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ScienceDirect
Recent years have seen a growing interest in understanding the

neural mechanisms that support decision-making. The advent

of new tools for measuring and manipulating neurons,

alongside the inclusion of multiple new animal models and

sensory systems has led to the generation of many novel

datasets. The potential for these new approaches to constrain

decision-making models is unprecedented. Here, we argue

that to fully leverage these new approaches, three challenges

must be met. First, experimenters must design well-controlled

behavioral experiments that make it possible to distinguish

competing behavioral strategies. Second, analyses of neural

responses should think beyond single neurons, taking into

account tradeoffs of single-trial versus trial-averaged

approaches. Finally, quantitative model comparisons should

be used, but must consider common obstacles.
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Introduction
Major strides in our understanding of the neural mecha-

nisms of decision-making were made by a powerful

approach: studying visual decisions in human [1,2] and

nonhuman [3] primates alongside single-neuron record-

ing to evaluate potential underlying mechanisms. This

approach generated key insights in the field, including an

appreciation for the circumstances that lead subjects to

integrate visual information over time and an opportunity

to narrow down the neural mechanisms that might sup-

port such choices via carefully designed analyses of neural

responses [4,5,6��,7–12].

In recent years, this approach has been augmented in a

number of ways. First, many new animal models are used

alongside primates, including rodents [13,14�,15] and

invertebrates [16,17�]. Further, the focus on visual stimuli

has expanded; new studies include decisions guided by
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olfactory [18,19], auditory [20,21], somatosensory [22–24],

gustatory [25], and multisensory [26,27] stimuli. Finally, a

wealth of new techniques for measuring and manipulat-

ing neurons has drastically changed the kind of data that is

available to investigate decision-making mechanisms in

the brain. These include the ability to monitor many

neurons simultaneously [28,29�,30], and the opportunity

to target neural populations defined by cell type or circuit

[31,32,33��]. These techniques provide a new view on

neural activity during decision-making and have the

potential to provide important new insights into underly-

ing neural mechanisms.

The new animal models, modalities and techniques mean

that the field is poised to make great strides in tackling

unsolved problems in perceptual decision-making. How-

ever, the rapid changes necessitate a consideration of

what aspects of experimental design are fundamental

for advancing our understanding of decision-making. In

this review, we argue that a shared understanding in three

key areas is needed to fully leverage the tools and

approaches that are in the field today. These are: design-

ing behavioral experiments to afford insight into subject’s

strategy, analyzing population level neural activity and

finally, avoiding obstacles when using these measure-

ments to distinguish candidate models.

Well-controlled experiments to distinguish
alternative behavioral strategies
Animals in laboratory tasks are skilled at developing

strategies that lead to reward, but these do not always

match the strategy that the experimenter had in mind.

Determining how animals perform a task is challenging,

but it is a necessity when the subject’s strategy can

influence the interpretation of results. Studies of the

decision-making process are particularly susceptible to

such misinterpretations. Animals may not uniformly

adopt the best strategy because they misunderstand

the task structure or because experimenters fail to con-

strain the solutions to the task. Special attention must be

paid to an animal’s training history and experimental

interventions that shape the behavior. These can instill

suboptimal strategies, or even worse, introduce complex

reorganization of the neural circuits that furnish the

behavior [34]. Experimenters should also employ appro-

priate analytical tools and control experiments to detect

and verify strategies that underlie the behavior.

The need for these analytical tools is underscored by the

fact that similar behavioral patterns could arise from
www.sciencedirect.com
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different strategies. For example, 10% lapse rate in a

psychometric function could happen because the task is

too difficult or because the subject elects to disengage and

respond randomly on a large fraction of trials (20% in a 2-

AFC task). A difficult task may be favored, especially for

studying threshold-level behavior, but random behavior

on 20% of trials can cause major problems for interpreting

data, just as no experimenter would want a device that

behaves randomly 20% of the time. A similar problem

arises in value based decisions and foraging tasks where

changes in the behavior can be attributed to either noisy

integration of past choices and outcomes, or to random

switches for further exploration [35–37]. Identifying the

true strategy is critical for interpreting neural data. For

some aspects of behavior, identification of strategy is

extremely challenging (e.g., lapse rate in a trained ani-

mal). For some others, it is possible to distinguish differ-

ent hypotheses using a combination of experimental

design and targeted models [21,38,39,40��]. Two recent

examples stand out. First, Gold and colleagues used these

methods to show that in monkeys engaged in perceptual

decisions, trail-to-trial variability of choice behavior stems

from the influence of prior trials [41] (this has also been

noted in mice; [42]). Further, the relative influence of

prior trials and sensory evidence on a choice is shaped by

training. Prior influences are strongest when perceptual

sensitivity to the relevant sensory evidence is weakest

and then decline steadily during training as sensitivity

improves. Second, Scott and colleagues used a model

based approach to interpret lapse rates on judgments

about stimulus number [43]. Their model included noise

that scaled with the number of stimuli; hence the high

stimulus numbers that defined some easy trials were

inherently error-prone.

Post hoc analyses can be a powerful tool for affording

insight into an animal’s strategy. A prominent class of

such analyses borrows from a classic technique used to

map receptive fields in visual areas using stimuli that

fluctuate stochastically over time [44,45]. In behaving

animals, experimenters can use stimuli that similarly

fluctuate and track how these fluctuations relate to be-

havior. For example, when the strength of a stimulus (its

motion energy, for example) fluctuates over time, experi-

menters can leverage those fluctuations to gain insight

into which moments of a stimulus presentation influence

an eventual decision. This analysis can distinguish strat-

egies in which animals tend to favor early versus late

evidence presented during decision formation [6��,12,

21,46��,47��] (Figure 1). Similarly, in perceptual judg-

ments about visual stimuli, a post hoc analysis of stimulus

fluctuations can reveal an animal’s internal estimate of

the category boundary that separates one class of stimuli

from another [48,49]. In some cases, this analysis uncovers

that the animal’s internal category boundary differs from

that set by the experimenter, contributing to suboptimal

performance.
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Analysis of neural responses: thinking beyond
single neurons
Neural measurements are inherently noisy. Cortical neu-

rons elicit different patterns of spikes from trial-to-trial

even when the incoming sensory stimulus is identical

[50]. Appropriately handling this variability is an essential

component of data analysis. Traditional data analyses

typically average the responses of many trials together

(trial averaging) to better estimate the single-neuron

response to each trial. Often single neurons are then

themselves averaged (neuron averaging), generating a

population peristimulus time histogram. These averaging

techniques allow experimenters to acquire a better esti-

mate of the underlying mean, potentially affording in-

sight into neural mechanism. Further, because this

approach uses stimulus parameters optimized for each

neuron, it can focus on a small population that may be

most relevant for a decision (e.g., rightward-selective and

leftward-selective MT neurons for discrimination of

rightward and leftward motion). These studies have laid

the foundation for understanding the neural mechanisms

of decision-making and will continue to be influential in

the future. In this section, we explain how recent work

has highlighted some of the shortcomings of the tradi-

tional single-neuron approach and has provided alterna-

tives. We also explain why alternatives to the traditional

approach have their own shortcomings; these are tracta-

ble, but have yet to receive sufficient attention.

Trial averaging can obscure trial-to-trial dynamics

Averaging across trials can obscure important links be-

tween neural responses and behavior. For example, con-

sider an experimenter who wished to understand how

idiosyncratic decision biases are reflected in neural data.

Because biases depend on recent reward history [41,42],

averaging across many trials would remove the signal that

is of interest to the experiment. Instead, measuring the

responses of many neurons on a single trial can provide

insight into how the network changes for biased versus

unbiased decisions. A second example is changes of mind:

subjects sometimes revise a decision mid-trial [51–
54,55�,56]. A signature of this can be evident in the data,

but because changes of mind take place at different

moments on different trials, trial averaging will obscure

the effect. Finally, trial averaging can obscure temporal

dynamics, for example, by temporally blurring transitions

which occur abruptly [57].

The advantages of single trial analyses are beginning to

be accepted. Less often discussed is a consideration of

how both single-trial analysis and traditional trial averag-

ing involve tradeoffs. A shortcoming of single-trial analy-

sis is that stochastic fluctuations in spikes could be

interpreted as signal when they are in fact just related

to the spike generation process [58,59]. A single spike

train provides limited insight into the mean, variance,

and moment-to-moment dynamics of a neural response.
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Figure 1
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Stochastic fluctuations in stimulus signal intensity can offer insight into behavioral strategy. Top: Schematic single-trial traces showing stimulus

intensity (i.e., motion strength or repetition rate) fluctuating over time. Values above zero indicate evidence in favor of one decision category,

described as ‘right’ because the subject might report the decision by making an eye or body movement to the right; values below zero indicate

evidence in favor of the other decision category (‘left’). Left: Examples that ultimately led a (hypothetical) subject to select ‘left’. Right: Examples

that ultimately led a (hypothetical) subject to select ‘right’. Bottom: Schematic traces reflecting averages over many trials of the kind shown at

top. Values close to zero (dashed line) indicate moments in time in which the stimulus had little impact on the eventual choice. Negative values

indicate evidence at the corresponding time led to a leftwards choice. Positive values indicate evidence at the corresponding time led to a

rightwards choice. Colors indicate two possible behavioral strategies. Red: support for a strategy in which subjects increase the weight assigned

to evidence as it arrives over time. Early evidence (left side of red traces) is largely ignored (values are close to 0). Blue: support for an alternate

strategy in which subjects decrease the weight assigned to evidence as it arrives over time. Late evidence (right side of blue traces) is largely

ignored (values are close to 0). Left: computed from examples leading to a leftwards choice. Right: computed from examples leading to a

rightwards choice.
Knowing about these inaccuracies and their magnitude is

key to proper analysis of data. Old-fashioned averaging

methods would reduce the influence of these inaccuracies

on the final interpretation of the data but they do so at the

cost of obscuring trial-to-trial variability and other impor-

tant aspects of response dynamics.

Neuron averaging can obscure population heterogeneity

Averaging responses across neurons is an effective way to

handle the reality that firing rates computed from indi-

vidual neurons can be noisy. This is especially true for

experiments in which the use of multiple stimulus

strengths and/or multiple sensory modalities lead to a
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large number of stimulus conditions, and an imperfect

estimate of the underlying firing rate on each one at the

level of single neurons.

A shortcoming of averaging neurons is that it relies on the

assumption that the parameters of interest in the neurons

are reflected uniformly across the population. An alterna-

tive possibility is that neurons reflect idiosyncratic com-

binations of either task parameters or response features

[46��,60]. If that’s the case, averaging might hide response

features in data that modulate neurons more sparsely,

even if the modulation is consistent and can be easily

decoded. Dimensionality reduction methods can reveal a
www.sciencedirect.com
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small number of parameters which, when linearly com-

bined, can capture most of the response variability of each

neuron in the population [61]. Targeted dimensionality

reduction in which the dimensions largely correspond

to user-specified parameters (such as time or stimulus

strength) can further aid in such situations, allowing an

experimenter to see the timecourse of modulation of a

particular parameter, even if it accounts for a small

amount of the overall variance [62�,63]. Further, these

methods can reveal order at the population level when

single neurons appear bewilderingly complex [64,65].

Population-level analyses offer an alternative to current

averaging approaches, but a shortcoming of such methods

is that in their current instantiation, little consideration is

given to the user’s confidence in the firing rate estimate

for each single neuron. In traditional population averag-

ing, a number of methods were used for taking into

account the standard error on the estimate of each neuron

when combining them together [10]. Current population-

level analyses can benefit from methods that adjust the

influence of individual neurons based on the reliability of

single neuron responses. Important strides are being

taken in that direction [66]. Another challenge with

population response analyses is that their complexity

can make them unintuitive, even for experts. It is some-

times unclear what the expected outcome of the analyses

is for alternative hypotheses and how susceptible the

results are to measurement noise and neural response

variability. Researchers can provide clarity by applying

their analyses to synthetic data that are tailored for each

hypothesis but share the noise properties of the recorded

neural responses [46��].

Obstacles to model comparison
Recent advances in computational and systems neurosci-

ence have led to an increase in the number of quantitative

models that one can use to explain cognitive and decision-

making processes. At the same time, increased accessi-

bility of powerful computers and specialized software has

made model selection techniques exceedingly easy to

implement. These approaches make it easier to quanti-

tatively compare competing models, which seems, at first

glance, to simplify the job of identifying the best ones.

However, a number of pitfalls for model comparison

mean that a deep understanding of these tools is required

in order to avoid errors.

A common pitfall is overgeneralization, wherein research-

ers compare specific instances of two classes of models

but generalize the outcome to all models in the two

classes. The goal of model comparison in systems neuro-

science is to make statements about specific neural

mechanisms, which are often captured by a subset of

model parameters. Individual models, however, often

have additional parameters and implicit assumptions,

the values of which can have a large impact on model
www.sciencedirect.com 
performance. For example, to test whether parietal neural

responses represent accumulation of evidence through a

gradual buildup or instantaneous change of firing rates,

one must also make assumptions about starting time of

accumulation, stopping criterion, and spiking statistics

[67,68]. Inferential problems arise when the space of

‘unimportant’ model parameters and assumptions is not

adequately explored (e.g., due to fixing some parameters)

or when there are complex interactions within the model.

Drawing broad conclusions about a neural mechanism

based on comparison of specific instantiations of complex,

multi-parameter models is susceptible to errors because

variations of one parameter can change the model behav-

ior and its fit to experimental data. In the above example,

assuming that the starting time of the accumulation

process is fixed can falsely reduce the likelihood of

accumulation models and bias the conclusions because

starting times could vary across parietal neurons [67]. As

the complexity of tested models increases, unintended

interactions of model parameters and overgeneralization

errors become more problematic and deserve extra atten-

tion. It is critical to verify implicit model assumptions

and understand interactions of all model parameters.

Creating hierarchies of nested models and systematic

tests of these models can alleviate the overgeneralization

pitfall [40��,69]. Unfortunately, however, tracking these

errors may not be always practical as the space of testable

models grows rapidly (often exponentially) with the

number of model parameters.

A putative solution to this problem is to compare models

in a principled way, such as through the use of Bayesian

model comparisons. These leverage Bayes factors — the

ratio of averaged likelihood of competing models — to

inform model selection. Popular model comparison meth-

ods include the Bayesian information criterion (BIC), the

Akaike information criterion (AIC), and the deviance

information criterion (DIC), which is closely related to

AIC. An appealing feature of these criteria is that they can

make it possible, at least in theory, to compare models

with different numbers of parameters by introducing a

penalty term for the number of the parameters in the

model [70]. These criteria are useful and have revealed,

for example, that individual subjects can differ in their

decision-making strategies [71].

Unfortunately, multiple pitfalls can arise from lack of

knowledge about appropriate model comparison methods,

error functions, and penalty for degrees of freedom. AIC,

BIC, and DIC impose different penalties and may pro-

duce contradictory results. Lack of a clear understanding

about which criterion is appropriate for a model compari-

son can lead to the selection of an incorrect model. For

large sample sizes, AIC tends to penalize inadequately for

the number of model parameters and, therefore, is sus-

ceptible to favoring complex models that overfit the data.

In contrast, BIC tends to penalize excessively for the
Current Opinion in Behavioral Sciences 2016, 11:74–80
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number of parameters and favors models that underfit the

data. For low sample sizes, the order reverses — AIC

underfits. The safest practice is to use an array of model

selection criteria and seek consensus among them. A lack

of consensus across different criteria often indicates high

model uncertainty, which should persuade researchers to

revisit their model design. A second pitfall is related to

priors for model parameters. Bayesian model fitting and

comparisons rely on careful selection of priors [72,73], but

information about priors is often lacking in experimental

data. When reliable information about priors is lacking,

one must ensure the results of model comparison are

robust to changes of prior distributions within a biologi-

cally plausible range. However, like the last pitfall, this

one does not have an easy cure: biologically plausible

priors are rarely known and the set of possible distributions

can be too big to search systematically. We recommend

that researchers do not think about the calculation of BIC

or other criteria as the end point of their model selection.

Rather, they should use these criteria as a starting point

and explore why a model is selected and what drives a

superior fit to the data. Only through such a ‘mechanistic’

lens one may hope to generate true insights by employing

Bayesian model comparisons.

For the last point in this section we focus on another

common misconception about model selection. It is

sometimes assumed that a model that passes a cross-

validation test (i.e., explains the data it is not trained

for or fit to) is exonerated from the abovementioned

pitfalls. Unfortunately, that is not necessarily true. Al-

though passing a cross-validation test is necessary for the

suitability of a model, it is not sufficient. Further, cross-

validation is often a phenomenological criterion, not a

mechanistic one, and should be interpreted accordingly.

The success of a cross-validation test does not imply that

the neural mechanisms suggested by the model are

correct. Despite these shortcomings, cross-validation is

a useful tool and a good first step for establishing a model,

especially when it subjects the model to a novel feature

of the data (not just a group of randomly-chosen held-out

trials). For instance, demonstrating that a model fit to

reaction times can predict an animal’s choice or confi-

dence about the choice is a good indicator that the neural

mechanisms implied by the model are worth exploring

[40��,74,75].

While we believe that quantitative model comparison

techniques can advance our ability to distinguish candi-

date decision-making models, caution is clearly war-

ranted. Overgeneralization must be protected against,

and an exclusive reliance on Bayesian information criteria

could lead to premature exclusion of candidate models.

Instead, Bayesian methods can be used as a starting point,

to identify key parameters, thus allowing experimenters

to design the right experiments and analyses to robustly

distinguish models. Fortunately, our recently-acquired
Current Opinion in Behavioral Sciences 2016, 11:74–80 
ability to record and manipulate large populations of

neurons while animals are engaged in well-designed

decision-making tasks have expanded our experimental

repertoire and made incisive, hypothesis-driven experi-

ments increasingly more accessible.
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