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Abstract

We evaluated six algorithms for computing egomotion
from image velocities. We established benchmarks for
quantifying bias and sensitivity to noise, and for quanti-
fying the convergence properties of those algorithms that
require numerical search.

Our simulation results reveal some interesting and sur-
prising results. First, it is often written in the literature
that the egomotion problem is difficult because translation
(e.g., along the X-axis) and rotation (e.g., about the Y-axis)
produce similar image velocities. We found, to the con-
trary, that the bias and sensitivity of our six algorithms are
totally invariant with respect to the axis of rotation. Sec-
ond, it is also believed by some that fixating helps to make
the egomotion problem easier. We found, to the contrary,
that fixating does not help when the noise is independent
of the image velocities. Fixation does help if the noise is
proportional to speed, but this is only for the trivial reason
that the speeds are slower under fixation. Third, it is widely
believed that increasing the field of view will yield better
performance. We found, to the contrary, that this is not
necessarily true.

1 Introduction

The field of computer vision has witnessed a bewildering
array of approaches to the fundamental problem of com-
puting three-dimensional camera motion from the motion
measured in the image plane. But systematic, quantitative
comparisons of methods for the computation of camera
motion have not been reported in the computer vision liter-
ature.

Our study is done in simulation because we want to be
sure about the data, and because simulation makes it trivial
to change one parameter at a time. For example, we report
interesting conclusions about the effect of increasing field
of view. This effect is related rather subtly to image reso-
lution. The difficulty of carrying out such an investigation
with real cameras should be obvious.

Systematically spanning the Cartesian product of all pa-
rameter intervals is both infeasible and hardly enlightening,
50 we concentrate here on an interesting subset of our sim-
ulation results. For similar reasons, we only compare a
handful of algorithms. We picked methods based on how
different their underlying principles are, rather than for
their popularity or for the sake of exhaustiveness. If your
favorite algorithm is not listed here, we hope that you will
find in our comparison one whose general computational
strategy is similar. Again, our goal is insight, not ranking.
As a matter of fact, perhaps the clearest conclusion from
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our comparison is that algorithms cannot be ordered from
worst to best. All the methods we have considered have
strengths in some situations and weaknesses in others.

Our code (Matlab implementations of the algorithms
themselves, and Matlab implementations of the simulation
code) and all of our simulation results is on the World Wide
Web at URL http://white.stanford.edu. If you believe that
your favorite algorithm is better in some respect, then you
will be able to run the very same set of simulations for
direct comparison.

2 Methods
2.1 The Problem

As a camera moves with respect to a rigid scene, the im-
age changes over time. The goal of egomotion computation
is to estimate 3d motion from a sequence of images. Tech-
niques for computing egomotion from image sequences
can be categorized either as discrete-time methods or as
instantaneous-time methods, depending on whether input
is image displacement or image velocity. In this paper, we
concentrate on instantaneous-time algorithms.

The image velocity, due to the motion of a camera with
respect to a rigid scene, and under perspective projection,
is given by the following familiar equation:

](—Z;(I;—(j-i—ﬂxx).

Here u(x) is the image velocity at image position x =
(=1, 22, 1), T is translational velocity, € is rotational ve-
locity, Z is depth, and the focal length is taken {withoutloss
of generality) to be 1. The egomotion problem is to esti-
mate the 3d motion, T and £2, from a collection of velocity
vectors sampled at some (perhaps all) image positions.
2.2 The Algorithms

Bruss and Horn: Bruss and Horn [1] applied a simple
algebraic manipulation to remove depth from Eqn.1 and
obtained a bilinear constraint on T and €2 for each image
pixel. Later MacLean and Jepson [10] derived exactly the
same bilinear constraint (by applying a different algebraic
manipulation), and expressed it as follows:
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u(x) = [ (M

Tx x u(x)) + (T x x)!(x x Q) =0 (2)
We chose the following method for using the bilinear con-
straint to estimate T. From the bilinear constraint, a least-
squares estimate of rotation can be obtained as a function
of translation T. Substituting this rotation estimate back



into the bilinear constraint gives a nonlinear constraint on
translation, T. We estimated translation by minimizing
thils nlonlinear constraint over all image velocities subject
to [T} = 1.

As we will see, this algorithm performed quite well in
many of our simulations. However, a disadvantage of this
algorithm is that it requires numerical optimization.

Jepson and Heeger: Rieger and Lawton [16] proposed
a method based on motion parallax. If two 3d points have
the same image location but are at different depths, then the
vector difference between the two flow vectors is oriented
toward the focus of expansion (FOE). The Rieger-Lawton
algorithm locates the FOE from the local flow-vector dif-
ferences. Hildreth [5] later modified the Rieger-Lawton
algorithm to improve its performance. But a problem with
both of these algorithms is that it is particularly difficult to
measure flow vectors near occlusion boundaries.

Motion parallax is, fortunately, more general than the
constraint used by Rieger and Lawton. Prazdny [15], for
example, noted that the difference between any two (not
necessarily adjacent) flow vectors gives a constraint on
translation, independent of rotation.

Jepson and Heeger built upon these previous efforts and
proposed a series of subspace methods for estimating ego-
motion [4, 6, 7]. The simplest of these is the so-called
linear subspace method [6, 7]. Given optical flow sampled
at N discrete points in the image, xk, k=1---N,onecan
construct a set of constraint vectors, 7;:

N

T = Zcik[u(xk) X Xk]

k=1

®3)

such that the 7; vectors are orthogonalto T, i.e., ;- T = 0.
The trick is to choose ¢; = [c;1 - - - ¢in]* to be orthogonal to
all quadratic polynomials of 2¥ and 2. This choice for the
¢; vectors effectively annihilates the rotational component
of the image velocities. For N image velocity samples,
there are N — 6 7; constraint vectors. The estimate of T
is the eigenvector corresponding to the smallest eigenvalue
of o7l

e advantage of the linear subspace method is that T
is computed directly without requiring iterative numerical
optimization. The disadvantage is that this method does
not make use of all of the available information (N — 6
linear constraints versus N bilinear constraints).

Tomasi and Shi: Tomasi and Shi [18] developed a
method that uses motion parallax information in a rather
different way. Their method estimates translation T from
image deformations, defined as the change ¢ in the angular
distance a = arccos(x’ - x’) between pairs of image points
x*,x’ as the camera moves.

Since the image deformations are independent of camera
rotation, one can derive the following bilinear constraint on

T and the two depth values Z(x?), Z(x’):
& = sina[Z(x?), Z(x'), 0)[x}, x/, wii]=TT

where wi/ = (x! x x7)/||x? x x7|].

The combined bilinear constraints for a subset of all
possible point pairs were minimized and solved for T using
the variable projection method [17] on the unit sphere | T'| =
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1. The minimization involves solving for 3 translation
parameters and /V depth parameters, where N is the number
of points. When N is large, this algorithm is much more
expensive than our implementation of the Bruss and Horn
algorithm, which solves for only 3 parameters.

Prazdny: All of the algorithms discussed so far begin
by estimating T. Once it is known, T can be plugged back
into Eqn.2 to estimate . Prazdny [13] proposed an algo-
rithm that instead estimates rotation first. From a triple of
image points, the following constraint on rotation parame-
ters (independent of translation and depth) was derived by
algebraic manipulation on Eqn.1:

n3~(n1><n2):0

where n; = {2 X s; +v;) X s;, and s; and v; denote image
coordinate and velocity at unit spherical retina, respectively,
(i=123).

In Prazdny’s original implementation, these constraints
were combined locally and three third-order polynomial
equations of three unknowns were solved numerically. In
our implementation, we combined all of the constraints
throughout the image. Each triple of points came from
a triangle of the Delaunay Triangulation of all the points.
We found, however, that different triangulations resulted in
inconsistent estimates, so we decided to use a fixed uniform
sampling grid in order to fix the triangulation. The simplex
method was used to do the optimization.

Kanatani A: The so-called epipolar constraint serves as
the basis for several linear discrete-time egomotion algo-
rithms [9, 19, 3, 20]. Let X and X' be the positions of a sur-
face point before and after a camera motion. The rigid mo-
tion constraint relates these two positions, X’ = RX + T,
where R is a rotation matrix and T is a translation vector.
The epipolar constraint states that the vectors (RX), T and
X' all lie in the same plane.

Since image velocity is the infinitesimal limit of a finite
image displacement, there is an instantaneous-time ver-
sion of the epipolar constraint [11, 22, 8]. Based on this
instantaneous-time epipolar constraint, Zhuang, Thomas,
Ahuja, and Haralick [22] proposed a linear algorithm for
egomotion estimation. Kanatani [8] later reformulated
the instantaneous-time epipolar constraint in terms of es-
sential parameters and twisted flow (a rotated version of
the velocity vector). Since Zhuang et al.’s algorithm and
Kanatani’s algorithm are equivalent to one another, we
chose Kanatani’s algorithm as representative for this class
of algorithms.

Kanatani B: Least-squares estimates of T are, as we
shall see, systematically biased. Kanatani [8] analyzed the
statistical bias using a simple Gaussian noise model, then
proposed a method (called the renormalization method)
that removes the bias by automatically compensating for
the unknown noise.

Summary: Altogether the six algorithms that we have
chosen differ from one another in a variety of ways: al-
gorithms that compute translation-first versus those that
compute rotation-first, algorithms that do and do not re-
quire numerical optimization, algorithms that do and do
not attempt to compensate for bias, and algorithms based
on motion parallax versus those based on the epipolar con-
straint. We will concentrate on these differences between
the algorithms when interpreting the simulation results.



2.3 Simulation Methods

In all of the simulations, the focal length was set to
1. All other distances and sizes were specified in units of
focal lengths. A random cloud of points was placed in the
simulated 3d space in front of the simulated camera. The
depth range was 2 to 8 (in units of focal length). Unless
otherwise stated, the entire image subtended 90 degrees
of visual angle. Various combinations of translation and
rotation were chosen (see below) and Eqn.1 was used to
compute the image velocities.

Zero-mean Gaussian noise of various amounts was
added to each component of each velocity vector. We
used two noise models in which: (1) the standard deviation
of the noise was independent of image velocity, or (2) the
standard deviation was proportional to the average speed,
averaged across the entire image and averaged across all
possible depth values (since the depth values were chosen
randomly). For most of the simulations, unless otherwise
stated, the first (constant) noise model was used. The noise
level can be specified either in units of focal length or in
units of pixels. A noise level of 0.1 pixels, for example,
means that the standard deviation of the Gaussian noise was
0.1 pixels in a 512 x 512 image.

The default translational speed was chosen as follows.
We considered a camera translating along the X-axis and
rotating around the Y-axis with a fixed (see below) angular
velocity. We then picked the point at the center of the ran-
dom depth cloud and chose the translational speed so that
the camera would fixate on that point. We used this same
translational speed even when we varied the translation di-
rection and/or the rotation axis. The rotation rate was fixed
(0.23%frame) in our experiments.

For most of the algorithms (except Prazdny’s algorithm),
we used sparse flow data (50 randomly chosen sample
points). For Prazdny’s algorithm, we found that different
triangulations resulted in inconsistent estimates, so we de-
cided to use a fixed uniform (7x7) sampling grid of sample
points in order to fix the triangulation.

2.4 Benchmarks

We aimed to study the bias and noise-sensitivity of the
estimates for noisy flow data. The bias and the sensitivity
were measured as the mean and the standard deviation of
the estimates over a number of trials. One-thousand trials
(each with 50 velocity vectors) were performed for each
simulation condition.

Translation bias was computed for each simulation con-
dition as the angle between the true translation direction,
T, and the “average” of the 1000 estimated translation di-
rection vectors, ’i‘i. The “average” vector, T, was chosen
to be the unit vector that was closest (measured in angular
units) to the 1000 estimates. In particular, T was chosen to
minimize:

N
> cos™H(Ti - T), (4)
n=1
subject to |T| = 1, and where N = 1000.
Translation sensitivity was computed as:
Y =12
wer 2 [eos ™! (Fi - D] &)

n=1
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which is the standard deviation of the distribution of angles
between each estimated translation vector and the “aver-
age” vector.

To quantify rotation bias, we first computed the average
of the rotation estimates. Rotation matrices, R and R, were
constructed from the true solution and the average estimate,
respectively. The “difference rotation” matrix was defined
as: AR = R'R, that is, the rotation matrix that takes
the average estimate to the true solution. This “difference
rotation” matrix AR can be characterized by an axis and
an angle. We used the angle of the “difference rotation”
matrix as our measure of bias. This angle is computed from

AR as: THAR .
cos-! [f(_z)—__] ,

where Tr(AR) is the trace of the matrix.

Rotation sensitivity was quantified as follows. Rotation
matrices, R;, were constructed from each rotation estimate.
A rotation matrix, R, was computed as above, from the
average of the rotation estimates. We computed the angular
difference, 0; between R; and R. for each , using the above
formulae. Then rotation sensitivity was computed as:

(6)

™)

the standard deviation of the angular differences.

For algorithms that involve nonlinear optimization
(search), we used the correct solution as the initial guess
to study bias and sensitivity. In addition, we tested the
convergence behavior of these algorithms by using initial
guesses distributed uniformly in the parameter space.

3 Results

Translation Direction and Rotation Axis: We found
in an extensive series of preliminary simulations (data not
shown) that the axis of rotation had absolutely no impact on
bias and sensitivity of these algorithms. For example, we
ran one set of simulations with rotation about the Y-axis and
another set of simulations with rotation about the Z-axis.
We used the same random number seed to choose the depth
values and the velocity noise. The translation estimates,
on each individual trial, were exactly the same, regardless
of rotation axis. At first, we found this quite surprising; it
is often written in the literature that the egomotion prob-
lem is difficult because translation (e.g., along the X-axis)
and rotation (e.g., about the Y-axis) produce similar image
velocities. In retrospect, however, this result is not at all
surprising. The five translation-first algorithms were each
designed to eliminate rotation (by algebraic substitution,
subspace projection, etc.).

In a preliminary set of simulations we also evaluated
two other translation-first algorithms [14, 16] that were not
designed to entirely/exactly eliminate rotation; the bias and
sensitivity of these algorithms did depend on the rotation
axis.

Since the performance of our six algorithms is invariant
with respect to the rotation axis, we plot results for only a
single rotation axis. Figure 1 plots bias and sensitivity, for
sideways translation.
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Figure 1: Bias and sensitivity for sideways translation and
X-axis rotation.

The performance of all six algorithms does, however,
depend on translation direction. For all six algorithms,
translation bias is smaller when the Z-component of trans-
lation is zero. Translation sensitivity also depends on the
Z-component of translation, but not systematically. Some
algorithms perform better and some worse for translation
in the X- versus Z- directions.

Fixation: Figure 2 shows the translation sensitivity for
fixating and non-fixating camera motions, as a function of
noise. The translation was along the X-axis and rotation
was either clockwise or counter-clockwise about the Y-
axis. For the constant noise model (a and b), these two
motions yield exactly the same sensitivity even though the
average speed differs by a factor of four (in fact, the data
are identical in figures 2a, 2b, and 2c). When the noise
is proportional to average speed (c and d), fixating yields
much lower sensitivity.

This effect, however, has to do entirely with the noise
model, not the algorithms. Fixating results in slower image
velocities, When the noise is proportional to image speed,
this results in less noise. The first (constant) noise model
is probably more representative of the behavior of most
optical flow/feature tracking algorithms.

Field of View: Figure 3 shows the effect of varying
the field of view (FOV). Results are shown only for the
Jepson-Heeger (linear subspace) algorithm, but the conclu-
sions are the same for all six algorithms. Increasing the
FOV but fixing the number of pixels amounts to decreas-
ing image resolution (that is, increasing the pixel size).
There is a tradeoff between these two factors; increasing
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Figure 2: Translation sensitivity for fixating motion (a and
¢) and non-fixating (b and d) motions, as a function of
noise. In (a) and (b) noise is independent of the image
velocities, expressed in units of pixels, focal length, and as
a percentage of the average speed of flow field. In (c) and
(d) noise is proportional to the average speed of the flow
field. Sensitivity of Jepson-Heeger and Kanatani-A in (d)
goes down for large noise because translation bias is close
to 90°,
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the FOV helps, but decreasing the image resolution hurts.
We found that for sideways translation, the benefits typi-
cally outweight the drawbacks and you end up better off.
But for straight-ahead translation, increasing the FOV typ-
ically yields worse results. Therefore, trying to increase
the FOV simply by replacing the lens with one that has a
shorter focal length is, in general, a bad idea.

To take advantage of the benefits of increasing field of
view, one must also pay attention to image resolution. Ob-
viously, it is impractical to replace the CCD chip each time
you switch lenses. But for some applications, it may be
possible to take advantage of wide FOV without losing im-
age resolution. In particular, there has been much interest
recently in producing a panorama from a sequence of im-
ages, e.g., collected by rotating a camera about its nodal
point [2, 12]. Such panoramas have both high resolution
and wide FOV, and are, therefore, ideally suited for ego-
motion estimation. We have found that the performance
of the Jepson-Heeger (linear subspace) algorithm improves
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Figure 3: Translation bias and sensitivity of the Jepson-
Heeger linear subspace method as a function of field of
view for straight ahead translation and rotation around the
X-axis, with noise levels of 0.1, 0.2, 0.3 pixels.

dramatically for very wide FOV (180 deg or wider).

Convergence: We also examined the convergence prop-
erties of the egomotion algorithms that required iterative nu-
merical search (Bruss and Horn, Tomasi and Shi, Prazdny).
In preliminary simulations we found that Prazdny’s algo-
rithm requires a very close initial guess, because it involves
optimizing a system of third-order polynomials of three un-
knowns. We did not study the convergence properties of
that algorithm further.

For the other two (Bruss and Horn, Tomasi and Shi)
algorithms we performed an extensive series of simulations.
Noise-free data was used. We densely sampled the unit
hemisphere space of translation direction, and started a
search from each translation sample. This gave us a set of
translation estimates. We then chose a set of bins on the
unit hemisphere, with binsize proportional to the angular
distance from the correct solution, and counted the number
of estimates that fell into each bin. Although there was no
noise added, we ran 50 trials with different random-cloud
depth structures. For each of the 50 depth structures, we
started searches from each of 78 initial guesses, for a total
of 3900 searches. Ideally, we would like there to be only
one (global) minimum. We found, for both algorithms, that
there are multiple local minima, but not many (typically,
fewer than 5).

We proceeded to study where these local minima are
located with respect to the correct solution. For straight
ahead motion, the Bruss and Horn algorithm nearly always
converged to the correct solution. For sideways motion,
this algorithm converged to the correct solution about 50%
of the time (over all random depth clouds and over all
initial guesses). The rest of the time, the search got stuck in
local minima that were all nearly 90° away from the correct
solution. There is a good reason for the local minima to be
at 90°%. Note that T  x is an exact solution for the bilinear
constraint in Eqn.2, i.e., each constraint line passes through
the image point from which it is formed. For sideways
translation direction, therefore, a point near the center of
the image will be a reasonable solution (near all of the
constraint lines).
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The Tomasi and Shi algorithm converged to the correct
solution about 70% of the time, for both straight ahead and
sideways motions. The rest of the time, the search got
stuck in local minima that were widely distributed in their
angular errors.

In addition, we counted the number of times that the
search failed to converge after 400 iterations. The Bruss
and Horn algorithm and the Tomasi and Shi algorithm each
failed 0.37% and 18% percent of the time, respectively.

4 Summary and Future Work

Here we list the main results of our simulations:
e The bias and sensitivity of all six algorithms are in-
variant with respect torotation axis. This is a desirable
property that is not true for all egomotion algorithms,
but is true for these six algorithms.

Performance does depend on translation direction, but
not systematically.

Fixating does not help when the noise is independent
of the image velocities. Fixation does help if the noise
is proportional to speed, but this is only for the trivial
reason that the speeds are slower under fixation.

Increasing the field of view does not necessarily im-
prove performance.

The Bruss and Horn algorithm, based on the bilinear
constraint in Eqn. 2, exhibited the best overall performance
withrespect to bias and sensitivity. However, it requires nu-
merical optimization, and there are multiple local minima.
Jepson and Heeger’s linear-subspace method is closely re-
lated to the bilinear constraint used by Bruss and Horn’s
algorithm. However, the Jepson-Heeger algorithm is more
sensitive to noise because it uses only a subset of the con-
straints. The two Kanatani algorithms do not perform as
well as the Bruss and Horn algorithm because the Kanatani
algorithms are based on the epipolar (coplanarity) con-
straint. The epipolar constraint is weaker than the bilinear
(rigidity) constraint because there are non-rigid motions
that satisfy the epipolar constraint. The Tomasi and Shi
algorithm is relatively insensitive to the direction of trans-
lation, but has local minima and often fails to converge.
Prazdny’s algorithm appears to have the worst noise sensi-
tivity. We believe that this is because it involves minimizing
third-order polynomials.

The most important consideration, of course, is whether
a given vision system is good enough to be used in a non-
trivial, realistic robotics application. To determine that,
we will need to perform extensive tests on real image se-
quences. Toward that end, we are installing and calibrating
an experimental apparatus for the accurate measurement
of the most important performance parameters of motion
sequence analysis systems. The core of the setup is a stage
that moves a camera in a controlled way with high accuracy.
This apparatus will be used to digitize a library of carefully
calibrated image sequences. These sequences will be used
to validate the simulation results reported in this paper. In
addition we plan to make the library of calibrated image
sequences available on the World Wide Web.
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