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Covert spatial attention can increase contrast sensitivity either by changes in contrast gain or by changes
in response gain, depending on the size of the attention field and the size of the stimulus (Herrmann et al.,
2010), as predicted by the normalization model of attention (Reynolds & Heeger, 2009). For feature-based
attention, unlike spatial attention, the model predicts only changes in response gain, regardless of
whether the featural extent of the attention field is small or large. To test this prediction, we measured
the contrast dependence of feature-based attention. Observers performed an orientation-discrimination
task on a spatial array of grating patches. The spatial locations of the gratings were varied randomly so
that observers could not attend to specific locations. Feature-based attention was manipulated with a
75% valid and 25% invalid pre-cue, and the featural extent of the attention field was manipulated by
introducing uncertainty about the upcoming grating orientation. Performance accuracy was better for
valid than for invalid pre-cues, consistent with a change in response gain, when the featural extent of
the attention field was small (low uncertainty) or when it was large (high uncertainty) relative to the fea-
tural extent of the stimulus. These results for feature-based attention clearly differ from results of anal-
ogous experiments with spatial attention, yet both support key predictions of the normalization model of
attention.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Covert attention, the selective processing of visual information
in the absence of eye movements, improves behavioral perfor-
mance. Most studies of attention have examined the effects of selec-
tively attending at particular locations in the visual field. However,
attention can also be selectively deployed to visual features, such as
particular orientations, colors or directions of motion, regardless of
their locations in the visual field. Feature-based attention (FBA) en-
hances particular features within a dimension at the expense of
unattended or behaviorally irrelevant features. Thus, it is an impor-
tant component for a visual system that needs to devote limited
processing resources on the most relevant sensory inputs regardless
of where in the visual field they are located. FBA enhances the rep-
resentation of image components that share a particular feature
throughout the visual field. FBA is important because we often know
a defining feature of an object without knowing its location – e.g.,
your friend is somewhere in the cafeteria and she often wears a pur-
ple shirt.

FBA has been characterized in single-unit (e.g., Haenny, Maun-
sell, & Schiller, 1988; Martinez-Trujillo & Treue, 2004; Maunsell &
ll rights reserved.
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Treue, 2006; Motter, 1994a, 1994b; Treue & Martinez Trujillo,
1999), psychophysical (e.g., Alais & Blake, 1999; Baldassi & Vergh-
ese, 2005; Lankheet & Verstraten, 1995; Ling, Liu, & Carrasco, 2009;
Liu, Stevens, & Carrasco, 2007; Spering & Carrasco, in press; Spivey
& Spirn, 2000; White & Carrasco, 2011), and neuroimaging (e.g.,
Liu, Larsson, & Carrasco, 2007; Saenz, Buracas, & Boynton, 2002,
2003; Serences & Boynton, 2007; Serences et al., 2009) studies.
For a review, see Carrasco (2011).

Activity in visual cortex increases with stimulus contrast (Boyn-
ton et al., 1999; Carandini, Heeger, & Movshon, 1997; Desimone &
Schein, 1987; Heeger, 1992) and several models of attention have
proposed that attention, both spatial and feature-based, may mod-
ulate the neural response amplitudes, producing an effect similar
to changes in stimulus contrast (Boynton, 2009; Ghose, 2009; Lee
& Maunsell, 2009; Reynolds & Heeger, 2009; Reynolds, Pasternak,
& Desimone, 2000). Spatial attention has been shown to robustly
modulate responses to stimulus contrast in behavioral (Carrasco,
Penpeci-Talgar, & Eckstein, 2000; Herrmann et al., 2010; Ling &
Carrasco, 2006; Lu & Dosher, 1998; Morrone, Denti, & Spinelli,
2002, 2004; Pestilli & Carrasco, 2005; Pestilli, Ling, & Carrasco,
2009; Pestilli, Viera, & Carrasco, 2007; Yigit-Elliott, Palmer, & Moore,
2011), single unit (Buracas & Boynton, 2007; Li et al., 2008; Marti-
nez-Trujillo & Treue, 2002; McAdams & Reid, 2005; Reynolds &
Chelazzi, 2004; Reynolds, Pasternak, & Desimone, 2000; Williford
& Maunsell, 2006) and neuroimaging studies (Buracas & Boynton,
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2007; Liu, Pestilli, & Carrasco, 2005; Lu et al., 2011; Murray & He,
2006; Pestilli et al., 2011). Yet, neither behavioral nor neurophysiol-
ogy studies have systematically characterized the contrast depen-
dence of FBA. One neurophysiology study has reported that FBA
varies with different stimulus contrasts (Khayat, Niebergall, & Mar-
tinez-Trujillo, 2010), but the task that was used does not fully ex-
clude a spatial attention contribution (see Section 4).

The normalization model of attention was proposed to reconcile
previous, seemingly contradictory findings on the effects of visual
attention, to unify alternative models on attention, and to offer a
computational framework to simulate new research questions
(Carandini & Heeger, 2011; Reynolds & Heeger, 2009). Based on
the model, FBA can be characterized with an attention field selective
for a feature (such as orientation or direction of motion), but not
selective (constant) across spatial positions (Fig. 1A). The attention
field is multiplied with the stimulus drive, and then normalized,
such that the extent of the stimulus and the relative extent of the
attention field can shift the balance between excitation and
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Fig. 1. Model and predictions. (A) Using the normalization model of attention
(Reynolds & Heeger, 2009) to simulate FBA. Stimuli, presented as input to the
model, were two spatially overlapping orientations identical in contrast, one of
which was attended. The upper left panel depicts the stimulus drive for a
population of neurons with various receptive field centers (horizontal) and
orientation preferences (vertical). Brightness at each location in the image
corresponds to the stimulus drive to a single neuron. Lower left panel shows the
attention field when attending to the right-tilted orientation. Gray indicates a value
of 1 and white indicates an attentional gain factor greater than 1. The attention field
is multiplied point-by-point with the stimulus drive. Bottom right panel, the
normalization factors are computed by the product of the stimulus drive and the
attention field, and then pooled over space and orientation through convolution
with the suppressive field. Right panel, neural image depicting the output firing
rates of the population of simulated neurons, computed by dividing the stimulus
drive by the normalization factors. The stimulus drive, attention field, and
normalization factor all had Gaussian profiles in space and orientation. (B)
Simulation results for small attention field, i.e., featural extent of the attention
field small relative to featural extent of the stimulus. Red curve, contrast-response
function for a simulated neuron when attending the neuron’s preferred orientation.
Blue curve, contrast-response function when attending the non-preferred orienta-
tion. (C) Simulation results for large attention field. Only the featural extent of the
attention field was changed in the simulations; all other model parameters were
identical in both panels. The model predicts a change in response gain (largest
effects at higher contrasts, upward scaling of the contrast-response function) for
both small and large attention fields.
suppression. Thus, the model can exhibit different effects of atten-
tional modulation, described in the literature, such as response gain
changes that increase firing rates by a multiplicative scale factor
without changing the shape or width of neuronal tuning (McAdams
& Maunsell, 1999; Treue & Maunsell, 1999); contrast gain changes
that increase responses, multiplying the stimulus contrast by a scale
factor (Martinez-Trujillo & Treue, 2002; Reynolds, Pasternak, &
Desimone, 2000); a combination of both response gain and contrast
gain changes (Williford & Maunsell, 2006); or sharpening of neuro-
nal tuning (Martinez-Trujillo & Treue, 2004; Spitzer, Desimone, &
Moran, 1988).

The goal of the present study was to measure the contrast
dependence of FBA in humans. We used the normalization model
of attention (Reynolds & Heeger, 2009; Fig 1A) to simulate possible
outcomes, before conducting any experiments. According to this
model, there are the two key parameters that determine the type
of attentional gain modulation (response gain, contrast gain or a
mixture of both): the extent of the stimulus and relative extent
of the attention field. Experimental findings have supported the
importance of these two parameters for the type of gain for spatial
attention (Herrmann et al., 2010). For FBA, our simulations resulted
in these two testable predictions: FBA improves performance accu-
racy consistent with a change in response gain both (1) when the
featural extent of the attention field is small relative to the featural
extent of the stimulus (Fig. 1B), and also (2) when the featural
extent of the attention field is large relative to the featural extent
of the stimulus (Fig. 1C). [The specifics of the model simulations
are presented below.]

We empirically tested these two predictions of the normaliza-
tion model of attention. Because a visual stimulus always occupies
a certain spatial location, we controlled the spatial arrangement of
the stimuli so that task performance would not benefit by attend-
ing to different locations across conditions or trials. Any measured
benefits in performance therefore reflected specifically the impact
of FBA. Stimuli contained two orientations, intermingled over the
same spatial location around fixation, and stimulus contrast covar-
ied for both orientations and varied unpredictably across trials.

To manipulate FBA, observers were cued to covertly attend to
one of the two orientations and perform a fine orientation-discrim-
ination task while fixating. We manipulated the featural extent of
the attention field by introducing uncertainty about the upcoming
stimulus orientations. This design allowed us to measure the con-
trast dependence of FBA, while spatial attention was distributed,
i.e., not directed to any specific location. Control experiments veri-
fied that the uncertainty manipulation was effective; performance
accuracy depended systematically and predictably on whether a
single orientation was cued or a large range of orientations was
cued. We found, as predicted by the model, that FBA enhanced per-
formance consonant with a change in response gain, with low or
high uncertainty about the upcoming orientation.
2. Experiments

2.1. Methods

Experiments were conducted with the written consent of each
observer. The University Committee on Activities Involving Human
Subjects at New York University approved the procedures.
2.2. Observers

Six observers (25–33-year-old; three females) with normal or
corrected vision participated in the experiments. Four
observers participated in each of the two main experiments: the
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Fig. 2. Experimental protocol. (A and B) Feature-based attention (FBA) task.
Observers performed an orientation discrimination task and reported whether the
orientation in stimulus display 2 was slightly clockwise or counter-clockwise of the
closest orientation in stimulus display 1. Stimulus 1 and 2 had the same contrast,
which varied from trial to trial. ISI, interstimulus interval; ITI, intertrial interval. The
white lines in both stimulus intervals indicate stimulus locations that were
randomly jittered. (B) Stimulus displays in the low-uncertainty experiment. Top
(inset), low-uncertainty cue, left or right tilted line. Left panel, stimulus 1 consisted
of two spatially interleaved orientations around fixation. Right panel, stimulus 2
consisted of 32 grating patches with identical orientation, which was slightly
clockwise or counter-clockwise of one of the orientations in stimulus 1. (C) High
uncertainty experiment. High-uncertainty cue, left or right tilted segments.
Stimulus displays, in the high-uncertainty experiment. Same format as panel B.
Stimulus 1, the right-tilted orientation could be one of 21 possible orientations
between 15� and 75�; the left-tilted orientation could also be one of 21 possible
orientations between �15� and �75�. The two orientations varied randomly and
independently, with the constraint that they were at least 60� apart. Stimulus 2 was
slightly clockwise or counter-clockwise of one of the orientations in stimulus 1.
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low-uncertainty experiment and the high-uncertainty experiment.
Three of them completed both experiments.

2.3. Apparatus

Visual stimuli were generated with an Apple Macintosh OS X
(Intel Xeon) computer using MATLAB (The MathWorks, Natick,
MA) and MGL (http://gru.brain.riken.jp/doku.php). Stimuli were
displayed on a calibrated and linearized 40 � 30 cm CRT monitor
(HP P1230) with a refresh rate of 75 Hz and gray background lumi-
nance of 37.6 cd/m2. An infrared-video eye-tracker (EyeLink 1000,
SR Research Ltd., Mississauga, Ontario, Canada) was used to record
eye position (right eye, 500 Hz). Observers viewed stimuli in a dark
room on a chin rest at a distance of 57 cm.

2.4. Procedure

Observers participated in practice sessions to determine indi-
vidual orientation-discrimination thresholds (JND, just noticeable
difference), followed by four to six 1 h experimental sessions. This
resulted in 13,838 trials (10,378 valid; 3460 invalid) in the low-
uncertainty experiment and in 14,418 (10,815 valid; 3603 invalid)
trials in the high-uncertainty experiment. In addition, there were
two control experiments. Two observers completed the masking
control experiment that consisted of six 1 h experimental sessions:
observer 1 completed 4499 trials (3374 valid; 1125 invalid), obser-
ver 2 completed 4320 trials (3240 valid; 1080 invalid). Four
observers participated in the uncertainty control experiment,
which consisted of five 1 h experimental sessions, resulting in a to-
tal of 12,960 trials (9720 valid; 3240 invalid).

In all experiments, observers were instructed to maintain fixa-
tion throughout each trial. Eye position was measured to verify
that observers kept their gaze at fixation. The eye tracker was cal-
ibrated at the beginning of each 12-min block.

2.5. Experimental protocols

2.5.1. Low-uncertainty
Stimuli consisted of 32 sinusoidal grating (Gabor) patches

(r = 0.16�, SD of Gaussian window; spatial frequency = 3.8 cycles
per degree) arranged on a 9� � 9� regular grid centered at fixation.
The central four out of 36 center positions were omitted, such that
the innermost Gabors were centered 2.7� away from fixation. Posi-
tions of each Gabor were randomly and independently jittered
(uniform distribution, 0–0.6� of horizontal and vertical center grid
positions) in each interval and trial. Doing so encouraged observers
to distribute attention spatially throughout the display because the
exact locations were uncertain and could not be predicted in ad-
vance. The stimulus displays were brief (150 ms).

Observers performed a fine orientation-discrimination task
(Fig. 2A). In the first 150 ms stimulus display, a random selection
of 16 (out of 32) Gabor stimuli had identical orientation hR near
45� (right-tilted), and the other 16 had identical orientation hL near
�45� (left-tilted), resulting in two spatially interleaved orienta-
tions. In the second 150 ms stimulus display, the 32 Gabors all
shared identical orientation htest, chosen randomly to be either
near 45� or �45� (Fig. 2B). The precise values of the orientations
htest (±42�, 45� or 48�), hR (htest ± 1 JND) and hL (htest ± 1 JND) were
randomly and independently varied across trials so that the first
stimulus display was uninformative as to which orientation would
be queried. This small orientation jitter also allowed us to explore
observers’ strategy to perform the fine orientation discrimination
task. Observers were asked to indicate whether the orientation htest

in stimulus display 2 was slightly clockwise or counter-clockwise
of the closest orientation in stimulus display 1. Observers received
auditory feedback if their response was incorrect. Contrasts of

http://gru.brain.riken.jp/doku.php
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Gabor stimuli in the first and second interval were identical, but
varied from trial to trial in a randomly shuffled order. There were
nine contrasts, equally separated on a logarithmic scale (5%,
7.12%, 10.15%, 14.47%, 20.62%, 29.38%, 41.86%, 59.65%, and 85%).
The mean JND across observers was 3.7�, SEM = 0.16� (O1:
3.47� ± 0.25�; O2: 3.65� ± 0.37�; O3: 3.5� ± 0.29�; O4: 4.17� ± 0.21�
(mean ± SD across contrasts)).

FBA was manipulated with a pre-cue (Fig. 2B). The pre-cue was
a 1.2� green line at fixation, oriented either 45� or �45� in random
order from trial to trial, presented for 250 ms. A 500 ms cue-
stimulus onset asynchrony allowed sufficient time for covert FBA
to be deployed (Liu, Stevens, & Carrasco, 2007). Target orientation
in stimulus display 1 was indicated by a similar orientation htest in
stimulus display 2. A valid pre-cue was defined as a ‘match’ be-
tween pre-cue orientation and the orientation in stimulus display
2 (75% of the trials); a ‘mismatch’ yielded an invalid pre-cue
(25% of the trials). The order of valid and invalid pre-cues was ran-
domly shuffled. The cued orientation was randomly drawn from an
equal distribution on each trial. Observers were explicitly told that
the pre-cued orientation was informative and that using the pre-
cue orientation would improve their task performance.

2.5.2. High-uncertainty
The protocol was identical to the one in the low-uncertainty

experiment (Fig. 2A), except for the following: (1) The pre-cue
was a 60�-segment, indicating the wide range of possible upcom-
ing orientations (Fig. 2C), rather than a line indicating upcoming
orientations of very near ±45�. (2) Stimulus orientations varied
over a wide range: htest (±15–75�, in steps of 3�, resulting in 21 pos-
sible left-tilted orientations and 21 possible right-tilted orienta-
tions), hR (htest ± 1 JND) and hL (htest ± 1 JND). The precise values of
the two orientations hR and hL varied randomly (according to a uni-
form distribution) and independently over trials, with the con-
straint that they were at least 60� apart. The range of possible
orientations was about six times larger than in the low-uncertainty
experiment. The mean JND across observers was 5.06�, SEM = 0.52�
(O1: 4.51� ± 0.17�; O2: 4.68� ± 0.21�; O3: 4.44� ± 0.18�; O4:
6.59� ± 0.67� (mean ± SD across contrasts)).

Task difficulty was adjusted separately for each individual ob-
server, and separately for the low- and high-uncertainty experi-
ments. Specifically, the orientation difference between the two
stimulus displays was selected based on pilot experiments. The
protocol in these experiments was identical to that in the main
experiments except that the contrast was fixed at 85% and the
pre-cue was neutral. The neutral pre-cue for the low-uncertainty
experiment was composed of two overlapping lines (+45� and
�45�; Fig. 2B) at fixation, and it was composed of two overlapping
segments at fixation in the high-uncertainty experiment (Fig. 2C).
The orientation difference was adjusted, using a staircase proce-
dure (Watson & Pelli, 1983) to determine individual tilt thresholds
(�75% correct).

2.5.3. Masking control
The protocol was identical to the low-uncertainty experiment,

except that the locations of the Gabor stimuli were spatially ran-
domized with the constraint that they would never spatially over-
lap between the two stimulus displays. A 10.4� � 10.4�-stimulus
grid with 128 pre-defined stimulus locations was used, omitting
the central 2.4�. In stimulus display 1, 32 of the pre-defined loca-
tions were randomly chosen, half of them randomly displaying
the target orientation and the other half displaying the distracter
orientation. In stimulus display 2, 32 Gabor stimuli were presented
at a random selection of the 96 remaining locations. Doing so en-
sured that observers could not attend spatially just one or two
locations. In addition, the contrast of stimulus display 2 had a
constant value of 20.62% in all trials to determine if differential
masking, as a function of contrast, between the two stimulus dis-
plays might have confounded the interpretation of the results.

2.5.4. Uncertainty control
To verify that observers used the uncertainty pre-cue, the low-

and high-uncertainty experiments were repeated with the same
orientation difference Dh in the orientation discrimination task
(Dh = |hL � htest|, where |hL � htest| = |hR � htest|). The orientation dif-
ference Dh was fixed for each observer (O1: 3�; O2, O3, and O4:
4.5�) such that the two uncertainty conditions could be directly
compared. Low- and high-uncertainty blocks were alternated
within each experimental session; the order was counter-balanced
across observers. Stimuli were displayed at one contrast (85%)
only.

2.6. Data analysis

2.6.1. Psychophysics
Performance, d’ = z(hit rate) � z(false alarm rate), was com-

puted for each observer across experimental sessions, separately
for each contrast and each pre-cue (valid and invalid) (see also
Herrmann et al., 2010). A hit was (arbitrarily) defined as counter-
clockwise response to counter-clockwise stimulus tilt and a false
alarm as counter-clockwise response to clockwise stimulus. The
psychometric data were fit with the Naka–Rushton equation
(e.g., Ross and Speed, 1991) to the mean performance (across
observers), using a nonlinear least-square procedure:

d0ðcÞ ¼ d0max
cn

cn þ cn
50

where d0(c) is performance as a function of contrast, d0max is the
asymptotic performance at high contrasts, c50 is the contrast corre-
sponding to half the asymptotic performance and n is an exponent
that controls the slope of the psychometric function. The two
parameters d0max and c50 determined response gain and contrast
gain, respectively. These two parameters were estimated for each
attention condition (valid and invalid). The exponent was estimated
as a single free parameter, constrained to have the same value for
both attentional conditions.

The 68% confidence intervals for the fitted response gain (d0max)
and contrast gain (c50) parameters were estimated using a boot-
strap procedure (Fig. 3). This bootstrap procedure was used to as-
sess whether changes in response gain and/or contrast gain were
statistically significant. Specifically, individual psychophysical tri-
als were randomly resampled with replacement. The resampled
data set was refit. This procedure of resampling and refitting was
repeated 10,000 times, which resulted in bootstrap distributions
of the psychometric data and of the fitted parameters. We assem-
bled the bootstrap distribution of the differences between the con-
ditions (valid versus invalid trials) and performed statistical tests
by assessing the percentage of the values in the tail of the distribu-
tion of the differences greater than zero for response gain changes
(d0max), or less than zero for contrast gain changes (c50).

2.6.2. Eye movements
Raw data were converted to eye position in degrees of visual an-

gle. Eye position during the fixation interval at the beginning of each
trial served as baseline and was subtracted from eye position during
the stimulus interval, to compensate for any slow drift in the mea-
surements/calibration during each block. A standard EyeLink detec-
tion algorithm (velocity threshold = 30�/s, and acceleration
threshold = 8000�/s2) was used to detect saccades, and the percent-
age of trials in which saccades occurred were counted. The EyeLink
software was used to detect blinks, and the time points shortly
(100 ms) preceding and following blinks were excluded from
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analysis. The first two trials of each block were ignored. For statisti-
cal analysis (two-tailed t-tests), trials were sorted according to pre-
cue orientations (left- or right-tilt) and compared for horizontal and
vertical deviations from the center. Deviations from the center (hor-
izontal and vertical) were also compared in the high- and low-
uncertainty conditions.

3. Results

3.1. Model simulations

For simulations, we used the normalization model of attention
(Reynolds & Heeger, 2009). The matlab code is available online
(http://www.snl-r.salk.edu/~reynolds/Normalization_Model_of_Atten-
tion/ or http://www.cns.nyu.edu/heegerlab).

The relative stimuli and attention fields varied across two sim-
ulations: (1) the featural extent of the attention field was small rel-
ative to the feature extent of the stimulus (5� versus 10�) (Fig. 1B),
(2) the featural extent of the attention field was large relative to
the feature extent of the stimulus (30� versus 10�) (Fig. 1C). The
featural extent of the attention field corresponds to the range of
pre-cued orientations (relative to standard deviation of the featural
extent of the stimulus). The featural extent of the stimulus corre-
sponds to the standard deviation of the bandwidth at half ampli-
tude of the Gabors. Specifically, we computed the 2-dimensional
Fourier transform of one array of Gabors (16 locations; stimulus
contrast: 85%) and computed the orientation-bandwidth at half
maximum amplitude. We repeated this procedure for a random
sampling of stimulus arrays, resulting in a distribution of full-
width half-height values. Finally, we computed the median value
of the distribution.

All other model parameters were identical in both simulations.
In the feature domain, we set the orientation bandwidth of the
stimulation field to 17�. This value corresponds to the bandwidth
at half amplitude of 40� for V4 (De Valois, Yund, & Hepler, 1982;
Desimone & Schein, 1987; McAdams & Maunsell, 1999). We used
a broad tuning width of the suppressive field of 180� (or set it to
be constant). Orientation tuning curves were Gaussian functions;
tuning widths were in degrees corresponding to the standard -
deviation of the Gaussian. In the spatial domain, the size of the
stimulation field was set to 5� in visual angles, corresponding to
the receptive field size of neurons in V4 at eccentricity of 5�
(Cavanaugh, Bair, & Movshon, 2002a, 2002b; Dumoulin & Wandell,
2008). The eccentricity of 5� corresponds to half the stimulus
length from center used in the two experiments. The size of the
suppressive field was set to 20�, which is four times the stimulation
field (Reynolds & Heeger, 2009). We simulated the spatial extent of
the large stimulus as being constant. To simulate distributed spatial
attention across the visual field, the size of the spatial attention field
was set to be equal to the size of the extent of the stimulus. The qual-
itative results of the simulation (response gain) were robust to the
simulation parameters, even when doubling or halving the featural
attention field sizes or stimulus bandwidth values.

The simulations resulted in two testable predictions: FBA
should improve performance accuracy via a change in response
gain both (1) when the featural extent of the attention field is small
relative to the featural extent of the stimulus (Fig. 1B; compare also
Fig. 4D and E of Reynolds and Heeger (2009) for direction of mo-
tion), and (2) when the attention field is large relative to the featur-
al extent of the stimulus (Fig. 1C). The latter simulation predicted a
change in contrast gain only when the orientation bandwidth of
the stimulation field was set to be unrealistically narrow (e.g., 3�).

3.2. High and low featural-uncertainty

Comparing performance accuracy (d0) for valid and invalid trials
revealed differences in behavioral performance. Accuracy im-
proved with FBA, consistent with changes in response gain. When
uncertainty was minimal, attention increased asymptotic perfor-
mance at high contrasts (Fig 3A): there were robust differences
in d0max (valid: d0max ¼ 1:39; 68% confidence interval = [1.35,1.50];
invalid: d0max ¼ 0:75; 68% confidence interval = [0.72,0.89];
p < 0.001), but there was no evidence for a change in c50 (valid:
c50 = 0.12, 68% confidence interval = [0.12,0.14]; invalid:
c50 = 0.10, 68% confidence interval = [0.09,0.13], p = 0.79). The
quality of the fit was R2 = 0.95.

When uncertainty was high (Fig 3B), attention also increased
asymptotic performance at high contrasts: there were robust differ-
ences in d0max (valid: d0max ¼ 0:97; 68% confidence interval =
[0.92,1.01]; invalid: d0max ¼ 0:47; 68% confidence interval =
[0.39,0.52]; p < 0.001), but no evidence for a change in c50 (valid:
c50 = 0.10, 68% confidence interval = [0.10,0.11]; invalid: c50 = 0.08,
68% confidence interval = [0.07,0.10], p = 0.87). The quality of the
fit was R2 = 0.90.

We constrained the exponent n to have the same value for all
conditions in the low and high featural-uncertainty experiments
and obtained a best-fit value of n = 4.39 (68% confidence
interval = [3.18,5.47]). Refitting the data, allowing the exponent to
vary independently for each experiment, also yielded the same
conclusion: a change in response gain, both with low and high

http://www.snl-r.salk.edu/~reynolds/Normalization_Model_of_Attention/
http://www.snl-r.salk.edu/~reynolds/Normalization_Model_of_Attention/
http://www.cns.nyu.edu/heegerlab
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featural-uncertainty. Best-fitting values for the exponents of the
psychometric functions were similar for the low-uncertainty
(n = 3.98%, 68% confidence interval = [2.67,5.04]) and high-
uncertainty (n = 4.72%, 68% confidence interval = [3.78,10.483])
experiments.

The same results were evident in the behavioral performance of
all individual observers (Fig. 4). For the individual observer analy-
sis, the d0 performance across experimental sessions was computed
separately for each condition and contrast. We fit psychometric
functions (see above) to estimate c50 (Fig. 4a), and d0max (Fig. 4b)
for each observer. Small attention fields (relative to the stimulus
extent) yielded similar c50 values for valid and invalid pre-cues
(one-tailed paired t-test, p = 0.63; one-tailed Wilcoxon, p = 0.38),
and reliably resulted in larger d0max values for valid than for invalid
pre-cues (one-tailed t-test, p < 0.001; one-tailed Wilcoxon,
p < 0.001). Similarly, large attention fields consistently resulted in
similar c50 values for the two pre-cue conditions (one-tailed t-test,
p = 0.88; one-tailed Wilcoxon, p = 0.13), but resulted in larger d0max

values for valid than invalid pre-cues (one-tailed t-test, p < 0.001;
one-tailed Wilcoxon, p < 0.001).
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3.3. Masking control experiment

Masking did not confound the interpretation of our results. We
replicated the results of the low-uncertainty experiment in two
observers, using a variation of the protocol in which: (1) the stimuli
were restricted to never even partially overlap between stimulus
displays 1 and 2, and (2) the stimulus contrast of display 1 varied,
while display 2 had a constant stimulus contrast of 20.62%, which
was high relative to the mean c50. FBA again resulted in a change
in performance consistent with a change in response gain. While
there was no evidence for a change in c50 (O1: valid: c50 = 0.10,
CI = [0.10;0.11]; invalid: c50 = 0.10; CI = [0.10;0.15]; p = 0.50; O2:
valid: c50 = 0.09, CI = [0.08;0.10]; invalid: c50 = 0.10, CI = [0.09;
0.13]; p = 0.18), there were robust differences in d0max between valid
and invalid pre-cues (O1: valid: d0max ¼ 1:53, CI = [1.51;1.67]; inva-
lid: d0max ¼ 0:59, CI = [0.48;0.75]; p < 0.001; O2: valid: d0max ¼ 1:19,
CI = [1.11;1.28]; invalid: d0max ¼ 0:90, CI = [0.73;1.01]; p = 0.02).
Uncertainty 

Fig. 5. Uncertainty control experiment. Performance as a function of uncertainty for
valid pre-cues. Each bar represents the mean across observers, for trials with the
same orientations in high- and low-uncertainty blocks. Error bars, ±1 s.e.m. (n = 4
observers). �p < 0.05, one-tailed t-test, Wilcoxon test.
3.4. Uncertainty control experiment

The uncertainty control experiment included both high- and
low-uncertainty conditions within the same experimental session.
We compared performance in trials with identical stimuli by
selecting from the high-uncertainty experiment the subset of trials
in which the stimulus orientations were the same as those in the
low-uncertainty experiment. Performance (d0) was averaged across
observers, separately for valid and invalid pre-cues, and separately
for the high-uncertainty and the low-uncertainty conditions
(Fig. 5). We analyzed only the common orientations: htest of ±42�,
45� or 48�, hR: htest ± 1 JND and hL: htest ± 1 JND. Thus, only the
uncertainty (the shape of the pre-cue) was different between the
two conditions, either directing observer’s attention only to orien-
tations near ±45� or to a larger orientation range centered on ±45�.
This analysis included 6480 trials (4860 valid; 1620 invalid) per
observer in the low-uncertainty condition and 1100 trials (�825
valid; �275 invalid) per observer in the high-uncertainty
condition.

Mean performance with high-uncertainty was worse than with
low-uncertainty. For valid pre-cues, observers performed signifi-
cantly worse in the high- compared to the low-uncertainty condi-
tion (one-tailed paired t-test, p = 0.013; one-tailed Wilcoxon,
p = 0.014), indicating that observers focused their attention in the
low-uncertainty condition and spread their attention in the high-
uncertainty condition. All observers showed a similar pattern of
results. Our hypothesis concerned the valid pre-cue trials, but
there was a non-significant trend in the same direction for invalid
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pre-cues (two-tailed paired t-test, p = 0.075, two-tailed Wilcoxon,
p = 0.200).

Similar results were obtained when all orientations (all trials) of
the high-uncertainty condition were included in the analysis.
Observers performed better in the low-uncertainty than in the
high-uncertainty condition (valid low-uncertainty versus valid
high-uncertainty: one-tailed paired t-test, p = 0.004, one-tailed
Wilcoxon, p = 0.014; invalid low-uncertainty versus invalid high-
uncertainty: two-tailed t-test, p = 0.101; two-tailed Wilcoxon,
p = 0.200).

3.5. Spread of feature-based attention

We reanalyzed the data to evaluate whether observers spread
FBA across the range of possible orientations in the high-uncertainty
experiment (Fig. 6). Specifically, performance (averaged across four
observers and nine contrasts) in valid (Fig. 6A, red bars) and invalid
trials (Fig. 6A, blue bars) was analyzed for different orientation
ranges in which the full orientation range of htest (±15� � 75�) was
sub-divided into five bins of 9� each.

The difference in performance between valid and invalid trials
in each orientation bin did not differ from the mean differential
performance of all other bins (two-tailed paired t-tests and Wilco-
xon, all comparisons p > 0.1). In addition, to test whether attention
improved performance, we subtracted performance of invalid from
valid trials. The differential performance of each orientation sub-
range was significantly larger than zero (one-tailed t-tests, all com-
parisons p < 0.05, except for one, 15–24�).

In the low-uncertainty experiment, the pre-cue line was always
+45� or �45� oriented. We introduced a small jitter near 45� in the
orientation of stimulus 1 so that the stimulus display was uninfor-
mative by itself and observers had to wait for stimulus display 2 to
perform the discrimination task. This small orientation jitter also
allowed us to explore observers’ strategy to perform the fine orien-
tation discrimination task. In a post hoc analysis, we binned trials
based on the orientation of stimulus 1 (Fig. 6B). The first bin in-
cluded trials for which the orientation of stimulus 1 was closest
to ±45� (‘45’). This occurred for the following four pairs of stimulus
orientations: (htest = 42�, hR = htest + 1 JND), (htest = 48�, hR = htest �
1 JND), (htest = �42�, hL = htest � 1 JND), (htest = �48�, hL = htest +
1 JND). The second bin included trials for which the orientation
of stimulus 1 was slightly more different from ±45� (‘near 45�’):
htest = ±45� and hR or hL = htest ± 1 JND. The third bin included the
remainder of the trials for which the orientation of stimulus 1
was furthest from ±45� (‘far 45�’). This occurred for the following
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Fig. 6. Performance as a function of stimulus orientation. (A) Large attention field (hig
orientations. Red, valid pre-cues. Blue, invalid pre-cues. Error bars, ±1 s.e.m. (n = 4 obser
attention across orientations. (B) Small attention field (Low-uncertainty). Performance
orientations. Red, valid pre-cues. Blue, invalid pre-cues. Error bars, ±1 s.e.m (n = 4 observ
this figure legend, the reader is referred to the web version of this article.)
four pairs of stimulus orientations: (htest = 42�, hR = htest � 1 JND),
(htest = 48�, hR = htest + 1 JND), (htest = �42�, hL = htest + 1 JND),
(htest = �48�, hL = htest � 1 JND).

Performance across the three bins was compared with two-
tailed tests. Performance was best when stimulus 1 orientations
were furthest from ±45�, lower when stimulus 1 orientations were
near ±45�, and lowest when approximately equal to ± 45� (±45�
versus far: t-test, p = 0.001; Wilcoxon: p = 0.029; far versus near:
t-test, p = 0.009; Wilcoxon: p = 0.057; near versus ±45�: t-test,
p < 0.001; Wilcoxon: p = 0.029). This difference in performance as
a function of stimulus orientation was evident for both valid and
invalid pre-cues (Fig. 6B, red and blue bars, respectively; Table
1). Subtracting performance of invalid from valid trials revealed
no evidence that the differential performances varied as a function
or stimulus orientation (t-tests and Wilcoxon, all comparisons
p > 0.1; Table 1).

3.6. Eye positions

3.6.1. Main experiment
Fixation was stable during stimulus presentation in the low-

and high- uncertainty experiments. Saccades were detected in
0.96% and 0.67% of the trials in the low- and high-uncertainty
experiments, respectively. The recorded gaze positions of all
observers had a standard deviation of 0.63� horizontally and
0.84� vertically in the low uncertainty experiment, and 1.18� hor-
izontally and 2.04� vertically in the high uncertainty experiment.
The higher standard deviation in the high uncertainty experiment
stems from one observer (low uncertainty experiment: 1.00�
horizontally and 0.97� vertically; high uncertainty experiment:
2.00� horizontally and 3.46� vertically). All other observers had
standard deviations <0.45� horizontally and <1.27� vertically in
both experiments.

For left-tilted and right-tilted pre-cues, vertical gaze position
distributions were statistically indistinguishable (two-tailed t-test
comparison, p = 0.960). Horizontal gaze positions differed
(p < 0.001; Bonferroni critical level = 0.0125), but the effect size
was negligible (Cohen’s effect size = 0.094; left-tilted pre-cues:
M = 0.02�, SD = 0.48� and right-tilted pre-cues: M = 0.11�, SD =
1.30�).

For the high- and low-uncertainty experiments, horizontal gaze
positions were statistically indistinguishable (p = 0.364). Vertical
gaze position distributions differed (p = 0.009), but the effect size
was negligible (Cohen’s effect size = 0.012; low uncertainty:
M = 0�, SD = 0.84� and high uncertainty: M = �0.06�, SD = 2.04�).
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Table 1
Feature-based attention in the low-uncertainty experiment (n = 4 observers). p-Values of two-tailed paired t-tests, and p-values of Wilcoxon tests in parenthesis.

Comparison of orientation
ranges

Performance for ±45� < performance for
near ±45�

Performance for near ±45� < performance for
far ±45�

Performance for ±45� < performance for
far ±45�

Valid pre-cues 0.010 (0.057) 0.013 (0.057) 0.003 (0.029)
Invalid pre-cues 0.089 (0.057) 0.017 (0.029) 0.009 (0.029)
Valid minus invalid 0.804 (0.486) 0.500 (0.886) 0.467 (0.486)
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3.6.2. Masking control experiment
Fixation was stable during stimulus presentation in this control

experiment. Saccades were detected in 0.37% of the trials. The re-
corded gaze positions had a standard deviation of 1.48� horizon-
tally and 1.43� vertically. There was no evidence that left-tilted
and right-tilted pre-cues resulted in significantly different distri-
butions (horizontal: p = 0.093. vertical: p = 0.177).

3.6.3. Uncertainty control experiment
Fixation was stable during stimulus presentation in the low-

and high-uncertainty control experiments. Saccades were detected
in 0.91% and 0.50% of the trials in the low and high uncertainty
blocks, respectively. The recorded gaze positions of all observers
had a standard deviation of 0.73� horizontally and 0.40� vertically
in the low-uncertainty experiment, and 0.37� horizontally and
0.46� vertically in the high-uncertainty experiment.

For left-tilted and right-tilted pre-cues, vertical gaze position
distributions were statistically indistinguishable (p = 0.183). Hori-
zontal gaze positions differed (p < 0.001), but the effect size was
negligible (Cohen’s effect size = 0.08; left-tilted pre-cues:
M = 0.04�, SD = 0.73� and right-tilted pre-cues: M = 0.09�,
SD = 0.36�).

For the high- and low-uncertainty experiments, horizontal gaze
positions were statistically indistinguishable (p = 0.292). Vertical
gaze position distributions differed (p = 0.001), but the effect size
was negligible (Cohen’s effect size = 0.061; low uncertainty:
M = 0.002�, SD = 0.40� and high uncertainty: M = �0.025�,
SD = 0.46�).

4. Discussion

FBA improved performance accuracy via a change in response
gain, and not in contrast gain, both when the featural extent of
the attention field was small (Figs. 3A and 4) and when it was large
(Figs. 3B and 4) relative to the featural extent of the stimulus. In
two experiments (Fig. 2) observers were cued to attend to one of
two spatially superimposed orientations. In the low uncertainty
experiment, the stimuli were selected from a narrow range of
orientations. In the high uncertainty experiment, the two overlap-
ping orientations were each chosen from a broad range of possible
orientations. We verified that the uncertainty manipulation about
the upcoming orientation was effective (Fig. 5) and that the spread
of attention was less selective and wider for high- than low-
uncertainty (Fig. 6).

The experimental design maximized the effects of FBA, while
spatial attention was controlled and distributed. Target and dis-
tracter orientations were intermixed within the same space around
fixation to keep the distribution of spatial attention the same for
valid and invalid pre-cues. Observers were instructed to covertly
attend to as many grating patches as possible, all sharing the same
orientation close to the cued orientation, while ignoring the rest of
the intermixed stimulus patches, all sharing a very different, un-
cued and behaviorally irrelevant orientation. Previous research
has provided evidence that observers are able to perceptually
group and average orientation signals to process them (Ben-Av &
Sagi, 1995; Carrasco & Chang, 1995; Gheri & Baldassi, 2008; Parkes
et al., 2001). To encourage observers to distribute their spatial
attention, we introduced spatial uncertainty by randomizing the
locations of the stimulus patches within each stimulus display in
each trial. Thus, attending to a single, small location in the visual
field (or to just a few locations) would have harmed observer’s per-
formance, because either a target or a distractor or no stimulus at
all might have been displayed at the attended location(s).

Backward masking cannot explain our findings. We minimized
potential masking effects in our main experiments. The two
displays were separated by a 100 ms blank interval, which is long
enough to minimize masking given the spatial frequency and range
of eccentricities of the stimuli (Adam et al., 1993; Breitmeyer &
Ogmen, 2000; Gorea, 1987; Joffe & Scialfa, 1995; Rogowitz,
1983). Moreover, the stimuli were randomly distributed around
fixation, such that they rarely spatially overlapped between dis-
plays 1 and 2, and stimulus displays 1 and 2 had equal contrast
in each trial. Hence, had there been any masking, it would have
been equal for all conditions (valid versus invalid, low-uncertainty
versus high-uncertainty). Nonetheless, we performed a control
experiment to ensure that stimuli never spatially overlapped and
that the contrast of the second stimulus display was constant. Psy-
chometric fits were again consonant with a change in response
gain, consistent with the results in the main experiments.
4.1. Testing the normalization model of attention

We used the normalization model of attention (Reynolds &
Heeger, 2009) to simulate the contrast dependence of FBA
(Fig. 1A–C). The featural extent of the attention field is related to
the feature bias in the biased competition model and to the ‘‘fea-
ture-similarity gain principle’’ (Boynton, 2005; Khayat, Niebergall,
& Martinez-Trujillo, 2010; Martinez-Trujillo & Treue, 2004; Treue
& Martinez Trujillo, 1999). The attention field in the normalization
model of attention, however, does not directly alter firing rate by a
scaling factor, but is instead mediated through normalization (Hee-
ger, 1992; Reynolds & Heeger, 2009).

The model simulated neuronal contrast-response functions;
here we used it to make predictions about the psychophysical data
obtained in our experiments. How do the model predictions for
performance relate to predictions for firing rates? Discrimination
can be linked with neuronal responses, by incorporating a model
of the noise or variability in neuronal responses, and by incorporat-
ing a decision rule (see also Herrmann et al., 2010). The noise in
single-unit firing rates is Poisson-like, i.e. the variance increases
with mean firing rates (Dean, 1981; Geisler & Albrecht, 1997;
Shadlen & Newsome, 1998). However, after pooling signals across
many neurons, it is likely that only the correlated noise remains
(Averbeck, Latham, & Pouget, 2006), which might behave more like
additive noise. In fact, psychophysical data suggest that perceptual
performance is limited by an additive noise component, indepen-
dent and identically distributed (IID) across trials (Katkov, Tsodyks,
& Sagi, 2007). Once the IID noise model and a maximum-likelihod
decision rule have been adopted, behavioral performance can be
predicted from the pooled neuronal activity (Barlow et al., 1987;
Geisler & Albrecht, 1997; Gold & Shadlen, 2001, 2007; Jazayeri &
Movshon, 2006; Pestilli, Ling, & Carrasco, 2009; Shadlen et al.,
1996). Performance accuracy, d0, is then proportional to the sig-
nal-to-noise ratio of the underlying neuronal responses. Hence,
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with additive IID noise and a maximum-likelihood decision rule, a
change in the neuronal contrast-response functions would be
accompanied by a similar change in performance accuracy. If the
underlying neuronal responses showed an increase in response
gain (Fig. 1B and C), the psychometric function would be scaled
(Fig. 3A and B). If the underlying neuronal responses showed an in-
crease in contrast gain, the psychometric function would shift hor-
izontally (on the log contrast axis). Considering an alternative
model of noise, in which performance is limited by the Poisson-like
noise evident in single-cell firing rates (Carandini, 2004; Dean,
1981) together with a maximum-likelihood decision rule (Jazayeri
& Movshon, 2006) yields the same interpretation of the psycho-
metric functions (Pestilli, Ling, & Carrasco, 2009).

Using the normalization model of attention as a framework, the
fact that there is a shift from response gain to contrast gain for spa-
tial attention with smaller stimuli and broader attention fields
(Herrmann et al., 2010), and not for FBA seems surprising at first,
given that the spatial and feature domain are interchangeable in
the model. However, to predict changes in contrast gain, it is cru-
cial for the model simulations that the attention field be larger
than both the excitatory stimulus drive and the suppressive drive.
In the space domain, the attention field can be easily enlarged to
such an extent. In the feature domain, however, the range of pos-
sible orientations is limited to 180�. The orientation-tuning band-
widths of neurons in visual cortex are �40� (median full-width
at half-max) (De Valois, Yund, & Hepler, 1982; Desimone & Schein,
1987; McAdams & Maunsell, 1999), and the suppressive fields (the
range of orientations that contribute to suppression via normaliza-
tion) are considerably broader (with all orientations contributing
to the suppression), so the attention field cannot be much broader
than the suppressive field. The model can simulate a change in
contrast gain with FBA, but only for very narrow (biologically
implausible) orientation bandwidths. For biologically plausible ori-
entation-bandwidth values, the model predicts only a change in re-
sponse gain for FBA to orientations. The model predicts that FBA to
directions of motion should also yield changes in response gain,
because neurons in area MT have even broader tuning bandwidths
with a modal value of �60–90� (Albright, 1984; Lagae, Raiguel, &
Orban, 1993; Maunsell & Van Essen, 1983; Snowden, Treue, &
Andersen, 1992), but this hypothesis will need to be experimen-
tally tested in future studies.

4.2. Neurophysiological correlates

We infer that performance in the present experiments, which
involved directing FBA to spatially-distributed arrays of oriented
gratings, may have relied on the responses of orientation-selective
visual neurons in higher visual cortical areas in the ventral visual
pathway, such as visual cortical area V4 (Desimone & Schein,
1987). Best-fitting values for the exponents of the psychometric
functions were �4, for both the low-uncertainty and high-
uncertainty experiments. This range of exponents is similar to
the range of values reported for contrast-response functions of
neurons in V4 (Cheng et al., 1994; Sclar, Maunsell, & Lennie,
1990). Lower exponents (�2) were derived from previous psycho-
physical experiments on spatial attention with a parallel cueing
and uncertainty protocol (Herrmann et al., 2010); those exponents
were in the range of values report for contrast-response functions
of neurons in V1 (Sclar, Maunsell, & Lennie, 1990).

A recent neurophysiological study has reported that FBA results
in larger modulations at medium and high contrasts than at low
contrasts (Khayat, Niebergall, & Martinez-Trujillo, 2010), in agree-
ment with the present results. Unlike the tasks we used, however,
the task used in the neurophysiology study did not fully exclude a
spatial attention contribution. Responses in area MT were recorded
while a pair of random-dot stimuli moved in the receptive field of
an MT neuron in one hemifield and another pair outside the recep-
tive field, in the other hemifield. Each pair consisted of a high-
contrast random-dot pattern moving in the neuron’s anti-preferred
direction and a second random-dot test pattern moving in the
neuron’s preferred direction, with different contrasts on different
trials. The responses of MT neurons were measured when monkeys
attended to fixation to detect luminance changes, and when atten-
tion was spatially directed to the stimulus pair outside the recep-
tive field to detect a direction change in one of the two random
dot patterns. Hence, the monkeys were cued to shift both spatial
and FBA; differences in the distribution of spatial attention may
have elevated sensory responses in the attend-fixation condition,
thus exaggerating the degree of relative suppression when the
more distant moving stimulus pair was attended.

4.3. Featural attention field size

We found that the featural extent of the attention field can be
manipulated by introducing uncertainty about the upcoming fea-
ture dimension. Thus, the featural extent of the attention field is
flexible and observers are able to adjust it to the needs of the cur-
rent task. Manipulating featural uncertainty affected performance
accuracy and task difficulty. We ensured, however, that task diffi-
culty did not confound the interpretation of our results by adjust-
ing the degree of stimulus tilt separately for each observer and for
the high and low uncertainty conditions, so that performance was
approximately 75% correct at full contrast with a neutral cue.
Moreover, we compared only the differences in performance accu-
racy for valid and invalid cues within each condition (low uncer-
tainty, high uncertainty).

The spatial extent of the attention field has been reported to be
flexible in size and has been experimentally manipulated by intro-
ducing uncertainty about the location of the upcoming target
(Castiello & Umilta, 1990; Datta & DeYoe, 2009; Eriksen & St James,
1986; Herrmann et al., 2010; Muller et al., 2003; Yigit-Elliott, Pal-
mer, & Moore, 2011). This flexibility, however, had previously not
been demonstrated for featural attention. Previous experiments
have used uncertainty to show feature selectivity with regard to
spatial frequency (Cormack & Blake, 1980; Davis & Graham,
1981; Davis, Kramer, & Graham, 1983; Graham, Robson, &
Nachmias, 1978), but have not adjusted its size.

The control experiments verified that the uncertainty manipu-
lation was effective. All observers performed consistently worse
at near ±45� orientations in the valid condition when there was
high- than when there was low-uncertainty about the upcoming
orientation (Fig. 5), indicating that observers used the pre-cue.
With high uncertainty, observers spread attention across the larger
pre-cued orientation range; they performed equally well at several
orientation ranges across the full pre-cued range, and the atten-
tional gain was evident at all pre-cued orientations, indicating a
large featural extent of attention (Fig. 6A). With low uncertainty,
performance was better for orientations that differed slightly from
the pre-cued orientation than at the pre-cued orientation (Fig. 6B),
indicating that the featural extent of attention was narrow. This
finding is consistent with previous reports that for fine discrimina-
tions, performance is best when monitoring the responses of
neurons that are tuned for a feature that differs slightly from the
stimulus (Jazayeri & Movshon, 2006, 2007; Navalpakkam & Itti,
2007; Scolari & Serences, 2009). In our low-uncertainty experi-
ment, we infer that attentional gain was largest for neurons tuned
to ±45�, because neurons that prefer ±45� have tuning curves that
are steepest at nearby orientations, thereby maximizing perfor-
mance for those nearby orientations.

Future studies might explore whether and how the featural ex-
tent of the attention field influences the tuning width of visual
neurons. FBA has been reported to not only scale neuronal re-
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sponses (Treue & Martinez Trujillo, 1999), but also sharpen the
tuning (Martinez-Trujillo & Treue, 2004). This finding has been
supported by psychophysical studies for orientation (Baldassi &
Verghese, 2005) and for directions of motion (Ling, Liu, & Carrasco,
2009). The normalization model of attention can also exhibit
sharpened tuning. In the model, the degree of sharpening depends
on the featural extent of the attention field; a small featural atten-
tion field sharpens the tuning more than a broad featural attention
field (Reynolds & Heeger, 2009).
5. Conclusion

In this study we show that FBA modulates activity in visual cor-
tex to stimulus contrast in a manner that resembles a change in re-
sponse gain, both with a small and large featural extent of the
attention field. This study also provides the first experimental evi-
dence that the featural attention field can be manipulated. The
present findings support key predictions of the normalization
model of attention (Reynolds & Heeger, 2009), thereby furthering
our understanding of the processing in visual cortex and the neural
computations underlying visual attention.
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