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Abstract

Simple cells in the striate cortex have been depicted as half-wave-rectified linear operators. Complex cells
have been depicted as energy mechanisms, constructed from the squared sum of the outputs of quadrature
pairs of linear operators, However, the linear/energy model falls short of a complete explanation of striate
cell responses. In this paper, a modified version of the linear/energy model is presented in which striate cells
mutually inhibit one another, effectively normalizing their responses with respect to stimulus contrast. This
paper reviews experimental measurements ol striate cell responses, and shows that the new model explains a
significantly larger body of physiclogical data.
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Introduction

A long-standing view of simple cells is that they act like half-
wave-rectified linear operators, at least over a limited range of
stimulus contrasts (Hubel & Wigsel, 1962; Campbell et al.,
1968, 1969). In addition, it is widely believed that complex cells
are constructed from linear subunits, and that the subunit out-
puts are rectified before being combined into the complex cell
response. A currently popular model for complex cells is that
they act like energy mechanisms that compute the sum ol the
squared outputs of a quadrature pair of linear subunits (Pollen
& Ronner, 1983; Adelson & Bergen, 1985).

The linear/energy model of striate physiology is attractive
because the response of a linear/energy mechanism can be com-
pletely characterized with a relatively small number of measure-
ments. Unfortunately, the linear/energy model falls shorl of a
complete account of striate physiology.

One major fault with the linear/energy model is the fact that
cell responses saturate at high contrasts. The responses of ideal
linear operators and energy mechanisms, on the other hand, in-
crease with increased stimulus contrast over the entire range of
contrasts.

A second fault with the linear/energy model comes from ex-
periments that reveal nonspecific suppression in cortical cells.
Excitation of cortical cells is highly stimulus specific, that is,
cells are selective for stimulus orientation, spatial frequency,
and direction of motion. This excitatory response to a preferred
stimulus can be suppressed by superimposing an additional
stimulus. The suppression is largely nonspecific. It is indepen-
dent of direction of motion, largely independent of orientation,
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broadly tuned for spatial frequency, and it has broad spatial se-
lectivity. e

To explain nonspecific suppression and response saturation,
Robson (1988) and Bonds (1989) have suggested that striate cells
mutually inhibit one another, effectively normalizing their re-
sponses with respect to stimulus contrast,

Normalization of striate cell responses is also motivated
from a theoretical point of view. It is commonly believed that
information about a visual stimulus, other than its contrast, is
represented as the relative responses of collections of cells. For
example, the orientation of a grating might be represented as
the ratio of the responses of two cells, each with a different ori-
entation tuning. Indeed physiologists have found that the ratio
of a cell’s responses to two stimuli is largely independent of
stimulus contrast (e.g. Albrecht & Hamilton, 1982; see below
for more references). But cortical cells, unlike linear or energy
mechanisms, have a limited dynamic range: their responses sat-
urate for high contrasts. How is it possible for response ratios
to be independent of stimulus contrast, in the face of response
saturation? Normalization and automatic gain control are stan-
dard engineering techniques for dealing with limited dynamic
range. | believe that normalization is fundamental to brain
function, not only in primary visual cortex but also in other sen-
sory and nonsensory areas of the brain.

Normalization of striate cells is analogous to retinal light ad-
aptation and gain control (see Sperling & Sondhi 1968, for an
example; and Shapley & Enroth-Cugell, 1984, for a review), the
purpose of which is to keep the retinal response approximately
the same when the level of illumination changes. That way, the
brain can proceed to process visual information without hav-
ing to attend to the light level. The consequence of retinal light
adaptation is that much of our perception is invariant with re-
spect to intensity, over a wide range of light levels (for exam-
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ple, the perceived contrast of a grating stimulus is largely
invariant with respect to mean intensity). Likewise, the normal-
ization mechanism discussed below allows the brain to process
visual information without having to attend further to contrast
(for example, the perceived orientation of a grating stimulus is
largely invariant with respect to contrast).

This paper attempts to reconcile the linear/energy model
with the physiological data. In particular, the linear/energy
model is modified by including a divisive normalization nonlin-
carity. The new model, with divisive normalization, explains a
significantly larger body of physiclogical data. Physiological
data on contrast-response curves, contrast adaptation, and
nonspecific suppression are reviewed. None of these results are
consistent with the linear/energy model, but nearly all of them
are consistent with the new model,

Some of the material in this paper has been reported previ-
ously (Heeger & Adelson, 1989; Heeger, 1990, 1991). Further
results are reported in a companion paper (Heeger, 1992a). A
similar model was recently proposed by Albrecht and Geisler
(1991).

The model

[n this section, the building blocks of the model are presented:
linear operators, energy mechanisms, half-squaring, and divi-
sive normalization. A nomenclature list is provided to help the
reader keep track of mathematical notation. The Results section
reviews the experimental data and compares model predictions
with experimental results.

This paper treats the visual system as a black box up to the
level of striate cortex. No attention is paid to the responses of
retinal or geniculate cells. Rather, this paper relates cortical cell
responses directly to the time-varying stimulus intensities. [n do-
ing so, it is implicitly assumed that the retina is at a fixed state
of light adaptation.

Linear operators and energy mechanisms

The response of a linear operator is expressed as a weighted
sum, over local space and recently past time, of the stimulus
intensities. Mathematically, the response, L(t), of a spatio-
temporal linear operator is the inner product in space and the
convolution in time of a stimulus, 7(x, »,¢), with the spatiotem-
poral weighting function of the operator, f{x, y,1):

L) = J]fmf(x,y,r)l{.\',y,r —t)ydxdydr. (1)

The triple integral in the above equation is simply a weighted
sum of the stimulus intensities over space and time. The output
response waveform, L(¢), is the model equivalent of a poststim-
ulus time histogram (PSTH), a measure of a cell’s average re-
sponse per unit time.

The linear operators considered in this paper have weight-
ing functions with positive and negative subregions. The posi-
tive and negative weights arc balanced, so the operators give no
output for a constant intensity stimulus. Rather, their responses
are proportional to stimulus contrast, for stimuli that vary in
intensity over space and/or time.
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Nomenclature

H{x, 0 0) stimulus

L{t) response of linear operator

Slx, 1) weighting function of linear operator

hix,»t) impulse response of linear operator

AN, A0 response of half-squared operator

E(t), Ei(t) response of energy mechanism

E{1) normalized energy

SE() model simple cell response

C:(1) model complex cell response

R response of a model cell, cither simple or complex
B(1) time-averaged feedback signal

V.(0), V. (8)

CoChaCom
"

orientation-tuning curves
grating contrast
semisaturation constant
phase of operator

maximum attainable response
threshold

maintained discharge
constant scale factor

=1
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max
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The impulse response, A{x, ¥,¢), of a spatiotemporal linear
operator is defined as the “mirror image” of its weighting func-
tion, A(x, y,{) = f(x, y,—1). The transfer function of a linear
operator is defined as the Fourier transform of its impulse re-
sponse and it is made up of two parts, the amplitude and the
phase responses. A linear operator is completely characterized
by either its three-dimensional (3D} spatiotemporal impulse re-
sponse or its 3D spatiotemporal transfer function.

Two lincar operators with the same amplitude response, but
with phases that are shifted 90 deg (in space and time), are
called a quadrature pair (or Hilbert transform pair). A mech-
anism that sums the squared outputs of a quadrature pair is
called an energy mechanism (Adelson & Bergen, 1985; Pollen
& Ronner, 1983). An energy mechanism’s response is propor-
tional to the squared contrast of a drifting sine grating stimu-
lus. The response is constant over time, independent of the
stimulus phase.

Half-wave-rectification and half-squaring

Cell firing rates are by definition positive, whereas linear oper-
ators can have positive or negative outputs. A linear cell with
a high maintained firing rate could encode the positive and neg-
ative values by responding either more or less than the main-
tained rate. Striate cells, however, have very little maintained
discharge so they cannot truly act as linear operators.

The positive and negative outputs might rather be encoded
by two half-wave-rectified operators; one mechanism encoding
the positive outputs of the underlying linear operator, the other
one encoding the negative outputs. Two such mechanisms are
complements of one another, that is, the positive weights of one
weighting function are replaced by negative weights in the
other. Because of the rectification, only one of the two has a
nonzero response at any given time.

In this paper, an alternative form is considered for the rec-
tification: half-squaring. The output of a half-squared linear
operator is given by

A1) = LL(D))?, 2
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where | x| = max{x,0) is half-wave-rectification, and L(z) is
the linear response defined in egn. (1).

An energy mechanism can be constructed as the average of
the outputs of four half-squared linear operators, all four with
the same “amplitude response,” but with phases in steps of 90
deg. The energy outpul, E(t), is expressed as

E(t) = (/A [A) + A1) + A1) + AT, (3)

where A%(1) is the response of a half-squared linear operator,
and where the superscript, ¢, specifies the operator’s phase in
degrees.

Divisive normalization

Consider a collection of linear operators and cnergy mecha-
nisms, with various receptive-field centers (covering the visual
field) and with various spatiotemporal frequency tunings. Lel
E;(t) be the outputs of each of the energy mechanisms. Nor-
malization, in the model, works by dividing each output by the
sum of all of the outputs:

Li(1)

E(l) = —————,
0% + D E(1)

(4

where 2 is called the semisaturation constant. As long as o is

nonzero, the normalized output will always be a value between
0 and 1, saturating for high contracts.

The underlying linear operators can be chosen so that they
tile the frequency domain, i.e. the sum of their squared ampli-
tude responses is the unit constant function (everywhere equal
to one). In that case, summing the energy outputs over all spa-
tial positions and all frequencies gives the total Fourier energy
of the stimulus. The normalization can also be computed “lo-
cally” by summing over a limited region of space and a limited
range of frequencies.

The local spatial summation region is left unspecified in this
paper for the sake of simplicity. Since the simulations were all
done using spatially extended grating stimuli, the spalial pool-
ing of the normalization was unimportant. The local range of
frequencies in the summation is discussed lurther below.

There is a problem with normalization, as it has been pre-
sented so far. Eqns. (2-4) express the normalization in a feed-
forward manner. First, the half-squared outputs are computed,
using eqn. (2). Then half-squared outputs are combined to give
the energy outputs, using eqn. (3). Finally, the energies are com-
bined to give the normalized energies, using egn. (4). However,
the unnormalized outputs cannot be represented by mechanisms
with limited dynamic range (e.g. neurons). The solution is Lo
use a feedback network to do the normalization. Then, the un-
normalized outputs need not be explicitly represented as cell
output liring rates.

The Appendix gives a simple example demonstrating how
normalization can be implemented in a feedback network. One
consequence of using a feedback network to achieve the nor-
malization is that the feedback signal must be averaged over
time to avoid unstable oscillations in the output. The time con-
stant for averaging the normalization signal is left unspecified
in this paper for the sake of simplicity.
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STIMULUS

Fig. 1. Diagram of the various stages of the model. Linear weighting
functions are depicted as circles, subdivided into excitatory (bright) and
inhibitory (dark) subregions. The S§7 labels represent simple cell out-
puts, and the C; label represents a complex cell output. The feedback
signal is the combined energy at all orientations and nearby spatial fre-
quencies, averaged over space and time. The feedback signal suppresses
the simple cell responses by way of divisive suppression.

Mocdel simple and complex cell responses

The new model in its entirety is depicted in Fig. 1. Simple cells
arc modeled as normalized, half-squared, linear operators.
Complex cells are modeled as normalized energy mechanisms.
The normalization signal is combined from all orientations and
nearby spatial frequencics.

The various stages of the new model are as follows. Linear
operators of four different phases are applied to the stimulus.
The outputs of these operators are then half-squared and nor-
malized to give the simple cell responses:

Af(1)
I 7
02+EZ 24‘1?(:’)
AP (1)
o* + D E()

SP(t)y =k

&)

where 57 is the response of a model simple cell with phase
¢, a2 is the semisaturation constant, & is a constant scale factor
that determines the maximum attainable firing rate, and A%(r)
is delined in eqn. (2). The subscript i is used to indicate mech-
anisms with different spatiotemporal frequency tunings.

The complex cell responses are computed by averaging the
simple cell responses:
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Note again that if the underlying linear operators are cho-
sen correctly then the summation in the denominator of eqns.
(5) and (6) gives the Fourier energy (squared magnitude of the
Fourier transform) of the stimulus within an annulus of spatio-
temporal frequencies, over a local region of space and time.

The sections that follow use a particular implementation of
the normalization model to compare simulations with physio-
logical data. In this implementation, each filter has a spatial fre-
quency bandwidth of about one octave, and an orientation
range of 60 deg. These are arbitrary choices from a theoretical
point of view, but they correspond roughly to the average stri-
ate cell’s tuning widths. The normalization in the present im-
plementation is summed over three spatial frequency bands
(another arbitrary choice). The filters tile the frequency domain
so the normalization signal is the Fourier energy of the stimulus
in a three-octave-wide annulus of spatial frequencies. Operalors
that differ only in their orientation tuning are all normalized by
the same factor. Operators tuned to different spatial frequen-
cies are normalized by different factors, that is, by different
three-octave annuli. As mentioned above, the space-time aver-
aging of the normalization signal is left unspecified in this pa-
per for the sake of simplicity.

Results

This section reviews experimental measurements of contrast-
response curves, contrast adaptation, and nonspecific suppres-
sion. None of these results are predicted by the linear/energy
model. This paper shows that nearly all of them can be ex-
plained by the new model with divisive normalization.

Throughout this section, model simulation responses are
plotted in arbitrary units that are fixed by setting & = 1 in eqns.
(5) and (6). These units correspond roughly to spikes per sec-
ond times 0.01. No attempt was made to fit model parameters
to the physiological data, so the simulations merely point out
the qualitative similaritics between the behavior of model cells
and real cells. Only one parameter of the model, o, is varied in
the simulations.

Contrasi-response

The contrast-response function is a plot of response as a func-
tion of contrast, typically measured using sine grating stimuli
of optimal spatial frequency and orientation. This section dem-
onstrates that contrast-response of striate cells can be explained
by divisive normalization.

Response saturation has commonly been attributed to intra-
cortical suppression (Movshon et al., 19784a; Chao-yi & Creutz-
feldt, 1984: DeBruyn & Bonds, 1986). DeBruyn and Bonds
(1986), for example, used a chemical blocker to remave (GABA
mediated) suppression, and found that cells are capable of
greater firing rates than those measured under normal condi-

D.J. Heeger

tions. The peak firing rates were more than doubled in some
cases.

Saturation of model cells is likewise mediated by intracor-
tical suppression. For model cells, the contrast-response func-
tion is sigmoidal (S shaped) when plotted on a log contrast
scale. This is qualitatively similar to experimentally measured
contrast-response relationships from both cat and primate ex-
periments (Maffei & Fiorentini, 1973; Dean, 1981; Albrecht &
Hamilton, 1982; Ohzawa et al., 1982, 1985; Sclar et al., 1990).

The contrast-response functions for visual neurons in lateral
geniculate nucleus (LGN) and cortex of beth cat and primate
have been fitted by the hyperbolic ratio function (Albrecht &
Hamilton, 1982; Chao-yi & Creutzfeldt, 1984; Derrington &
Lennie, 1984; Sclar et al., 1990):

R=R €%
= fmax m + 1 (?)

where R is the evoked response, ¢ is the contrast of the test grat-
ing, M is maintained discharge, # is a constant exponent, ¢" is
the semisaturation constant, and R, is the maximum attain-
able response. With parameters n = 2 and M = 0, this contrast—
response function is equivalent to that of model cells, given by
eqns. (5) and (6). The equivalence is easily demonstrated by re-
calling that the summation, > E;(¢), in the denominator of
eqns. (5) and (6) is proportional to ¢,

Physiological data from both cat and primate has shown
that the exponent in the contrast-response function does not
differ significantly between populations of simple and complex
cells (Dean, 1981; Albrecht & Hamilton, 1982). The exponent
is 2 on average, but there is variability from cell to cell (Albrecht
& Hamilton, 1982; Sclar et al., 1990). In the new model, the
contrast-response functions of both simple and complex cells
have exponents of 2, because of half-squaring.

It is possible to account for some of the variability in con-
trast-response measurements by adding a threshold parameter
to the model. Contrast-response of model cells would then be
given by

le—TJ"

Pt £

R= Rmax

where T, M, and n > 0 are constants. If T is negative and M is
positive, then the operator will have a nonzero maintained dis-
charge. If T is positive, then the response of the linear opera-
tor must be greater than the threshold, T, to contribute to the
output. Half-squaring corresponds to the case in which n = 2
and T = 0. Half-wave rectification corresponds to the case in
which n = 1 and T = 0. Over-rectification corresponds to the
case in whichn =1 and 7> 0.

Varying T in eqn. (8) not only changes the threshold level,
but also changes the shape of the contrast-response curve.
Varying 7 and ¢ simultaneously can look very much like a
change in the exponent n. This suggests the possibility of fitting
contrast-response data with a fixed exponent, accounting for
the variability from cell to cell by changing the values of T
and a.

Contrast gain control

Numerous studies have shown that nearly all neurons in the
cat’s striate cortex adapt to prolonged stimulation (Maffei et al.,
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1973; Vautin & Berkeley, 1977; von der Heydt et al., 1978;
Movshon & Lennie, 1979; Ohzawa et al., 1982, 1985; Dean,
1983; Albrecht et al., 1984; Hammond ct al., 1985, 1986, 1988,
1989; Marlin et al., 1988; Maddess et al., 1988; Saul & Cynader,
19894, b; Bonds, 1991). There is general consensus that genic-
ulate cells do not exhibit adaptation (Movshon & lennie, 1979;
Ohzawa et al., 1985; Bonds, 1991), Thus, adaptation must be
due to intracortical interactions.

Ohzawa et al. (1982, 1985) adapted cells using drifting grat-
ings of various contrasts. For each adapting contrast (each ad-
aptation state), they measured contrast-response curves. Their
data, replotted in Fig. 2A, shows that different adapting con-
trasts resulted in different contrast-response curves. The con-
trast-response functions shift from one to the next along the log
contrast axis. Similar results have been reported by others
(Dean, 1983; Albrecht et al., 1984; DeBruyn & Bonds, 1986;
Saul & Cynader, 19894).

Dean (1983) reported a “change of slope” of the contrast-
response curve, when plotted on linear axes. This “change of
slope” is somewhat difficull to interpret because the contrast-
response function is not a line, and thus does not have a single
slope for all stimulus contrasts. If it were a line, then the change
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Fig. 2. Effect of adaptation on contrast-response. A: Contrast-
response function for a complex cell, replotted from Ohzawa et al.
(1985). Stimuli were drifting gratings of optimal spatiotemporal fre-
quency. Each curve is for an adapting stimulus with a different contrast.
B: Contrast-response for a model complex cell, for sine grating stimuli
of optimal spatial frequency and orientation. Each curve is for a differ-
ent value of ¢. The curves shift laterally on the log-log plots as adapting
state changes.
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of slope on linear axes could be interpreted as a downward shift
and/or a rightward shift on log-log axes. Thus, characterizing
the effect as a “change of slope” is not nearly as informative.

Changing o in the model leads to a similar shift of the con-
trast-response relationship, as shown in Fig. 2B. The value of
o specilies a model cell’s adaptation level (or gain). Mathemat-
ically, consider replacing ¢ in eqn. (7) with some other value,
ka. Then the response becomes

"

c

R(C,O) = Rmax m + M.

(C./k}”

e ©)

max

Scaling o by a constant factor k is the same as scaling the con-
trast by I/k.

Mechanism for adaptation

What is the mechanism for adaptation that controls the
value of ¢? Two alternative mechanisms have been proposed.
The first possibility is that ¢ is calibrated independently by each
cell, based on that individual cell’s response history. A “self-
recalibration” mechanism of this sort was proposed by Ullman
and Schechtman (1982). The second possibility is that a cell’s
gain is derived from the pooled responses of a number of cells.

This second possibility is much the same as divisive normal-
ization. There are two differecnces between the normalization
and the gain control. First, gain control is relatively slower than
normalization, so ¢ is averaged with a much longer time con-
stant. Second, « cannot be allowed to vary without bound. If
a is zero then the quotients in eqns. (5) and (6) will blow up at
low contrasts, resulting in infinite responses.

There is evidence (reviewed in the following paragraphs) in-
dicating that both mechanisms are involved in gain control of
striate cells. Bonds (1991) suggests that the first mechanism (self
recalibration) is dominant when cells are exposed for long time
periods to high-contrast stimuli, and that the second mechanism
(gain control based on pooled responses) is dominant for shorter
exposures to low-contrast stimuli. In either case, o cannot be al-
lowed to vary without bound. If o is zero, then the quotients
in egns. (5) and (6) will blow up at low contrasts, resulting in
infinite responses.

Consistent with the self-recalibration mechanism, experi-
menters have found that adaptation is more pronounced when
the adapting stimulus evokes a big response (Maffei et al., 1973;
Vautin & Berkeley, 1977; Ohzawa et al., 1985; Maddess et al.,
1988; Hammond et al., 1988, 1989; Saul & Cynader, 19894, b).

Consistent with the second mechanism (gain control based
on pooled responses), researchers (Maffei et al., 1973; Saul &
Cynader, 1989a; Nelson et al., 1991) measured aftereffects
when the adapting stimulus was presented only outside the clas-
sical receptive field. In addition, Ohzawa et al. (1985) reported
anecdotally that many cells appeared to be adapted by stimuli
of nonoptimal orientation or spatial frequency. In all of these
cases, the adapting stimulus evoked little or no response, but
did result in adaptation.

Bonds (1991) has recently confirmed the anecdotal report by
Ohzawa et al. (1985). Bonds measured responses to drifting
grating stimuli while varying contrast. In every cell studied, re-
sponse to a given contrast level was lower when that level was
preceded by a higher contrast than when it was preceded by a
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lower contrast. The effect seemed to have no lower limit; con-
trasts as low as 3% were effective in response reduction. The
effect depended on stimulus contrast and not on response am-
plitude; the effect was just as big when the cell was adapted by
stimuli of nonoptimal orientation.

Further evidence for the second mechanism {gain control
based on pooled responses) is provided from studies that used
chemicals to modify cell firing rates. Vidyasagar (1990) found
that adaptation was not affected when a cell’s firing rate was re-
duced by application of GABA; spike activity was unnecessary
for adaptation to occur. In addition, DeBruyn and Bonds
(1986) and Vidyasagar (1990) found that adaptation was unaf-
fected when a cell’s firing rate was increased by application of
bicuculline, a GABA antagonist.

Unexplained adaptation results

There are, however, some adaptation results that cannot be
explained simply by changing a cell’s gain (o value). First, Al-
brecht et al. (1984) found some amount of downward shift of
the contrast—response curves in addition to the rightward shift.
This is not explained by changing ¢ in the model.

A second result that is inconsistent with the model is that ad-
aptation changes a cell’s spatiotemporal frequency tuning. Af-
ter long exposure to a high-contrast grating, the response to that
grating is often reduced more than its response to other gratings
(Movshon & Lennie, 1979; Albrecht et al., 1984; Saul &
Cynader, 1989a,5).

A third unexplained result is that adaptation changes a cell’s
motion selectivity (this is perhaps the physiological substrate for
motion aftereffects). Saul and Cynader (19895) adapted cells
with gratings drifting in one direction and tested with gratings
drifting in both directions. They confirmed previous reports
(von der Heydt et al., 1978; Hammond et al., 1985, 1986, 1988;
Marlin et al., 1988) that the adapted direction is affected more
than the opposite direction.

These unexplained adaptation phenomena generally occur
only after long-term exposure to high-contrast stimuli. Bonds
(1991), therefore, argues that these phenomena are due to the
second (self-recalibration) adaptation mechanism, and that this
mechanism does not have a significant impact under normal,
day-to-day viewing conditions.

Relative responses are independent of contrast

Consider the response of a linear operator when presented with
two different stimuli. If both stimuli are multiplied by the same
factor, then the ratio of the responses to the two stimuli remains
unchanged. Without normalization, the responses of linear and
energy mechanisms increase with stimulus contrast over the en-
tire range of contrasts. With normalization, mode! cells satu-
rate at high contrasts. In this section, it is demonstrated that (in
spite of saturation) the response ratio to two different stimuli
is still largely independent of stimulus contrast. This is true both
for model cells and for real cells.

Contrasi-response for nonoptimal stimuli

The contrast-response curve of a model cell shifts downward
(on log-log axes) if the orientation of a test grating is nonop-
timal. To demonstrate this Tact, the model cell’s response is ex-
pressed in terms of the grating contrast and orientation. Let
I.(0) be the orientation-tuning curve of underlying linear op-
erator. From egns. (5-7), the model cell’s response is given by
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c2V2(6)

R(c,0) = Rypayx W-

(10)

The value of the numerator depends on stimulus orientation be-
cause the underlying linear operator is orientation tuned, How-
ever, the value of the denominator does not depend on stimulus
orientation because the suppression is pooled over all orienta-
tions. The ratio of responses for two different stimulus orien-
tations is given by

R(c,01) _ V(o)
Ric,8,) V28,

(11)

that is independent of contrast.

If the suppression was broadly tuned for orientation, then
the contrast-response curves would shift downward and right-
ward. The relative amount of rightward shift would depend on
the breadth of the tuning. Let V.(#) be the orientation-tuning
curve of underlying linear operator, and V,(#) be the orienta-
tion-tuning curve of the suppression. The response of a model
cell is now given by

c*Ve(h)
ol + VI’
V2(6) c?

= Ruax =3

VE(8) (a/V)?:+c*

R(c,0) = Ry
(12)

Varying the stimulus orientation away from optimal causes two
things to happen. The value of (V,/V,)* decreases resulting in
downward shift, and the value of (¢/V;)* increases resulting in
the rightward shift.

Downward shifts of contrast-response have been measured
physiologically by Chao-yi and Creutzfeldt (1984) for stimuli of
nonoptimal orientation, for stimuli of nonpreferred direction
of motion, and for stimuli in the nondominant eye. Chao-yi
and Creutzfeldt, and other authors, interpreted these results as
demonstrating that saturation of the contrast-response curve is
already present at the precortical level and therefore not due to
intracortical mechanisms. On the contrary, the model exhibits
the downward shift precisely because of mutual suppression be-
tween cortical cells.

Albrecht and Hamilton (1982) recorded similar downward
shifts of contrast-response curves for stimuli of nonoptimal
spatial frequency, and they also found a slight rightward shift
of the curves. Their data is replotted in Fig. 3A. Fig. 3B shows
the contrast-response curves of a model cell for various stim-
ulus spatial frequencies. The curves shift mostly downward and
slightly rightward for nonoptimal spatial frequencies. The small
rightward shift occurs because the suppression is broadly tuned
for spatial frequency. If the suppression were equal for all spa-
tial frequencies, then there would be no rightward shift.

Researchers have reported that the “slopes” of contrast-
response curves are lowered when using stimuli of nonoptimal
orientation (Sclar & Freeman, 1982), nonoptimal direction of
movement (Dean, 1980), and nonoptimal spatial or temporal
frequency (Dean, 1981; Holub & Morton-Gibson, 1981). As
mentioned above (“Contrast gain control”), this “change of
slope” is somewhat difficult to interpret because the contrast-
response function is not a line, and thus does not have a single
slope for all stimulus contrasts. If it were a line, then the change
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Fig. 3. Response vs. contrast as the spatial frequency, w, of the stim-
ulus is varied. A: Data replotted from Albrecht and Hamilton (1982).
B: For a model complex cell, the contrast-response curve shifts down-
ward and very slightly rightward (not visible in the graph) in the log-log
plot if the spatial frequency of the test grating is nonoptimal.

of slope on linear axes could be interpreted as a downward shift
and/or a rightward shift on log-log axes. Thus, characterizing
the effect as a “change of slope” is not nearly as informative.

Tuning widths are independent of contrast

The orientation-tuning width of model cells is invariant with
respect to contrast. As demonstrated above, the ratio of re-
sponses for two different stimulus orientations is independent
of contrast. Contrast has no impact on tuning width because the
suppression is pooled equally over all stimulus orientations. 1f
the suppression was broadly tuned for orientation, then the
mode] cell’s tuning width would depend slightly on contrast.

Physiologists have indeed found that orientation and spatial-
frequency tuning widths are roughly constant as contrast is var-
ied (Sclar & Freeman, 1982; Albrecht & Hamilton, 1982;
Chao-yi & Creutzfeldt, 1984; Skottun et al., 1987). Experimen-
tal results from Albrecht and Hamilton (1982) are replotted in
Fig. 4A, and model simulation results are shown in Fig. 4B.
Note that Figs. 3 and 4 show the same data plotted in different
ways, The spatial-frequency bandwidth of model cells broad-
ens (but only very slightly) with increased contrast, because the
suppression is broadly tuned for spatial frequency.
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Fig. 4. Spatial-frequency tuning curves as the contrast of the stimulus
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A: Data replotted from Albrecht and Hamilton (1982). B: For a model
complex cell, the tuning width is largely invariant with respect to con-
trast. Width broadens very slightly (not visible in the graph) with in-
creased contrast.

Nonspecific suppression

A number of physiologists have reported that the excitatory re-
sponse to a preferred stimulus can be suppressed by superim-
posing an additional stimulus. This suppression has been found
to be largely nonspecific. It is independent of direction of mo-
tion, largely independent of orientation, broadly tuned for spa-
tial frequency, and it has broad spatial selectivity (Blakemore
& Tobin, 1972; Bishop et al., 1973; Maffei & Fiorentini, 1976;
Nelson & Frost, 1978; Hammond & MacKay, 1978, 1981; Dean,
1980; Sclar & Freeman, 1982; Morrone et al., 1982; DeValois &
Tootell, 1983; Chao-yi & Creutzfeldt, 1984; DeValois et al.,
1985; Kaji & Kawabata, 1985; Gulyas et al., 1987; Bonds, 1989;
Bonds et al., 1990; Robson et al., 1991; Nelson, 1991; DeAngelis
et al., 1992). Some of these researchers have also found that the
suppression is interocular, but Ferster (1981), Ohzawa and Free-
man (1986), Freeman et al. (1987), and DeAngelis et al. (1992)
found this not to be the case.

In the remainder of this section, the results obtained by
Bonds (1989) are considered because they are the most recent
and the most quantitative. It is shown that nonspecific suppres-
sion is divisive and that it can be explained by normalization.
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Responses to pairs of gratings, varying orientation

Bonds (1989) measured responses to pairs of sine gratings,
a base grating of optimal orientation superimposed on a mask
grating of variable orientation. He found that a cell’s response
may be suppressed for certain mask orientations (cross-orien-
tation suppression). Data from one cell is replotted in Figs, 5A
and 5B. Fig. 5A shows the cell’s orientation-tuning curve, its re-
sponse to a single grating as a function of orientation. Fig, 5B
shows what happens when the second (mask) grating is super-
imposed. The horizontal dotted line is the response to the op-
timally oriented base grating. The solid curve is the response
when a second grating of variable orientation was superimposed
upoen the first. The response of the cell was suppressed at nearly
all mask orientations. Model cells exhibit similar behavior, as
shown in Figs. 5C and 5D, due to divisive normalization.

Results from another cell, and from another simulation, are
shown in Figs. 6A and 6B, respectively. In this figure, the re-
sponses were enhanced for some mask orientations near the
cell’s preferred orientation, and they were suppressed at other
mask orientations.

For Figs. 5 and 6, all of the parameters of the model were
held fixed except for the value of . The simulation result in
Fig. 5D was computed with a small value for o. When the mask
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grating was optimally oriented, the response increased only
slightly above the dotted line. Superimposing the mask grating
did not increase the response by much because the response was
already nearly saturated. The simulation result in Fig. 6B was
computed with a larger value for o. The response was enhanced
for mask orientations near the optimum orientation (the cell
was not already saturated), and it was suppressed for nonop-
timal mask orientations.

The width of the simulated orientation-tuning curve (Fig. 5C)
is precisely the same as the widths of the simulated cross-
arientation suppression curves (Figs. 5D and 6B), because there
is an equal amount of suppression from all mask orientations
[the denominators in eqns. (5) and (6) depend only on contrast,
not on orientation].

For real cells, the orientation-tuning and cross-orientation
suppression curves are also similar (e.g. compare Figs. 5SA and
5B). Some physiological data, however indicate that there is
more suppression for mask gratings at the cell’s preferred ori-
entation, i.e. that the suppression is broadly tuned for orienta-
tion (Bonds, 1989). Cross-correlation experiments by Hata et al.
(1988) also argue for broadly tuned suppression. They found
mutual intracortical suppression between striate cells only with
similar orientation preferences, separated by less than 45 deg.
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Fig. 5. A: Orientation tuning of a complex cell, replotted from Bonds (1989). B: Cross-orientation suppression measured from
the same cell, replotted from Bonds (1989). Horizontal dotted line is response to a single 10% contrast base grating of the cell's
preferred orientation. Solid curve is response to 10% contrast base plus 10% contrast mask as a function of the orientation
of the mask grating. Base and mask gratings share the same spatial frequency. C: Orientation tuning of a model complex cell.
D: Cross-orientation suppression for a model complex cell with & = 0.03.
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Fig. 6. A: Cross-orientation suppression measured from a complex cell,
replotted from Bonds (1989). B: Cross-orientation suppression for a
model complex cell with ¢ = 0.17.

By contrast, the operators in the model are separated by 60 deg
in orientation tuning. The model could certainly be amended to
account for these results by using broadly tuned suppression.

On the other hand, DeAngelis et al. (1992) found that af/
cells can be substantially suppressed by an orthogonal grating
(so long as the orthogonal grating is restricted to the excitatory
region of the receptive field, the spatial frequency of the orthog-
onal grating is appropriate, and its contrast is sufficiently high}.

Some researchers have argued that broadly tuned suppres-
sion should serve to sharpen a cell’s orientation-tuning curve.
In the section “Relative responses are independent of contrast,”
however, it is shown that broadly tuned suppression behaves
only slightly differently from suppression that is not at all ori-
entation selective. The same is true for suppression that is
broadly tuned for orientation, for spatial frequency, or for spa-
tial position. The normalization works properly as long as the
suppression is sufficiently broad compared to the excitatory
tuning of the underlying linear operators.

Responses te pairs of gratings, varying frequency

Bonds (1989) has also reported suppression from nonopti-
mal spatial frequencies (cross-frequency suppression). Fig. 7B
shows the results of an experiment in which the orientation of
the mask grating was fixed while its spatial frequency was var-
ied. The horizontal dotted line shows the response to a base
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grating with optimal spatial frequency. The solid curve is the
response when a second grating of variable spatial frequency
was superimposed upon the base grating. The mask grating ori-
entation was chosen at the limit of the cell’s orientation-tuning
curve, so that it did not enhance response for any mask spatial
frequency. Suppression from the mask grating is broadly tuned
for spatial frequency, as compared with the excitatory spatial-
frequency tuning curve for the same cell shown in Fig. 7A.
Model cells exhibit similar behavior, as shown in Figs. 7C and
7D.

Although the results are similar, there are some notable dif-
ferences between the real and simulated data in Fig. 7. The
model cell’s suppression is more broadly tuned for spatial fre-
quency, especially at the lower contrast. The breadth of the sup-
pression is not a critical aspect of the model, so long as it is
sufficiently broad compared to the excitatory tuning of the un-
derlying linear operators (see section “Relative responses are in-
dependent of contrast™). However, the model predicts that the
breadth of the suppression not depend on contrast. For the real
cell, the suppression appears broader at the higher mask con-
trast.

Responses to pairs of gratings, varying contrast

The data in Fig. 7B demonstrates that the suppression is con-
trast dependent, since a mask grating of higher contrast results
in greater suppression. Several physiologists (Dean et al., 1980;
Morrone et al., 1982; Bonds, 1989) measured the magnitude of
the suppression as a function on contrast. Figs. 8A and 8B show
the responses of a real cell (data replotted from Bonds, 1989)
and a model cell for a variety of base and mask contrasts. Each
curve is the response for a fixed mask contrast, as the base con-
trast was varied. Increasing the mask contrast leads to a lateral
shift of the contrast-response curves, for both model cells and
real cells.

Mathematically, the response of a model cell may be ex-
pressed as a function of the contrasts of the base and mask
gratings:

C"

R{cp, ) = Rmax mv
o (13)
= Rumax —(:‘{‘—"' »
(a" +ch) +cp
where ¢, is the base contrast and ¢, is the contrast of a mask
grating oriented at the limit of the cell’s orientation tuning
curve. Changing the mask contrast has the same effect as
changing the value of ¢. We know (section “Contrast gain con-
trol”) that changing ¢ results in lateral shift.

These results indicate that nonspecific suppression is divisive.
Changing the mask contrast has the same effect as changing the

cell’s gain.

Surround suppression

A number of researchers have observed that the receptive
fields of most striate cells are surrounded by suppressive regions
(Blakemore & Tobin, 1972; Bishop et al., 1973; Hess et al.,
1975; Maffei & Fiorentini, 1976; Nelson & Frost, 1978; Ham-
mond & MacKay, 1978, 1981; DeValois et al., 1985; Gilbert &
Weisel, 1990; Bonds et al., 1990; DeAngelis et al., 1990). The
surrounding region is not considered part of the classical recep-
tive field because stimulation in the region does not, by itself,
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Fig. 7. A: Spatial-frequency tuning of a complex cell, replotted from Bonds (1989). B: Cross-lrequency suppression measured
from the same cell, replotted from Bonds (1989). Horizontal dotied line is response to a single 10% contrast base grating of
the cell’s preferred spatial frequency. Solid curve is response to 10% contrast base plus mask as a function of the spatial fre-
quency of the mask grating. Mask contrast was either 10% {closed circles) or 20% contrast (open circles). Base graling was
optimally oriented and mask grating oriented at the limit of the cell’s orientation tuning curve. C: Spatial-frequency tuning of
a model complex cell. D: Cross-frequency suppression [rom the model cell with o = 0.03, Mask grating oriented 60 deg from

optimum near the limit of the orientation-tuning curve.

evoke a response. Even so, stimulation in the region outside
of the classical receptive field suppresses responses to stimuli
placed within the classical receptive field.

In this paper, the spatial pooling of the normalization sig-
nal has been left unspecified. Since the simulations were all
done using spatially extended grating stimuli, the spatial orga-
nization of the normalization was unimportant. Surround sup-
pression could be explained by a “center-surround” spatial
organization, in which the normalization signal is averaged over
a large spatial area (large compared to the size of the underly-
ing linear operators).

Consistent with divisive normalization, Maffei and Fioren-
tini (1976) found that the surround did not serve to sharpen the
cell’s orientation tuning. Rather, stimulation in the surround re-
sulted in a downward shift of the tuning curve (as in Fig. 4).

Other authors (e.g. Nelson & Frost, 1978; Blakemore &
Tobin, 1972), however, claim that since the surround suppres-
sion is broadly tuned for orientation, it should serve to sharpen
the cell’s orientation-tuning curve. The debate again concerns
the breadth of tuning of the suppression. Results in this paper
(see “Relative responses are independent of contrast”) show that

the normalization still works properly as long as the suppres-
sion is sufficiently broad compared to the excitatory tuning of
the underlying linear operators.

There is some evidence that surround suppression is quite
broadly tuned for orientation and spatial frequency. For some
cells, surround suppression is not at all orientation selective, i.e.
there is equal suppression from all orientations. At this time,
however, it is difficult to give quantitative estimates of the tun-
ing widths because there is no consensus in the data. Indeed,
there are some puzzling contradictory results. For example,
Robson et al. (1991) used a cross-orientation suppression stim-
ulus (mask grating orthogonal to preferred orientation) to mea-
sure the size of the suppressive region, and found that it was
about the same size as the classical receptive field. On the other
hand, Bonds et al. (1990) found the opposite result, that sup-
pressive surrounds were extremely large (up to 35 deg).

End-/side-stopping

Many striate cells are end-stopped and/or side-stopped, that
is, they first increase then decrease their response rates as a
stimulus is either lengthened or widened (Hubel & Wiesel, 19635;
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Fig. 8. A: Contrast dependence of cross-orientation suppression mea-
sured from a simple cell, replotted from Bonds (1989). Base grating was
optimally oriented and mask grating oriented at the limit of the ¢ell’s
orientation tuning curve. Each curve is the response for a lixed mask
contrast, as the base contrast is varied. B: Contrast dependence of cross-
orientation suppression for a model complex cell, with o = 0.03. Mask
grating is oriented 60 deg from optimum near the limit of the orientation-
tuning curve. Lateral shift as a function of mask contrast indicates
divisive suppression.

Dreher, 1972: Gilbert, 1977; Rose, 1977; Kato et al., 1978;
DeValois et al., 1985; Hammond & Ahmed, 1985; Bolz & Gil-
bert, 1986; Murphy & Sillito, 1987; DeAngelis ct al., 1950).
End- and side-stopped cells were originally called hypercomplex
cells by Hubel and Weisel (1965) to distinguish them from sim-
ple and complex cells, but it is now widely believed that hyper-
complex cells are subtypes of the simple and complex types.

One hypothesis is that end-/side-stopping and surround sup-
pression are mediated by the same mechanism. There is no
consensus on this point. Some physiologists use the terms
“end-/side-stopping” and “suppressive surround” interchange-
ably. Nelson and Frost (1978) and DeAngelis et al. (1990, 1992),
however, argue that end-/side-stopping and nonspecific sup-
pression are qualitatively different phenomena.

Origin of nonspecific suppression

Several authors have suggested that nonspecific suppression
is intracortical and that it stems from complex cells (Bishop
et al., 1973; Morrone et al., 1982; DeValois & Tootell, 1983;
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Bonds, 1989). Bonds (1989), for example, lailed to find cross-
orientation suppression in the responses of geniculate cells. He
concluded that suppression must be intracortical. Morrone et al.
(1982) used noise stimuli to excite cells, and then superimposed
suppressive counterphase gratings. They found that for both
simple and complex cells the suppression is frequency doubled;
that is, it varies as the second harmonic of the stimulus tempo-
ral frequency. Morrone et al. (1982) concluded that complex
cells are prime candidates as the source of the suppression, since
complex cells exhibit responses to counterphase gratings that
vary over time at twice the temporal frequency of the stimulus.

In the model, the suppression is intracortical but it need not
come from complex cells. Model complex cell responses are
sums of simple cell responses. The suppression could just as
well come from a number of simple cells or from a combina-
tion of simple and complex cells.

As discussed above, extracellular recordings indicate that
nonspecific suppression is divisive. Douglas et al. (1988) used
intracellular recording techniques to look for evidence of divi-
sive suppression. They found hyperpolarization of a simple cell,
that corresponds to subtractive inhibition, when an optimally
oriented bar was moved into an inhibitory subregion. They did
not, however, find evidence for divisive suppression when the
stimulus was turned 90 deg to the optimal orientation. This is
at odds with the extracellular measurements of cross-orientation
suppression. Douglas et al. might have missed the suppression
because of dilficulties with the technique, or they might have
used a stimulus (a single bar instead of a grating) inadequate for
revealing the suppression. In the model, the suppression arises
from a feedback network that takes some amount of time to
reach steady state. Thus, it would be more diflicult to measure
the suppression using individual bars.

Unification of suppressive mechanisms

A working hypothesis is that each cell in the striate cortex is
suppressed by every other cell that is within some physical dis-
tance in the brain (see Bonds, 1989, for a similar suggestion).
This predicts suppression with different characteristics for each
cell, depending on the layout of orientation columns, the lay-
out of ocular-dominance columns, the spatial inhomogeneity of
the cortical map, and the layout of spatial-frequency tuning. As
mentioned above, these differences are not significant, as long
as suppression is broad compared to the excitatory tuning of the
underlying linear operators.

Some researchers have argued that suppression is mediated
by a number of independent mechanisms, e.g. that side-sup-
pression, end-suppression, and cross-orientation suppression are
independent phenomena, each resulting from a separate mech-
anism. At this time, however, there is no convincing evidence
to disprove the unification hypothesis. It seems that the simpler
unified model should be the default until there is evidence to
disprove it.

Discussion

For some years, simple cells have been modeled as half-wave-
rectified linear operators, and complex cells have been modeled
as energy mechanisms. A variety of experimental results provide
evidence in support of the linear/energy model, but many other
experimental results cannot be explained by that model. To ex-
plain a larger body of physiological data, this paper suggests
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modifying the linear/energy model by including divisive nor-
malization. It is argued that divisive normalization is a critical
component of cortical function since cortical cells have a lim-
ited dynamic range.

In a companion paper (Heeger, 19924), a variety of additional
data on striate cell responses are reviewed, Some of these data
were already consistent with the linear/energy model. One of
the points of that paper is to demonstrate that the new model
does just as well. The main issue discussed (Heeger, 19924) con-
cerns the role of squaring in the model. Squaring is important
for several reasons. First, ideal energy mechanisms require
squaring to give truly phase-independent responses. Second, the
underlying linear operators tile the spatiotempoeral frequency
domain, so that the sum of their squared responses gives the to-
tal Fourier energy of the stimulus. Third, given that the model
complex cells outputs are squared, the model simple cell outputs
must also be squared (half-squared) for the feedback normal-
ization to work properly.

In that paper (Heeger, 19924), physiological measurements
of cat striate cell responses are reviewed, and the squaring hy-
pothesis tested. Data on complex cell responses are reviewed,
and it is shown that the energy model, with its underlying squar-
ing nonlinearity, is consistent with most of the data. In addi-
tion, physiological data on simple cell responses are reviewed,
comparing three models of simple cell rectification: half-wave
rectification, over-rectification, and half-squaring. Some of the
experimental results can be explained simply with half-wave rec-
tification. For those cases, it is shown that half-squaring does
just as well, Some of the experimental results are inconsistent
with half-wave rectification, and it is shown that nearly all of
those results can be explained by half-squaring.

A third paper (in preparation) presents a model of how the
brain might combine inputs from the LGN to yield the linear
operators that underlie model simple cell responses. The under-
lying linear operator of a simple cell could be achieved by a
complementary arrangement of geniculate inputs (e.g. as pro-
posed by Glezer et al., 1980, 1982). An excitatory subregion of
the receptive field would result from excitation by “ON” cen-
ter geniculate cells and inhibition by “OFF” center cells. Like-
wise, an inhibitory subregion would result from inhibition by
“ON" center geniculates and excitation by “OFF” center genic-
ulates. Each simple cell subregion would receive complementary
inputs both from “ON” center and “OFF” center geniculates.
Assuming that the geniculate cells are themselves (approximately)
linear operators, this complementary arrangement of inputs
would yield a linear operator. This complementary arrangement
of geniculate inputs has been called the push-pull model.

There are a variety of experimental tests of the complemen-
tary arrangement of inputs, that characterizes the push-pull
model. These experiments typically involve selectively measur-
ing (or turning off) one set of inputs (e.g. selectively measuring
inhibitory/excitatory postsynaptic potentials, using 4- amino-2-
phosphonobuturic acid to suppresses activity in “ON” center
retinal ganglion cells, using bicuculline to block the GABA re-
ceptors that are thought to mediate cortical inhibition). Al-
though the experiments to date yield some conflicting results,
the model is consistent with nearly all of the data.

Together, these three papers are a thorough review of cat
striate physiology. The new model explains much of the exist-
ing experimental data on striate cell responses, and provides a
theoretical framework in which to carry out future research on
striate cortical function.

D.J. Heeger

Unexplained resuits

Although the new model explains a large body of data, there are
some experimental results with which it is not consistent. These
unexplained results are listed below. Although the model does
not currently explain these results, it might be refined/extended
to resolve some of them.

1. Dean and Tolhurst (1986) found that simple cell response
phase varies with stimulus contrast, for both counterphase
gratings and temporally modulated bar stimuli.

2. There are some effects of adaptation that cannot be ex-
plained by a change of gain (see section “Contrast gain
control™).

3. Normalization predicts that there be only suppression from
the surround. Some researchers have found enhancement (in
addition to suppression) from stimulation outside of the
classical receptive field (Maffei & Fiorentini, 1976; Nelson
& Frost, 1978; Gilbert & Wiesel, 1990). DeAngelis et al.
(1992), however, argue that the reports of surround facili-
tation are misleading, since they depend on how one mea-
sures the size of the excitatory receptive field. Using their
procedure, DeAngelis et al. {1992) found no evidence for
surround facilitation.

4. Tolhurst et al. (1980) found nonlinearities in the temporal re-

sponse of striate cells. They used counterphase gratings to
measure the temporal-frequency tunings of cells, and they
measured responses to stationary gratings presented in long
(2-s) flashes. They found that responses to the long flashes
are much more transient than would be predicted by the
temporal-frequency tuning curves. This is not consistent with
spatiotempotral linear models. There may, however, be a way
to reconcile this result with the new model. The feedback
normalization in the model musi be averaged over time to
avoid unstable oscillations in the response (see the Appen-
dix). The initial transient peak measured by Tolhurst et al.
(1980) might be explained by this lag in feedback normal-
ization,

5. Dean et al. (1982) measured simple cell responses for coun-
terphase gratings and for sums of two counterphase gratings.
The responses to a high temporal-frequency grating were en-
hanced by the addition of a low temporal frequency, and the
responses to a low-frequency grating were relatively de-
pressed in the compound stimulus. This nonlinearity in the
temporal response of simple cells might be explained by
divisive suppression. By analogy with Fig. 6, the response
of a model cell may be either suppressed or enhanced by su-
perimposing a second grating. For preferred temporal fre-
quencies the response will be enhanced. For nonpreferred
temporal frequencies it will be suppressed.

6. Holub and Morton-Gibson (1981) found that temporal-fre-
quency tuning and temporal-frequency bandwidth can both
vary with contrast. Once again, it might be possible to ex-
plain this result with divisive suppression. I have found, for
example, that il the suppression is tuned to a relatively nar-
row band of temporal frequencies (e.g. the suppressive sig-
nal is pooled from a subset of cells that prefer low temporal
frequencies), then the temporal-frequency tuning curves shift
systematically with contrast. Note that the suppression still
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acts as normalization if each and every cell is suppressed by
the same temporal-frequency range.

. There are some cells that have properties intermediate be-
tween those of standard simple and complex cells. For ex-
ample, some complex cells have modulated responses to
some drifting gratings (Pollen et al., 1978; Movshon et al.,
19785b; Glezer et al., 1980; Holub & Morton-Gibson, 1981;
Kulikowski et al., 1981; Kulikowski & Bishop, 1982). It is
possible that these cells are actually simple cells with partially
overlapping “ON" and “OFF” subregions. It is also possible
that these cells are imperfectly constructed energy mecha-
nisms. A nonlinearity other than squaring would give mod-
ulated responses (a model using absolute value instead of
squaring was proposed by Pollen and Ronner, 1983). Mod-
ulated responses could also arise if the phase differences be-
tween the four input simple cells were not precisely 90 deg,
or if the four operators had different spatial positions, dif-
ferent spatiotemporal-lrequency tuning curves, or different
gains (as suggested by Pollen et al., 1989),

. Cortical physiologists have long debated whether complex
cells receive inputs from simple cells or directly from the
LGN. This paper follows the hypothesis, originally suggested
by Hubel and Weisel (1962), that complex cells receive inputs
primarily from simple cells. This is not, however, a critical
aspect of the model. The energy mechanisms could also be
built directly from geniculate inputs, although this would es-
sentially require duplicating the processing that is already be-
ing done by the simple cells. There is some evidence in favor
of Hubel and Weisel’s hypothesis of sequential processing
from geniculate to simple to complex cells. Most impor-
tantly, complex cells are uncommeon in the cortical layers
that are the principal destinations of LGN fibers (Hubel &
Weisel, 1962; Stone & Dreher, 1973; Singer et al., 1975; Gil-
bert, 1977; Bullier & Henry, 1979¢; Dean & Tolhurst, 1983).
In addition, there are no systematic differences between the
spatiotemporal-frequency tuning curves of simple and com-
plex cells (Movshon et al., 1978¢), nor between their con-
trast-response curves (Dean, 1981; Albrecht & Hamilton,
1982). On the other hand, there are a number of results that
argue against the sequential processing of visual information
from geniculate to simple to complex cells. First, Hammond
and MacKay (1977) found that simple cells do not generally
respond to fields of random noise whereas complex cells do.
Second, complex cells respond to bars moving with faster ve-
locities than do simple cells (Pettigrew et al., 1968; Movshon,
1975). Third, a number of studies (Hoffman & Stone, 1971;
Stone & Dreher, 1973; Singer et al., 1975; Bullier & Henry,
19794, b) have found that some complex cells can be acti-
vated by electrical stimulation from precortical visual areas
with response latencies so short as to require direct connec-
tions with the LGN. Fourth, Tanaka (1983, 1985) recorded
simultaneously from geniculate and striate neurons, and
used cross-correlation analysis to establish connectivity be-
tween pairs of cells. He found that the delay time from the
LGN to simple cells is typically the same as the delay time
from the LGN to complex cells. In most cases, the delays
were so short as to require direct connections between genic-
ulate and complex cells. Fifth, Toyama et al. (1981), using
a similar cross-correlation analysis, did not find excitation
from simple to complex cells. Finally, intracellular record-
ings provide evidence for direct connections from genicu-
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late to complex cells (Ferster & Lindstrom, 1983; Martin &
Whitteridge, 1984).

9. Physiologists (Reid et al., 1987, 1991; McLean & Palmer,
1989; Emerson & Citron, 1989; Tolhurst & Dean, 1991; Al-
brecht & Geisler, 1991) have found that the spatiotemporal
linear model does not completely account for simple cell di-
rection selectivity. By comparing responses to counterphase
gratings and drifting gratings (drifting in the preferred and
anti-preferred directions), several of these researchers (Reid
et al., 1987, 1991; Tolhurst & Dean, 1991; Albrecht & Geis-
ler, 1991) demonstrated that there is a nonlinear contribu-
tion to simple cell responses. Specifically they found (1) the
linear prediction from counterphase gratings underestimates
a directional index computed from drifting grating re-
sponses; (2) the linear prediction correctly estimates re-
sponses to gratings drifting in the preferred direction; and
(3) the linear prediction underestimates responses to gratings
drifting in the anti-preferred direction, i.e. the nonlinear be-
havior of cells is manifested primarily as suppression of the
anti-preferred response, rather than as enhancement of the
preferred response. Clearly, these results refute the linear
model of simple cells. Albrecht and Geisler (1991) and Hee-
ger (1991, 19924) both showed that half-squaring (or some
other accelerating nonlinearity) can account for the first of
these three results. However, half-squaring alone does not
explain the second and third results. Some preliminary sim-
ulations with the normalized half-squared model have been
conducted (Heeger, 19925). Including divisive normalization
contributes to the discrepancy between responses to counter-
phase and drifting gratings, in such a way as to suppress the
anti-preferred response. These initial results, although prom-
ising, are preliminary and a number of issues need to be ad-
dressed. Tolhurst and Dean (1991) found some cells for which
the linear prediction was particularly bad. It is not yet clear
that these extreme cases will be accounted for by half-squar-
ing and normalization.

Proposed experiments

A number of new experiments could be done to further test the
model. Some examples follow:

1. For a particular cell, the parameters of the model can be
measured and compared using different experiments. For ex-
ample, the exponent, ., and threshold, T, can be measured
by fitting contrast-response data to eqn. (8). These param-
eters might also be measured by fitting the data of Reid et al.
{1987) (see Heeger 1991, for discussion),

2. The contrast-response curve of model cells shifts downward
and slightly rightward if the spatial frequency of the test
grating is nonoptimal (Fig. 8). The amount of rightward
shift depends, in a known way, on the breadth of tuning of
the suppression. For a particular cell, one should be able to
predict the breadth of tuning from the shift in contrast-
response {and vice versa).

3. The gain, g, was varied to model both cross-orientation sup-
pression data (Figs. 5 vs. 6) and contrast-response data
(Fig. 2). By comparing the cross-orientation simulations in
Figs. 5 and 6, it is evident that both the absolute response
level and the amount of enhancement/suppression are ef-
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fected by changing ¢. The model predicts that changing the
gain of a real cell (e.g. by brief adaptation to a higher con-
trast stimulus) should bring about a corresponding change
in cross-orientation suppression.

4, Is surround suppression divisive? The hypothesis of this pa-
per (see also Bonds, 1989) is that the various suppressive
phenomena (e.g. surround-suppression and cross-orientation
suppression) are mediated by the same underlying mecha-
nism. If surround suppression is not divisive, then this is
strong evidence against the unification hypothesis. One could
answer this question by taking measurements analogous to
those in Fig. 8. A base grating (of preferred spatiotemporal
frequency) would be presented to a cell’s receptive-field cen-
ter. A second (mask) grating would be presented in the sur-
round. One would measure a series of contrast-response
curves, each with a different mask contrast. If surround sup-
pression is divisive, increasing the mask contrast will lead
to a lateral shift (on a log-contrast axis) of the contrast-
resporse curves.

5. There is a straightforward experiment that tests directly for
the underlying linearity of simple cells, independent of the
rectification and independent of divisive suppression. Con-
sider stimuli made up of two spots (or bars) at fixed posi-
tions that are both modulated sinusoidally over time. Both
spots have the same temporal frequency, but the amplitude
and phase of modulation may be different. For a spatiotem-
poral linear operator, one can always choose the relative am-
plitude and phase of modulation, regardless of the positions
of the two spots, to null the output. This is also true for a
normalized, rectified linear operator. An experiment of this
sort was performed by Spekreijse and van den Berg (1971)
in goldfish retinal ganglion cells. It is surprising that this ex-
periment has not yet been done in the cortex. Tolhurst and
Dean (1987) performed experiments on cat cortical cells
using pairs of temporally modulated bars, but they did not
try to null the responses [see Heeger (1992a) for summary
and explanation of their data in the context of the half-
squaring normalization model].

Summary

The new model, with divisive normalization, explains a num-
ber of physiological results that cannot be explained by the lin-
ear/energy model:

1. Model cell responses saturate at high contrasts. The con-
trast-response curves of model cells are very similar to those
of real cells (Fig. 2).

2. The gain of model cells can be adjusted, resulting in adap-
tation (Fig. 2).

3. Model cells exhibit nonspecific suppression (Figs. 5-7).
4. Nonspecific suppression is divisive (Fig. 8).

5. Contrast-response curves of model cells shift mostly down-
ward for nonoptimal stimuli (Fig. 3), and the tuning widths
of model cells are largely independent of contrast (Fig. 4).
In other words, the ratio of responses produced by two dif-
ferent stimuli is largely invariant with respect to stimulus
contrast. In this way, information about a visual stimulus,
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other than its contrast, is represented as the relative re-
sponses of a collection of cells.

6. The contrast-response functions for visual neurons are well
modeled by the hyperbolic ratio function (see section “Con-
trast-response”). In the model, contrast-response functions
are hyperbolic ratios with exponents of 2. Physiologists have
found that the exponent in the contrast-response functions
is 2 on average, but there is variability from cell to cell. Vary-
ing the threshold and gain [T and ¢ in eqn. (8)] simulta-
neously can look very much like a change in the exponent
[ in eqn. (8)]. This suggests the possibility of fitting con-
trast-response data with a lixed exponent, accounting for
the variability from cell to cell by changing the values of T
and g.

Physiologists have long debated the role of intracortical (e.g.
cross-orientation) suppression. Some researchers have argued
that broadly tuned suppression sharpens a cell’s tuning proper-
ties. Others have proposed that selectivity of cortical cells results
from suppressive interactions.

According to the model advocated in this paper, a cell is se-
lective for orientation, scale, and direction of motion because
of the underlying spatiotemporal linear operators. Divisive sup-
pression does not contribute to selectivity in the model. Rather,
it acts Lo normalize cell responses. The ratio of the normalized
responses of two model cells equals the ratio of their underlying
unnormalized responses. Divisive suppression merely acts to re-
scale both by the sarmie factor.

Perfect normalization would require that all cells be sup-
pressed by exactly the same factor. The results in Fig. 3 show
that broadly tuned suppression behaves only slightly differently.
The normalization works properly as long as the suppression is
sufficiently broad compared to the excitatory tuning of the un-
derlying linear operators. How broad must the suppression be?
In the present implementation of the model, the excitatory spa-
tial-frequency bandwidth is about one octave and the normal-
ization is summed over three spatial-frequency bands. This 3:1
ratio in tuning widths is certainly sufficient (see Figs. 3 and 4).

For some cells it may be the case that suppression has a sig-
nificant effect on tuning, but for most cells it appears that sup-
pression is broad enough that it has little or no impact on
tuning.
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Appendix: Feedback normalization

A simple example demonstrates how normalization can be im-
plemented as a feedback network. A (one-input and one-out-
put) feedback network is illustrated in Fig. 9. In this network,
the single input is labeled I(¢) and the output is labeled R(¢),
both of which vary over time. There are two additional param-
eters, 0 and Rpay, that are assumed to be fixed.

The circle labeled “LP” in Fig. 9 is a spatiotemporal low-pass
filter on the feedback signal, the purpose of which is to damp
the feedback signal to avoid instability in the output. The out-
put of the low-pass filter is a weighted sum of the past and
present responses:

B(f) =aR()+ (1l —a)B(t —8), (AD)
where B(¢) is the time-averaged feedback signal, o < | is a con-

stant, and & is a time delay. This low-pass filter has an exponen-
tially decaying impulse response.
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Fig. 9. Diagram of a feedback normalization network. The input is
multiplied by the feedback signal, but results in divisive normalization.
See text for details.

YR

The output of the feedback network, as a function of time,
is given by

I
R(t+ &) = '_(;_) [Ruax — B(1)]. (Az)

In the steady state [i.e. when (¢} is constant over time and
when B(¢) = R(#)], this equation can be rewritten with no de-
pendence on time. Then, solving for R gives

{

R = Ryax m,

(A3)

that has the same form as eqn. (4). It is straightforward to ex-
pand this network to have an arbitrary number of inputs and
outputs, mutually feeding back on (and suppressing) one an-
other.

This is but one example of how a feedback network can im-
plement normalization. There are certainly other networks that
achieve approximately the same result in ways that may be more
biologically plausible.






