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Object categories are recognized at multiple levels of hierarchical
abstractions. Psychophysical studies have shown a more rapid per-
ceptual access to the mid-level category information (e.g., human
faces) than the higher (superordinate; e.g., animal) or the lower
(subordinate; e.g., face identity) level. Mid-level category members
share many features, whereas few features are shared among members
of different mid-level categories. To understand better the neural basis
of expedited access to mid-level category information, we examined
neural responses of the inferior temporal (IT) cortex of macaque
monkeys viewing a large number of object images. We found an
earlier representation of mid-level categories in the IT population and
single-unit responses compared with superordinate- and subordinate-
level categories. The short-latency representation of mid-level cate-
gory information shows that visual cortex first divides the category
shape space at its sharpest boundaries, defined by high/low within/
between-group similarity. This short-latency, mid-level category
boundary map may be a prerequisite for representation of other
categories at more global and finer scales.

category representation; hierarchical abstraction; inferior temporal
cortex; object recognition; temporal dynamics

NEW & NOTEWORTHY

Decades of research indicate a temporal dynamic of visu-
al-object categorization, depending on the level of category
abstraction. To understand the neural mechanism of the
temporal course of object categorization, we studied re-
sponses of neurons in inferotemporal cortex of macaque
monkeys to presentation of natural object images. We
observed that inferior temporal neurons represent mid-
level categories (e.g., human faces) earlier than superor-
dinate (e.g., animal)- and subordinate (e.g., face identity)-
level categories.

WE RECOGNIZE OBJECTS AT DIFFERENT levels of hierarchical ab-
straction. Psychologists have commonly divided these levels of
abstraction into three groups: superordinate (e.g., animal),
mid-level or basic level (e.g., bird), and subordinate (e.g.,
eagle). Theoretical (Mack et al. 2009; Rosch et al. 1976) and

psychophysical (Mack and Palmeri 2015; Murphy and
Brownell 1985; Tanaka and Taylor 1991) studies have indi-
cated a more rapid, perceptual access to the mid-level category
information than the higher or the lower levels, suggesting
speeded neural processing of the mid-level information. Other
studies have challenged the mid-level advantage by demon-
strating rapid access to the superordinate-level category infor-
mation (Fabre-Thorpe et al. 2001; Macé et al. 2009; Poncet and
Fabre-Thorpe 2014; Wu et al. 2014).

The time course of representation of category information in
the neural responses involved in object recognition is poorly
understood. Several studies have attempted to address this
question using human magnetoencephalography (MEG) (Carl-
son et al. 2013; Pantazis et al. 2014) and event-related potential
(ERP) (Thorpe et al. 1996), yielding conflicting results. MEG
data show systematically longer latencies for more abstract
category information (animate vs. inanimate) (Carlson et al.
2013; Pantazis et al. 2014), whereas ERP data show very short
latencies for superordinate (animal) categories (Thorpe et al.
1996). However, MEG and ERP recordings have limited spa-
tial resolutions and convey collective neural activities that may
have originated from different parts of the brain. Furthermore,
MEG and ERP signals reflect both the inputs and outputs to the
cortex and may fail to reveal potential delays caused by local
processing of information in the cortex. Thus the exact timing
of the emergence of category information in specific neural
structures cannot be revealed by these methods. The studying
of the precise time course of the representation of categories
requires recording the spiking activity of individual neurons.

In nonhuman primates, inferior temporal (IT) cortex lies at
the end of the ventral visual pathway and is thought to be
responsible for visual object recognition. IT is a purely visual
area that contains various category-selective neurons (Bruce et
al. 1981; Fujita et al. 1992; Kiani et al. 2007; Tanaka et al.
1991). It has been suggested that global (e.g., face category)
and fine (e.g., face identity) information is conveyed by earlier
and later parts of the IT neural responses, respectively (Ma-
tsumoto 2004; Sugase et al. 1999), indicating faster represen-
tation of more abstract information. This hypothesis, however,
does not explain faster behavioral responses to basic-, mid-
level categories.

To investigate the time course of categorical representation,
we recorded the responses of IT neurons to a large number of
diverse visual stimuli with multiple levels of hierarchical
category abstraction. We show that IT population and single
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cells represented mid-level categories (e.g., faces and bodies)
earlier than superordinate (e.g., animate/inanimate)- and sub-
ordinate (e.g., face identity)-level categories. These findings
put constraints on models of visual object recognition by
showing a stepwise processing of category information over
time.

MATERIALS AND METHODS

We analyzed responses of neurons in the IT cortex of two male
macaque monkeys (Kiani et al. 2005, 2007). Details of the experi-
mental procedure have been explained in our previous publications.
Briefly, responses of 674 neurons were recorded as the monkeys
viewed a rapid presentation of a large number of natural and artificial
visual stimuli. The stimulus set consisted of over 1,000 colored
photographs of various objects on a gray background. The stimuli
were presented at the center of a cathode ray tube monitor and were
scaled to fit in a 7° window. To present our large stimulus set in the
limited time that we could reliably record from each neuron, we used
a rapid serial visual presentation (RSVP) (Edwards 2003; Földiák et
al. 2004; Keysers et al. 2001). Each stimulus was shown for 105 ms
without any interstimulus blank interval. During the presentation, the
monkeys were required to maintain fixation within a window of �2°
at the center of the screen. The monkeys were rewarded with a drop
of juice every 1.5–2 s for maintaining fixation

Calculation of the Temporal Dynamics of Category Information
across the IT Population

At each moment in time, the representation of each stimulus by the
IT neural population can be quantified by a vector whose elements are
the firing rates of individual neurons. This population representation is
a point in RN space, where N is the number of recorded neurons. To
ensure that the population representation is not biased by the high
firing-rate neurons, we normalized the responses of each neuron by
subtracting the mean and dividing by the SD of responses to all
stimuli (z-score normalization).

We used nonclassical multidimensional scaling (MDS) on correla-
tion distance (Shepard 1980; Torgerson 1958) and principal compo-
nent analysis (PCA) (Pearson 1901) to illustrate the separation of IT
responses for different categories in two dimensions. The MDS
analysis was performed for a pair of categories, e.g., animate and
inanimate, and two separate, 20 ms time intervals.

In the PCA method, the eigenvectors of covariance matrix were
used to make a transform matrix from the high-dimensional neural
space to the lower-dimensional data. We calculated the principle
components for neural responses from 65 to 170 ms after stimulus
onset. Then, with the use of the first two components with the greatest
eigenvalues, we constructed a constant two-dimensional (2D) axis for
representation of the high-dimensional neural-response space. The
first two components (with the greatest eigenvalues) explain the most
variance. We projected the neural responses in a 20-ms window on the
2D axis that was constructed by PCA. The window was moved in
steps of 1 ms to make animations that show the arrangements of
categories in time.

We used two different indices to quantify the discriminability of
object categories based on the responses of the IT neural population:
“separability index” (SI) and “classification accuracy.” Both indices
were calculated using the neural response in a 20-ms window. The
indices were, therefore, calculated for the high-dimensional neural
responses. The window was moved in steps of 1 ms to measure the
time course of the two indices.

Separability index. The separation of two categories or groups of
images based on IT population responses can be defined using the
scatter matrix of the category members in RN. The scatter matrix
could be considered as an estimation of covariance in high-dimen-

sional space. Two factors bear on separability: the within-category
scatter and the between-category scatter (Duda et al. 2001). SI was
defined as the ratio of between-category scatter and within-category
scatter. The computation was performed in three steps. First, we
calculated the center of mass of each category in RN and also the mean
across all categories, total mean.

Mean of each category

�i �
1

ni
�
j�Ci

rj�

Total mean

m �
1

n�
i�1

c

ni�i

where rj� is the population representation of stimulus j in category i, Ci

is the set of stimuli that belong to category i, and ni is the number of
stimuli in Ci. n is the number of total stimuli.

Second, we calculated the between- and within-category scatters.
Within-category scatter for each category

Si � �
j,k�Ci

�rj� � �i��rk� � �i�T

Total within-category scatter

Sw � �
i�M

Si

Between-category scatter

SB � �
i�M

ni��i � m���i � m�T

where M is the set of categories for which SI is calculated. Note that
Si is the covariance matrix of neural responses calculated for the
members of category i. SW and SB are estimates of neural covariance
matrices based on category members and the categories, respectively.
Because we use the representation of images in neural space, the
dimension of SW and SB matrices is N·N (N is number of neurons).

Finally, SI was computed as

SI �
�SB�

�SW�

where ||S|| indicates the norm of S. In this paper, we use a spectral
norm (or ||S||) (Horn and Johnson 1990), because it takes into account
both the variance and covariance of neural responses. Spectral norm
is the largest singular value of S, and the singular value of matrix S
describes the length of its geometrical expansion across major axes in
the neural space. However, we obtained similar results with other
matrix norms, such as trace and Frobenius norm (data not presented in
this report).

Our method of calculating separability has several advantages. It
can be applied to high-dimensional datasets (here, 674 neurons) with
a limited number of data points. In our data, in some cases (such as
human identity), it was as low as 6 and as high as 500. Finally, it
properly takes into account both the variance and covariance of neural
responses. Our method is closely related to Fisher information (Duda
et al. 2001) and to the use of ANOVA in low-dimensional datasets
(Lehmann and Romano 2006). Basically, SI is an index for evaluation
of clustering quality. To calculate the SE of SI, we used a bootstrap-
ping process (Efron and Tibshirani 1994). All of the calculations
were repeated 500 times on a random selection of stimuli. We used
the SD of bootstrap samples to compute confidence intervals and
significances.

The SI was also used to measure the separation of two categories
of stimuli that are described by physical shape features extracted from
images. Each image is a point in RN space, where N is the number of
physical properties that define an image shape feature space. We
calculated shape feature space using different physical models, in-
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cluding V1, V2, and V4 [the outputs of different layers in the
Hierarchical Model (HMAX)] (Riesenhuber and Poggio 1999), foot
print (Sripati and Olson 2010), and a combination of object area with
three other basic global properties of the images—luminance, con-
trast, and aspect ratio (basic properties) (Baldassi et al. 2013). With
the use of the foot-print model, we calculated the physical difference
between each pair of images and made a distance matrix obtained
from the foot-print model. Then, we used nonclassical MDS on the
foot-print distance matrix to represent images on high-dimension
feature space.

Classification accuracy. For each category pair reported in this
paper, we trained a support vector machine (SVM) classifier with a
linear kernel (Cortes and Vapnick 1995) using the neural responses to
70% of the stimuli. Then, we measured the classification accuracy of
the model for the remaining 30% of the stimuli. Training was done by
using a least-square method for finding the separating hyperplane
(Suykens and Vandewalle 1999). When classification among more
than two categories was desired (face identity), a majority voting
procedure between every pair of classes (one-vs.-one, max-wins
voting strategy) was used (Hsu and Lin 2002). This means that all
potential pairwise classifiers were run, and the label of test stimuli was
obtained by majority vote of all classifiers. Because chance level
depends on the number of categories involved in each classification,
we report the normalized classification accuracy defined as (accur-
acy � chance)/(1 � chance). To calculate the SE of classification
accuracy, we repeated the calculations 500 times. In each repetition,
the stimuli were randomly partitioned into training and test sets.

To compare the time course of the representation of different
categories, we measured the onset and peak times of the separability
and classification accuracy indices. Peak time was defined as when the
index exceeded 90% of its maximum for 2 ms or more. Onset time
was defined as when the index exceeded 10% of its maximum for 10
ms or more. The main results are not sensitive to the change in the
mentioned thresholds (10% and 90%). To measure the SE of the onset
and peak times for SI and classification accuracy, we used a boot-

strapping method. To compare latencies of different categories, we
used the estimation confidence interval using bootstrap samples.

We also applied agglomerative cluster analysis (Johnson 1967) to
the neural distances in the early (85–105 ms; poststimulus) and late
(155–175 ms) phases of response and computed the tree structure.
This is an unsupervised analysis, and no prior assumption is implied.
Then, for all of the tested categories, we computed the nodes in the
tree that best matched each category. The average of the two follow-
ing ratios was used as a score for the match between category and the
tree: ratio 1 � (number of category members under the node)/(total
members of the category), and ratio 2 � (number of category
members under the node)/(total stimuli under the node) (Kiani et al.
2007). To compare change in hierarchical clustering score for differ-
ent categories in early and late phases of the response, we applied the
estimation confidence interval using bootstrap samples.

Calculation of the Temporal Dynamics of Category Information in
Individual Neurons

We used receiver operating characteristic (ROC) analysis (Green
and Swets 1989) as a robust measure for the separation of response
distributions elicited by each pair of the tested categories. The area
under ROC (AUROC) quantifies the performance of an ideal observer
for discriminating two categories based on the responses of a single
neuron (0.5 indicates chance, and 1.0 indices perfect categorization
performance). For each neuron and for each pair of categories, we
measured AUROC for a sliding, 20-ms window in steps of 1 ms. For
conditions in which separation of more than two categories was
required (e.g., face identity) AUROC was calculated for all category
pairs and then was averaged across the pairs. The peak and onset times
of the ROC analysis were measured as they were done for the
population indices.

A neuron was defined as category selective if its responses to
images of a specific category (e.g., faces) were greater than its
responses to other images (one-tailed t-test, P � 0.05). The degree of
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Fig. 1. Hierarchical category structure of the stimuli. Three category levels are defined: 1) superordinate level: animate vs. inanimate; 2) mid-level (basic level):
face vs. body, primate faces vs. nonprimate faces, human body vs. animal body, rhesus face vs. nonrhesus face, and natural inanimate vs. artificial inanimate;
3) subordinate level: human individual identity. Photos courtesy of Hemera Photo-Objects/Jupiterimages.
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selectivity of each neuron for one category (C1) vs. another category
(C2) was computed by d= index, based on following formula (Green
and Swets 1989)

d ' �
�M�C1� � M�C2��

��2�C1� � �2�C2�
2

where M(C1) and M(C2) are the mean response of the cell to catego-
ries C1 and C2, respectively, and �2(C1) and �2(C2) are the variances
of the cell responses in categories C1 and C2, respectively.

RESULTS

To examine the time course of category representation in the
neural responses of IT cortex, we used our previously reported
data of spiking activity of IT neurons (Kiani et al. 2005, 2007).
In this experiment, two macaque monkeys passively viewed
visual stimuli while responses of individual IT neurons (n �
674) were recorded. The recording sites included all subdivi-
sions of IT except posterior IT (area TEO). The stimuli were
images of �1,000 colored photographs of isolated natural and
artificial objects. A large number of visual object categories at
different levels of abstractions were included in the stimulus

set, allowing us to explore the time course of category infor-
mation at different levels of hierarchy (Fig. 1). Category
structure of the stimulus set was first formed on an intuitive
basis by dividing the stimuli into animate and inanimate
categories. Animate stimuli were further divided into faces and
bodies, inanimate stimuli into natural and artificial, bodies into
human and animal body, and faces into primate and nonpri-
mate faces. Finally, to provide a base for comparison of the
relative time of emergence of category (mid-level or basic
level) compared with identity (subordinate level) information,
human faces were divided into four different individuals for
whom we had at least six different images. Monkey faces were
also divided into rhesus and nonrhesus faces. These categorical
divisions are consistent with previous reports about natural
categorical representations in the monkey and human IT (Chao
et al. 1999; Kiani et al. 2007; Kriegeskorte et al. 2008; Martin
et al. 1996).

Figure 2 shows the projection of the stimuli on a 2D map,
created by applying MDS to the responses of the IT neural
population. Each point represents one of the stimuli in the
categories shown in each panel. MDS creates a low-dimen-
sional map of the stimuli so that the distances of stimuli on the
map match with the distances of the population response
patterns elicited by the stimuli. We performed MDS for two
separate time intervals: 1) the initial IT responses during
85–105 ms and 2) the later responses during 155–175 ms after
stimulus onset. MDS analysis revealed that the early responses
conveyed category information, separating faces and bodies
and primate faces and nonprimate faces but failed to discrim-
inate the higher (animates and inanimates) and lower level
(face identities). The later responses, however, differentiated
mid- as well as superordinate- and subordinate-level catego-
ries. On average, 67% of variance was captured by the first two
dimensions of the MDS in the early phase of responses and
74% in the late phase.

To visualize the time course of category representation, we
constructed a constant 2D axis using the first two PCA com-
ponents derived from the neural response, from 65–170 ms
after stimulus onset. We projected the neural responses in a
20-ms window on the 2D axis. The window moved at 1 ms
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Fig. 2. 2D Representations of categories at 3 levels of hierarchy in early and
late phases of neural responses. These representations are generated using
multidimensional scaling on the neural population responses at 3 levels of the
hierarchy. Early (85–105 ms; left) and late (155–175 ms; right) phases of the
neural responses are shown. The rows show animate vs. inanimate, face vs.
body, primate faces vs. nonprimate faces, and 4 human face identities. Ellipses
demonstrate 2 SD of the distribution of category members in the 2D repre-
sentations.
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Fig. 3. The percentage of unexplained variance. The percentage of unexplained
(residual) variance against the number of PCA dimensions used for construc-
tion of the movie. The first 2 dimensions of the PCA analysis reported here
were used to make the movie. The neural population responses to all stimuli in
the 65- to 170-ms time window were used to extract the principle dimensions
by PCA. The gray arrows indicate the values for second, fourth, sixth, and
eighth dimensions. The explained (100 � unexplained) variance quantifies
how well information is represented in the reduced, low-dimensional neural
space.
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steps from 0 to 210 ms after stimulus onset (see MATERIALS AND

METHODS). We concatenated the 2D maps that were generated at
consecutive times into a movie. In Supplemental Movie 1, the
actual stimuli are shown. Sixty-two percent of variance was
captured by the first two dimensions of the PCA (Fig. 3).
Supplemental Movie 1 shows the temporal evolution of the
differential representation of the categories by the IT popula-
tion. Consistent with the MDS result shown in the movie,
human and monkey (primate) faces start to move away from
other stimuli soon after the stimulus onset. Later, bodies
separate from faces and the other stimuli. Finally, animate and
inanimate images form two distinct clusters. At this time,
different human face stimuli form separate clusters.

To quantify the strength and reliability of category repre-
sentation in the IT neural population, we used an index that
measures the ratio of between-category distances and within-
category scatter of the stimuli based on IT neural responses (SI;
see MATERIALS AND METHODS). High values of SI indicate that the
tested categories have large, between-category distances and

small, within-category scatter. Figure 4A shows the time course
of SI for different levels of object categorization. SI reached
significant values for all categorization levels at some point
after the stimulus onset. We observed earlier onset of signifi-
cant SI values for body vs. face and for primate (monkey and
human) vs. nonprimate faces (mid-level) compared with SI
values for animates vs. inanimates (superordinate level) and for
face identities (subordinate level). The mid-level categoriza-
tions had both an earlier onset (P � 0.001) and earlier peak
(P � 0.001; Fig. 4B; onset latencies: animate vs. inanimate
105.9 � 0.64 ms, face vs. body 82.3 � 0.74 ms, primate faces
vs. nonprimate faces 83.3 � 1.26 ms, and face identity 103 �
14.7 ms; peak latencies of the above-mentioned categories
were 148.7 � 3.3 ms, 121.9 � 3.2 ms, 105.1 � 3.6 ms, and
152.2 � 16.5 ms, respectively). Six time windows of the movie
were selected to illustrate the representation of stimuli at
baseline and around onset and peak latencies of categorization.
The earlier separation of mid-level categories in the movie is
consistent with the earlier onset and peak latencies of SI.
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Fig. 4. Time course of the separability index (SI) for the 3 levels of hierarchy. A: time courses of SI. The time courses were offset by the mean value of index
at the 1- to 50-ms interval from stimulus onset. Shaded areas represent SD, calculated using the bootstrap procedure. Surrounding scatter plots are 6 frames from
Supplemental Movie 1. The 107-, 127-, and 161-ms time points correspond to SI peak times of primate faces vs. nonprimate faces, face vs. body, and animate
vs. inanimate, respectively. B: onset (left) and peak (right) latencies of SI; onset latency is defined as the first time that the index exceeds 10% of its maximum
value for 10 ms. Peak latency is defined as the time that the index exceeds 90% of its maximum value at least for 2 ms.
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To examine the time course of representation of other
mid-level categories, the onset latencies for a wide range of
categories were calculated and are provided in Table 1. A trend
toward earlier representation of mid-level categories was ob-
served in all of the tested conditions.

In our analysis of category time course, there was no impact
of the selected level of the contrasted category (e.g., all other
stimuli, higher-level category, and categories at the same level
with the one being tested) on the main finding. Onset and peak
times of almost all of the tested face and body categories were
earlier than the related times for superordinate categorization
(Tables 2 and 3).

To examine the contribution and significance of face stimuli
in the earlier emergence of mid- compared with superordinate-
level categories, we discarded the neural responses to face
stimuli and repeated the SI time course analysis. Mid-level
advantage did not depend on responses to faces (Table 4). We
also excluded face neurons from our cell population and
calculated onset and peak times of various body category pairs
(i.e., body images without visible faces). The mid-level advan-
tage was observed in the nonface IT cell population using only
body stimuli. To explore the effect of face information on
representation of body categories, we used 29 pairs of exactly
similar body images but with and without face (12 pairs of
4-limb; 9 pairs of bird body; and 8 pairs of other body images)
and repeated the SI time course analysis for these categories
against inanimate stimuli (Table 5; body category consists of
all 29 pairs). In each selected pair, all shape features are the
same except faces. The latencies extracted from the SI time
course of bodies with and without face tested against inani-
mate, and the average of SI values [window (70–170) ms] was
considered as a measure of represented category information. The

results confirm the importance of face information in representa-
tion of category information (greater average SI value for bodies
with face than bodies without face; SIbodies-with-face � 0.58 � 0.01,
SIbodies-without-face � 0.26 � 0.01; P � 0.001) but also show that
the main temporal structure reported here does not purely depend

Table 1. Onset and peak latencies of SI for different levels of
categorization

Category Name Onset, ms Peak, ms

Superordinate Level
Animate vs. inanimate 105.9 � 0.64 148.7 � 3.3

Mid-level
Human vs. animal 79.5 � 0.73* 97.8 � 4.00*
Monkey vs. animal 87.4 � 4.74* 108.7 � 4.75*

Face
Human vs. animal 82.9 � 1.13* 102.4 � 3.09*
Monkey vs. animal 87.5 � 2.93* 123.4 � 7.21*
Human vs. bird 88.8 � 2.46* 139.2 � 12.58
Monkey vs. bird 93.4 � 4.84† 127.8 � 8.88†
Human vs. cat 88.0 � 2.04* 136.9 � 6.83‡
Monkey vs. human 89.4 � 2.18* 139.2 � 3.74†
Rhesus vs. nonrhesus 100.3 � 11.63 125.3 � 7.34*

Body
Human vs. animal 98.7 � 5.24 133.3 � 10.7
Human vs. 4-limb 93.8 � 3.26† 126.7 � 9.74‡
Bird vs. 4-limb 97.8 � 6.74 125.8 � 13.78‡
Human vs. bird 101.4 � 4.45 138.9 � 11.6

Inanimate
Artificial vs. natural 91.6 � 5.1† 126.4 � 4.57*
Car vs. furniture 98.6 � 9.07 131.2 � 5.53†
Car vs. common tools 102.8 � 7.91 134.8 � 6.20†

Subordinate Level
Human identity 103.3 � 14.70 152.2 � 16.50
Woman vs. man 103.5 � 15.61 173.6 � 49.27
Monkey identity 128.5 � 28.13 156.2 � 24.75

SI, separability index. Significant against superordinate: *P � 0.001; †P �
0.01; ‡P � 0.05.

Table 2. The peak and onset latencies of SI for face and body
categorizations against 3 different contrast categories (all other,
inanimate, and other animate stimuli)

Peak Onset

Animate vs. Inanimate 105.9 � 0.64 148.7 � 3.3
Face
vs. all other 81.4 � 0.56* 111.2 � 2.71*
vs. inanimate 83.7 � 0.54* 124 � 3.15*
vs. other animate 81.4 � 0.7* 117.2 � 3.2*

Primate
vs. all other 81.3 � 0.58* 100.8 � 3*
vs. inanimate 84.3 � 0.49* 111.7 � 3.17*
vs. other animate 82.1 � 0.65* 100.9 � 2.65*

Nonprimate
vs. all other 91.8 � 4.49* 131.7 � 5.25†
vs. inanimate 97.8 � 1.18* 126.2 � 2.26*
vs. other animate 101.2 � 7.21 139.2 � 7.28

Monkey
vs. all other 86.9 � 2.4* 108.6 � 6.61*
vs. inanimate 92.1 � 1.85* 124.3 � 2.37*
vs. other animate 90 � 3.29* 123.9 � 4.61*

Human
vs. all other 82.5 � 0.53* 98.3 � 0.96*
vs. inanimate 84.4 � 0.52* 108.2 � 2.45*
vs. other animate 82.4 � 0.53* 99.9 � 1.51*

Cat
vs. all other 81.3 � 9.81† 120.6 � 70.41
vs. inanimate 103 � 1.93 129 � 3.49*
vs. other animate NS NS

Bird
vs. all other 82.3 � 7.3* 88.6 � 6.11*
vs. inanimate 101.9 � 3.71 129.8 � 5.87*
vs. other animate NS NS
Body
vs. all other 93.9 � 0.63* 119.8 � 3.21*
vs. inanimate 96.1 � 0.58* 127.5 � 2.81*
vs. other animate 93.6 � 1.64* 124.6 � 5.05*

Four-limb
vs. all other 95 � 0.84* 120.5 � 2.75*
vs. inanimate 97.9 � 0.79* 126.4 � 2.67*
vs. other animate 95 � 1.43* 126.7 � 5.45*

Human
vs. all other 89.2 � 1.69* 131.7 � 20.8
vs. inanimate 92.8 � 2.65* 124.4 � 4.06*
vs. other animate 88.3 � 2.96* 154.7 � 20.21

Monkey
vs. all other 95.9 � 3.24* 118.4 � 5.36*
vs. inanimate 99.1 � 2.5† 128.1 � 4.42*
vs. other animate 95.9 � 4.7‡ 127.5 � 10.21‡

Bird
vs. all other 95.7 � 1.64* 120.5 � 4.63*
vs. inanimate 98.1 � 1.41* 126.9 � 3.19*
vs. other animate 95.8 � 2.12* 125.4 � 7.21*

Cat
vs. all other NS NS
vs. inanimate 99.3 � 2.41† 124.8 � 5.1*
vs. other animate 101.6 � 4.99 121.5 � 6.29*

Dog
vs. all other NS NS
vs. inanimate 99.8 � 2.53† 127.4 � 4.23*
vs. other animate 97 � 5.54 124.8 � 9.59†

NS, not significant. Significant against superordinate: *P � 0.001; †P �
0.01; ‡P � 0.05.
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on face stimuli. Category information of both image groups
(bodies with and without face) emerged earlier than superordinate.
There was no significant difference between latencies of bodies
with and without face.

To test further the temporal dynamics of category informa-
tion in the IT population code, we trained biologically plausi-
ble linear classifiers (Hung et al. 2005; Meyers et al. 2008) to
discriminate categories at different levels of abstraction based
on the IT neural responses. Fig. 5A shows the classification
accuracy. The classification accuracy was cross validated and
normalized so that zero indicates that the classifier is at chance,
and one indicates that the classifier performs perfectly. As
expected from our SI and MDS analysis, classification accu-
racy increased significantly sooner for the mid-level categori-
zations than for the low and high levels (Fig. 5A). The earliest
time that a downstream structure could discriminate the mid-
level categories above chance level was 72.5 � 2.9 and 76.1 �
1.7 ms after stimulus onset for faces/bodies and for primate/
nonprimate faces, respectively (Fig. 5B). The earliest signifi-
cant discriminations for the high- and low-level discrimination
were 10–30 ms later (Fig. 5B; P � 0.01; animate and inani-
mate discrimination, 85.4 � 4.7 ms; face-identity discrimina-
tion, 95.7 � 8.2 ms). The differences were even larger (35–50
ms, P � 0.01) for the time of peak performance (Fig. 5B; faces
vs. bodies, 116.6 � 4.4 ms; primate vs. nonprimate faces,
106.8 � 4.6 ms; animate vs. inanimate, 135 � 7.5 ms; and face
identity, 150.4 � 5.1 ms).

We used an agglomerative cluster analysis at early and late
phases of response to examine the time course of category
organization at a different level of hierarchy in an unsupervised
way (see MATERIALS AND METHODS for details). Figure 6 illus-
trates the hierarchical cluster trees computed at early (Fig. 6, A
and B) and late (Fig. 6C) phases of neural response. Face,
body, other animate, and inanimate category members at the
lowest level of hierarchy are indicated. Face stimuli clustered
at the earliest time interval (Fig. 6A; 85–105 ms), and follow-
ing them, 10 ms later (Fig. 6B; 95–115 ms), body images
clustered. Both face and body images (mid-level) clustered
earlier than superordinate animate stimuli (Fig. 6C; 155–175
ms). Consistent with our previous analysis, the hierarchical
analysis at different time bins provides unsupervised evidence
for later clustering of superordinate rather than mid-level
categories. For all tested categories depicted in Table 1, we
calculated the hierarchical score based on ratios 1 and 2 [ratio

1 � (number of category members under the node)/(total
members of the category), and ratio 2 � (number of category
members under the node)/(total stimuli under the node)]. Table
6 shows the degrees of match between categories and nodes in
the reconstructed tree for the early (85–105 ms) and late
(155–175 ms) phases of responses. The categories with signif-
icant value across at least one of the phases were included in
Table 6 (significance was computed against chance value
calculated in 0–20 ms by 95% confidence interval). Table 6
also indicates the increase in hierarchical score from early to
late phase of response [(Scorelate � Scoreearly)/Scorelate]. Con-
sistent with our main finding, the superordinate categories
(animate and inanimate) have a bigger change in hierarchical
scores than all tested mid-level categories. So the unsupervised
organization of mid-levels and superordinate in cluster tree at
the early phase of response also supports earlier representation
of mid-level categories in both animate and inanimate catego-
ries.

To assess the timing of category representation in the single-
cell responses, the AUROC was used (see MATERIALS AND

METHODS). AUROC quantifies the performance of an ideal
observer for discriminating two categories based on the re-
sponses of a single neuron. The time courses of AUROC of
individual neurons show later emergence of superordinate and
subordinate categories.

To choose neurons for single-cell analysis, we defined se-
lectivity of single cells, measured by d= (see MATERIALS AND

METHODS), to three pairs of categories: animate vs. inanimate,
face vs. body, and primate faces vs. nonprimate faces. For each
of these category pairs, we performed a randomization test on
the d= (randomizing class labels) and defined selectivity based
on the significance of a randomization test (P � 0.05). There
were 126 neurons selective to all of the tested category pairs.
Peak and onset time were defined as when the AUROC
exceeded 90% and 10% of its maximum for 2 and 10 ms,
respectively.

Figure 7 illustrates single-cell latencies for different levels of
object categories. Each point in the scatter plots depicts one
category-selective cell. Onset latencies are earlier for mid-level
(faces vs. bodies, 81.6 � 1.20 ms; primate faces vs. nonprimate
faces, 78.3 � 1.16 ms) compared with superordinate (animate
vs. inanimate, 87.4 � 1.43 ms, one-tailed t-test, P � 0.05)- and
subordinate (human face identity, 85.7 � 4.85 ms, one-tailed

Table 3. The peak and onset latencies of category information
indexed by SI for several animate categories tested against
inanimate stimuli

Category Name Onset, ms Peak, ms

Animate 105.9 � 0.64 148.7 � 3.3
Human 83.5 � 0.52* 113.1 � 4.18*
Animal 94.6 � 0.61* 140.8 � 5.17
Monkey 95.3 � 1.19* 126.3 � 3.02*
Bird 98.3 � 1.41* 127 � 2.65*
Cat 100.6 � 1.75† 128.4 � 3.77*
Reptile 93.7 � 8.37 126.5 � 6.38*
Insect 96.7 � 4.59‡ 122.5 � 4.8*
Butterfly 97.1 � 6.41 120.3 � 4.15*
Hand 94.6 � 2.49* 132.1 � 7.11‡
Fish 99.5 � 10.9 136 � 6.78‡

Significant against superordinate: *P � 0.001; †P � 0.01; ‡P � 0.05.

Table 4. Onset and peak latencies of SI for faceless animate

Category Name Onset, ms Peak, ms

Superordinate Level
Animate vs. inanimate 105.9 � 0.64 148.7 � 3.3
vs. inanimate

Nonface animate 96.4 � 1.25* 129.3 � 3.63*
Body 98.6 � 1.83* 128.8 � 3.83*
Human body 91.3 � 3.25* 122.4 � 2.49*
Four-limb body 96.4 � 2.09* 126.6 � 4.17*
Bird body 96.3 � 1.27* 129.4 � 4.08*
Other animate 93.4 � 3.63* 123.6 � 4.2*

vs. other animate
Body 97.2 � 2.55* 129.4 � 5.03*
Human body 97.8 � 3.11† 128.8 � 4.88*
Four-limb body 97.4 � 3.01† 131 � 6.04†
Bird body 100.7 � 3.52 131.8 � 6.68‡

Significant against superordinate: *P � 0.001; †P � 0.01; ‡P � 0.05.
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t-test against the latency of face vs. body categorization, P �
0.05)-level categorizations. A larger difference existed in the
peak latencies (peak latency of faces vs. bodies, 113.1 �
2.23 ms; primate vs. nonprimate faces, 107.8 � 2.19 ms;
animate vs. inanimate, 141.4 � 2.62 ms, P � 0.001; face
identity, 143.0 � 3.77 ms, P � 0.001). Similar results were
obtained when we used all responsive neurons with signif-
icant AUROC at 65–170 ms (one-tailed t-test).

To examine the relation between category selectivity of
individual neurons and onset/peak time of category discrimi-
nation, we measured the correlation between d= values of each
neuron and onset/peak time of category discrimination for
various category pairs. There was a significant correlation
between selectivity and onset/peak latency for almost all of the
tested category pairs (onset latencies: animate vs. inanimate
r � �0.29, P � 0.001; face vs. body r � �0.15, P � 0.01;
primate faces vs. nonprimate faces r � �0.13, P � 0.01; and
face identity r � 0.15, P � 0.21; peak latencies of the
above-mentioned categories: r � �0.36, P � 0.05; r � �0.41,
P � 0.05; r � �0.32, P � 0.05; and r � �0.19, P � 0.05,
respectively).

To examine further the temporal dynamic of category infor-
mation in the IT neural ensemble, consisting of neurons with-
out any category selectivity, we calculated SI for 157 neurons
that show no significant response to face, body, animate, and
inanimate categories (one-tailed t-test, P � 0.05). Interestingly,

Table 5. The peak and onset latencies of category information indexed by SI for bodies with and without face tested against inanimate
stimuli

Category Name Onset, ms Peak, ms

Animate 105.9 � 0.64 148.7 � 3.3
with Face without Face with Face without Face

Body 98.1 � 1.44* 95.8 � 2.46* 125.2 � 3.17* 125.6 � 4.07*
Bird body 100.7 � 2.91† 104.0 � 7.81 125.2 � 4.8* 126.7 � 6.33*
Four-limb body 98.1 � 2.47* 96.5 � 3.31‡ 123.5 � 3.52* 123.5 � 4.11*

Significant against superordinate: *P � 0.001; †P � 0.05; ‡P � 0.01.
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we found a similar trend for the time course of category
representation in the population activity of these noncategory
neurons (Fig. 8). The time course of SI in these neurons shows
earlier manifestation of mid-level categories in responses of all
of the IT subpopulation (Fig. 8B; onset latencies: animate vs.
inanimate 135.6 � 16.21 ms, face vs. body 96.2 � 4.34 ms,
primate faces vs. nonprimate faces 105.1 � 10.87 ms, and face
identity 132.9 � 32.32 ms; peak latencies of the above-

mentioned categories: 193.8 � 7.91 ms, 190.8 � 8.19 ms,
143.3 � 7.05 ms, and 169.6 � 44.83 ms, respectively).

It is possible that within/between physical feature similari-
ties of visual stimuli determine the time course of the tested
pairs of categories. To address this issue, we measured the
physical similarity of images using V1, V2, and V4 models.
These models are constructed using the outputs of different
layers in the HMAX model (Riesenhuber and Poggio 1999). In

Table 6. Degrees of match between categories and nodes in the tree, reconstructed from responses of IT cells in early and late phase of
neural responses

Category Name Scoreearly, 85–105 ms Scorelate, 155–175 ms (Slate � Searly)/Slate

Animate 0.68 � 0.01 0.77 � 0.05 0.13 � 0.08
Human 0.78 � 0.03 0.73 � 0.04 �0.07 � 0.05*
Animal 0.67 � 0.00 0.62 � 0.04 �0.06 � 0.06*
Face 0.69 � 0.03 0.67 � 0.03 �0.03 � 0.05†
Primate face 0.79 � 0.03 0.71 � 0.04 �0.09 � 0.05*
Human face 0.94 � 0.03 0.87 � 0.05 �0.08 � 0.06*
Rhesus face 0.51 � 0.00 0.5 � 0.04 �0.02 � 0.08†
Body 0.60 � 0.00 0.56 � 0.03 �0.06 � 0.05*
Four-limb body 0.56 � 0.00 0.56 � 0.02 0.00 � 0.04†

Inanimate 0.76 � 0.00 0.83 � 0.03 0.09 � 0.04
Natural 0.70 � 0.00 0.73 � 0.03 0.05 � 0.05
Artificial 0.56 � 0.01 0.55 � 0.02 0.00 � 0.03*

IT, inferior temporal; Slate, Scorelate; Searly, Scoreearly. Significant against corresponding superordinate: *P � 0.01; †P � 0.05.
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addition, we used foot-print (Sripati and Olson 2010) and basic
global properties of the images (object area, luminance, con-
trast, and aspect ratio) (Baldassi et al. 2013). We then used the
ratio of within/between class physical similarity values of
different pairs of categories (25 mid-levels and 1 superordi-
nate) to calculate SI. So SI was used to measure the separation
of two categories of stimuli that are described by both physical
shape features and neural response. The distributions of onset
and peak latencies for 25 pairs of mid-level categories, which
are extracted from the time course of SI computed by neural
data, are shown in Fig. 9A. Animate/inanimate onset and peak
category representation times were always later than the laten-
cies of tested, 25 pairs of mid-levels categories. There is a
significant difference between the mean of onset and peak
latencies of 25 pairs of tested mid-level categories and the peak
and onset latencies of animate vs. inanimate (Fig. 9A; t-test,
P � 0.001). With the use of each of the above-mentioned
physical models, we calculated SI values for physical distinc-
tion of different pairs of categories (25 mid-levels and 1
superordinate). All of the SI values for physical distinction
were bias corrected by random shuffling of category labels,
1,000 times in each tested category pair. Here, the negative
values show nonsignificant physical distinctions. We plotted
the SI values extracted from physical features against the onset
and peak latencies extracted from the time course of SI com-
puted by neural data for each pair of 26 tested categories (Fig.
9B). These analyses revealed no correlation between latency of
category representation and within/between physical similarity
for any of the tested models.

To study further the effect of within-category member sim-
ilarity on the neural representation of mid-level categories, we
selected a subset of faces and bodies with equal within-
similarity distances (diverse faces and similar bodies). The
basic global properties of the images (object area, luminance,
contrast, and aspect ratio) (Baldassi et al. 2013) were used to
compute within-category distance. New animate, face, and
body categories were made using face and body shape dis-
tance-matched stimuli. There is no significant difference in mean
of within-similarity distances for selected bodies and faces (with-
in-similarity distance before selection: face � 0.43 � 0.24,
body � 0.62 � 0.41; within-similarity distance after selection:
face � 0.51 � 0.37, body � 0.50 � 0.33; t-test, P � 0.14).
Consistent with our main findings, the early representation of
mid-level categories compared with superordinate was observed
when using neural responses of these shape-distance-matched
categories (Table 7). These results also suggest that highly similar
face stimuli are not the major factor in the late representation of
superordinate category.

To examine a potential, functional difference between IT
subdivisions, we compared the temporal dynamics of category
representation using data of neurons located in areas lower
bank of superior temporal sulcus (STS), ventral inferotemporal
cortex (TEv), dorsal inferotemporal cortex (TEd), as well as
the posterior part of TE (TEp)/anterior part of TE (TEa; with
and without STS neurons). The locations of neurons were
defined using MRI and electrophysiological mapping (Kiani et
al. 2007). Whereas the results of the SI analysis were noisier,
due to smaller sample sizes, earlier representation of mid-level
categories compared with superordinate and subordinate was
observed in all of the tested areas (Table 8).

To control the potential impact of spike contamination
evoked by preceding stimuli that may occur in RSVP, we
divided trials into two groups: trials in which an animate image
preceded the stimulus and those in which an inanimate image
preceded the stimulus (Fig. 10). We then calculated the SI
values of each group separately. The advantage of mid-level
categories was preserved in both conditions (condition a, onset
latencies: animate vs. inanimate 118 � 0.14 ms, face vs. body
97.1 � 0.31 ms, primate faces vs. nonprimate faces 97.4 �
0.52 ms, and face identity 117.1 � 1.62 ms; peak latencies of
the above-mentioned categories: 160.4 � 1.5 ms, 128.6 � 0.89
ms, 112.6 � 1.11 ms, and 164.4 � 3.62 ms, respectively;
condition b, onset latencies: animate vs. inanimate 116 � 0.22
ms, face vs. body 91 � 0 ms, primate faces vs. nonprimate
faces 91.5 � 0.52 ms, and face identity 102.4 � 30.51 ms;
peak latencies of the above-mentioned categories: 147.1 �
0.69 ms, 120.7 � 0.92 ms, 107.4 � 0.61 ms, and 198.9 � 32.5
ms, respectively).

DISCUSSION

In this paper, we studied the time course of visual object
category representation in neural responses of the IT cortex of
macaque monkeys. We found that IT neurons represent mid-
level categories (e.g., human faces) earlier than superordinate
(e.g., animal)- and subordinate (e.g., face identity)-level cate-
gories. Responses of the IT neural population, both category-
selective and nonselective neurons, show a temporal order of
category information with earlier emergence of mid-level cat-
egory information. A similar time course of category informa-
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tion was observed in the activity of individual neurons with
strong category selectivity.

Psychophysical studies have shown that perceptual access to
the mid-level category information occurs earlier than access to
the higher- or lower-level categories. These findings suggest an
expedited neural processing of the mid-level information
(Mack and Palmeri 2015; Rosch et al. 1976; Tanaka and Taylor
1991). Our results suggest the neural signature of this mid-
level advantage phenomenon. The short-latency emergence of
mid-level category information shows that the category shape
space is divided first at its sharpest boundaries, defined by
high/low within/between-group similarity. This short-latency,
mid-level category boundary map may be used for representa-
tion of category boundaries at higher or lower levels of ab-
straction in later stages of the neural processing. In addition,

these findings put constraints on the models of object recog-
nition by showing temporally structured processing of category
information in the visual cortex. Our study surpasses past
literature and reconciles seemingly contradictory results in
previous studies, as we explain below. However, it should be
noted that the neurophysiological data reported here were
collected from passively viewing monkeys; therefore, rele-
vance of the temporal course of neural responses to behavioral
visual categorization cannot be directly established in our study
and needs further investigations.

Neural correlates of object categorization have been widely
investigated in the ventral visual pathway (Bruce et al. 1981;
Kiani et al. 2007; Kriegeskorte et al. 2008; Tanaka 2003). Cells
in IT cortex respond selectively to specific categories at dif-
ferent levels of abstraction (Desimone et al. 1984; Fujita et al.
1992; Kiani et al. 2007; Tsao 2006). However, previous studies
have generated contradictory results about the time course of
categorical representations. The recording of IT responses to
faces of humans and monkeys has revealed that IT neurons
distinguish monkey faces from human faces earlier than they
distinguish face identities (Matsumoto 2004; Sugase et al.
1999). These authors have hypothesized a coarse-to-fine tem-
poral gradient for the representation of information in IT and
have speculated that global information could act as a header to
prepare downstream areas for processing of finer-grained in-
formation.

On the other hand, recent MEG studies in humans have
suggested an opposite temporal gradient in which finer-grained
information about visual stimuli is represented before more
global information. The decoding of MEG signals results in
earlier recognition of exemplar members (i.e., image identities)
than more abstract categories (e.g., animate vs. inanimate)
(Carlson et al. 2013). Multivariate pattern classification of the
time course of human MEG signals shows a delayed represen-
tation of superordinate categories compared with individual
images (Pantazis et al. 2014). With the use of data from our lab
[Kiani et al. (2007) and current results], Pantazis et al. (2014)
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Fig. 9. Distribution of latencies and relationship of physical similarity and
latencies of category representation in IT cortex. A: the distribution of onset
(left) and peak (right) latencies for 26 pairs of tested categories (25 mid-levels
and 1 superordinate level). The dashed lines show the onset (left) and peak
(right) latency of superordinate level, animate vs. inanimate, and the arrows
show the mean value of latency distributions. B: in each panel, we calculated
the within/between class physical distinction using SI and different physical
models (V1, V2, V4, foot print, and basic properties). All of the SI values for
physical distinction were bias corrected by random shuffling of category labels,
1,000 times in each tested mid-level contrast category. There was no signifi-
cant correlation between latency of category representation and within/be-
tween physical similarity for any of the tested models (the correlation coeffi-
cient values with their P values are shown in each panel). The big diamond
shows the animate vs. inanimate categorization; numbers next to each point
indicate the following: 1, animate vs. inanimate; 2, human vs. animal; 3,
monkey vs. animal; 4, hand vs. reptile; 5, hand vs. butterfly; 6, human face vs.
animal face; 7, monkey face vs. animal face; 8, human face vs. bird face; 9,
monkey face vs. bird face; 10, human face vs. cat face; 11, monkey face vs. cat
face; 12, monkey face vs. human face; 13, rhesus face vs. nonrhesus face; 14,
human body vs. animal body; 15, monkey body vs. animal body; 16, human
body vs. 4-limb body; 17, monkey body vs. 4-limb body; 18, bird body vs.
4-limb body; 19, human body vs. bird body; 20, monkey body vs. bird body;
21, human body vs. cat body; 22, human body vs. dog body; 23, bird body vs.
cat body; 24, artificial inanimate vs. natural inanimate; 25, car vs. furniture; 26,
car vs. common tools. The arrows show the mean value of latency distribu-
tions.
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report a similar pattern in their human MEG data and the
category structure of the spiking activity of IT neurons. There
is, however, an unresolved discrepancy between the latency of
category representations in IT spiking activity and MEG and
EEG studies. Unlike the MEG and EEG studies that show
earlier representation of individual stimuli, IT-spiking activity
supports an earlier representation of mid-level categories. The
discrepancy is likely to originate from differences in signals
recorded by the two techniques. Whereas spiking activity
represents neuronal outputs, MEG and EEG signals reflect a
complex combination of synaptic inputs, neuronal outputs,
synchrony, and spatial alignment of charges along axons and
dendrites in large populations of neurons (Ikeda et al. 2002;
Murakami and Okada 2006; Okada et al. 1997). The resolution
of the discrepancy between the two techniques requires a
deeper understanding of the mapping of MEG and EEG signals
to spiking activity. However, it is likely that the earlier repre-
sentation of individual stimuli in MEG and EEG signals
reflects a larger difference in IT input, whereas the earlier
representation of mid-level categories in spiking activity
emerges from the processing of the input information by IT
neurons.

Our results are immune to several confounding factors that
have been shown to bias measurements of response latencies.
First, note that within-category heterogeneity of stimuli in-
creases monotonically from subordinate- to mid- to superordi-
nate-level categories. Therefore, delayed representation of su-
perordinate and subordinate categories cannot be attributed to
their higher diversity or stimulus dissimilarity compared with
mid-level categories. Secondly, the differential time course of
category representations cannot be attributed to the number
of cells selective for each category. The temporal advantage of
mid-level categories persisted even after exclusion of category-
selective cells. Thirdly, our results were not biased by a
preferential representation of mid-level categories in an indi-

vidual monkey. The main results were independently repli-
cated in each monkey. Fourthly, the observed results were not
shaped by the number of stimuli that belonged to each cate-
gory. To examine the potential impact of sample-size bias, we
equalized the number of samples in pairs of categories and
repeated the SI and SVM analyses. Mid-level category infor-
mation emerged earlier in all of the tested category pairs.
Fifthly, spike contamination, evoked by preceding stimuli that
may occur in RSVP, did not impact the mid-level advantage.
Finally, the differential time course of the category represen-
tations could not be attributed to a systematic difference in
luminance or contrast across the categories. The nested struc-
ture of the hierarchical categories removes concerns about
biases caused by such stimulus inhomogeneity. Ruling out
these confounds enhances the reliability of our conclusions
about the slower emergence of superordinate and subordinate
category information in IT cortex.

To be able to present a large number of stimulus images, we
used an RSVP paradigm with short stimulus-presentation du-
ration and no interstimulus interval. It is plausible that neural
responses in the RSVP condition are different than when
longer-presentation duration with long interstimulus intervals
is used. It should be noted that in natural life, as we explore the
visual world, retinal images of visual stimuli change relatively
rapidly without any no-stimulation intervals. So the potential
interaction of stimuli in the RSVP condition on neural re-
sponses may mimic the real-world condition better than stim-
ulation paradigms with long interstimulus intervals. In addi-
tion, cells in the monkey IT cortex preserve their stimulus
selectivity in RSVP as fast as 14–28 ms/stimulus (Edwards
2003; Földiák et al. 2004; Keysers et al. 2001). Furthermore,
backward masking has a minimal effect on the initial part of
neuronal responses when the stimulus onset asynchrony is �80
ms (Kovács et al. 1995; Rolls and Tovee 1994). We have
previously used the same image set and tested IT neural
response latency of human and animal faces for two presenta-
tion methods: 245 ms presentation time with 245 ms blank
interval and 105 ms presentation time without any blank
interval (Kiani et al. 2005). We found no significant difference
between face response latency of these two presentation meth-
ods.

With the consideration of the limitations of the stimulus set,
we could calculate SI values for only 3 subordinate categories
compared with 16 mid-level conditions. On the other hand, we
only examine one superordinate category pair (animate vs.
inanimate) with high within-member shape variability. A more

Table 7. The peak and onset latencies of category information
for faces and bodies equalized within similarity

Category Name Onset Peak

Modified animate vs. inanimate 99.6 � 2.00 146.9 � 4.51
Diverse face vs. similar body 88.4 � 5.33* 131.6 � 3.96†
Divers face vs. inanimate 89.0 � 1.37† 128.6 � 2.94†
Similar body vs. inanimate 97.3 � 0.75 127.1 � 2.47†
Diverse face vs. other animate 83.6 � 1.48† 120.7 � 4.27†
Similar body vs. other animate 93.2 � 1.93† 123.8 � 6.8†

Significant against corresponding superordinate: *P � 0.05; †P � 0.001.

Table 8. The peak and onset category information latencies in different IT subdivisions

Animate vs. Inanimate Face vs. Body
Primate Face vs. Nonprimate

Face Human Identity

Onset Peak Onset Peak Onset Peak Onset Peak

STS 96.0 � 0.88 131.3 � 2.90 85.4 � 0.84* 125.9 � 4.47 84.9 � 1.63* 119.3 � 7.85 105 � 20.86 145.7 � 13.04
TEd 95.5 � 0.83 138.4 � 4.53 89.1 � 0.75* 120.9 � 2.18* 85.4 � 1.40* 115.6 � 9.77† 93.1 � 6.63 160 � 12.79
TEv 99.9 � 0.59 145.8 � 3.30 81 � 0.83* 121.3 � 3.69* 83.5 � 1.38* 104.5 � 7.52* 16.9 � 16.23 158.9 � 31.35
TEp (with STS) 93.1 � 0.76 130.0 � 2.94 89.2 � 0.97* 119.4 � 3.98† 88.3 � 1.7† 124.0 � 11.14 120.6 � 15.73 155.3 � 9.09
TEa (with STS) 99.8 � 0.75 146.8 � 2.85 81.0 � 0.72* 124.8 � 4.33* 82.5 � 1.16* 103.1 � 3.25* 104.6 � 14.84 156.3 � 19.46
TEp (without STS) 93.9 � 0.77 130.2 � 2.95 89.8 � 0.93* 119.6 � 3.75† 88.4 � 1.69* 121.0 � 6.67 134.7 � 8.14 158.3 � 10.11
TEa (without STS) 100 � 0.80 148.5 � 3.51 80.8 � 0.74* 124.3 � 3.89* 82.9 � 1.47* 103 � 2.23* 102.8 � 13.81 155.5 � 20.7

Significant against corresponding superordinate: *P � 0.001; †P � 0.01.
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balanced stimulus image set is needed to understand fully the
subordinate vs. mid-level category information time courses.

The psychophysical studies that have challenged the mid-
level advantage by demonstrating rapid access to the superor-
dinate-level category information (Fabre-Thorpe et al. 2001;
Macé et al. 2009; Poncet and Fabre-Thorpe 2014; Wu et al.
2014) are not necessarily contradictory to our findings. As in
the animal-detection experiments, subjects could rely on de-
tection of face or body (or even face or body components) and
perform the task efficiently. The short-latency, mid-level cat-
egory information (animal face or animal body) could underlie
the short-latency behavioral responses in these animal-detec-
tion tasks. Consistent with our results, a new, functional MRI
and psychophysics study with a large real-world object image
set shows that participants were significantly faster for basic-
level categorization than superordinate and subordinate. With
the use of multivoxel analysis, it suggests that neural patterns
of mid-level (basic-level) categories represent an optimal level
of within-category similarity (category cohesion) and between-
category dissimilarity (category distinctiveness) (Iordan et al.
2015).

One explanation for the mid-level advantage is that mid-
level and superordinate categories might be represented in IT
and prefrontal cortex, respectively. Mid-level categories have
low within-class to between-class shape variability and high
behavioral saliency. Recognition of these categories can take
place earlier, since the perceptual processing of category in-
formation occurs within the visual cortex and does not need
involvement of the higher brain areas, such as prefrontal
cortex. Categorization of objects at higher levels of the cate-
gory hierarchy requires more complex computations, since at
these levels, within- to between-class shape variability is rel-
atively high, and parsing the objects into correct groups is more

time consuming, resulting in delayed perceptual access. Con-
sistent with this hypothesis, neural representation of novel
category boundaries has been shown in the prefrontal cortex
(Freedman et al. 2003), whereas short-latency category infor-
mation of highly familiar objects has been indicated in the IT
neural responses (Anderson et al. 2008; Hung et al. 2005; Kiani
et al. 2005).

An alternative explanation for earlier emergence of the
mid-level categories in our data might be the impact of face
images on the temporal course of category information re-
ported here. Faces and bodies with face comprised a large
proportion of our animate images. In our image set, faces—and
especially human faces—were highly similar. The low within-
category shape distance of faces and short-latency responses to
faces (Kiani et al. 2005) may result in early emergence of the
mid-level animate categories in our analysis. Our control
analysis of neural responses to 29 pairs of exactly similar
bodies, with and without face, suggests that earlier mid-level
category information observed here does not exclusively de-
pend on neural responses to faces.

Learning is shown to diminish the time difference between
categorization at the mid- and subordinate levels (Johnson and
Mervis 1997; Tanaka and Taylor 1991). Long-term learning
can redefine the perceptual category boundaries mapped in IT
(Baker et al. 2002; Seger and Miller 2010). Consistent with
these findings, in our data, earlier onset of category information
was observed for some of the more familiar mid-level catego-
ries (e.g., human and monkey face/body) but not the other less
familiar ones (e.g., bird bodies). The peak response time of
mid-level categories, however, was earlier than the superordi-
nate and subordinate ones in all of the tested categories,
including the less familiar ones (Table 1). This finding implies
that the learning-dependent, expedited processing of some
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Fig. 10. The time course of category representation in trial with animate or inanimate preceding stimuli. Time courses of separability index, the mean onset, and
mean peak latencies were computed in trials in which an animate image preceded the stimulus (A) and those in which an inanimate image preceded the stimulus
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mid-level categories affects onset but not peak time of category
representation in IT.

With the use of an entirely data-driven method, we have
previously shown that neural responses in IT cortex discrimi-
nate animate from inanimate objects (Kiani et al. 2007;
Kriegeskorte et al. 2008). However, this finding does not
necessarily imply semantic representation of object categories.
Animate/inanimate category boundary representation in IT
could be defined by similarity of physical features within the
animate images. The nature of these critical/diagnostic features
is not known. Our current results, using the same data, show
that the temporal order of emergence of category information
is not affected by the degree of within/between-category shape
similarity, defined by several predominant shape-representa-
tion models. We believe both phenomena emerge because of
the selectivity of IT neurons to critical features that distinguish
and discriminate biologically relevant categories. Some recent
studies have questioned the presence of a true animate/inani-
mate boundary representation in IT (Baldassi et al. 2013;
Yamins et al. 2014). The discrepancies observed in these
studies and in our previous and current reports could be due to
differences in the recorded IT area, stimulus set size, and
stimulus shape variability. Neurons in the anterior IT tend to be
more category selective (Kiani et al. 2007; Tanaka et al. 1991).
Thus a population analysis performed using a larger proportion
of posterior neurons could fail to show animate/inanimate
differentiation. Furthermore, monkeys in our study were raised
as pets and had far-richer visual experience than the regular
experimental monkeys. Formation of category-boundary rep-
resentation has been shown to be experience dependent (An-
derson et al. 2008).

In summary, we examined the time course of category
information in the neural responses of IT cortex of macaque
monkeys viewing a large number of object images and found
an earlier representation of mid-level categories both in the IT
population and in single-unit responses. The faster emergence
of mid-level category information suggests that visual cortex
first divides the category shape space at its sharpest boundaries
based on high within-group and low between-group similarity.
This mid-level advantage in IT neural responses provides a
mechanism for the mid-level advantage in perception and
behavior.
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