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Pattern Adaptation and Normalization Reweighting
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Adaptation to an oriented stimulus changes both the gain and preferred orientation of neural responses in V1. Neurons tuned near the
adapted orientation are suppressed, and their preferred orientations shift away from the adapter. We propose a model in which weights
of divisive normalization are dynamically adjusted to homeostatically maintain response products between pairs of neurons. We dem-
onstrate that this adjustment can be performed by a very simple learning rule. Simulations of this model closely match existing data from
visual adaptation experiments. We consider several alternative models, including variants based on homeostatic maintenance of re-
sponse correlations or covariance, as well as feedforward gain-control models with multiple layers, and we demonstrate that homeostatic
maintenance of response products provides the best account of the physiological data.
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Introduction
In primary visual cortex, prolonged viewing of an oriented stim-
ulus (the adapter) results in response suppression for neurons
tuned near the adapter and a repulsive shift of orientation tuning
curves away from the adapter (Müller et al., 1999; Dragoi et al.,
2000, 2001; Felsen et al., 2002; Benucci et al., 2013). A standard
view of adaptation is that it represents a simple fatigue-like pro-
cess in highly responsive neurons (i.e., in which adaptation only
adjusts the gain of individual neurons according to their recent
history of responses) (Maffei et al., 1973; Carandini and Ferster,
1997). Although neuron-specific response suppression (Fig. 1C)
is consistent with fatigue-based models of adaptation, the shifts
in orientation tuning observed in V1 (Fig. 1D) are more difficult
to explain.

Repulsive shifts in orientation preference might serve to re-
move dependencies arising from variations in the statistics of

visual input while tolerating dependencies in the responses that
arise due to tuning-curve overlap. Consider the responses of a
population of orientation-tuned neurons to the following stim-
ulus ensembles: (1) all orientations occur equally often (Fig. 1A);
and (2) one orientation (the adapter) occurs with greater fre-
quency than other orientations (Fig. 1B). The covariances of the
responses to both stimulus ensembles will be large for some pairs
of neurons because they have overlapping tuning curves. With-
out adaptation, the covariance of neural responses to the biased
stimulus ensemble would be larger, relative to the unbiased en-
semble, among neurons tuned to orientations near the adapter.
Instead, the tuning-curve changes in cat V1 following exposure to
a biased stimulus ensemble, which include response suppression
and shifts in preferred orientation, almost precisely restore the
covariances observed with an unbiased stimulus ensemble (Be-
nucci et al., 2013).

In this study, we reformulate adaptation as a homeostatic con-
trol process that uses a simple Hebbian learning rule. The pro-
posed model homeostatically maintains response products (the
products of the firing rates of pairs of neurons) by adjusting the
weights of divisive normalization. This removes response depen-
dencies that arise from variations in the statistics of visual input.
Divisive normalization is a neural process describing nonlinear
behavior in sensory neurons in which the output of a neuron is
computed as the feedforward drive of that neuron divided by
(i.e., normalized by) the sum of the drives to neighboring neu-
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Significance Statement

Adaptation is a phenomenon throughout the nervous system in which neural tuning properties change in response to changes in
environmental statistics. We developed a model of adaptation that combines normalization (in which a neuron’s gain is reduced
by the summed responses of its neighbors) and Hebbian learning (in which synaptic strength, in this case divisive normalization,
is increased by correlated firing). The model is shown to account for several properties of adaptation in primary visual cortex in
response to changes in the statistics of contour orientation.
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rons (Heeger, 1992b; Carandini and Heeger, 2011). It has been
suggested that the weights of divisive normalization are opti-
mized to improve the efficiency of sensory coding (Schwartz and
Simoncelli, 2001; Wainwright et al., 2002; Sinz and Bethge, 2013).
Divisive normalization (or gain control) has also been used to
explain some adaptation phenomena (Ohzawa et al., 1982;
Heeger, 1992b; Wainwright et al., 2002; Wissig and Kohn, 2012;
Solomon and Kohn, 2014). The model that we propose updates
the normalization weights between each pair of neurons based on
the product of their responses and could be implemented by a
simple synaptic mechanism for coincidence detection (Levy and
Steward, 1983; Yao and Dan, 2001; Yao et al., 2004). The model
has no free parameters determining the shape of tuning curves
following adaptation. Simulation results demonstrate close
agreement with physiological data, including changes in the gain
of neural responses, repulsive shifts in tuning curves, and approx-
imate maintenance of response covariances.

Materials and Methods
Simulation
Model simulations followed the experimental protocol of Benucci et al.
(2013). Model neurons were presented with sequences of gratings with
orientations drawn from a distribution that was either unbiased, so that
each orientation occurred with equal frequency, or biased, so that one
orientation was overrepresented by a constant factor (Fig. 1 A, B). Stim-
ulus contrast was 50%. One minor difference between the simulations
and the actual experimental protocol was that there were no blank trials
in the simulations, so increasing the probability of one orientation always
involved a commensurate decrease in the probability of other orienta-
tions. Simulations were run for various amounts of orientation bias in
the stimulus ensemble. Larger overrepresentation of the adapted orien-

tation led to adaptation effects that were larger in magnitude but quali-
tatively similar. All figures shown here are based on simulations using 11
stimulus orientations, with the vertical orientation overrepresented by a
factor of 5. All program codes used to generate the figures are available
online (see Notes).

Neural responses
We simulated the responses of a population of orientation-tuned V1
neurons to sequences of gratings. Responses were obtained by first com-
puting a feedforward drive for each neuron, and then normalizing across
the neural population. We used the divisive-normalization model, which
has been used to explain a variety of neurophysiological phenomena in
V1, including cross-orientation and surround suppression (Heeger,
1992b; Carandini et al., 1997b; Carandini and Heeger, 2011). Specifically,
the model consisted of N � 121 model neurons representing a subpop-
ulation of neurons sharing a particular receptive-field location and pre-
ferred spatial frequency. Simulated neural responses were obtained by
computing a feedforward drive for each neuron with Gaussian orienta-
tion tuning curves, then normalizing across the neural population. Tun-
ing widths �b were identical across the population yielding an
orientation-tuning bandwidth (half-width at half-height) of 30° follow-
ing normalization. Preferred orientations of the neurons were evenly
distributed over 0°–180°. Neural responses (firing rates) were obtained
by normalizing the squared feedforward drive to each neuron by a
weighted sum of each other neuron’s feedforward drive. The model in-
cluded neuron-specific weights (Carandini and Heeger, 2011), so that
the normalization pool of neuron i was a weighted sum over neurons j in
the population with weights Wj,i. Given a feedforward drive Fi(�) to each
neuron i with preferred orientation �i in the presence of stimulus orien-
tation � and contrast C, the normalized responses were computed as
follows:

Fi�� � � C exp ���� � �i�
2/�2�b

2��

Ri�� � �
Fi�� �2

� 2 � �j�1

N
Wj,i Fj�� �2

. (1)

The semisaturation constant � represents the contrast at which neurons
achieve half their maximal response. This constant does not require fine-
tuning and can be varied over a large range of realistic values: from nearly
zero to around half the stimulus contrast, without dramatically changing the
predictions of the response-product model. The results shown here were
generated with � � 0.17, or one-third of the stimulus contrast of 0.5.

Response-product homeostasis model
A learning rule adjusted the normalization weights for each pair of sim-
ulated neurons, based on their responses to each stimulus. Instead of
trying to minimize some form of statistical dependency (correlation, for
example), the model maintained the expected response products (i.e., the
pairwise product of neural responses) as close to a target level as possible.
Specifically, normalization weights were adjusted after each stimulus
presentation as follows:

Wj,i
t�1 � Wj,i

t � ��Rj
tRi

t � Cj,i�, (2)

where the Cj,i represented the homeostatic targets for the response prod-
ucts. For a biased stimulus ensemble, the overrepresented orientation
evoked strong activity in a subpopulation of neurons tuned near that
orientation, leading to elevated response products among those neurons.
The normalization weight between two such neurons was consequently
increased in proportion to the elevation of the product of their responses
relative to the homeostatic target. The homeostatic targets for the re-
sponse products, the Cj,i, were not free parameters of the model, but
rather depended only on the similarity of the two neurons’ tuning curves.
For most of the simulations reported here, the homeostatic target was the
expected product of responses to the unbiased stimulus distribution,
with uniform normalization weights: Cj,i � Eunbiased �RjRi�. For the rest
of the simulations, the homeostatic target was based on natural texture
images (see Learning the homeostatic target). The only free parameter
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Figure 1. Neuron-specific adaptation and stimulus-specific adaptation. A, Unbiased distri-
bution over 11 equally spaced stimulus orientations. B, Biased distribution over stimulus orien-
tation in which the adapter, 0°, is overrepresented by a factor of 5. C, Neuron-specific
adaptation, consistent with neural-fatigue models of adaptation. Red curve represents postad-
aptation tuning curve of a neuron with preferred orientation equal to the adapter. Solid black
and blue curves represent postadaptation tuning curves for other neurons in the population.
Dashed blue curve represents preadaptation tuning curve corresponding to the solid blue curve
below it. Neural responses are suppressed near the adapter, with the magnitude of suppression
falling off with difference in orientation. D, Stimulus-specific adaptation. Neural responses are
again suppressed near the adapter, but the suppression is asymmetrically greater on the
tuning-curve flanks overlapping the adapted orientation. Preferred orientations are repelled
away from the adapter (e.g., blue curves).
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was the learning rate �. We confirmed that this quantity can be adjusted
to match the rate of adaptation observed empirically (�1.5 s for the
neuron tuned to the orientation of the adapter to drop halfway from its
initial gain to its steady-state gain), but the value of � did not affect the
shape of tuning curves at steady state.

This learning rule is an approximation of gradient descent on an ob-
jective function that favors homeostatic maintenance of the response
product. Specifically, given a penalty on the sum of squared deviations
from response-product homeostasis, the learning rule adjusts each
weight Wj,i to reduce the component of the error associated with neurons
i and j. This update rule has as its fixed point the set of weights that exactly
maintains the expected product of the responses for each pair of simu-
lated neurons. Although it is not guaranteed to converge with an arbi-
trary set of tuning curves, it converged very quickly in our simulations.

Feedback normalization
Although we are agnostic as to the mechanistic implementation of nor-
malization, we recognize the need to establish that the model we describe
could operate in a physiologically realistic recurrent network. The nor-
malization model we used was implemented as a feedforward procedure,
but the normalization model has also been implemented with the divi-
sive suppression emerging through recurrent feedback (Carandini and
Heeger, 2011). Recurrent processing has been shown to achieve steady-
state responses that are identical under certain conditions to those
achieved by feedforward divisive normalization (Heeger, 1992b). We
implemented a generalization of this recurrent processing that included
arbitrary normalization weights as follows:

Gi�t� � �1 � �� Gi�t � 1� � ��
j

Wj,iRj�t�

Ri�t� � ⎣Fi�t�⎦
2 K � Gi�t�

�2 . (3)

At steady state,

Ri � K�
j

���2I � diag�⎣F⎦
2
�W�	1 diag�⎣F⎦

2
�� ij , (4)

where ⎣Fi�t�⎦
2

is the half-squared linear input to neuron i, � is the semi-
saturation constant of normalization, and K is a constant (K 
 Gi(t)) that
determines the response gain (i.e., the maximum-attainable firing rate).
Ri denotes the steady-state response of neuron i, assuming constant in-
put. The steady-state behavior can be derived by assuming that, at steady
state, Gi�t� � Gi�t � 1�, and is exactly equivalent to divisive normal-
ization when all of the normalization weights Wj,i are equal to one an-
other (Heeger, 1992b).

Learning the homeostatic target
The simulations were repeated using a homeostatic target based on tex-
ture images, rather than on the experimental stimulus ensemble (a se-
quence of gratings drawn from a uniform distribution over orientation).
To approximate the homeostatic target corresponding to the natural
environment, we analyzed a set of 90 natural images (Burge and Geisler,
2011) using a V1-like filter bank. Specifically, we used the steerable pyr-
amid (Simoncelli et al., 1992; Portilla and Simoncelli, 2000), a subband
image transform, to decompose each texture image into separate
orientation and spatial-frequency channels. Each channel simulates the
responses of a large number of linear receptive fields with the same
spatial-frequency and orientation tuning. The receptive fields are defined
so that they cover all orientations and spatial frequencies evenly (i.e., the
sum of the squares of the tuning curves is exactly equal to 1 for all
orientations and spatial frequencies). For each orientation and spatial-
frequency channel, the transform includes receptive fields with two dif-
ferent phases, like odd- and even-phase Gabor filters. The sum of the
squares of the responses of two such receptive fields computes what has
been called an energy response (Adelson and Bergen, 1985; Heeger,
1992a) because it depends on the local spectral energy within a spatial
region of the stimulus, for a particular orientation and spatial frequency.
We computed the average of the products of the energy responses for

each pair of orientations, and averaged the response products across
spatial locations. Finally, we averaged rows of this response-product ma-
trix along the diagonal (and plotted the result as a function of relative
orientation) to remove influences of cardinal bias (Girshick et al., 2011).
The results were similar for each spatial-frequency channel so we show
results for only one channel.

Covariance homeostasis model
An alternative model maintained the response covariances of each pair of
neurons, using an update rule that adjusted normalization weights based
on deviation of covariance from a target. This model used a learning rule
analogous to Equation 2, with covariance substituted for response prod-
uct as follows:

Wj,i
t�N � Wj,i

t � ��Cov�Rj, Ri� � Cj,i
cov�. (5)

Weight updates in this model occurred following a sequence of N stimuli,
where N is assumed to be large enough to compute covariance, rather
than on individual stimuli. Covariance, unlike response product, has no
instantaneous definition, so a memory of recent average responses must
be maintained. We simulated the covariance model by computing the
neural response covariance across the entire ensemble at each weight
update. The homeostatic targets Cj,i

cov were the neural response covari-
ances for an unbiased stimulus ensemble with uniform weights.

Gain-change adaptation in one or two layers
We implemented two alternative models of adaptation in which response
gain was adjusted to homeostatically maintain average neural responses.
In the one-layer feedforward gain model, each neuron had a response
gain gi that multiplicatively scaled the orientation-tuning curve. The nor-
malized response was then as follows:

Ri�� � �
gi

2 Fi�� �2

�2 � �j�1
N gj

2Fj�� �2
. (6)

This adaptation model adjusted the gains gi to maintain mean (normal-
ized) responses at a homeostatic target C, which was the average response
of a neuron for the unbiased stimulus distribution. Gains were adjusted
on each stimulus presentation according to the following:

gi�t � 1� � gi�t� � ��Ri�t� � C�. (7)

We also implemented a two-layer model without normalization in which
the response of output neuron Ri,2 was computed as a weighted sum over
the orientation-tuned responses of input-layer neurons Rj,1. Both input-
and output-layer neurons represented orientation-tuned neurons in V1.
Each output-layer neuron computed a weighted sum over input-layer
responses, with Gaussian weights centered on the preferred orientation �i

of the output neuron (Fig. 2). The responses to a stimulus of orientation
� were as follows:

Ri,1�� � � gi,1 exp�� �� � �i�
2/�2�1

2��

Ri,2� � gi,2 �
j�1

N

Rj,1�� � exp�� ��i � �j�
2/�2�2

2��. (8)

In this model, �1 represents the bandwidth of the Gaussian defining the
orientation tuning of input-layer neurons, and �2 represents the band-
width of the Gaussian defining the sensitivity of each output-layer neu-
ron to the responses of input-layer neurons with different preferred
orientations. The value of �1 was varied across simulations, with con-
comitant changes to the value of �2 so that the output-layer orientation-
tuning bandwidth was always 30° (half-width at half-height), which is
typical for V1 neurons.

The gains gi of neurons in both layers were adjusted dynamically to
maintain the mean responses. Specifically, the learning rule adjusted the
gains according to the following:

gi,1�t � 1� � gi,1�t� � ��Ri,1�t� � Ci,1�

gi,2�t � 1� � gi,2�t� � ��Ri,2�t� � Ci,2�, (9)
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where Ci,1 and Ci,2 were the expected mean responses of each neuron for
the unbiased stimulus distribution, when gains are equal to 1.

Model comparison
Cross validation was used to compare the four models. The data con-
sisted of measured population responses (13 orientations, 21 multiunit
recordings) for each of 11 adaptation experiments from Benucci et al.
(2013). Each experimental dataset consisted of tuning curves measured
preadaptation and postadaptation. These 11 experimental conditions
were averaged to obtain estimates of the postadaptation neural re-
sponses [Benucci et al. (2013), their Fig. 4 D]. To assess the ability of
each model to explain the observed adaptation effects, we resampled
conditions to generate a bootstrapped distribution of preadaptation
and postadaptation tuning curves. Each of the alternative models con-
sisted of a large number (121) of simulated neurons. For each boot-
strapped neural population and for each model, we optimized the
preadapt model neural population by selecting for each real recording
site the closest matching model neuron after a scaling and additive offset.
That is, for each empirical tuning curve ti

data,pre-adapt, we selected the
scaled model tuning curve with additive offset si

pre � ci
pre � tm�i�

model,pre-adapt

that minimized �ti
data,pre-adapt � �si

pre � ci
pre � tm�i�

model,pre-adapt��
2

. This was
necessary to account for inhomogeneity in the sampling of recording sites.
We repeated this procedure for a large range of bandwidths, and selected the
bandwidth that minimized overall error of the matched populations.

We then simulated each model on the experimental conditions de-
scribed by Benucci et al. (2013). None of the models we simulated had
additional free parameters beyond those used to fit the preadaptation
population. Following simulation, a single scaling and additive-offset
parameter were fit to the postadaptation tuning curves to account for
long-term drift in gain and baseline firing rate that would otherwise
dominate the model error. We then computed the mean-squared error
(MSE) of each model’s fit to the postadaptation neural responses. This
final measure of goodness of fit is as follows:

MSE � min
spost,cpost

�
i

�ti
model,post-adapt � c post � �spost � si

pre � ci
pre tm�i�

model,post-adapt��
2
,

(10)

and was computed for each of 8000 samples from the experimental data
and for each of the four alternative models.

Results
We simulated a collection of model V1 neurons responding to a
sequence of sine wave gratings. The feedforward response of each
neuron was determined by a Gaussian orientation-tuning curve
with 30° bandwidth. Preferred orientations spanned the full
range from 0° to 180°. The output of a neuron was the feedfor-
ward response of the neuron normalized by (i.e., divided by) a
weighted sum of the feedforward responses of all of the neurons.
The weight by which neuron j contributed to the normalization
of neuron i, Wj,i, was modifiable. In a response-product homeo-
stasis model, the Wj,i were modified to bring the product of the
responses of the two neurons, RjRi, closer to a target response
product, Cj,i. We initially set the Cj,i to be the expected response
product for a uniform distribution of gratings and all identical
values for the Wj,i.

Scaling and shifting tuning curves
Following exposure to a biased stimulus distribution in which
one orientation (0°) was overrepresented (Fig. 1B), the nor-
malization weights adapted so as to homeostatically maintain
the expected response products at the same level evoked by an
unbiased stimulus distribution. The normalization weights
were uniform for the unbiased stimulus ensemble (preadap-
tation) but exhibited a negative-diagonal structure following
adaptation to the biased stimulus ensemble (postadaptation;
Fig. 3A). The biased stimulus ensemble increased the average
product of neural responses (averaged across the stimuli) for
pairs of neurons with tuning curves that overlapped the over-
represented stimulus (the adapter) while slightly decreasing
all other response products due to the reduced frequency
of those neurons’ preferred stimuli. The larger inhibitory
weights between pairs of neurons tuned near the adapter re-
duced their excess correlated responses. However, neurons
with very similar orientation preferences often responded to-
gether, even for the unbiased stimulus ensemble. As a result,
the largest increase in response products, relative to the ho-
meostatic target for the response products, was for neuron
pairs with preferred orientations on opposite sides of the
adapter (at a difference in orientation preference determined
by the tuning-curve width). These neurons often responded
separately for the unbiased stimulus ensemble but were jointly
driven by the adapter.

Adaptation to an overrepresented orientation led to orientation-
tuned suppression of simulated neurons. Following adaptation, re-
sponse gain was reduced for neurons tuned to the adapter (Fig.
3B,C). This decrease occurred due to an increase in the normaliza-
tion weights for pairs of neurons with preferred orientations near
that of the adapter (Fig. 3A). Similar changes in gain have been
reported in macaque V1 (Müller et al., 1999; Wissig and Kohn, 2012;
Patterson et al., 2013) and in cat V1 (Dragoi et al., 2000, 2001; Felsen
et al., 2002, 2005; Benucci et al., 2013). The orientation-tuned reduc-
tion in gain largely (but incompletely) compensated for the imbal-
ance in mean responses evoked by a biased stimulus distribution
(Fig. 3D), similar to experimental results (Benucci et al., 2013). The
magnitude of gain changes in the simulation results was similar to
that reported by Benucci et al. (2013) under the stimulus conditions
that we simulated, although the gain changes were evident over a
broader range of preferred orientations in their data. This may reflect
a deviation of our model from physiology, or it may reflect the ex-
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Figure 2. Two-layer feedforward gain-change model. A, B, Preadaptation. C, D, Postadap-
tation. A, C, Orientation-tuning curves of input-layer neurons, scaled according to their weight
in contributing to the response of an output-layer neuron. B, D, Tuning curve of the output-layer
neuron. A reduction of gain for input-layer neurons following adaptation (compare A and C)
leads to a reduction of gain in the output-layer neuron, along with a shift in tuning preference
(compare B and D). A, C, Red curves represent the input-layer neuron tuned to the adapter
orientation (	12°). B, D, Vertical dashed line indicates the preferred orientation of the output-
layer neuron before adaptation.
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perimental use of multiunit responses and averaging across record-
ing sites with similar preferred orientations.

Adaptation resulted in a repulsive shift of simulated
orientation-tuning curves (Fig. 3E,F). Repulsive shifts in pre-
ferred orientation following adaptation arose due to large in-
creases in normalization weights between neurons tuned to
opposite flanks of the adapter. Consider measuring the response
of a neuron tuned to an orientation clockwise of the adapter. A
stimulus at the preadaptation preferred orientation for this neu-
ron also evoked a strong excitatory drive in a neuron tuned to an
orientation on the adapter’s opposite flank. Adaptation increased
the weight of divisive normalization between this pair of neurons,
so that they suppressed one another more strongly. A stimulus
slightly more clockwise than the preadaptation preferred orien-
tation evoked a somewhat smaller excitatory drive to the neuron
being measured but also less divisive suppression from the com-
peting anticlockwise neural population, leading on balance to
larger responses for orientations further from the orientation of
the adapter. For the same reason, adaptation also led to an asym-

metry in the tuning curves for neurons
tuned near the adapter; the flank of the
tuning curve closer to the adapter orien-
tation was shallower.

Repulsive shifts in preferred orienta-
tion in the model had a characteristic
S-shape (Fig. 3F), similar to experimental
data. Repulsive shifts similar to those pro-
duced by the model have been reported in
cat (Dragoi et al., 2000, 2001; Felsen et al.,
2002, 2005; Benucci et al., 2013) and ma-
caque V1 (Müller et al., 1999; Wissig and
Kohn, 2012; Patterson et al., 2013). The
model attained a maximal shift in orien-
tation tuning for simulated neurons with
preadaptation orientation preferences
�20° relative to the orientation of the
adapter. This is generally in line with ex-
perimental results, although the S-shaped
curve of repulsive shifts reported by Benu-
cci et al. (2013) was broader (peaking at
�15°– 45° relative to the adapter) than
our simulation results. As with response
suppression, this broadening may reflect
the use of multiunit responses (although
we note that tuning-curve repulsion has
also been observed with single-unit re-
cordings) (Müller et al., 1999; Dragoi et
al., 2000; Felsen et al., 2002, 2005) and
spike-sorted microarray recordings (Dra-
goi et al., 2001; Wissig and Kohn, 2012).
Other studies have reported a range of
values for the preferred orientations ex-
hibiting maximal repulsion of 5°–22.5°
(Dragoi et al., 2000) and 15°–75° (Patter-
son et al., 2013). The magnitude of the
repulsive shifts in the simulation results
was �5° when the adapter orientation was
over-represented by a factor of 5 (Fig. 3F),
and it depended on the degree to which
the adapter was overrepresented. This
closely matched the shift magnitudes re-
ported by Benucci et al. (2013) under sim-
ilar stimulus conditions. Asymmetry in

the tuning curve flanks, like that predicted by the model, also
appears to be evident in the Benucci et al. (2013) data, although
they did not explicitly test for this.

Attractive shifts have also been reported for adaptation. These
shifts occur under very different conditions than those we con-
sider here. These include (1) very large stimuli, leading to disin-
hibition of neurons with receptive fields in the center of the
stimulus as neurons in the suppressive surround are also adapted
(Wissig and Kohn, 2012); (2) adaptation in cortical areas in
which part of the adaptive effect is inherited from the inputs (e.g.,
MT inheriting adaptation from V1) (Kohn and Movshon, 2004);
and (3) very long adaptation duration, which presumably is due
to a different mechanism akin to perceptual learning (Schoups et
al., 2001; Ghisovan et al., 2009). None of these effects is in the
stimulation regimen we studied.

A variant of the model that computed divisive normalization
from a weighted sum of neighboring neurons’ outputs (feedback
rather than feed-forward drives) had similar results (Fig. 4, first
column). As mentioned above, when all recurrent weights are
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equal, this recurrent model is exactly equivalent to feed-forward
normalization in steady state. In the general case, when the divi-
sive suppression of each neuron is an arbitrarily weighted sum
over responses of other neurons, we found that the behavior of
the recurrent implementation diverged from feedforward divi-
sive normalization. When normalization weights were nearly
equal, however, the two models behaved very similarly. Unlike
the response-product model with feedforward normalization,
the recurrent implementation was sensitive to the value of the
semisaturation constant �. Values of � smaller than one-third of
the stimulus contrast produced prominent attractive shifts in
orientation tuning that peaked at 45° from the adapter.

Approximate covariance homeostasis
In an unbiased stimulus ensemble, the covariance of the simu-
lated neural responses exhibited a diagonal structure (Fig. 3G),
simply reflecting the similarity of the responses for pairs of neu-
rons with similar preferred orientations. Without adaptation, the
covariance of simulated responses to the biased stimulus ensem-
ble increased, relative to the unbiased ensemble, among neurons
tuned to orientations near the orientation of the adapter (Fig. 3H,
bump at 0°). Following adaptation to a biased stimulus ensemble,
the diagonal structure of the response covariances was largely
restored (Fig. 3I), reproducing the results reported by Benucci et

al. (2013). This occurred despite the fact that covariance was not
estimated by the model and was not directly under constraint.
Instead, the normalization weights were adjusted according to
the product of the responses of each pair of simulated neurons. As
a result, the change in average response product induced by the
biased stimulus ensemble was perfectly compensated. Response
product is related to covariance, but the two are not identical
(see Covariance-homeostasis model). Consequently, the diago-
nal covariance structure was not recovered perfectly. For pairs of
neurons with preferred orientations near the adapter, the post-
adaptation covariance was slightly smaller than the preadapta-
tion levels (compare Fig. 3G with Fig. 3I). However, this slight
overshoot of equalization of covariance appears to be a feature of
the model because a similar effect is also evident upon reexami-
nation of the empirical results (Fig. 5, black dashed curve).

Homeostatic target
An advantage of the response-product model is that it accounts
for experimental effects of adaptation with no free parameters to
optimize. Instead, the behavior of the model is driven by the
shape of tuning curves in V1 and by the homeostatic target. In the
simulations presented so far, the target was the expected response
products evoked by an unbiased distribution of grating orienta-
tions. The use of an environment that consists of single gratings
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flashed one at a time for defining the homeostatic target is arbi-
trary. We therefore verified that similar results would be obtained
when the target response products were estimated from natural
images analyzed by a V1-like filter bank. We used a collection of
natural textures and computed the matrix of response products
of the filters. The matrix was then averaged along the diagonal to
remove the effects of cardinal bias (Girshick et al., 2011) from the
response-product matrix. The resulting expected response prod-
ucts, as a function of relative orientation, are plotted in Figure 6A.
The response-product model behaved similarly with this homeo-
static target compared with using the unbiased-grating-ensemble
target (Fig. 6B,C).

Conditional variance
Schwartz and Simoncelli (2001; see also Sinz and Bethge, 2013)
examined the responses of a bank of orientation- and spatial-
frequency-tuned linear receptive fields as a simple model of the
population of V1 simple cells. They showed that, in response to
natural images, the variance of the response of one such linear
receptive field depends on the absolute value of the response of a

neighboring receptive field (i.e., conditional-variance depen-
dence). That is, when one linear response is large (either positive
or negative), a neighboring neuron’s response is likely to be large
as well. An appropriate choice of normalization weights can undo
this dependence. The optimal weights are commensurate with
physiological measurements of surround suppression in which
the strength of suppression depends systematically on the differ-
ence in orientation between center and surround (Cavanaugh et
al., 2002; Shushruth et al., 2013). Such weights are also consistent
with psychophysical studies of surround masking that have
found larger suppressive effects with iso-orientation surrounds
(Xing and Heeger, 2000; Shushruth et al., 2013). Conditional-
variance dependence is a property of natural images and can vary
between environments. Prior work has shown that some ad-
aptation phenomena (including tuning-curve repulsion) can
be explained by adjusting normalization weights to reduce
conditional-variance dependence (Wainwright et al., 2002).

Although our model never estimates the conditional variance
of neural responses and does not explicitly attempt to stabilize or
remove these dependencies, homeostatically regulating the re-
sponse product of normalized (as opposed to linear) responses
also stabilizes this form of nonlinear dependence. This is because
increasing the degree of conditional-variance dependence be-
tween two neurons increases the product of their normalized
responses as long as there is a relatively diverse population of
neurons constituting the normalization pool.

We verified with a population of simulated neurons that
response-product homeostasis largely removes conditional-
variance dependencies of normalized responses. We simulated a
population of 40 neurons. Neural responses were assumed to be
Gaussian distributed and independent of one another; the joint
histogram of two such neurons, R1 and R2, is shown in Figure 7A.
Next, we introduced a conditional-variance dependency by
setting var�R2� � 1.0 � � � var�R1� � � � R1

2 (Fig. 7D). All
other linear responses were unchanged. The form of this depen-
dency was carefully chosen so that it did not change the variance
of either neuron’s response. However, it did produce the bowtie
dependence in the joint histogram characteristic of conditional-
variance dependence (Schwartz and Simoncelli, 2001; Wain-
wright et al., 2002) (Fig. 7B). This form of dependence has been
shown to reduce the efficiency of neural encoding of orientation
(Schwartz and Simoncelli, 2001).

Although both the means of the individual linear responses R1

and R2 and their correlation or expected product are independent of
the magnitude of the conditional variance dependence between
them, the product of their normalized responses does depend on this
quantity. Larger values of � lead to larger expected products between
normalized responses N1 and N2 (Fig. 7C). As a result, when the
neural population underwent response-product stabilizing adapta-
tion, changes in the magnitude of conditional-variance dependency
were compensated by changes in normalization weights. Figure 7E
(solid black curve) shows the conditional variance of normalized
response N2 on N1 before adaptation. After adaptation, the
conditional-variance dependence was removed from the normal-
ized responses, restoring the relationship observed in independent
neurons (Fig. 7E, dashed curve).

Conventional adaptation
The experimental protocol with a biased stimulus distribution
(Benucci et al., 2013) is appealing from the perspective of testing
models based on homeostasis. By staying within the regimen for
which a hypothetical homeostasis process can be expected to op-
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erate effectively, no additional model pa-
rameters were required for comparing
model simulations with empirical results.

We also simulated a conventional adap-
tation experiment, with each trial consisting
of a top-up adapter followed by a test stim-
ulus, but doing so required an additional
model parameter. Because the model (as
presented above) has unbounded normal-
ization weights, it predicts unrealistically
large suppressive effects following pro-
longed exposure to a single grating. How-
ever, a very small decay term on the
normalization weights (decaying toward the
initial uniform weights) allowed the model
to be applied to conventional adaptation.
With this decay term included, simulation
results exhibited suppressive gain changes
and repulsive shifts in tuning (simulations
results not shown) that were similar, al-
though larger in magnitude, to those pre-
sented above.

Perceptual learning
Theoretical results have shown that a neu-
ral population optimized to encode a
nonuniform prior over orientations (i.e.,
some orientations occur more often than
others) can account for improved orien-
tation discrimination near the overrepre-
sented orientations (Girshick et al., 2011; Ganguli and
Simoncelli, 2014). In this optimized population, more neurons
are used to encode orientations that occur more often, and these
tightly packed tuning curves are also more narrowly tuned to
maintain fixed tuning-curve overlap (Girshick et al., 2011; Wei
and Stocker, 2012; Ganguli and Simoncelli, 2014). This popula-
tion can be described as exhibiting tuning-curve attraction to-
ward the overrepresented orientation along with reduced
orientation-tuning bandwidth near that orientation.

Perceptual learning (a very large number of repeats of the
same or very similar stimulus, while practicing a discrimination
task), unlike adaptation, gives attraction instead of repulsion
(Schoups et al., 2001). Even very long-term exposure to the stim-
ulus without performing a task has been reported to give attrac-
tion (Ghisovan et al., 2009). It is likely that the result of long-term
exposure reflects a distinct and qualitatively different process
from short-term adaptation, and that both operate simultane-
ously on different timescales. However, any plausible adaptation
process should be able to coexist with longer-term tuning-curve
changes associated with optimization to a prior (i.e., the homeo-
stasis rule should not strongly oppose changes associated with
perceptual learning).

We verified that a neural population optimized to encode orien-
tations from a nonuniform stimulus ensemble (Wei and Stocker
2012; Ganguli and Simoncelli, 2014) is at response-product homeo-
stasis (Fig. 8). These tuning curves are attracted toward the overrep-
resented orientation and narrower near that orientation (Fig. 8C).
The optimal tuning curves produce a diagonal covariance structure
in response to this stimulus distribution (i.e., the stimulus distribu-
tion for which the neural population is optimized). These tuning
curves also produce the same response products to the biased stim-
ulus distribution as does a uniform population responding to an
unbiased stimulus distribution. Response-product homeostasis

thereby guarantees that these tuning curves do not change (i.e., do
not adapt) when exposed to the biased stimulus distribution, so as to
maintain an efficient representation. This is important because the
natural environment is not uniform with respect to orientation: ver-
tical and horizontal orientations occur more often, and there is evi-
dence that the neural population in V1 is optimized to represent this
bias (Girshick et al., 2011).

Covariance-homeostasis model
We also simulated a model that homeostatically maintained re-
sponse covariance. Although covariance and the expected value
of the response product are very similar, the only difference being
that the former is mean subtracted: the two learning rules pro-
duced very different results. This model performed much worse
than the model that homeostatically maintained response prod-
ucts. We used cross-validation to compare this and other alter-
native models with the response-product homeostasis model
(Fig. 9). The covariance-homeostasis model was rejected (p0.01).
Despite the apparent similarities between the two models, ho-
meostatic maintenance of covariance led to response gain
changes (Fig. 4B) that did not match experimental data (Benucci
et al., 2013) and unrealistic attractive shifts in tuning curves for
simulated neurons with preferred orientations that were distant
from the adapter (Fig. 4F, secondary peaks beyond �45°). This
failure occurred because of how covariance depends on changes
in the mean responses, which are not perfectly stabilized during
adaptation. Consider a pair of neurons X and Y tuned slightly past
45° clockwise and counterclockwise of the adapter. Because these
neurons rarely respond together, their covariance, equal to
E(XY) 	 E(X)E(Y), is negative and dominated by the product of
their mean responses E(X)E(Y). For a biased stimulus distribu-
tion, these neurons’ preferred orientation appears less often, and
they respond less on average. Because adaptation imperfectly cor-
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rects for changes in mean response, E(X)E(Y) decreases (be-
comes closer to 0), and covariance increases (becomes less
negative). The positive error in covariance increases the normal-
ization weights, and the tuning curves of the two simulated neu-
rons shift away from each other. However, because the neurons
have preferred orientations that are closer to one another than to
the adapter, these neural-tuning shifts (away from each other)
manifest as attraction toward the adapted orientation.

In addition, the covariance-homeostasis model perfectly
compensated for the change in response variances evoked by the
biased stimulus distribution, incommensurate with the empirical
results (Figs. 4 J, 5). A model that homeostatically maintained
response correlation was even worse and did not even reproduce
maximal suppression at the adapted orientation. This is because
correlations along the diagonal are, by definition, unity and
hence are unaffected by changes in the stimulus ensemble, so that
self-normalization weights of neurons tuned to the adapter did
not increase when maintaining correlation.

Gain-change adaptation models
We investigated whether adaptation processes that adjust each
neuron’s gain individually could account for the observed eff-
ects of adaptation in V1. The simplest reasonable model of
orientation-selective adaptation is a single population of neurons
that reduce their gain when highly stimulated, and that reduce
their gain by a greater amount when they respond more. We
chose a model that dynamically adjusts response gain to maintain
mean-response homeostasis. Although there are many other
choices of the precise relationship between average responses and
gain adjustment, mean-response homeostasis captures the stim-
ulus specificity of adaptation and approximate homeostasis has
been reported in the neural population (Benucci et al., 2013). The
one-layer feedforward gain-change model that we simulated in-
cluded unweighted (i.e., all weights equal one) divisive normal-
ization between neurons tuned to different orientations, such
that changes in gain affected the normalization pool. Omitting

normalization in this model produced only neuron-specific ad-
aptation (Fig. 1C) and thus no tuning-curve shifts.

When implemented in this way, adaptation failed to produce
tuning-curve repulsion, although it could not be rejected statis-
tically in our model comparison (p � 0.06; Fig. 9). Indeed, adap-
tation led to pronounced tuning-curve attraction toward the
adapter instead of repulsion from the adapter (Fig. 4G). Neurons
tuned to the adapter responded less strongly, so when stimuli
near the adapter appeared, there was less input to the normaliza-
tion pool from those neurons, and less divisive suppression over-
all, leading to larger responses among flanking neurons. If
normalization was omitted, or assumed to be implemented in
such a way that response-gain changes in V1 do not affect the
normalization pool, then there were no shifts in preferred orien-
tation at all (simulation results not shown).

How then can gain changes produce tuning-curve repulsion?
One possibility is that response suppression in an input layer
leads to asymmetric suppression in an output layer (Fig. 2). This
is a priori unlikely for orientation repulsion in V1 because the
input layer (presumably LGN) is at most only weakly selective for
orientation. Nevertheless, we also investigated a two-layer model
in which the response of each output-layer cell was computed as
a weighted sum over the orientation-tuned responses of input-
layer cells, and in which the gains of neurons in both layers were
adjusted to homeostatically control the mean response of each
neuron. Normalization was omitted from this model to avoid the
attractive shifts observed in the one-layer model (and we con-
firmed that the two-layer model failed when normalization was
included; simulation results not shown). This adaptation process
led to strong reduction in gain of input-layer neurons tuned to
the overrepresented orientation, which was inherited by similarly
tuned neurons in the output layer.

The orientation bandwidth of the input-layer neurons needed
to be narrow to explain the large (�5°) shifts in orientation tun-
ing observed in V1 neurons for the conditions that we simulated
(Benucci et al., 2013). We simulated the model with several
choices of input-layer bandwidth. Half-width at half-height
ranged from 20° to 28°, compared with a nominal output-layer
bandwidth of 30° (Fig. 4D,H). Large shifts were observed only
when the input-layer neurons had bandwidth 22° (Fig. 4H),
which is on the low end of the plausible range for V1.

When input-layer bandwidth was narrow enough to explain
the large shifts in orientation tuning, the two-layer model did a
very poor job of explaining homeostatic regulation of covariance
(Figs. 4L, 5). The two-layer model overcorrected neural covari-
ance following adaptation, such that covariance among neurons
tuned near the adapter was much lower than was observed exper-
imentally (Benucci et al., 2013) and was rejected in our model
comparison (p  0.01; Fig. 9). While not definitively ruling out
the entire class of models that adapt through changes in gain,
these simulation results suggest that gain changes alone are un-
likely to be explain adaptation in V1.

Discussion
A model for sensory adaptation, which extends the normalization
model with a Hebbian learning rule for normalization weights,
was simulated with a biased stimulus distribution similar to that
used by Benucci et al. (2013), and produced similar tuning-curve
shifts. The model provided a quantitatively accurate fit to those
data without introducing free parameters to be optimized. Sim-
ulation results were also similar to empirical results in the
broader literature on adaptation using conventional experimen-
tal protocols (with each trial consisting of a top-up adapter fol-
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lowed by a test stimulus), including gain
changes and shifts in preferred orienta-
tion (Müller et al., 1999; Dragoi et al.,
2000, 2001; Felsen et al., 2002), although
the comparison was necessarily more
qualitative. The model also accounted for
changes in the covariance of neural re-
sponses with adaptation (Benucci et al.,
2013), even though the learning rule ho-
meostatically controls the products of
each pair of neural responses. We com-
pared this model with alternatives, to ad-
dress the critical question of what quantity
(if any) is under homeostatic mainte-
nance during adaptation. A related model
that homeostatically controlled the cova-
riance of neural responses could not ac-
count for the data. Nor were we able to
adequately explain adaptation with mod-
els that changed response gains (homeo-
statically maintaining mean responses),
even when an additional orientation-
tuned input layer was included.

Response-product model and
efficient coding
A long-standing hypothesis is that neu-
ral coding is optimized for efficiency in
transmitting information about sensory
inputs (Barlow, 1961; Dan et al., 1996;
Simoncelli and Olshausen, 2001; Doi et
al., 2012) and that adaptation, including
changes in tuning-curve properties, plays a role in maintain-
ing efficiency despite changes in stimulus statistics (Barlow
and Földiák, 1989; Wainwright et al., 2002; Felsen et al., 2005;
for review, see Schwartz et al., 2007). An efficient neural rep-
resentation uses the full range of activity patterns that it can
produce, and the responses of different neurons are as close as
possible to independent. When some stimuli are more com-
mon than others (i.e., during adaptation), a subset of possible
activity patterns is overrepresented, and the encoding capacity
is underutilized. The efficient-coding hypothesis states that
adaptation should adjust the neural representation to main-
tain independence. Models of adaptation have therefore been
proposed that dynamically adjust responses to decorrelate
them (Barlow and Földiák, 1989; Hosoya et al., 2005). Decor-
relation is theoretically appealing, but is not a realistic goal for
visual cortex, where correlations are largely driven by overlap-
ping tuning curves. Nor is decorrelation even desirable under
realistic conditions; the correlations due to tuning-curve over-
lap improve the robustness of the neural representation when
the signal-to-noise ratio is low (Atick and Redlich, 1990; Doi
et al., 2012).

We propose that a more realistic goal of adaptation is to sta-
bilize the statistical dependencies between neural responses,
rather than to attempt in vain to eliminate them. Our model
stabilizes the expected product of neural responses, rather than
the mean-subtracted expected product (covariance). It remains
to be seen whether the response-product model is equivalent to a
specific formulation of efficient coding that depends on the sta-
tistics of the noise, the cost function to be optimized (e.g., mutual
information) and other constraints (e.g., fixed number of neu-
rons and/or spikes).

Because response product has an instantaneous definition
based only on the current responses of neurons in the population,
weight updates in our model depend only on the current re-
sponses and the long-term homeostatic target. This feature is not
shared by covariance homeostasis, which requires tracking the
recent mean responses, or correlation homeostasis, which re-
quires recent means and variances. Response products (i.e.,
products of instantaneous firing rates) could be computed with
Poisson-distributed spiking neurons by measuring the frequency
of spike co-occurrence. Cellular mechanisms for spike-co-
occurrence detection have been described (Levy and Steward,
1983), suggesting that the response-product computation may be
particularly easy for neurons.

Other adaptation effects
There are some adaptation phenomena that we do not purport to
explain. (1) We do not attempt to model adaptation effects that
result from varying contrast, as opposed to orientation-specific
pattern adaptation. A separate and complementary process that
dynamically adjusts � could readily be added to the model to
change the overall contrast gain with changes in stimulus con-
trast. (2) We do not attempt to model the cellular mechanisms
underlying adaptation, including somatic hyperpolarization
(Carandini et al., 1998; Sanchez-Vives et al., 2000) and synaptic
depression (Finlayson and Cynader, 1995; Chung et al., 2002).
Multiple distinct mechanisms may be operating in parallel
(Dhruv et al., 2011).

The model presumes that there is no precortical adaptation.
There is evidence for what has been called “contrast gain control”
in the retina (Shapley and Victor, 1978, 1979), which is analogous
to normalization in the current model, with fixed normalization
weights and a fixed � value. But there is little or no evidence for
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precortical adaptation in the cat visual system (Movshon and
Lennie, 1979; Ohzawa et al., 1985). In primates, magnocellular
LGN neurons exhibit contrast adaptation at moderate to high
temporal frequencies (Solomon et al., 2004). As noted in the
preceding paragraph, separate and complementary contrast ad-
aptation processes could be readily added to the model, some of
which could be precortical, to fit primate data from experiments
in which stimulus contrast (and not just orientation) is varied.

Relationship to previous models
Several existing models of adaptation have explained tuning-
curve repulsion in terms of changes in recurrent connection
strengths. Teich and Qian (2003, 2010) reported tuning-curve
shifts consistent with both adaptation (tuning-curve repulsion)
and perceptual learning (tuning-curve attraction), by adjusting
excitatory and inhibitory weights between neurons. But they did
not propose a means by which these weights could be learned.
Felsen et al. (2002) explained adaptation-induced tuning shifts
using a model that reduced recurrent excitatory synaptic weights
in proportion to the firing rate of the presynaptic neuron. Their
model required that V1 orientation tuning largely arise from
these weighted, recurrent interactions, and chose initial weights
accordingly.

In contrast, our model depends on responses of pairs of neu-
rons, and the initial weight of reciprocal interactions is uniform
instead of being allowed to vary arbitrarily to fit the data. The
learning rule in our model differs from bottom-up gain-ada-
ptation and recurrent gain-adaptation models (Felsen et al.,
2002; Teich and Qian, 2003) in that learning is triggered by the
correlated firing of pairs of neurons. This predicts that adaptation
should be contingent on the coactivation of different subpopula-
tions of neurons, each of which is selective for different stimuli.
This prediction can be tested by presenting stimuli with multiple
components, and determining whether adaptation is contingent
on the particular combination of stimulus components. Contin-
gent adaptation has been reported in salamander retina, where a
decorrelation process analogous to our model was proposed as
driving changes in synaptic weights between retinal ganglion cells
and bipolar cells (Hosoya et al., 2005). Experiments comparing
adaptation to gratings versus plaids (i.e., combinations of two
oriented components) have tested contingent adaptation in V1
(Carandini et al., 1997a; 1998). The results of these studies, while
generally consistent with our model’s predictions, were not con-
clusive due to the small number of cells examined. We plan, in
subsequent work, to test model predictions based on this require-
ment of contingent activity.

Adaptation-induced shifts of stimulus preference have been
explained by two-layer models in which the response of each
output-layer cell is a weighted sum over the input-layer cells, and
in which adaptation adjusts the gains of neurons in the input
layer. Such inherited-adaptation models can explain repulsive
shifts in the centers of V1 receptive fields via gain changes in LGN
(Dhruv and Carandini, 2014), and repulsive shifts in orientation
preferences of V1 complex cells via gain changes in simple cells
(Müller et al., 1999), although the invariance of repulsive shifts to
the spatial phase of the adapter contradicts this latter explanation
(Felsen et al., 2002). These models are appealing, most notably
because they rely only on well-established changes in gain. We
implemented a two-layer feedforward gain-change model in
which adaptation adjusted the gains of neurons in both the input
and output layers. To produce realistic shifts in preferred orien-
tation, we had to omit normalization and assume an input layer
that was more narrowly tuned than the output layer (Fig. 4H).

Even with these modifications, the two-layer feedforward gain-
change model did a poor job of maintaining covariance homeo-
stasis (Fig. 5), inconsistent with the data (Benucci et al., 2013).
Furthermore, if adaptation-induced shifts in orientation tuning
were restricted to layers in V1 that receive input from
orientation-tuned neurons from other layers in V1, one might
expect a systematic dependence of shift magnitudes on recording
depth, which has not been observed (Dragoi et al., 2000).

Our model’s learning rule is similar to other models that
have been proposed to explain stimulus-conditioning-induced
changes to orientation tuning in V1, which is a phenomenon
distinct from adaptation that requires precisely timed pairs of
stimuli (Yao and Dan, 2001; Yao et al., 2004). These models use a
spike-timing-dependent learning rule that increases the weight of
excitatory synapses following a presynaptic-then-postsynaptic
spike pair while decreasing it for a postsynaptic-then-presynaptic
pair of spikes.

In conclusion, we posit that adaptation is a simple form of
(Hebbian) learning that is contingent on joint neural activity. We
have, consequently, proposed a theory of cortical learning in a
tractable model system (visual adaptation in V1). To the extent
that normalization proves indeed to be a canonical computation
throughout cortex (Carandini and Heeger, 2011), adaptation of
normalization weights may explain adaptation phenomena for
other visual dimensions (location, spatial frequency, etc.) as well
as for other nonvisual domains, e.g., dynamic changes in reward
value and decision-making (Louie et al., 2014).

Notes
Supplemental material for this article is available at http://hdl.handle.
net/2451/34764 (Matlab code to generate all figures). This material has
not been peer reviewed.
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