Nonlinear Model of Neural
Responses in Cat Visual
Cortex

David J. Heeger

The first description of the physiological responses of
neurons in the cat’s primary (striate) visual cortex was
provided by Hubel and Wiesel in 1962. They were able to
divide striate cells into two groups, simple and complex.
Simple cells have receptive fields that are, like those of the
retina and lateral geniculate nucleus (LGN), divided into
distinct excitatory and inhibitory regions. Hubel and Wie-
sel found that “summation occurred within either type of
region,” and that “when the two opposite regions were
illuminated together their effects tended to cancel.” This
suggests that simple cells sum linearly over their recep-
tive fields. Complex cells, on the other hand, do not have
excitatory and inhibitory subregions and do not sum lin-
early over their receptive fields. Rather, complex cells
generally respond to either an increase or a decrease in
the intensity of a properly oriented stimulus placed any-
where within the receptive field. Hubel and Wiesel sug-
gested that complex cell receptive fields might result from
combinations of simple cell inputs.

Since the pioneering work of Hubel and Wiesel, vision
scientists have used the tools of linear systems analysis
to investigate the properties of visual neurons. In 1968,
Campbell and Robson reported psychophysical evidence
for linear mechanisms selectively sensitive to a limited
range of spatial frequencies. At about the same time,
physiological experiments (Campbell, Cooper & Enroth-
Cugell, 1968, 1969) demonstrated that cells (both simple
and complex) in cat striate cortex are selective for spatial
frequency and for orientation.

The linear systems approach to cortical function is at-
tractive because if correct, the response of a linear cell can
be completely characterized with a relatively small num-
ber of measurements. A linear cell’s response to any sti-
mulus can be predicted from its responses to impulses
(spots of light) flashed throughout its receptive field. Sine
grating stimuli also play an important role in the linear
systems approach because a linear cell transforms an input
sinusoid into an output sinusoid of the same frequency;
only the amplitude and phase may change.



A popular view is that simple cells act like halfwave-
rectified linear operators, at least over a limited range of
stimulus contrasts. The rectification is due to the fact
that neurons can give only positive responses. A popular
model for complex cells is that they act like energy mech-
anisms that compute the sum of the squared outputs of a
quadrature pair of linear subunits (Adelson & Bergen,
1985).

The linear systems approach has found success in
psychophysical modeling as well. It is now generally be-
lieved that the detection and identification of simple spa-
tial patterns is mediated by linear mechanisms tuned for
spatial frequency. More recently, energy mechanisms have
been used to model psychophysical data on human tex-
ture discrimination (see chapters 17 and 18) and on the
perception of Mach bands (Ross, Morrone & Burr, 1989).

Linear filters and energy mechanisms have also been
useful in machine vision research. Quadrature pair linear
filters have been used for optical flow measurement (e.g.,
Heeger, 1987; Watson & Ahumada, 1985; see chapter
16), texture discrimination (Bergen & Adelson, 1988;
Malik & Perona, 1990; Turner, 1986), shape from shading
(Pentland, 1989), and stereo disparity estimation (Sanger,
1988).

The linear systems approach has gone a long way
toward explaining visual physiology, psychophysics, and
machine vision. It is clear, however, that the linear/energy
model falls short of a complete account of early vision.
Even so, there is good reason to pursue the linear/energy
paradigm. Rather than throw away the model, researchers
have proposed modifying it in various ways.

One of several major objections to the linear/energy
model comes from experiments that test for linearity in
simple cells. Although some of the experimental data
(discussed below) is consistent with linearity, some of it is
not. This has led physiologists (for example, Tadmor &
Tolhurst, 1989; Movshon, Thompson & Tolhurst, 1978a)
to suggest replacing halfwave-rectification with over-
rectification at the output of the model simple cells (half-
wave-rectification clips responses less than zero whereas
over-rectification clips responses less than some fixed po-
sitive threshold). In this chapter, I propose using half-
squaring instead (half-squaring is halfwave-rectification
followed by squaring).

A second objection to the linear/energy model comes
from experiments that reveal nonspecific suppression in
cortical cells. Excitation of cortical cells is highly stimulus
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specific, that is, cells are selective for stimulus orientation,
spatial frequency, and direction of motion. The excitatory
response to a preferred stimulus can be suppressed by
superimposing an additional stimulus (e.g., Bonds. 1989).
This suppression has been found to be largely nonspecific;
it is independent of direction of motion, it is largely
independent of orientation, it is broadly tuned for spatial
frequency, and it is broadly tuned for spatial position.

A third objection to the linear/energy model is the fact
that cell responses saturate at high contrasts. The re-
sponses of ideal linear operators and energy mechanisms,
on the other hand, increase with increased stimulus con-
trast over the entire range of contrasts.

To explain nonspecific suppression and response sa-
turation, several physiologists (for example, Bonds, 1989;
Robson, 1988) have suggested that striate cells mutually
inhibit one another, effectively normalizing their responses
with respect to stimulus contrast.

In this chapter, I show that the linear/energy model
taken together with half-squaring and contrast normaliza-
tion yields a simple and mathematically elegant model
that explains a large body of physiological data. In the
next section, I explain the model: linear operators, energy
mechanisms, half-squaring, and contrast normalization. In
the following section, I compare model cell responses
with responses of real cells for a variety of physiological
measurements. Some of the experimental results can be
explained simply with the linear/energy model. For these
cases, | show that including half-squaring and contrast
normalization does just as well. Some of the experimental
results are inconsistent with the linear/energy model. I
show that these results can be explained by including
half-squaring and contrast normalization.

This chapter treats the visual system as a black box up
to the level of striate cortex. I pay no attention to the
responses of retinal or geniculate cells, but rather relate
cortical cell responses directly to the time-varying stimu-
lus intensities. In doing so I implicitly assume that the
retina is at a fixed state of light adaptation.

The Model
Linear Operators and Energy Mechanisms

An operator is linear, by definition, if it obeys the prop-
erty of superposition. That is, the response of the oper-
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ator to a linear combination of two stimuli is equal to the
linear combination of the responses to each of the compo-
nent stimuli. If the response of the operator is given by
R() for stimulus I, then this property is expressed mathe-
matically as:

R(al, + bl,) = aR(l;) + bR(L),

for any constants a and b, and for any stimuli I and L.

It is straightforward to show that a visual neuron is a
linear operator (obeying the superposition property) if
and only if its response is a weighted sum of the stimulus
intensities. Let (x,y) denote position in the visual field,
f(x, y) be the receptive field of a linear operator, and I(x, y)
be a stimulus. The response, R(I), of the cell is expressed
as the inner product of the receptive field and the
stimulus,

o0

fx, Iz, y) dx dy.

RUI) = flx,y) Ilx,y) = “‘

The impulse response, h(z, y), of the operator is simply
related to its receptive field: d

hix, y) = f(—x, —y).

The response of the operator can be expressed as con-
volution with the impulse response:

R(I) = h(x,y) * I(x, y)|(x.y}={xud'ol

j’_[ hE I — &y — mdédn
—w (x, ¥)=(x0.¥0)
where * denotes convolution, and where f(%)|,,, = f(xo). If
there were copies of the operator centered at each loca-
tion in the visual field then convolving, h(x,y)*I(x,y),
would give their collective outputs. We consider the re-
sponse of one operator by sampling the convolved out-
put at (xo, ¥o), the center of the receptive field.

An example of a linear operator is the two-dimensional
Gabor operator (see Daugman, 1980; Gabor, 1946). The
receptive field of a Gabor operator is a sine grating multi-
plied by a two-dimensional Gaussian window, and as
such it is made up of alternating excitatory and inhibitory
subregions. A Gabor operator responds well to stimuli in
the excitatory subregions that are brighter than the mean
luminance and to stimuli in the inhibitory subregions
that are darker than the mean luminance. The number of
alternating subregions, the width and orientation of the
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subregions, and the symmetry (phase) of the operator can
all be varied by changing the parameters of the sine
grating and the Gaussian window that make up the Gabor
operator.

The transfer function of a linear operator is defined as
the Fourier transform of its impulse response, and it is
made up of two parts, the amplitude response and the
phase response. A linear operator is completely char-
acterized by either its impulse response or its transfer
function. For a Gabor operator, there is a peak in the
amplitude response corresponding to the operator’s pre-
ferred spatial frequency and orientation. The spatial fre-
quency and orientation of a Gabor operator’s underlying
sine grating determine the peak in the amplitude response,
and the width of the operator’s Gaussian window is in-
versely proportional to the width (bandwidth) of the am-
plitude response. The phase response depends on the
symmetry of the operator. For example, an operator with
a central excitatory subregion flanked on either side by
equal inhibitory subregions has even phase, and an oper-
ator with excitatory and inhibitory subregions to either
side of center has odd phase.

Two linear operators with the same amplitude response
but with phase responses that are shifted 90° in phase
relative to one another are called a quadrature pair (or
Hilbert transform pair). Intuitively, one often thinks of
even- and odd-phase operators, like cosine- and sine-phase
Gabor operators, as standard examples of quadrature pairs.
Strictly speaking however, sine- and cosine-phase Gabor
operators are not quadrature pairs because cosine phase
Gabor operators always have some dc response (i.e., they
will respond to a constant, zero contrast input), whereas
sine phase Gabor operators do not. Even so, there are
examples of quadrature pair operators that look very
much like sine- and cosine-phase Gabor operators.

A mechanism that sums the squared outputs of a qua-
drature pair is called an energy mechanism (Adelson &
Bergen, 1985). Its response depends only on the Fourier
energy (squared magnitude of the Fourier transform) of
the stimulus, not on the stimulus phase. The amplitude
response of an energy mechanism is equal to the squared
amplitude response of the component linear operators.

Spatiotemporal Mechanisms

The responses of striate cells depend not only on the
spatial distribution of light in a stimulus, but also on its
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temporal presentation. Striate cells are best thought of as
spatiotemporal mechanisms.

A 3D (space-time) Gabor operator is a three-dimensional
sine grating multiplied by a three-dimensional Gaussian
window. The spatiotemporal frequency tuning of the
operator is specified by the spatial and temporal frequen-
cies of the underlying sine grating, and its spatial and
temporal bandwidths are specified by the spread of the
operator’s Gaussian window. The operator looks some-
thing like a stack of plates with small plates at the top and
bottom of the stack and larger plates in the middle of the
stack. The plates correspond to excitatory subregions of
the receptive field, and the spaces between the plates
correspond to inhibitory subregions. The stack can be
tilted in any orientation in space-time, each different or-
ientation corresponding to an operator with a different
spatiotemporal frequency tuning.

A spatiotemporal linear operator that is tilted along an
oblique axis in space-time is direction selective. It is now
well recognized that stimulus motion is like orientation in
space-time, and that spatiotemporally oriented filters can
be used to detect and measure it. A number of authors
have proposed spatiotemporal linear operators and spa-
tiotemporal energy mechanisms as models of the early
stages of motion perception (for examples, see Adelson
& Bergen, 1985; Heeger, 1987; van Santen & Sperling,
1985; Watson & Ahumada, 1983, 1985; see also chapter
16).

Mathematically, the response, R(f), of a spatiotemporal
linear operator is the inner product in space and the re-
verse correlation in time of a stimulus, I(x, y, f), with the
receptive field of the operator, f(x, v, f),

R(f) = j”‘w fl vy, olx,y,© — Hdxdydr. (1)

The response can also be expressed using convolution
with the impulse response:

R(f) - h(xr y; t) * I(I, Y, t)l{x.y)=(.\7{),}’o}

= er hEnolx—Ey—nt—1)
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where h(x,y, ) = f(—x, —y, —¥#) is the impulse response,
and where (x,, y,) is the center of the receptive field. The
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response waveform, R(f), is the model equivalent of a
post-stimulus time histogram (PSTH). The PSTH is a mea-
sure of a cell's average response per unit time.

The receptive field of a spatiotemporal linear cell is
measured as the time-varying response to impulses flashed
at each point in the visual field. The transfer function
of a spatiotemporal linear cell is measured using drifting
sine gratings. For each stimulus spatial and temporal fre-
quency, the response R(#) is sinusoidal with frequency
equal to the temporal frequency of the stimulus. The
amplitudes (peak height) of the output sinusoids give the
amplitude response, and the phases (relative peak latency)
of the output sinusoids give the phase response.

Halfwave-Rectification and Half-Squaring

Cell firing rates are always positive, whereas linear oper-
ators can have positive or negative outputs. For a linear
cell with a high maintained firing rate the positive and
negative values correspond to responses above and be-
low the maintained response. Cortical cells have very
little maintained discharge so they can not truly act as
linear operators.

The positive and negative outputs of a linear operator
can be encoded by two halfwave-rectified linear oper-
ators. One mechanism encodes the positive outputs of the
underlying linear operator, and the other one encodes the
negative outputs. The two mechanisms are complements
of one another, that is, the excitatory subregions of one
receptive field are replaced by inhibitory subregions in
the other. In other words, the two mechanisms are shifted
180° in phase relative to one another. Due to the rectifica-
tion, only one of the two has a non-zero response at any
given time.

For a halfwave-rectified linear cell, the receptive field of
the underlying linear operator is measured using impulses
of opposite polarity. Positive impulses (brighter than the
mean luminance) are used to map the excitatory sub-
regions of the receptive field, and negative impulses
(darker than the mean luminance) are used to map the
inhibitory subregions. The responses to dark impulses are
interpreted with negative sign. The transfer function of
the underlying linear operator is measured using sine
grating stimuli. The response of the halfwave-rectified
operator is a truncated sinusoid. The amplitude (peak
height) and phase (relative peak latency) of the response
are unaffected by halfwave-rectification.
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A popular model of simple cells is that they are half-
wave-rectified linear operators. It is suggested in this
chapter that half-squaring (halfwave-rectification followed
by squaring) is a more accurate model of the output
nonlinearity. The output of a half-squared linear operator
is given by:

oo 2
Al = L”AJ‘ fxy.olxyt— t)dxdyer , (2)

where |x] = max(x,0) is taken to mean halfwave-
rectification, I(x, y) is the stimulus, f(x, y, f) is the receptive
field of the linear operator, and where the integral
expression is copied from equation 1.

Care must be taken when interpreting measurements of
the receptive field and transfer function of a half-squared
linear cell. Responses to impulses and gratings do not
give the receptive field and transfer function of the
underlying linear operator. The amplitude (peak height)
of the response waveform for a drifting grating stimulus
is the square of the amplitude of the underlying linear
operator. The phase (relative peak latency) of the
response waveform is unaffected by the squaring. The
response to positive impulses minus the response to
negative impulses gives the signed-square of the
receptive field of the underlying linear operator. That is,

) R%(¥)
R = {—Rz(f)

ifR(H >0
if R(H < 0,

where R'(f) is the signed-square of R(f), and R(}) is the
response of the underlying linear operator.

Although the term “amplitude response” should be
reserved for linear operators, I use it in this chapter when
writing about half-squared operators and energy mecha-
nisms as well. In both cases, the “amplitude response” is
measured using sine grating stimuli. For half-squared
linear operators we measure the Fourier amplitude of the
fundamental component of the response waveform (this is
proportional to the peak height of the response waveform).
Energy mechanisms give an unmodulated response to
sine gratings so we measure the dc response.

An energy mechanism can be constructed as the aver-
age of the outputs of four half-squared linear operators,
all four with the same “amplitude response,” but with
phases in steps of 90°. The energy output, E(f), is ex-
pressed as:

E() = (1/4)[A°(H) + A®°(f) + A'®°(H) + AP7°(h)), (3)
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where A?(f) is the response of a half-squared linear oper-
ator, and where the superscript, ¢, specifies the operator’s
phase in degrees. The “amplitude response” of the energy
mechanism is the same as the “amplitude response” of
each of the input half-squared linear operators.

Contrast Normalization

The responses of linear and energy mechanisms increase
with stimulus contrast over the entire range of contrasts.
Information about a visual stimulus, other than its con-
trast, is represented as the relative response of a collection
of mechanisms. For example, the orientation of a grating
is represented as the relative response of a collection of
energy mechanisms, each with a different orientation tun-
ing. The ratio of the responses of two of the mechanisms
is fixed, independent of stimulus contrast. Likewise, con-
sider the response of one mechanism when presented
with two differently oriented gratings. If the contrast of
both gratings is changed by the same factor then the ratio
of the responses to the orientations remains unchanged.

It is possible that the visual system also represents
visual information as the relative response of collections
of cells. For this to be the case, it is crucial that the ratio
of a cell’s responses to two stimuli be independent of
contrast. But cortical cells, unlike linear or energy mecha-
nisms, have a limited dynamic range, so their responses
saturate for high contrasts. How is it possible for response
ratios to be independent of stimulus contrast, in the face
of response saturation? I propose in this chapter that cell
responses are normalized for stimulus contrast.

The contrast-normalization mechanism discussed here
is analogous to models of retinal light adaptation and
gain-control (see Sperling & Sondhi, 1968 for an example,
and Shapley & Enroth-Cugell, 1984 for a review), the
purpose of which is to keep the retinal response approx-
imately the same when the level of illumination changes.
That way, the brain can proceed to process visual in-
formation without having to attend to the light level. The
consequence of retinal light adaptation is that much of
our perception is invariant with respect to intensity, over
a wide range of light levels. For example, the perceived
contrast of a grating stimulus is largely invariant with
respect to intensity.

Likewise, contrast-normalization allows the brain to
process visual information without having to attend fur-
ther to the contrast. For example, the perceived orienta-
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Fig. 9.1

Diagram of the frequency domain, partitioned by nine oriented
energy mechanisms. Each subregion, labeled E, through E,,
represents the “amplitude response” of one energy mechanism. For
example, the E, mechanism responds to high frequency horizontal
gratings. The “amplitude responses” are drawn schematically here; for
actual energy mechanisms the regions are more rounded and they
overlap somewhat.

tion of a grating stimulus is largely invariant with respect
to contrast.

Figure 9.1 illustrates the partition of the frequency do-
main by a collection of energy mechansims. Each region
in the diagram corresponds to the “amplitude response”
of one energy mechanism. Contrast normalization of each
mechanism is realized by dividing its output by the total
energy at all orientations and nearby spatial frequencies.
The normalized energy, E,(f), is given by:

F Ei(®)

A= ey o

where ¢ is a constant in the denominator, known as the
semisaturation constant. As long as ¢ is nonzero, the
normalized output will always be finite, even for a zero
contrast stimulus, In fact, the normalized output will al-
ways have a value between 0 and 1, saturating for high
contrasts.

The underlying linear operators can be chosen so that
the sum of their squared amplitude responses is the unit
constant function (everywhere equal to one). Then the
summation in the denominator gives the total Fourier
energy in an annulus of spatial frequencies.

Operators tuned to different orientations (e.g., corre-
sponding to each of the regions labeled E,, Es, and Eg in
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figure 9.1) are all normalized together. That is, each is
divided by the sum of all nine energy outputs at all
orientations and nearby spatial frequencies, plus o2, With-
in each spatial frequency band, the ratio of the outputs of
two normalized operators is invariant with respect to
stimulus contrast. The ratio is maintained even though
the normalized outputs saturate at high contrasts. E,, E,,
and E; are normalized by a different set including higher
frequencies and excluding E, Eg, and E,. Likewise for the
lower frequency operators.

Feedback Normalization

Contrast normalization given by equations 2, 3, and 4 is
expressed in feedforward manner. First, the A#’s are com-
puted, then they are combined to give the E/'s, and then
the E/s are combined to give the E/s. However, the
unnormalized A#’s and E/'s cannot be represented by me-
chanisms (e.g., neurons or 8-bit computers) with limited
dynamic range.

The solution is to use a feedback network to do the
normalization. Then, the A#’s and E/'s need not be expli-
citly represented as cell output firing rates. The details of
the feedback normalization network are beyond the scope
of this chapter, but will be discussed in a forthcoming
paper.

One consequence of using a feedback network to
achieve the normalization is that the feedback signal must
be averaged over space and/or time to avoid unstable
oscillations in the output. For spatially extended periodic
stimuli, the feedback reaches a steady state after a brief
period of time. The spatial and temporal pooling of the
contrast normalization signal is left unspecified in this
chapter, since it only deals with steady state responses.

Model Simple and Complex Cells

The model in its entirety is depicted in figure 9.2. Simple
cells are modeled as contrast normalized and half-squared
linear operators. Model complex cells are built on outputs
of model simple cells. The contrast normalization feed-
back signal is combined from all orientations and nearby
spatial frequencies.

The various stages of the model are as follows. Linear
operators of four different phases are applied to the stimu-
lus. The outputs of these operators are then half-squared
and normalized to give the model simple cell responses:
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RETINAL IMAGE

Fig. 9.2

Mlustration of the various stages of the model. Linear receptive fields
are depicted as circles, subdivided into bright and dark subregions.
The 5/ labels represent simple cell outputs, and the C; label
represents a complex cell output. The feedback signal is the combined

energy at all orientations and nearby spatial frequencies, averaged
over space and time. The feedback signal suppresses the simple cell
responses by way of divisive inhibition.

AfH
o) = ‘
S#®) kgz+isz¢AJ9(f)
¢
a5 )

o2 + 3 E

where Sf is the response of a model simple cell with
phase, ¢, o is the semisaturation constant, k is a constant
scale factor that determines the maximum attainable firing
rate, and A{(#) is defined in equation 2. The subscript i is
an index used to specify the “amplitude response” of each
operator. The model complex cell responses are com-
puted by averaging the simple cell responses:

G = (1/4) ) S¢®)
¢

A
i zﬁ: ¢ +.% Z;— ZvAf(f)
=k ©)

o>+ Y, E0

Note again that if the underlying linear operators are
chosen correctly then the denominator of equations 5 and
6 gives the Fourier energy of the stimulus within an
annulus of spatial frequencies. As mentioned above,
space-time averaging of the contrast-normalization is not
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included in the above equations because this chapter deals
only with steady state responses.

Striate Cell Responses

The previous section describes a nonlinear model of stri-
ate cell responses. This section reviews some of the elec-
trophysiological data on the responses of simple and
complex cells in cat striate cortex and compares model
cell responses, given by equations 5 and 6, with elec-
trophysiological data.

The results in this section demonstrate that simple cells
behave more like half-squared linear operators than like
halfwave-rectified linear operators. The results in this sec-
tion also demonstrate that response saturation can be
attributed to contrast normalization.

Simple Cells
Receptive Field

Simple cells have clearly defined excitatory and inhibitory
subregions. Bright (brighter than the mean luminance)
light in an excitatory region or dim light in an inhibitory
region enhances a simple cell's response, whereas bright
light in an inhibitory region or dim light in excitatory
region inhibits its response. The excitatory and inhibitory
subregions are also called “on” and “off” regions; the cell
responds to light increment (the onset of a bright stimu-
lus) in an “on” region, and to light decrement (the offset
of a bright stimulus) in an “off” region. Superimposed on
each “on” subregion is “off” inhibition and vice versa.

Although many physiologists have used oriented bars,
edges, and gratings to generate one-dimensional maps of
receptive fields, relatively few (e.g., Jones & Palmer, 1987)
have measured the two-dimensional spatial structure of
receptive fields. Some researchers have mapped the three-
dimensional spatiotemporal structure of simple cell recep-
tive fields (Hamilton, Albrecht & Geisler, 1989; McLean
& Palmer, 1989; see chapter 8).

Frequency Domain vs. Space Domain

Many experimenters (Andrews & Pollen, 1979; Kuli-
kowski & Bishop, 1981; Maffei, Morrone, Pirchio & Sandini,
1979; Movshon et al., 1978a; Tadmor & Tolhurst, 1989)
have tested for linearity of simple cells by comparing
cells” transfer functions with their impulse responses. The
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logic of these experiments is straightforward. The re-
sponse of a linear cell to the sum of two stimuli is equal
to the sum of the responses to each of the component
stimuli. Since a grating is composed of the sum of a
number of impulses, the response of a linear cell to a
grating is predictable from its response to impulses. Like-
wise, since an impulse can be thought of as the sum of a
number of gratings, the response to an impulse is predict-
able from the response to gratings.

The results of these experiments show that simple cell
response to gratings and their response to impulses look
very nearly like Fourier transforms of one another, up to
an arbitrary scale factor. These results have been taken as
evidence for linearity.

Most of these researchers found, however, that the
response to gratings and the response to impulses are not
precise transforms of one another. In many cases, the
inverse transform of the response to gratings gives a
receptive field profile with additional side bands beyond
those measured directly. In addition, the measured re-
sponse to gratings is often more narrowly tuned than
predicted from the Fourier transform of the response to
impulses.

Several experimenters (e.g., Tadmor & Tolhurst, 1989)
suggest that the discrepancy between the frequency and
space domain measurements can be explained by over-
rectification. If the neuron has to reach a certain level of
excitation before any activity is seen, there will be a
disproportionate decrease in small responses.

The results are also predicted by half-squaring. With
half-squaring instead of halfwave-rectification, the re-
sponse to impulses and the response to gratings are not
transforms of one another. But in spite of the nonlinearity,
the inverse transform of the response to gratings still
looks very similar to the response to impulses, when they
are rescaled relative to one another by an appropriate
scale factor. As shown in figure 9.3A, the inverse trans-
form of the response to gratings has some extra (low
amplitude) side bands, in agreement with much of the
physiological data. As shown in figure 9.3B, the response
to gratings is more narrowly tuned than predicted from
the response to impulses, also in agreement with physio-
logical data.

The point of this demonstration is that the experiments
do not distinguish well between halfwave-rectification,
over-rectification, and half-squaring. The experimental re-
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A comparison between the response to impulses and the response to
gratings of a half-squared Gabor operator. Response to gratings
measured as the Fourier amplitude of the response, for each stimulus
spatial frequency. Response to impulses measured as the
signed-square of the underlying linear operator. Since the operator is
nonlinear, the response to impulses and response to gratings are not
transforms of one another. (A) Response to impulses superimposed
with the inverse Fourier transform of response to gratings.

(B) Response to gratings superimposed with the magnitude of the
Fourier transform of response to impulses. The response to gratings
is more narrowly tuned than predicted from the response to impulses,
and the response to impulses is more narrowly tuned than predicted
from the response to gratings. This is in agreement with much of the
physiological data.
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sults can not be taken as evidence to favor one model
over the other.

Responses to Counterphase Gratings

Simple cells exhibit characteristic responses to temporally
modulated (e.g., counterphase) sine gratings. The response
varies over time with the temporal modulation of the
stimulus, and the amplitude and phase of modulation both
depend on the spatial phase of the grating (Kulikowski &
Bishop, 1981; Maffei & Fiorentini, 1973; Movshon et al,
1978a; Reid et al, 1987; see chapter 8). Reid et al. (1987)
and Movshon et al. (1978a) have measured response am-
plitude and response phase of simple cells while varying
the spatial phase of counterphase gratings. They have
both shown (mathematically) that for a halfwave-rectified
spatiotemporal linear operator, a polar plot of the re-
sponse amplitude as a function of the response phase is
elliptical in shape. Their experimental results, however,
are typically not quite elliptical. Rather the results have
been described as “wasp-waisted ellipses” since the ampli-
tudes near the minor axes are smaller than they should be
to fit an ellipse. Movshon et al. proposed that this devia-
tion could be explained by over-rectification.

The wasp-waisted elliptical shape is also predicted by
half-squaring. In figure 9.4, the output of a spatiotemporal
Gabor operator was computed for counterphase gratings
of various spatial and temporal frequencies, and varicus
spatial phases. The response waveforms were then half-
squared, and the amplitude and phase of the fundamental
Fourier component (equal to the temporal frequency of
the stimulus) were measured. Figure 9.4 plots relative
response amplitude as a function of response phase for
two different spatial and temporal frequencies. The plots
are similar in shape to physiological data. Like the results
discussed above, this experiment does not distinguish
well between over-rectification and half-squaring.

Counterphase vs. Drifting Gratings

By comparing the responses to counterphase stimuli with
responses to drifting grating stimuli, Reid et al. (1987)
have demonstrated that there is a nonlinear contribution
to the direction selectivity of simple cells. They computed
a directional index given by (R, — R)/(R, + R,), where
R, and R, are, respectively, the responses for gratings
drifting in the preferred and antipreferred directions. Reid
et al. showed that for a halfwave-rectified spatiotemporal
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A 270

180
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Fig. 9.4

Responses of a half-squared linear operator for counterphase grating
stimuli of varying spatial phase. The amplitude of the fundamental
component of the response is represented radially, while the angular
coordinate indicates the temporal phase of the response. The stimulus
spatial and temporal frequencies are different for the two plots.
These polar plots of response amplitude versus response phase are
shaped like wasp-waisted ellipses, in agreement with physiological
data.

linear operator this directional index is predictable from
the responses to counterphase gratings. Specifically, the
directional index is equal to the ratio of the axes of the
ellipse obtained, as described above, from counterphase
grating stimuli. However, Reid et al. found that these two
measures of the directional index do not agree; the predic-
tion from counterphase stimuli underestimates the index
by about half.

Half-squaring explains this result reasonably well. Fig-
ure 9.5 plots the ratio of the axes of the best fitting ellipse
derived from counterphase stimuli against the directional
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Directional index predicted from counterphase grating stimuli versus
that measured directly from drifting gratings for: (A) a direction
selective simple cell (replotted from Reid et al., 1987), and (B) a
half-squared spatiotemporal Gabor operator. Each point is for a
different stimulus spatial and temporal frequency. The dotted line is
the prediction of a halfwave-rectified linear operator. For both model
cells and real cells, the directional index predicted from counterphase
stimuli underestimates that measured directly with drifting gratings.

index measured with drifting grating stimuli. The figure
shows that for a half-squared Gabor operator, the direc-
tional index predicted from counterphase stimuli under-
estimates that measured directly with drifting gratings, in
a manner very similar to the experimental results.

Complex Cells

Complex cells are clearly nonlinear as they respond to
either a bright or a dim stimulus placed anywhere within
their receptive fields. In experiments performed by Mov-
shon et al. (1978b) a bar fixed in one position was flashed
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simultaneously with a second bar, of the same or opposite
polarity, that could appear in one of several positions
around the location of the fixed bar. By measuring the
influence of the second bar upon the response to the first,
Movshon et al. were able to demonstrate that complex
cell receptive fields are composed of subunits. The sub-
units have clearly defined spatial profiles with excitatory
and inhibitory subregions. The subunit outputs are rec-
tified before being combined into the complex cell re-
sponse. In addition, Movshon et al. measured complex
cell responses to grating stimuli. They determined that
the inverse Fourier transform of the response to gratings
matches the spatial profile of the underlying subunits, up
to an arbitrary scale factor. The present model is in gen-
eral agreement with these results. The subunits of model
complex cells are model simple cells with identical “ampli-
tude response.”

Emerson and coworkers (1987, 1991) analyzed re-
sponses of complex cells to stimuli made up of pairs of
bars flashed in sequence. The response to a pair of bars is
different from the sum of the responses to each individual
bar. For some spatial and temporal separations between
the bars the cell response is greater than the linear predic-
tion, and for other separations it is less than the linear
prediction. Emerson et al. (1991) have shown that the
nonlinear interaction between pairs of bars is consistent
with that predicted by energy mechanisms.

A variety of other experiments also indicate that en-
ergy mechanisms are reasonable models of complex cells.
An energy mechanism has an unmodulated response to
drifting sine grating stimuli, as do the majority of com-
plex cells (Maffei & Fiorentini, 1973; Movshon 1978b).

For counterphase grating stimuli, both complex cells
and energy mechanisms have responses that vary over
time at twice the temporal frequency of the stimulus
(Movshon et al., 1978b). In addition, responses to coun-
terphase gratings do not depend on the spatial phase of
the stimulus (Maffei & Fiorentini, 1973; Movshon et al,,
1978b).

Contrast-Response

The inclusion of contrast normalization in the model re-
sults in response saturation. The contrast-response func-
tion (that is, response as a function of log contrast for sine
grating stimuli of optimal spatial frequency and orienta-
tion) for model cells is qualitatively similar to typical
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experimentally measured contrast-response relationships
in both cat and primate (Albrecht & Hamilton, 1982;
Dean, 1981; Maffei & Fiorentini, 1973; Ohzawa, Sclar &
Freeman, 1985; Sclar, Maunsell & Lennie, 1990).

The constrast-response functions for striate cells in both
cat and primate have been fitted by the hyperbolic ratio
function (Albrecht & Hamilton, 1982; Li & Creutzfeldt,
1984; Sclar et al., 1990):

CJI

——+ M, (7)

R’ - Rmax
o 4 "

where R is the evoked response, ¢ is the contrast of the
test grating, M is maintained discharge, n is a constant, ¢
is the semisaturation constant, and R,,,, is the maximum
attainable response.

With parameters n =2 and M = 0, the contrast-
response function given by equation 7 is equivalent to
that of model cells given by equations 5 and 6. The
equivalence is easily demonstrated by recalling that the
summation in the denominator of equations 5 and 6 is
proportional to ¢2.

Physiological data from both cat and primate show
that the exponent in the contrast-response function does
not differ significantly between populations of simple and
complex cells (Albrecht & Hamilton, 1982; Dean, 1981).
The exponent is 2 on average, but there is variability
from cell to cell (Albrecht & Hamilton, 1982; Sclar et al.,
1990).

In the present model, the contrast-response functions
of both simple and complex cells have exponents of 2,
because of half-squaring. If the model simple cells were
halfwave-rectified rather than half-squared, then their ex-
ponent would instead be 1.

Contrast Dependence of Tuning

The contrast-response curve of a model cells shifts down-
ward (on log-log axes) if the orientation of the test gra-
ting is non-optimal. This property of model cells is easily
explained by equations 5 and 6. In each of these equations
the value of the numerator depends on stimulus orienta-
tion because the underlying linear operator is orientation
tuned. The value of the denominator does not depend on
stimulus orientation because the suppression is pooled
equally over all orientations. If the suppression was
broadly tuned for orientation then the contrast-response
curves would shift downward and rightward. The relative
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Fig. 9.6

Model complex cell response for grating stimuli of various contrasts
and spatial frequencies. (A) and (B) show the same data plotted in
different ways. (A) Response versus contrast as the spatial frequency,
w, of the stimulus is varied. The contrast-response curve shifts
downward and very slightly rightward (not visible in the graph)

in the log-log plot if the spatial frequency of the test grating is
nonoptimal. (B) Spatial frequency tuning curves as the contrast of the
stimulus is varied. Tuning width is largely invariant with respect to
contrast. Width broadens very slightly (not visible in the graph) with
increased contrast. Both of these results are in agreement with
physiological data.

amount of rightward shift depends on the breadth of the
tuning.

Figure 9.6A shows the contrast-response curves of a
model cell for various stimulus spatial frequencies. The
curves shift downward and slightly rightward for non-
optimal spatial frequencies. The small rightward shift oc-
curs because the suppression from contrast normalization
is broadly tuned for spatial frequency. If the suppression
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were equal for all spatial frequencies then there would be
no rightward shift.

Downward shifts of contrast-response have been mea-
sured physiologically by Li and Creutzfeldt (1984) for
stimuli of nonoptimal orientation, for stimuli of nonpre-
ferred direction of motion, and for stimuli in the non-
dominant eye. Li and Creutzfeldt, and other authors,
interpreted these results as demonstrating that saturation
of the contrast-response curve is already present at the
precortical level and therefore not due to intracortical
mechanisms. On the contrary, the model predicts the
downward shift precisely because of the mutual suppres-
sion between cortical cells. Albrecht and Hamilton (1982)
recorded similar downward shifts of contrast-response
curves for stimuli of nonoptimal spatial frequency, but
they also found a slight rightward shift of the curves, in
agreement with the present model.

The orientation tuning width of model cells is invariant
with respect to contrast. Changing the stimulus contrast
scales the response by a constant factor over all orienta-
tions. In other words, the ratio of the responses produced
by different orientations remains fixed, independent of
contrast. Contrast has no impact on tuning width because
the suppression from contrast normalization is equal for
all stimulus orientations. If the suppression was broadly
tuned for orientation then the model cell’s tuning width
would depend on contrast.

Figure 9.6B shows the spatial frequency tuning curves
of a model cell for various contrasts. The spatial fre-
quency bandwidth broadens very slightly with increased
contrast, because the suppression from contrast normali-
zation is broadly tuned for spatial frequency. Experimental
results demonstrate that real cells behave similarly. In
spite of response saturation, orientation and spatial fre-
quency tuning widths vary little with contrast (Albrecht
& Hamiltom, 1982; Li & Creutzfeldt, 1984; Sclar & Free-
man, 1982).

Discussion

For some years, simple cells have been modeled as
halfwave-rectified linear operators. It has also become
popular to model complex cells as energy mechanisms. A
variety of experimental results provide evidence in sup-
port of the linear/energy model, but a variety of other
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experimental results can not be explained by the linear/
energy model.

In this chapter I have suggested two modifications to
the linear/energy model in order to explain a larger body
of physiological data. One modification is the use of
half-squaring instead of halfwave-rectification (or over-
rectification) at the output of the model simple cells. The
other modification is to include a contrast normalization
nonlinearity.

With contrast normalization and squaring, the contrast-
response curves of model cells are very similar to physio-
logical measurements. Contrast-response curves of model
cells shift mostly downward for nonoptimal stimuli, and
the tuning widths of model cells are largely independent
of contrast (figure 9.6). In other words, the ratio of the
responses produced by two different stimuli is largely
invariant with respect to stimulus contrast. In this way,
information about a visual stimulus, other than its con-
trast, can be represented as the relative responses of a
collection of cells.

Contrast normalization explains some additional prop-
erties typical of striate cells including nonspecific suppres-
sion (e.g., Bonds. 1989) mentioned in the introduction to
this chapter, and contrast adaptation (e.g., Ohzawa et al,
1985). These issues will be addressed in a forthcoming
paper.

In addition, the results of a variety of psychophysical
experiments have been modeled using contrast normali-
zation. For example, both Bergen and Landy (see chapter
17), and Graham (see chapter 18) include contrast norma-
lization steps in their models of texture discrimination.

In this chapter, I discuss three models of simple cell
rectification: halfwave-rectification, over-rectification, and
half-squaring. While there is ample evidence to reject
halfwave-rectification, the experiments to date are gen-
erally consistent with both over-rectification and half-
squaring. This is not surprising since these two non-
linearities are approximately the same over a restricted
operating range. Mathematically, the two nonlinearities
are expressed as:

Nil) =i [z]®
Ny () = a,lx — T1.

where N;(x) and N,(x) are half-squaring and over-
rectification, respectively, 4, and a, are scale factors, T is
a threshold, and |x] = max(x,0) is taken to mean half-
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wave rectification. By choosing a, and T appropriately,
N, (x) can be made to approximate N;(x) for a certain
range of x values.

These two functions approximate one another only for
a certain range of values, so it may be possible to dis-
criminate between them experimentally. For example, the
results of the Reid et al. experiment (figure 9.5) can be
reanalyzed to test the different hypotheses. One can com-
pensate for the effect of half-squaring by taking the square
root of the responses. After taking square roots, the direc-
tional indices measured from drifting gratings should be
equal to the ellipse ratios measured from counterphase
gratings. Likewise, one can compensate for the effect of
over-rectification by adding a fixed constant value to the
responses. More generally, one could try fitting the ex-
perimental data using the following nonlinearity:

N@) =alx— T" (8)

The choice of exponent, #, and threshold, T, that yield the
best fit would be measured from the data. Half-squaring
corresponds to the case in which n = 2 and T = 0. Over-
rectification corresponds to the case in which n = 1 and
T#0.

Although the present model explains a large body of
physiological data, there is variability in the behavior
from one cell to the next. Some, but not all, of the vari-
ability between cells can be accounted for by the present
model’s parameters. For example, there are some complex
cells that, unlike energy mechanisms, have modulated re-
sponses to gratings of certain spatial frequencies.

As another example, half-squaring predicts that polar
plots of response to counterphase gratings are shaped like
wasp-waisted ellipses (figure 9.4). Half-squaring also pre-
dicts that the ellipse axis ratio underestimate the direc-
tional index (figure 9.5). For some cells, however, the
ellipse axis ratio underestimates the directional index even
though polar plots of response to counterphase gratings
are well fit by ellipses (not wasp-waisted).

Future research will aim to enhance the model so that
it might account for some of the variability between cells.
For example, it is possible to account for some of the
variability in contrast-response measurements by adding
a threshold parameter to the model. Contrast-response of
model cells would then be given by:

le — T

R:Rmaxui
a" + "

+ M. 9)

If T is negative and M is positive then the cell would
have a nonzero maintained discharge. If T is positive and
M is negative then the cell would be over-rectified.

Varying T in equation 9 not only changes the level of
maintained discharge, but also changes the shape of the
contrast-response curve. Varying T and ¢ simultaneously
can look very much like a change in the exponent, n. This
suggests the possibililty of fitting contrast-response data
with a fixed exponent of 2, accounting for the variability
from cell to cell by changing the value of T.

For a particular cell, the parameters of the model can be
measured and compared using different experiments. For
example, the exponent, n, and threshold, T, can be mea-
sured by fitting contrast-response data to equation 9.
These parameters can also be measured, as discussed
above, by using equation 8 to fit the data of Reid et al.

As another example, recall that the contrast-response
curve of model cells shifts downward and slightly right-
ward if the spatial-frequency of the test grating is non-
optimal. The amount of rightward shift depends on the
breadth of tuning of the contrast-normalization suppres-
sion. For a particular cell, one could measure both the
breadth of tuning and the shift in contrast-response, and
then compare the two.

The ultimate goal of modeling visual neurons is to be
able to predict the response of a cell to any stimulus,
based on a limited number of measurements. The success
of this endeavor hinges on pinpointing the regularities in
the behavior of visual neurons. A good model will have a
small number of easily measured parameters and will be
able to predict the responses of a large number of cells.
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