. The notion of “best” incorporates valuation, 
which is commonly incorporated in the criterion. (b) Flow used to explain value-based 
decisions. The choice is a realization of a random event (coin fl ip) to match a probabil-
ity. We are critical of this concept.
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Absent noise, some sort of random number generator seems to be required. 
Enthusiasm for inclusion of a random number generator in the mechanism of 
value-based decisions is also partly rooted in game theory ( Dorris and  Glimch-
er 2004; Glimcher 2003, 2005;  Lee et al. 2004; Lee et al. 2005;  Barraclough et 
al. 2004). The optimal strategy in competitive games often necessitates random 
behavior to stop an intelligent opponent from exploiting predictable patterns 
in one’s own behavior. However, such omniscient opponents are rarely present 
in real-life situations. In fact, the behavior of subjects in value-based decisions 
can often be successfully characterized by the history of subject’s decisions 
and payoffs even for competitive games (Lee et al. 2005; Barraclough et al. 
2004;  Corrado et al. 2005;  Lau and  Glimcher 2005). We argue that in these 
successful behavioral models the random number generator can be replaced by 
noisiness in the representation of evidence and value via a DV.

Summary of Generalized Intentional Framework

The intentional framework that we have characterized extends to a broad vari-
ety of decision-making situations using a cascade of the basic machinery that 
has been uncovered through studies of simpler decisions. In simple perceptual 
decisions, sensory neurons provide evidence about the current status of the 
external environment. This evidence is accumulated into a DV in structures 
that are associated with particular plans of action which would instantiate the 
outcome of the decision, should it come out one way or another (gray-shaded 
region of Figure 4.1). Such instantiation might be an immediate behavior, en-
actment of a behavioral rule (e.g., if-then logic), or more generally, activa-
tion of a specifi c neural circuit. The DV also incorporates information about 
prior probability, value, temporal costs, and any other factors that bear on the 
decision. The underlying machinery of this is simply a race model where the 
process that reaches the bound fi rst results in the implementation of the cor-
responding decision outcome. There can be as many processes as necessary to 
underlie the possible decision outcomes. Furthermore, there can be cascades 
of decisions, where the outcome of one determines the nature of a subsequent 
deliberation through the appropriate circuit activation.

The basic building blocks of a decision establish a functional architecture, 
which in turn hints at the critical neurobiology. As shown in Figure 4.1, there 
must be accumulators: neurons whose rate of discharge depends on the his-
tory of the moment-by-moment fl uctuations in the evidence furnished by sen-
sory neurons. Many of the cells that demonstrate persistent activity, which is 
thought to play a role in working memory, motor planning, representation of 
context, etc., may also be capable of acting as accumulators. Such cells are 
ubiquitous in the association cortex.

To establish a termination rule or bound, there must be neurons that can 
sense a level crossing in the accumulators. These neurons can use temporal and 
reward-related information to set and implement the appropriate level. This is 
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presumably achieved by the basal ganglia, perhaps in concert with its targets, 
the substantia nigra pars reticulata, the thalamus, and their targets (ultimately 
the neocortex). Other structures that represent value are also likely to partici-
pate (e.g., ventral tegmentum, nucleus accumbens, amygdala, OFC).

The decision ends in a signal that stimulates another structure into action. 
In the case of simple real-time RT tasks, this might be neurons that generate 
movements of body parts; in other cases it might be a structure that activates 
another decision (Figure 4.1c). Further, we think that at least two other signals 
must accompany the declaration of the decision outcome. There must be some 
degree of confi dence associated with the content and some prediction of the 
expected time that the decision should lead to an action, anticipated outcome, 
reward, or punishment. Little is known about the neurobiological correlates of 
these putative signals. We will not discuss the anticipated time signal except 
to say that it seems essential for a variety of functions, including learning. The 
“confi dence” signal might also play a role in learning, but as discussed in the 
next section, it seems essential to negotiate between competing decisions or 
to interpolate rationally when the outcome from separate decision processes 
must be combined.

Decision Making Is Not Bayesian Inference

The relationship between Bayesian inference and decision making has held 
center stage in theorizing about the neural mechanisms for choice behavior. 
We question the wisdom of this paradigm. In particular, we focus on an impor-
tant distinction between the Bayesian approach and what we term “decision as 
intention.” The idea stems from the intentional architecture concept discussed 
above. That architecture suggests that decisions are not made in the abstract 
about states of the world but instead guide a choice among a discrete set of 
possible behaviors.

It may be sensible to preface the argument with a short list of caveats. Our 
argument is not anti-Bayesian. Indeed it endorses many of the key components 
of Bayesian decision making, as will be clear. It is not concerned with the na-
ture of probability; it is not an embrace of the frequentist school of probability 
theory. It is instead a critique of the notion that posterior probability distribu-
tions are calculated explicitly, represented and used to guide decisions.

The Bayesian Paradigm: “Decision As Inference”

Any sensible formulation of the problem of decision making must consider at 
least three main factors: (a) evidence pertaining to choices, (b) prior knowl-
edge about states of the world, and (c) costs and rewards associated with the 
decision. The Bayesian paradigm assumes that the brain represents a posterior 
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probability distribution over the possible states of the world. Decisions, ac-
tions, estimates, and confi dence ratings all stem from this posterior.

Within this framework, decisions among discrete hypotheses are regarded 
as a special case of inference. In the context of decision making, the posterior 
is used to forecast expected cost and benefi t associated with the consequences 
of each choice. The latter calculation can take a variety of forms, which incor-
porate different assumptions about utility, but all involve evaluation in light of 
the probable states of the world as represented by the posterior. For simple de-
cisions among N alternatives, “decision as inference” postulates that decisions 
arise by placing criteria on the quantities calculated from posteriors.

The key to the Bayesian paradigm is that the posterior is used to achieve 
the projected prediction of utility. It is an independent entity, which can be 
used for a variety of purposes. We do not question the merit of this perspec-
tive in general, but we do question its direct application to the neurobiology 
of decision making; that is, whether the brain actually represents posterior 
probability distributions.

A Critique of the Data in Support of the 
Representation of Posterior Probabilities

The main experimental evidence in support of the explicit representation of 
posterior probability distributions involves integration of evidence from di-
verse sources. These are behavioral studies in perception and motor control 
( Ernst and  Banks 2002;  Rosas et al. 2005;  Mamassian and  Landy 2001; Landy 
et al. 1995;  Trommershauser et al. 2005;  Yuille and  Bulthoff 1996;  Knill and 
 Saunders 2003;  Kording and  Wolpert 2004a;  Brainard and  Freeman 1997;  van 
Ee et al. 2003;  Kersten 1999; Kersten and  Yuille 2003;  Kersten et al. 2004). 
For example, when a subject is asked to judge the angle α of an object in space 
based on disparity and texture cues (i.e., binocular depth and perspective), the 
judgments refl ect information from both sources, weighted in accordance with 
the relative reliability of the two sources. To achieve this, the brain must keep 
track of at least two numbers per cue: an estimate bearing in the decision and 
the degree of uncertainty/reliability.

The brain can achieve this in a number of ways. Clearly, if the brain repre-
sents two posterior probability distributions over possible angles,

P e P edisparity textureα α( ) ( ) and , (1)

it can combine these distributions to obtain 

P e edisparity textureα , .( ) (2)

This is not necessarily as simple as multiplying the distributions, as will be 
discussed below (see section, “Conditional Dependencies Render Bayesian 
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Inference Impractical”). That is the Bayesian approach. A simpler idea is to 
use each source as a decision maker. Rather than combining probabilities over 
all possible values of angle, the brain makes two choices based on disparity 
and texture, respectively, and takes a weighted average based on the level of 
uncertainty, reliability, or confi dence. Different weighting schemes translate 
into different valuations on error (see  Kording and  Wolpert 2004b). Thus, it is 
broadly consistent with Bayesian decision making. However, the approach is 
less versatile than the full representation of posterior probability distributions. 
We do not know how the brain actually solves a cue combination task such as 
the one described. Our point is simply that it need not represent posterior prob-
ability distributions explicitly to do so.

We are unaware of an experimental result that would necessitate a represen-
tation of posterior probability distributions over a simpler shortcut like com-
bining estimates in accordance with their uncertainties. Also we do not know 
how the brain estimates uncertainty, reliability, and confi dence. Some insights 
are forthcoming, however, from experiments that test the mechanism underly-
ing the combination of evidence with prior probability in simple two-choice 
decisions (Shadlen et al. 2006b).

Decision Making from Decision Variables, Not Posteriors

Decisions are made by placing a criterion on a DV, which is a quantity that is 
calculated from diverse ingredients: evidence, priors, costs. At face value, this 
statement is compatible with decision making as Bayesian inference. Indeed, 
everything we are about to say about DVs can be translated to quantities that 
we could calculate in the Bayesian framework. Nonetheless, biology need not 
calculate the DV by an algorithm that adheres to a particular set of operations 
even if, in some cases, there is functional equivalence with the results pro-
duced by these operations. In particular, our experiments lead us to suspect that 
the brain does not represent posteriors explicitly.

We focus on three observations that arise in the study of decisions based 
on the sequential sampling of evidence: (a) the nature and necessity of a ter-
mination rule; (b) constraints imposed on the decision process by a fi nite set 
of choices; and (c) the simplifi cation of conditional dependencies. All three 
may be viewed as heuristics that arise naturally in the framework of sequential 
sampling of evidence.

In a Decision Variable, Probability Is Not Dissociated from Other Terms

In most circumstances, decisions are not based on all the available evidence 
but instead incorporate a termination rule, thereby deciding based on some 
quantum satis of belief. This is benefi cial when there is value associated with 
saving time or when there is cost associated with gathering evidence. Indeed 
these are the situations we face in almost all circumstances, for instance, to 
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move from one decision to the next. By controlling the time spent on each 
decision, we can maximize reward per unit time. In these settings, a decision 
rule must specify the mapping of DV to choice, and a stopping rule must deter-
mine when to terminate the process. In some cases, the stopping rule and the 
decision rule operate on the same DV. The DV, or a race among several DVs, 
mediates both the outcome of the process (i.e., the choice) and the time that the 
process terminates.

The class of bounded accumulator models (Figure 4.1b) has been applied 
to a variety of decisions in perception, cognition, cryptography, quality con-
trol, and economics ( Link 1992;  Wald 1947;  Smith and  Ratcliff 2004; Ratcliff 
and  Rouder 1998, 2000;  Good 1979;  Karlin and  Taylor 1975). It has roots in 
optimality theory and is deeply connected to Bayesian inference ( Wald and 
 Wolfowitz 1947;  Jaynes 2003;  Bogacz et al. 2003;  McMillen and  Holmes 
2006;  Ma et al. 2006). In our studies of perceptual decisions using random dot 
motion, bounded accumulation explains the speed and accuracy of choice in 
human and nonhuman primate subjects. There is considerable experimental 
support for the computations: accumulation of noisy evidence and a termina-
tion bound in the responses of neurons in parietal cortex and elsewhere (for 
reviews, see  Gold and Shadlen 2007; Shadlen et al. 2006a).

The simplest version of bounded accumulation is Wald’s sequential prob-
ability ratio test (SPRT) ( Wald 1947; Wald and  Wolfowitz 1947). We will ex-
plain its connection to Bayesian decision making and use it to highlight the 
ways that the neural mechanisms depart from the Bayesian ideal. In SPRT, 
there are just two choices among states, s1 and s2. As each piece of evidence ei 
arrives, it is converted to a log likelihood ratio (logLR),

log ,p e s p e si i1 2( ) ( )⎡
⎣⎢

⎤
⎦⎥ (3)

and added to the accumulation. The process stops when the accumulated logLR 
reaches a predefi ned positive or negative bound. The process is Bayesian in the 
sense that we are using this term: the posterior probability is explicitly repre-
sented in the DV. The bounds are the log of the posterior odds,

log , , , , ,p s e e p s e en n1 1 2 1… …( ) ( )⎡
⎣⎢

⎤
⎦⎥ (4)

and the same holds for the partial sums (e.g., the fi rst m samples of evidence). 
In this simple case, the DV, the stopped DV and the termination rule would 
all satisfy the desire for an explicit representation of posterior probabilities. 
For example, if there were two sources of evidence bearing on the decision, 
we could combine estimates from the two terminated processes by adding log 
posterior odds, determined by their respective stopping rules. The SPRT can 
incorporate priors and loss functions without compromising this feature.

More commonly, however, a termination rule tends to render the posterior 
probability far less accessible, even for a simple binary choice. The main rea-
son for this is that there is often missing information, which precludes the 
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conversion of evidence to units of logLR. The motion discrimination task is an 
example. Consider a decision between s1 = up and s2 = down. Assume the evi-
dence to the decision maker is a sample of a difference in fi ring rates from two 
populations of neurons: one responds more when motion is upward whereas 
the other responds more when motion is downward. A single piece of momen-
tary evidence, ei, is the difference in the two spike rates (upward minus down-
ward) measured in some brief epoch ∆t. Positive values of this difference favor 
upward. These assumptions are supported by experimental fi ndings ( Ditterich 
et al. 2003;  Huk and Shadlen 2005).

To carry out SPRT, we would convert the ei to logLR based on our knowl-
edge of the two sampling distributions, the probability of observing the pos-
sible values of ei under s1 and s2, and therein lies the problem. Even in this 
simple experiment, we cannot do this because of one additional detail: there 
are a variety of stimulus strengths. For each decision, not only is the direction 
of motion randomized, so too is the intensity of the motion (i.e., the percentage 
of random dots that move coherently from one video frame to the next). There-
fore, the sampling distributions depend on this motion strength.

For example, when motion is weak, a small positive difference, say e = 1 sp/s, 
often occurs for either direction of motion. It is only slightly more likely when 
motion is upward. Therefore, the logLR for up is only slightly larger than 0: 
weak evidence for upward motion. In contrast, when the motion is strong, the 
same e = 1 sp/s constitutes strong evidence. Consider, when motion is strongly 
downward, it would be a rare occurrence for the upward preferring neurons to 
respond more strongly than the downward preferring neurons. Therefore, the 
logLR for upward is a value much larger than 0. To make the conversion from 
evidence to logLR, the brain would need to know the motion strength. How-
ever, it does not know this at the beginning of the trial. This example illustrates 
why SPRT cannot be properly implemented. In a task with stimuli of varying 
diffi culty, there is no unique relationship between evidence and logLR. Thus, 
there is no proper way to implement SPRT.

For the purpose of making a decision about direction, the motion strength is 
a nuisance parameter. From the perspective of Bayesian inference, one would 
like to marginalize out this variable. This proves to be diffi cult in general and 
imprudent in this case (and many like it). Impracticality results from the re-
quirement of solving integrals, a problem that is well known to Bayesians but 
not the crux of our argument. We wish to emphasize a different point that 
arises in the context of sequential sampling. For this experiment, the nuisance 
parameter remains fi xed for all samples until a decision is made. The brain 
cannot know the value of the motion strength at the beginning of viewing, but 
it can exploit the fact that it is the same for all samples of evidence.

There are two points. First and most germane to the argument here, it would 
be unwise to marginalize motion strength to its expectation over all possible 
stimuli. That would only make sense if each sample of evidence were drawn 
from the larger pool of all possible motions strengths at each time step ∆t. 
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This, however, is not the case: until a decision is completed, the evidence is 
drawn from a particular source associated with just one motion strength. Sec-
ond, the assumption of a stationary nuisance parameter over the time course 
of the decision—in this case justifi ed, but a heuristic more generally—can be 
exploited. For example, as time passes, if the decision has not terminated, it is 
probably because the motion strength is low. The brain appears to exploit this 
knowledge (Shadlen et al. 2006b). In theory, it is possible to develop a Bayes-
ian inference framework that exploits the information about the passage of 
time, but it would be extremely cumbersome (e.g., involving elapsed time in 
the conversion of fi ring rates to probability).

Whenever different stimulus strengths are possible, the termination bound 
no longer represents the log of the posterior odds. It does so only in a convo-
luted sense. It is the log of the posterior odds of a correct choice at each of the 
motion strengths. As shown in Figure 4.2, the subject typically answers cor-
rectly when motion is stronger. Thus the bound does not have a unique map-
ping to log posterior odds. Instead, the stopping rule is to terminate when the 
DV—the accumulated fi ring rate difference—reaches a critical level. This is 
what the physiology indicates, and it explains with a single rule both the reac-
tion times and the error rates in the motion experiments. This success comes 
at a cost, however. In contrast with Bayesian inference, there is no explicit 
representation of posterior probability.

Value and Utility Are Time Dependent

How do we interpret the stopping rule? If the DV does not represent posterior 
probability, then the bound is not a level of posterior probability. Nonethe-
less, there is an insight from SPRT that might be exploited. Assuming that the 
nuisance parameter(s) are fi xed for a trial (by which we mean a decision on 
a stream of evidence), then at least in principle, one could apply SPRT. That 
means that any bound is a log posterior odds. What is missing is the magnitude 
of the setting. Again, we do not know the value of the bound in units of log 
posterior odds, because we do not know the nuisance parameters. However, we 
can adjust it to achieve a desired policy (e.g., maximum utility per unit time).

In some instances, like the random dot motion task, elapsed time conveys 
information about the nuisance parameters. In general, as time elapses, it is in-
creasingly likely that the stimulus is low coherence. Indeed there are probably 
many instances in which less reliable evidence leads to slower accumulation 
toward a decision bound (a counterexample is when unreliability is caused by 
a change in variance rather than signal strength). If this is known (or assumed), 
then whatever the value of bound was in units log posterior odds at early times, 
it is worth less as time passes. It follows that the representation of expected 
value (or utility) is time dependent.

We have tested this idea directly in experiments in which the prior prob-
ability of up or down is manipulated in a block of trials. Briefl y, a fi xed prior 
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is incorporated in the DV dynamically as elapsed time effectively discounts 
the posterior that would be represented by the terminated DV (Shadlen et al. 
2006b). This heuristic is likely to be both useful and appropriate when there 
is reason to believe that the nuisance parameters are stationary over the time 
spanned by a single decision.

The important point is that a terminated DV lacks a unique, straightfor-
ward mapping to a posterior. We have illustrated this using binary decisions 
with nuisance parameters—aspects of the sources of evidence that affect 
the conversion to logLR. The problem is likely to be worse with more than 
two choices because a multidimensional SPRT is not uniquely specifi ed (see 
 McMillen and  Holmes 2006;  Bogacz et al. 2006). Thus the main feature of 
Bayesian inference, the posterior probability, is absent. It can be approximated 
with knowledge of nuisance parameters and/or elapsed time, but it is not rep-
resented explicitly nor is it accessible.

The Constraint on the Choice Space Is Not Trivial

The argument in this section is a natural extension of the “intentional archi-
tecture” introduced earlier in this chapter. When we process information in 
general, but especially in the context of making a decision, we construe it as 
evidence that bears on a set of competing hypotheses. At fi rst glance, this state-
ment seems perfectly compatible with decision making as Bayesian inference. 
However, the neurobiology suggests that the framework tends to dissipate any 
meaningful notion of a posterior probability distribution. In the end, this is be-
cause the neural architecture is concerned with a limited choice space; that is, 
the repertoire of possible actions, intentions, and “decisions about decisions.”

Placing criteria on posteriors (or their transformed functions of expected val-
ue and utility) only approximates a decision process in which termination rules 
apply. To illustrate the concept with a simple case, consider the decision of 
whether direction of motion, θ, is to the left or right. The Bayesian inference 
approach is to represent the posterior P﴾θ│observations﴿ and to simply choose 
left or right based on which is more likely (or to satisfy some other loss func-
tion besides accuracy). The question we raise here is how knowledge of the 
space of possible choices affects the decision process.

Placing priors on the possible states is an appealing approach, but it too has 
limitations. Here we start with the prior that  P﴾θ﴿ = 0, ∀ θ ≠ left or right. Us-
ing Bayes’s rule, the posterior can only achieve nonzero probability at left and 
right. This approach remains Bayesian inference because it asserts an explicit 
representation of the posterior, P﴾θ﴿, although there are only two possible val-
ues for which this posterior can be nonzero. We think this approach leads to 
diffi culties for termination of the decision process, as described below.
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The rules for termination are affected by the choice space. This poses a 
deeper problem. For example, knowledge that there are 2 or 4 or 8 possible 
choices affects the policy governing when to terminate decisions. This can 
probably be formulated as Bayesian inference, but it is not parsimonious and 
it is ultimately wanting. Above, we explained why a bound is not a posterior 
when there are different degrees of reliability associated with the members of 
a class of items upon which a decision is to be made. The same argument ap-
plies here, but there is an interesting extension. If the termination rule were to 
be based on a relative degree of belief, we would have to imagine adjusting 
this value differently for different N and for different stimulus strengths. A ter-
mination rule based on P﴾θ│observations﴿ is cumbersome when the reliability 
of the evidence (observations) is not known. Such a termination rule is also 
inconsistent with experimental results: achieving a criterion on uncertainty or 
posterior probability cannot explain a performance function—the error rates as 
a function of evidence quality (e.g., strength of motion).

The intended goal of the decision process can be achieved without represent-
ing the posteriors. The brain can exploit regularities that arise under sequential 
sampling. For example, as described above, the reliability of the evidence may 
not be known, but it is presumed to be stationary during the evidence gather-
ing. The brain can also exploit time-dependent factors. For example, the longer 
the decision process takes, the lower the quality of evidence. The effect of time 
and stationary evidence on the outcome of the decision process is affected by 
the number of choices. These factors can be easily incorporated in a decision 
variable toward an intended goal (i.e., the intentional framework) without any 
need for explicit representation of the posterior probability. More importantly, 
the experimental data suggests that the brain uses a decision variable that gov-
erns both choice and decision time, effectively abandoning the exact posterior 
in favor of something simpler and more effi cient that satisfi es the intentions.

Conditional Dependencies Render Bayesian Inference Impractical

Even without nuisance parameters, it is far from straightforward to compute 
a posterior for a large class of even simple decisions. To compute a poste-
rior, it is often necessary to combine probabilities from sources of evidence 
that arrive in a stream, e1 , e2, e3,…. If the likelihoods, P﴾ei│Sj﴿, are known, 
and in particular if they are independent, then the posterior P﴾S│e1 , e2 ,e3 ,…﴿ 
can be calculated using Bayes’s rule. However, for a wide class of decisions, 
even when  e1,e2,e3,… are sampled independently, they are not independent, 
conditional on S. Hence the likelihoods are not independent! Here we wish to 
make three points: (a) this is a common situation, (b) the sequential sampling 
poses obstacles to representing the true likelihood, (c) the brain does not ap-
pear to respect this reality but instead presumes conditional independence. 
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This last heuristic might have interesting implications for so-called irrational 
decision making.

Conditional dependence. Often we gather evidence bearing on some state 
of the world, S, that holds as true or false. For example, S might be left- or 
rightward, and the evidence we gather is a sample of motion energy taken from 
a video display or the spikes from direction selective neurons in the visual 
cortex. In this case, if the samples are independent, then they are also condi-
tionally independent. In contrast, there are many types of decisions in which 
the evidence we gather has a bearing on S: Will I arrive at Frankfurt on time? 
There are separate factors to sample (e.g., weather in Seattle, weather in Frank-
furt, traffi c patterns, airline labor issues, airplane equipment failures, a terrorist 
event, etc.) that are presumably independent. They are not sampled condition-
ally on S = “on time” or S = “late” but instead bear on that outcome.

The situation is so common that it might come as a surprise to discover that 
it is largely ignored in standard applications, at least the ones we know. For ex-
ample, in the theory of signal detection, it is assumed that if the e1,e2,e3,… are 
sampled independently, such that P﴾e1 , e2﴿ = P﴾e1﴿P﴾e2﴿, then the likelihoods 
are conditionally independent: P﴾e1 , e2│S ﴿ = P﴾e1│S ﴿P﴾e2│S ﴿ . This is a natural 
assumption because we think of sampling evidence under conditions where 
one state holds. That is the case for the sequential sampling of evidence about 
direction of motion in the preceding examples. On any one trial, motion is, for 
example, either up or down. If the evidence samples are independent, then they 
are also conditionally independent, because they are always sampled under one 
condition (up or down). However, that is exactly what is not true in situations 
in which samples of evidence affect S.

We are not arguing that it is impossible to learn statistical dependencies. 
For example, every medical student develops an intuition about whether the 
joint occurrence of headache and fever bear on the possibility of meningitis 
in a manner that is not predicted by the product of their likelihoods. What we 
are saying is that conditional independence does not hold in a variety of cir-
cumstances when at face value there is no obvious reason to suspect this. The 
variant of the so-called “weather prediction” task studied by  Yang and Shadlen 
(2007) provides one example. These issues are discussed in more detail in the 
supplementary material to that paper.

It is hard (but not impossible) to accommodate conditional dependencies in a 
decision variable. In principle, a DV and termination rule ought to be able to 
incorporate conditional dependencies, but it is costly. To put it simply, there is 
no easy update rule and no way to exploit marginal probabilities. This problem 
is especially severe under sequential sampling of evidence. The same piece of 
evidence will affect the current estimate of probability differently depending 
on what other evidence has arrived.

04Shadlen10Dec07.pdf



 Neurobiology of Decision Making  93

A relevant experiment. We trained monkeys to make predictions about the 
location of a reward based on observing a sequence of four shapes. Each shape 
affects the probability of the outcome (reward at the red or green target). Our 
fi ndings suggest that in these experiments, the brain gathers evidence under an 
assumption of conditional independence. In other words, it takes the observa-
tions associated with outcomes and makes the correct inference that they have 
independent effects on outcome. It, however, makes the incorrect inference 
that the probabilities of the observations are independent from one another, 
conditional on the outcome. Thus each shape increases or decreases the deci-
sion variable by a fi xed amount, regardless (approximately) of when it appears 
in the sequence and regardless (again approximately) of what other shapes 
were displayed before it ( Yang and Shadlen 2007).

Implications and Speculations

The arguments above raise new questions about decision making and the un-
derlying neurobiology. Here are some examples.

The Traffi c Cop Problem

The intentional architecture discussed earlier resolves several long-standing 
problems in perception, mainly by casting them as chimeras. For example, 
there is no need for a central interpreter of information—the so-called homun-
culus or little man that sits in the brain and makes sense of the data. Similarly, 
the “combinatorial explosion” that supposedly arises when trying to assemble 
the atoms of vision (small receptive fi elds) into coherent percepts vanishes. 
Both of these problems are seen to arise from a mistaken assumption that the 
data stream gives rise to one out of a vast set of possible interpretations. In-
stead, according to the intentional architecture, the data only bear evidence on 
a fi nite (large perhaps, but manageable) set of hypotheses that are currently 
under consideration. Admittedly, this creates a new set of problems.

What is it that establishes the question that the brain is asking about the 
data? What establishes the set of hypotheses? What establishes the intention 
or list of possible intentions at any moment? We do not know the answer to 
these questions, but we suspect they will turn out to be more tractable than 
the problems they replace. For example, the organism learns which tasks to 
consider—decisions about decisions—based on conceptual cues. Perhaps we 
forage in a landscape of possible tasks using mechanisms similar to the ones 
that underlie value-based decisions in a landscape of potential sources of nutri-
tion and predators.
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Agency without a Central Executive

Begin with the premise that value-based and perceptual decisions are mediated 
by a common framework. Consider decisions about choice of task as a problem 
akin to foraging. Instead of looking for a tree with better fruit, we are searching 
a task space for a better project. Recall that abstract decisions are simply deci-
sions about which questions sensorimotor-like structures should be asking of 
the evidence. Thus, searching for the right question is like looking for the right 
task. It is a value-based decision where the search is for a task that is likely to 
pay off in some way. There are probably costs and dividends associated with 
exploration, exploitation, and perseverance. Thus looking for the right ques-
tions is just another kind of decision.

This is the way the animal exercises its own rapport with the world. It is 
what the philosophers refer to as agency. However, what we have described 
(albeit vaguely) can operate without any explicit awareness of the steps. It 
can have the kind of automaticity that is referred to as subconscious. From the 
outside, it has all the qualities of purposeful, autonomous choice. When we are 
aware of these choices, we express ownership of our behavior and experience 
our “free will.” What we do in the subconscious version of this, however, is 
not capricious and thus just as much a candidate for free will. After all, as long 
as the choices are not capricious, they are expressions of the relative weights 
the brain assigns to evidence, value, and policy (e.g., balancing time pressure 
against deliberation).

It should be obvious that the neural computations discussed earlier should 
be capable of achieving these foraging decisions. Although we do not know 
as much about the neurobiology of value-based decisions as we do about evi-
dence-based decisions, the key ingredients are not mysterious. For example, 
termination rules lead to a switch of task rather than an action. On the other 
hand, we do not have a good idea about what neural events occur that distinguish 
the awareness of a foraging decision from the ones we make “unconsciously.”

One possibility is that awareness is just a decision to activate the circuits 
that mediate “actions” (e.g., engaging items in the world, reporting, forming 
narrative internally, and interrogating). Thus when a subconscious process of 
decision making leads to a choice to engage, we experience the world (or an 
item in it) as consciously attended. We are aware. Indeed, the establishment of 
consciousness after sleep, anesthesia, or coma might be regarded as an uncon-
scious decision to engage the world at all (Shadlen and  Kiani 2007).

Extensions of the Foraging Idea

Bistability and Rivalry

There are examples of perceptual phenomena that seem like they might be 
mediated by the kinds of mechanisms at play in this “foraging” mode of query. 
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If we approach problems in visual recognition as a set of queries (e.g., How 
should I hold my hand to grasp this object? If I move this edge, which bit will 
move with it? Should I scrutinize this further? Does this appeal to me?) then we 
can think about the brain perseverating away at the analysis of a scene that con-
tains features worthy of further query. We can also consider the possibility of 
the brain abandoning this immediate set of queries to search for alternatives. 

It seems that we experience something like this search for alternatives when 
we view bistable fi gures and when we experience binocular rivalry. Perhaps 
the study of rivalry might expose some of the computational principles that are 
common to value-based decisions that resemble “foraging.” It might be fruit-
ful to compare and contrast standard foraging behavior with the intervals be-
tween perceptual alternations, including regularities in the sampling schedules 
brought on by differences in the salience of competing images.

Mental Disorders

This is a rather large leap, but it seems possible that some mental disorders may 
be better understood from the perspective of decision making. Consider the two 
primary ways that we might expect foraging to fail. It could favor exploration 
at the expense of deliberation and deeper interrogation of evidence pertaining 
to the task at hand (i.e., the current workspace). This would lead to peripatetic 
behavior, fl ightiness, and defi cits in concentration. The other failure mode is 
too little exploration. This would appear as a lack of interest in things exter-
nal to the current workspace. Severely autistic children meet this description 
( Kanner 1973). Perhaps some of the odd expertise exhibited by some autistic 
patients (typically mild autism) refl ects a lack of exploration. Perhaps a brain 
that tends to be stuck in the deliberative exploitation of the current workspace 
tends to acquire expertise.

Concluding Remarks

This essay should be regarded as a speculative exercise. We have tried to elab-
orate a set of principles that have been elucidated in the experiments on the 
neurobiology of decision making in nonhuman primates. Naturally, these ex-
periments (reviewed in  Gold and Shadlen 2007) use simple paradigms suitable 
for laboratory investigations in animal subjects. We have extracted key insights 
from these investigations and extrapolated beyond the data to demonstrate how 
a simple architecture might underlie the wonderfully complex landscape of 
human decision making. We have tried to paint a picture of functional archi-
tecture that is aimed primarily at choosing among possible actions. We extend-
ed this principle to choices among possible tasks or decisions. Among other 
things, we think this perspective hints at the way in which the bigger cerebral 
cortex in humans provides the basis for higher cognitive functions.
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The functional architecture is also a computational architecture. Viewed 
from this perspective, we question the popular wisdom that the brain oper-
ates as an information-processing device that performs probabilistic inference. 
These points are likely to be regarded as controversial (or just plain wrong) 
by many readers. We are less wed to the conclusions than to the motivation: 
decisions among possible courses of action invite us to formulate inference 
differently than the formulations derived from probability theory and statistics 
( Jaynes 2003). If our tone was overly polemical, it was not intended to be so. 
We do not see ourselves as anti-Bayesian. Indeed, in many instances the brain’s 
decision variables can be seen as a way to implement aspects of Bayesian 
decision making.

Ours is not an argument against Bayesian inference but an embrace of the 
intentional architecture. The goal of information processing is not to identify 
content or estimate parameters but to answer questions concerning choices 
among possible actions, including posing the next question.
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