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SUMMARY AND CONCLUSIONS 

1. A longstanding view of simple cells is that they sum their 
inputs linearly. However, the linear model falls short of a complete 
account of simple-cell direction selectivity. We have developed a 
nonlinear model of simple-cell responses (hereafter referred to as 
the normalization model) to explain a larger body of physiological 
data. 

2. The normalization model consists of an underlying linear 
stage along with two additional nonlinear stages. The first is a 
half-squaring nonlinearity; half-squaring is half-wave rectification 
followed by squaring. The second is a divisive normalization non- 
linearity in which each model cell is suppressed by the pooled 
activity of a large number of cells. 

3. By comparing responses with counterphase ( flickering) grat- 
ings and drifting gratings, researchers have demonstrated that 
there is a nonlinear contribution to simple-cell responses. Specifi- 
cally they found I) that the linear prediction from counterphase 
grating responses underestimates a direction index computed 
from drifting grating responses, 2) that the linear prediction 
correctly estimates responses to gratings drifting in the preferred 
direction, and 3) that the linear prediction overestimates re- 
sponses to gratings drifting in the nonpreferred direction. 

4. We have simulated model cell responses and derived mathe- 
matical expressions to demonstrate that the normalization model 
accounts for this empirical data. Specifically the model behaves as 
follows. I ) The linear prediction from counterphase data underes- 
timates the direction index computed from drifting grating re- 
sponses. 2) The linear prediction from counter-phase data overesti- 
mates the response to gratings drifting in the nonpreferred direc- 
tion. The discrepancy between the linear prediction and the actual 
response is greater when using higher contrast stimuli. 3) For an 
appropriate choice of contrast, the linear prediction from counter- 
phase data correctly estimates the response to gratings drifting in 
the preferred direction. For higher contrasts the linear prediction 
overestimates the actual response, and for lower contrasts the lin- 
ear prediction underestimates the actual response. 

5. In addition, the normalization model is qualitatively consis- 
tent with data on the dynamics of simple-cell responses. Tolhurst 
et al. found that simple cells respond with an initial transient burst 
of activity when a stimulus first appears. The normalization 
model behaves similarly; it takes some time after a stimulus first 
appears before the model cells are fully normalized. We derived 
the dynamics of the model and found that the transient burst of 
activity in model cells depends in a particular way on stimulus 
contrast. The burst is short for high-contrast stimuli and longer for 
low-contrast stimuli. 

6. The importance of these results is that the normalization 
model preserves the essential features of linearity in the face of 
apparently contradictory behavior. According to the model, a 
cell’s direction selectivity is attributed to the underlying linear 
stage, and a cell’s nonlinear behavior is attributed to half-squaring 
and normalization. 

INTRODUCTION 

Many simple cells in cat primary visual cortex (striate 
cortex, area 17, V 1) are direction selective, meaning that 
they respond vigorously to stimuli moving in a preferred 
direction but less well to stimuli moving in the nonpre- 
ferred (opposite) direction (Hubel and Wiesel 1962). 

A longstanding view of simple cells is that they sum their 
inputs linearly (Campbell et al. 1968, 1969; Hubel and 
Wiesel 1962). The linear model is commonly used to ex- 
plain a simple cell’s selectivity for stimulus orientation and 
spatial frequency. Recently, researchers have proposed lin- 
ear models to explain direction selectivity as well (Adelson 
and Bergen 1985; Burr et al. 1986; Fahle and Poggio 198 1; 
Watson and Ahumada 1983, 1985). The linear model is an 
attractive explanation because the response of a linear cell 
can be completely characterized with a relatively small 
number of measurements. 

The response of a linear cell is a weighted sum (over local 
space and recently past time) of the intensity values in the 
stimulus. Direction selectivity arises because of suitable 
timing differences (delays) in the responses evoked from 
different parts of the cell’s receptive field. 

Figure 1 A illustrates a simple example of a vertical bar 
moving to the right over time. Imagine that we film a movie 
of this stimulus and stack the consecutive frames one after 
the next. This yields a three-dimensional volume (space- 
time cube) of intensity data like that shown in Fig. 1 B. 
Figure 1C shows an x-t slice through this space-time cube. 
The slope of the edges in the x-t slice equals the horizontal 
component of the bar’s velocity (change in position over 
time). Different speeds correspond to different slopes. 

Figure 2A illustrates a direction-selective, linear cell re- 
sponding to a rightward drifting bar stimulus. Each panel in 
Fig. 2A corresponds to a different (present) time. The left 
panel of Fig. 2A shows the stimulus superimposed over an 
inhibitory subregion of the cell’s space-time weighting func- 
tion The middle panel shows the situation some time later. 
Now the stimulus lines up with an excitatory subregion. 
The right panel shows the situation later still when the stim- 
ulus again lines up with an inhibitory subregion. Figure 2 B 
is a plot of the cell’s response over time. There is a vigorous 
modulated response as the bar passes through the cell’s re- 
ceptive field. 

Figure 2, C and D, illustrate the same linear cell respond- 
ing to a bar drifting in the nonpreferred direction of mo- 
tion. In this case there is very little response. The bar simul- 
taneously stimulates all three subregions, and the excitation 
and inhibition cancel one another. 
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FIG. 2. Illustration of a spatiotemporal linear cell responding to drift- 
ing bar stimuli. A and B: bar drifting in preferred direction. C and D: bar 
drifting in the nonpreferred direction. A and C: snapshots of stimuli super- 
imposed on linear weighting function. Stimuli depicted as obliquely ori- 
ented lines in the x-t diagram. Linear weighting function is drawn by the 
use of obliquely oriented ellipses. Shaded ellipses correspond to inhibitory 
spatiotemporal subregions of the space-time weighting function, and the 
unshaded ellipse corresponds to the excitatory subregion. B and D: plots of 
response over time as the bar drifts through the receptive field. 

FIG. 1. Orientation in space-time, based 
on an illustration by Adelson and Bergen 
( 1985 ). A : vertical bar translating to the right. 
B: space-time cube of stimulus intensities 
corresponding to motion of the vertical bar. 
C: x-t slice through the space-time cube. Ori- 
entation in the x-t slice is the horizontal com- 
ponent of velocity. 

C 

use of white-noise stimuli. They found some simple cells 
with weighting functions tilted along an oblique axis in 
space-time, like that illustrated in Fig. 2. The linear model 
predicts that these cells be direction selective. In fact, be- 
cause a spatiotemporal linear cell is completely character- 
ized by its spatiotemporal weighting function, the model 
allows one to predict a cell’s preferred direction and speed 
of motion from its weighting function. McLean and Palmer 
( 1989) tested this and found that they could, for most cells, 
correctly predict the preferred bar motion from the spatio- 
temporal weighting function. 

However, recent experiments (Albrecht and Geisler 
199 1; Reid et al. 1987, 199 1; Tolhurst and Dean 199 1) 
have demonstrated that the linear model fails to account for 
certain empirical findings. These experiments compared 
responses of simple cells with drifting and counter-phase 
flickering (stationary, temporally modulated) sinusoidal 
gratings. A counterphase grating stimulus can be expressed 
as the sum of two drifting gratings, drifting in opposite direc- 
tions. For a linear cell the response to the sum of two stim- 
uli is equal to the sum of the responses to each stimulus 
presented alone. Thus one can easily predict counterphase 
grating responses from the drifting gratings responses, and 
vice versa. For simple cells, however, these linear predic- 
tions systematically fail (see Figs. 9 and 10). 

The goal of this paper is to explain why these linear pre- 
dictions fail and to offer an alternative model (actually, an 
extension of the linear model) that is consistent with the 
data. The new model is based on the linear model, but it 
includes two additional nonlinear stages. First, model sim- 
ple-cell responses are half-squared (half-squaring is half- 
wave rectification followed by squaring). Second, each 
model cell is normalized by the pooled activity in a large 
number of cells. 

Some of the components of this normalization model 
have been proposed previously ( Albrecht and Geisler 199 1; 
Carandini and Heeger 1993; Heeger and Adelson 1989; 
Heeger 1990, 199 1, 1992a-c; Robson 1988). Indeed, pre- 
vious work on the normalization model (Carandini and 
Heeger 1993; Heeger 199 1, 1992a,b) has already demon- 
strated that it explains a significant body of physiological 
data. In particular, the normalization model has been used 
to simulate physiological measurements of response versus 
contrast, contrast adaptation, and nonspecific suppression. 
None of these experimental results are consistent with the 
linear model, but they are all qualitatively consistent with 
the normalization model. 

This paper demonstrates that the new model. with half- 
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FIG. 3. Illustration of the 3 stages in the model: I ) an underlying linear 
stage that pools its inputs with the use of addition and subtraction; 2) a 
half-squaring nonlinearity (half-squaring is half-wave rectification fol- 
lowed by squaring); and 3) a divisive normalization nonlinearity in which 
each model cell is suppressed by the pooled activity of a large number of 
cells. 

squaring and normalization, accounts for the aforemen- 
tioned empirical results ( Albrecht and Geisler 199 1; Reid et 
al. 1987,199 1; Tolhurst and Dean 199 1) that revealed non- 
linearities in simple-cell direction selectivity. The impor- 
tance of this result is that the new model preserves the es- 
sential features of linearity in the face of apparently contra- 
dictory behavior. 

METHODS 

This section reviews the basic components of the new model. As 
illustrated in Fig. 3, the model has three stages: 1) an underlying 
linear stage that pools its inputs with the use of addition and sub- 
traction; 2) a half-squaring nonlinearity (half-squaring is half- 
wave rectification followed by squaring) ; and 3) a divisive normal- 
ization nonlinearity. In other words, simple cells are characterized 
as normalized, half-squared, linear operators. The normalization 
is implemented via feedback in which each model cell is sup- 
pressed by the pooled activity in a large number of cells. APPENDIX 
A gives further details on this feedback normalization network. 

Linear operators 
The response of a linear operator (a linear cell) is expressed as a 

weighted sum, over local space and recently past time, of the stimu- 
lus intensities. The response L(t) is the inner product in space and 
the convolution in time of a stimulus I( X, y, t) with the operator’s 
spatiotemporal weighting function f( X, y, t) 

O” L(t) = us f(x, Y, dI(x, Y, 7 - Odxdyd~ (1) -00 
The triple integral in the above equation is simply a weighted sum 
of the stimulus intensities over space and time. The response L(t) 
is the model equivalent of a poststimulus time histogram (PSTH), 
a measure of an operator’s average response per unit time. The 
structure of the spatiotemporal weighting functionf( X, y, t) de- 
termines the operator’s selectivity (e.g., for orientation, direction 
of motion, and spatial and temporal frequency). 

The linear weighting functions considered in this paper have 
positive and negative subregions. The positive and negative 
weights are balanced, so the model cells do not respond to stimuli 

with constant intensity. Rather, their responses are proportional 
to stimulus contrast, for stimuli that vary in intensity over space 
and/or time. 

Half-squaring 
Cell responses (firing rates) are by definition positive, whereas 

linear operators can have positive or negative responses. A linear 
cell with a high maintained firing rate could encode the positive 
and negative values by responding either more or less than the 
maintained rate. Simple cells, however, have very little main- 
tained discharge so they cannot truly act as linear operators. 

The positive and negative values can rather be encoded by two 
cells: one responsible for the positive part and the other one respon- 
sible for the negative part. The two cells are complements of one 
another. That is, an excitatory subregion of one cell’s receptive 
field is aligned with an inhibitory subregion of the other cell’s 
receptive field. The response of each cell is half-wave rectified so 
that only one of the two cells has a nonzero response at any given 
time. 

A number of researchers have characterized simple cells as recti- 
fied linear operators (e.g., Movshon et al. 1978). Variants of this 
characterization have used different types of rectification. For ex- 
ample, overrectification is like half-wave rectification but with a 
threshold; the neuron has to reach a certain level of excitation 
before it will fire action potentials. 

The normalization model advocated in this paper uses half- 
squaring as an alternative form for the rectification. Half-squaring 
is half-wave rectification followed by squaring 

A(t) = LL(t)J2 (2) 

where A ( t ) is the response of a half-squared, linear operator, [x] = 
max (x, 0) is half-wave rectification, and L(t) is the linear re- 
sponse defined in Eq. 1. 

Normalization 
Normalization in the model works by suppressing each cell’s 

response by the pooled activity of a large number of cells. Consider 
a collection of linear operators (i.e., a collection of cells), with 
various receptive-field centers (covering the visual field) and with 
various spatiotemporal frequency, orientation, and direction tun- 
ings. Let Ai( t) denote the response of an unnormalized, half- 
squared, linear operator. The normalized response Ri( t) is de- 
fined as 

Ri(t) = K Ai(t) 

a2 + C Aj(t) (3) 

i 
where a2 is the semisaturation constant, K determines the maxi- 
mum attainable response, and the summation in the denominator 
Cj Aj( t) is taken over a large number of operators with different 
tunings. This summation Cj Aj( t) includes the term Ai (t) that 
appears in the numerator (i.e., each cell suppresses itself). As long 
as G is nonzero, the normalized response will always be a value 
between 0 and K, saturating for high contrasts. 

The underlying linear weighting functions can be chosen so that 
they tile the spatiotemporal frequency domain, i.e., the sum of 
their power spectra is a constant function (everywhere equal to a 
constant value). Thus the normalization signal, the pooled activ- 
ity of many cells, is proportional to the integral of the power spec- 
trum (the Fourier energy) of the stimulus.’ 

’ The normalization signal can also be computed “locally” by pooling 
responses of cells over a limited region of space and a limited range of 
spatiotemporal frequency tunings. The normalization signal is then pro- 
portional to the “local” Fourier energy of the stimulus. For grating stimuli, 
the local normalization signal is reasonably well approximated by the total 
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The conclusions of this paper depend critically on the fact that 
the normalization signal is proportional to the Fourier energy of 
the stimulus. Fourier energy is not the same as contrast. In particu- 
lar, drifting gratings and counterphase gratings of equal Michelson 
contrast have dz@rent Fourier energies. A drifting grating with 
contrast c has Fourier energy equal to c2. A counterphase grating 
with contrast c is made up of two drifting gratings, each with con- 
trast (c/2), drifting in opposite directions. The Fourier energy of 
the counterphase grating is therefore equal to (cl 2) 2 + (cl 2)2 = 
c2 / 2. This difference between the Fourier energies of the two stim- 
uli is the key to explaining the empirical data on direction selectiv- 
ity (see RESULTS). 

Normalization in the model is actually performed by a feedback 
network of interconnections. Details of this feedback normaliza- 
tion network are given in APPENDIX A. The feedback normaliza- 
tion network is designed so that for drifting grating stimuli, the 
network’s steady-state behavior is given by &J. 3. 

One consequence of using a feedback network to achieve the 
normalization is that the feedback signal (the pooled responses) 
must be averaged over time to avoid unstable oscillations. It thus 
takes some time after a stimulus first appears before the model 
cells are fully normalized. Consequently, there is an initial tran- 
sient burst of activity in model cell responses (see Fig. 5 ). 

Detailed methods 
A particular set of model cells was used to compute the simula- 

tion results presented below. Each model cell is tuned to one of 
four orientations (separated by 45” ) and one of five spatial fre- 
quencies (with octave bandwidth and octave spacing). For each 
spatial frequency and orientation there are three temporal chan- 
nels, one preferring static stimuli and the other two preferring 
moving stimuli (e.g., vertical static, vertical rightward, and verti- 
cal leftward). For each spatial frequency, orientation, and tem- 
poral band there are cells with four different phases, in 90” steps. 
In total there are 240 cells in the model. 

The model cells were designed in quadruples, four cells with the 
same amplitude response but with phases in steps of 90”. Each of 
the four is half-squared. For a drifting sine grating stimulus, the 
sum of the four responses is proportional to the squared contrast 
of the stimulus, and it is constant over time (independent of the 
stimulus phase). The phase independence is a simple consequence 
of the 90’ phase offsets, analogous to the trigonometric identity: 
sin2 ( 0) + cos2 (0) = 1. It is important that responses can be 
summed to give a time-invariant signal, so that the model’s behav- 
ior can be analyzed analytically (see APPENDIX A). 

The linear weighting functions of the model cells were designed 
so that each is a spatial and/or temporal derivative a particular 
functionf( X, y, t). The functionf( X, y, t) was chosen so that the 
full set of (derivative) weighting functions evenly cover (tile) the 
frequency domain, i.e., so that the sum of their squared responses 
is proportional to the Fourier energy of the stimulus. 

For example, the weighting function of one cell is the third 
derivative off( x, y, t) in the horizontal direction&J x, y, t). The 
weighting function of another is the third derivative in the vertical 
direction&Jx, y, t). These two cells are nondirection selective. 
The former prefers static vertical stimuli, and the latter prefers 
static horizontal stimuli. 

The direction-selective weighting functions were constructed by 
summing two nondirection-selective (space-time separable) sub- 
units. For example, the weighting function preferring leftward ver- 
tical stimuli is fxrx + fmt. 

Figure 4 shows space-time slices through three space-time 

Fourier energy. This is a particularly good approximation when the nor- 
malization is pooled over a region of space and frequency that is consider- 
ably larger than the summation region of the underlying linear weighting 
function. 

weighting functions: f;,, , fut, and f,,, + fxxl. Although f,, and fxxt 
are each space-time separable (nondirection selective), their sum 
is tilted in space-time (direction selective). All of the cells in the 
model have temporal responses that are either monophasic (like 
fxxy) or biphasic (like f,, + fxx,). 

Watson and Ahumada ( 1983, 1985) and Adelson and Bergen 
( 1985 ) proposed a similar procedure for constructing direction-se- 
lective weighting functions, by summing two space-time separable 
subunits. Their subunits are related to one another by a quadra- 
ture phase shift both in space and in time. 

The weighting functions used in this paper have slightly differ- 
ent properties. Although they are constructed by summing two 
space-time separable subunits, the subunits are not quadrature 
pairs. Rather, as discussed above, they are all spatial and/or tem- 
poral derivatives of the same function f( x, y, t). 

The choices for the model cells’ spatiotemporal frequency tun- 
ings and bandwidths are arbitrary from a theoretical point of view, 
and the conclusions of this paper do not depend of these particular 
choices. The tunings and bandwidths are, however, in rough 
agreement with those of typical simple cells. 

Each model cell is normalized by the pooled activity of a large 
number of cells. In the present implementation of the model, the 
normalization signal is pooled over three spatial frequency bands 
and over all three temporal bands. The normalization signal is 
thus the Fourier energy of the stimulus in a three-octave wide 
annulus of spatiotemporal frequencies. Model cells that differ 
only in their orientation tuning are all normalized by the same 
factor. Model cells that differ only in their temporal frequency 
tuning are also normalized by the same factor. Model cells tuned 
to different spatial frequencies are normalized by different factors, 
that is, by different annuli of spatiotemporal frequencies. The 
temporal averaging of the normalization signal is discussed in AP- 
PENDIX A. The spatial averaging of the normalization signal is left 
unspecified in this paper for the sake of simplicity. The spatial 
pooling of the normalization was unimportant because the stimuli 
were all spatially extended gratings. 

There are three additional parameters of the model: g is the 
semisaturation constant, cy specifies the temporal averaging of the 
feedback ( see APPENDIX A for details), and Kdetermines the max- 
imum attainable response. These three parameters were chosen to 
have the following values: K = 1, CJ = 0.1, and cy = 0.0 1. For most 
of the model simulations, the stimulus contrast was 20%. 

The model simulations were computed as follows. First, the 
normalized, half-squared responses were computed by the use of 
the feedback normalization network. Then, response amplitudes 
(proportional to the peak response) and response phases (relative 
peak latency) were computed as the magnitude and phase of the 
fundamental Fourier component of each normalized response. 
The first quarter-second of the normalized responses were ignored 
when computing response amplitude and phase, thereby avoiding 
the initial transient behavior of the feedback network. Note that 
the magnitude and phase of the fundamental does not completely 
characterize the responses because they are not sinusoidal (see Fig. 
5). Even so, computing response amplitude and response phase 
allows a direct comparison with published physiological results. 

The simulated responses were computed for drifting and coun- 
ter-phase grating stimuli of various spatial and temporal frequen- 
cies. For drifting gratings, response amplitudes were obtained for 
both the preferred and nonpreferred directions of motion. 

For counter-phase gratings, responses were simulated for eight 
stimulus spatial phases at intervals of 22.5’. Response amplitudes 
and response phases were obtained for each of the eight stimulus 
phases. Polar plots of response amplitude as a function of response 
phase were roughly elliptical in shape (see Fig. 8). An ellipse was 
fit to these counterphase grating responses, with the use of the 
fitting procedure described by Reid et al. ( 199 1). 

There were, in summary, four simulated measurements for 
each spatial and temporal frequency: 1) R, is the response to a 
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grating drifting in the preferred direction, 2) R, is the response to a 
grating drifting in the nonpreferred direction, 3) R, is the response 
to a counter-phase grating with the spatial phase that elicits the 
largest response (i.e., the major axis of the ellipse), and 4) R, is 
response to a counter-phase grating that elicits the smallest re- 
sponse (i.e., the minor axis of the ellipse). These four measure- 
ments were repeated for a range of spatial and temporal frequen- 
cies. 

FIG. 4. Space-time slices of linear 
weighting functions designed so that each is 
a spatial and/ or temporal derivative of a par- 
titular function, f( X, y, t). A : .f,, the 3rd 
spatial derivative, is monophasic in time 
and space-time separable. Cells with this 
weighting function prefer static vertical stim- 
uli. B : fxrl is biphasic in time and space-time 
separable. Cells with this weighting function 
prefer flickering vertical stimuli. C: (f- + 
f=[) is tilted in space-time (not space-time 
separable). Cells with this weighting func- 
tion prefer leftward motion. 

C 

RESULTS 

This section reviews experimental measurements of sim- 
ple-cell direction selectivity and compares simulated re- 
sponses of model cells with physiological data. No attempt 
was made to fit model parameters to the data, so the simula- 
tions merely point out the qualitative similarities between 
the behavior of model cells and real cells. 

Drifting grating responses 

Simple cells exhibit characteristic responses to drifting 
sine gratings. This section shows that model simple cells 
(normalized, half-squared, and linear operators) respond 
similarly. 

The response of a linear cell to a drifting grating varies 
sinusoidally over time with the same temporal frequency as 
that of the stimulus. Real simple cells, however, respond 
over approximately one-half of each stimulus cycle, re- 
maining silent during the other half-cycle (Andrews and 
Pollen 1979; Kulikowski and Bishop 198 1; Movshon et al. 
1978). 

Figure 5 shows that a model cell also responds over only 
one-half of each cycle. Figure 5A plots the simulated re- 
sponse of a typical model cell to a sinusoidal grating drifting 
in the cell’s preferred direction. Figure 5 B shows the simu- 
lated response to a grating drifting in the nonpreferred direc- 
tion. Direction selectivity is evident because the amplitude 
of the response is greater in Fig. 5A than in Fig. 5 B. 

Figure 6 shows how direction selectivity is affected by 
stimulus contrast. Figure 6A plots the response of a simple 
cell as a function of stimulus contrast for gratings drifting in 
both the preferred and nonpreferred directions. Figure 6 B 
plots the simulated responses for a typical model cell. The 
simulated curves saturate (because of normalization) at 
high stimulus contrasts, in a manner quite similar to real 
cell behavior. 

In addition, for both real cells and model cells the curve 
shifts downward (on the log scale) for motion in the non- 

preferred direction.* In other words, direction selectivity 
(defined here as the ratio of the responses produced by the 2 
different stimuli) is largely invariant with respect to stimu- 
lus contrast, in spite of saturation. This invariance is due to 
normalization in the model, and it is critical for encoding 
information about motion independent of contrast 
(Heeger 1992a). 

Counterphase grating responses 

Simple cells exhibit characteristic responses to counter- 
phase flickering sine gratings. The response varies over time 
with the temporal modulation of the stimulus, and the am- 
plitude and phase of modulation both depend on the spatial 
phase of the grating (Kulikowski and Bishop 198 1; Maffei 
and Fiorentini 1973; Movshon et al. 1978; Reid et al. 
1987). This section points out that a model cell responds 
similarly. 

Movshon et al. ( 1978), Reid et al. ( 1987, 199 1 ), and 
Tolhurst and Dean ( 199 1) measured response amplitude 
and response phase of simple cells while varying the spatial 
phase of counter-phase gratings. They have shown that for a 
linear cell a polar plot of the response amplitude as a func- 
tion of the response phase is elliptical in shape. Their experi- 
mental results, however, are typically not quite elliptical. 
Rather the results are described as “wasp-waisted ellipses” 
because the amplitudes near the minor axes are smaller 
than they should be to fit an ellipse. An example, replotted 
from Tolhurst and Dean ( 199 1 ), is shown in Fig. 7. 

Movshon et al. ( 1978) proposed that the deviation from 
an ellipse could be explained by overrectification. If the 
neuron has to reach a certain level of excitation before any 
activity is seen, there will be a disproportionate decrease in 
small responses. 

The wasp-waisted elliptical shape is also predicted by 
half-squaring and normalization. Figure 8 shows wasp- 
waisted results from a typical model cell for stimuli of several 

2 Similar downward shifts of response-versus-contrast curves have been 
measured for stimuli of nonpreferred direction of motion, nonoptimal 
orientation, nonoptimal spatial or temporal frequency, and for stimuli in 
the nondominant eye ( Albrecht and Hamilton 1982; Dean 1980, 198 1; 
Holub and Morton-Gibson 198 1; Li and Creutzfeldt 1984; Sclar and Free- 
man 1982). Some have interpreted these results as demonstrating that 
saturation of the contrast-response curve is already present at the precorti- 
cal level and therefore not because of intracortical mechanisms. On the 
contrary, the simulated results in Fig. 6B exhibit this downward shift pre- 
cisely because of mutual suppression between cortical cells (Heeger 
1992a). 
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FIG. 5. A : response of model cell to sinusoidal grat- 
ing (20% contrast, preferred spatial frequency and orien- 
tation) drifting in preferred direction. Initial transient 
burst of activity (evident during the 1 st cycle of the re- 
sponse) is due to feedback normalization (see APPENDIX 
A for details). B: response to grating drifting in the non- 
preferred direction. 

A B 
different temporal frequencies. Note that some ellipses 
show more of a wasp-waist than others. Note also that the 
ellipses become more elongated (less direction selective) at 
high temporal frequencies. Both of these results are typical 
of real simple cells (see Fig. 5 of Reid et al. 199 1). The 
elongation of the ellipses is due to the design of the underly- 
ing linear weighting functions (see Detailed methods). 
There are some direction-selective weighting functions for 
which this elongation would not occur. 

Drifting gratings versus counter-phase gratings 

By comparing the responses to counterphase gratings 
with responses to drifting gratings, Reid et al. ( 1987, 199 1 ), 
Tolhurst and Dean ( 199 1 ), and Albrecht and Geisler 
( 199 1) found that there is a nonlinear contribution to sim- 
ple-cell responses. This section explains that this nonlinear 
behavior can be attributed to half-squaring and normaliza- 
tion. The importance of this result is that the normalization 
model preserves the essential features of linear motion 
mechanisms in the face of apparently contradictory be- 
havior. 

Reid et al. ( 1987, 199 1) showed that for a linear cell the 
responses to drifting gratings are predictable from the re- 
sponses to counterphase gratings (of the same spatial and 
temporal frequency as the drifting gratings). Specifically, 
the response to gratings drifting in the preferred and non- 
preferred directions are predictable from the axes of the 
ellipse obtained, as described above, from counterphase 
gratings 

R,= R,+R, (4) 
R, = R, -R, (5) 

Following Reid et al. ( 1987, 199 1) we use a direction 
index to summarize the direction selectivity of a cell. The 
direction index DI is defined as 

DI = (R, - RlMR, + RI) (6) 
For model cells, this direction index is invariant with re- 
spect to stimulus contrast.3 The direction index does, how- 
ever, depend on the spatial and temporal frequencies of the 
stimulus. 

From Eqs. 4-6 it follows that the direction index (mea- 
sured with drifting gratings) is also predictable from coun- 
terphase grating responses 

3 For model cells, the direction index is invariant with respect to con- 
trast. Tolhurst and Dean ( 199 1 ), however, report measurements from one 
cell with a direction index that is not the same at all contrasts. At the lower 
contrasts, the measured direction index is somewhat greater. 

Reid et al. ( 1987, 199 1 ), Tolhurst and Dean ( 199 1 ), and 
Albrecht and Geisler ( 199 1) found systematic failures of 
two of these three linear predictions. First, the linear predic- 
tions from counterphase grating responses underestimate 
the direction index computed from drifting grating re- 
sponses (Fig. 94. Second, the counter-phase data overesti- 
mate responses to gratings drifting in the nonpreferred direc- 
tion (Fig. IOA). Even so, the counterphase data correctly 
estimate responses to gratings drifting in the preferred direc- 
tion (Fig. 1 IA). 

The half-squared, normalized, linear model behaves simi- 
larly, as shown in Figs. 9 B, 10 B, and 11 B. APPENDIX B gives 
a formal derivation of the model’s behavior. An intuitive 
explanation is provided here. 

The first of these three results (underestimating the direc- 
tion index) is entirely due to half-squaring in the model. 
Normalization is totally irrelevant when calculating the di- 
rection index. Because the direction index is a ratio of re- 
sponses, the normalization factors in numerator and de- 
nominator exactly cancel one another. 

Including normalization in the model is critical for ob- 
taining the other two results. The normalization signal (the 
summation in the denominator of Eq. 3) is proportional to 
the Fourier energy of the stimulus. Drifting gratings and 
counterphase gratings of equal contrast have different 
Fourier energies. A drifting grating with Michelson contrast 
c has Fourier energy equal to c2. A counter-phase grating 
with contrast c has Fourier energy equal to c2/2. The sup- 
pression in the case of the drifting grating is greater, so the 
response to the nonpreferred direction is smaller than that 
predicted from counterphase data (see APPENDIX B for a 
formal derivation). 

Efect of contrast 

Figure 12 B shows the simulated response to gratings 
drifting in the nonpreferred direction, as a function of con- 
trast. Figure 12 B also shows the counterphase grating pre- 
diction as a function of contrast. For all contrasts, the coun- 
ter-phase prediction overestimates the actual response. The 
discrepancy is greater at higher contrasts. 

It is interesting to note in this context that Tolhurst and 
Dean ( 199 1) and Reid et al. ( 199 1) used different stimulus 
contrasts in their experiments. Tolhurst and Dean typically 
used 50% contrast gratings, and Reid et al. typically used 
20%. Tolhurst and Dean measured a somewhat greater dis- 
crepancy between the counter-phase prediction and the re- 
sponse to stimuli of the nonpreferred direction. 

Figure 12A shows a similar plot but for the preferred 
direction. For low contrasts the counterphase grating pre- 
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Tolhurst & Dean Discrepancy in the direction index 
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There is one important difference between the real data 
and the simulated results. For the model cells, there are 
stimuli (certain spatiotemporal frequencies) that are per- 
fect nulls, i.e., the direction index DZ and the ellipse axis 
ratio RJR, are both equal to one. This is evident in the top 
right-hand corner of the graph in Fig. 9 B. For real cells, 
however, the ellipse axis ratio is relatively small even when 
the direction index is very close to one. Although it is not 
obvious by comparing Fig. 9, A and B, this discrepancy is 
quite significant in some of the other data sets reported by 
Reid et al. ( 1987,199 1) and by Tolhurst and Dean ( 199 1). 

To explain this difference we must first understand, for 
model cells, why there are certain stimuli that are perfect 
nulls. Figure 13 depicts a direction-selective linear cell re- 
sponding to gratings drifting in both directions. In Fig. 
13 B, the space-time orientation of the stimulus is perpen- 
dicular to the preferred orientation of the cell. For any stim- 
ulus with that space-time orientation, the response will be 
zero (a perfect null, DZ = 1). 

Figure 13A depicts the same grating, but it is now moving 
in the preferred direction. The response is not zero, but at 
the same time the space-time orientation of the stimulus is _- 

FIG. 6. A : simple-cell response vs. grating contrast for grating stimuli 
drifting in preferred (o ) and nonpreferred ( l ) directions (data replotted 

somewhat different from the optimal space-time orienta- 
from Tolhurst and Dean 199 1). In this and subsequent figures, the plotted tion. In other words, this is not the cell’s optimal spatiotem- 
values are proportional to the magnitude of fundamental Fourier compo- poral frequency. 
nent of the response. Curve shifts mostly downward (on the log scale) for Tohurst and Dean ( 199 1)) however, only measured re- 
nonpreferred direction, indicating that direction selectivity is largely invari- 
ant with respect to contrast. B: response vs. contrast for direction-selective 

sponses for each cell’s preferred spatiotemporal frequency. 

model cell. Saturation of response and downward shift of the curve for They could have easily missed the DZ = 1 conditions. Reid 
nonpreferred direction resembles physiological data. 

Model 
diction slightly underestimates the preferred response. For 
high contrasts, the counter-phase grating prediction overes- 
timates the preferred response. APPENDIX B gives a formal 
derivation of this result. It shows that, when the contrast is 0.5Hz 1Hz 
relatively large, the linear prediction from counterphase 
data overestimates the preferred response. It also shows 
that, when the contrast is relatively small, the linear predic- 1 

tion underestimates the preferred response. For an appro- ’ -c 
priate choice of contrast, in between these two extremes, 
the linear prediction is close to the preferred response (as in 
Fig. 11). 

Tolhurst & Dean 

90 deg 

I 
1 

FIG. 7. Polar graph of responses to counter-phase gratings (data replot- FIG. 8. Polar graphs of model cell responses to counterphase gratings. 
ted from Tolhurst and Dean 199 1). Each data point represents a different Wasp-waisted ellipses resemble the physiological data in Fig. 7. Note that 
stimulus spatial phase. The magnitude of the fundamental component of the ellipses become more elongated (less direction selective) at high tem- 
the response is represented radially, whereas the angular coordinate indi- poral frequencies, similar to behavior of real simple cells (see Fig. 5 of Reid 
cates the temporal phase of the response. et al. 1991). 
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FIG. 9. Direction index predicted from counter- 

. 6- phase data vs. that measured directly with drifting 
gratings. A: data for a direction-selective simple cell 
(data provided by C. Reid). Each point is for a differ- 

. 4- ent stimulus spatial and temporal frequency. B: simu- 
lation results for a typical model cell. For both model 

2- cells and real cells, the direction index predicted from . counterphase data underestimates that measured with 
drifting gratings. 
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et al. ( 1987, 199 1) measured responses for a variety of fre- DISCUSSION 
quencies, but they still might have missed the DZ = 1 condi- 
tions. 

There are a variety of experimental results that reveal 

Moreover, there are some linear weighting functions for nonlinearities in simple-cell responses. On the basis of these 

which the direction index will always be less than one, re- results, some people have rejected the hypothesis that a 

gardless of the stimulus frequency. Consider, for example, a cell’s selectivity is due to an underlying (spatiotemporal 

linear cell with the following spatiotemporal weighting and binocular) linear stage that pools its inputs by the use of 

function 
addition and subtraction 

f( x, y, 2) = q-(x2+Y2)gZ 
To the contrary, results reported in this and other papers 

(8) (Albrecht and Geisler 199 1; Carandini and Heeger 1993; 
X [sin (274 cos (274 + p cos (27~) sin (2741 Heeger 199 1, 1992a,b) support the linear model of selectiv- 

where ,6 is a constant. This is a direction selection weighting ity. According to the model advocated in these papers, a 
function that is constructed by summing two space-time cell’s selectivity is attributed to an underlying linear stage, 
separable subunits. The two units are related to one another and a cell’s nonlinear behavior is attributed to half-squaring 
by a quadrature phase shift both in space and in time. When and normalization* 
,6 = 1, the two subunits contribute equally to the direction The normalization model appears to provide an ade- 
selectivity, and there is perfect nulling (DI = 1) for certain quate explanation of direction selectivity in simp!e cells. 
stimuli. When p = l/2, the two subunits contribute un- The importance of this result is that the model preserves the 
equally to the direction selectivity, and there are no perfect essential features of linearity in the face of apparently con- 
nulls (DZ 5 l/2 for all stimuli). tradictory behavior. 

The particular linear weighting functions used for the sim- 
ulations in this paper were designed with other consider- Why normalization 
ations in mind, so there are some frequencies that yield It is commonly believed that information about a visual 
perfect nulls (DI = 1). This is not a general fault with the stimulus, other than its contrast, is represented as the rela- 
normalization model. Rather, it is a fault with this particu- tive responses of collections of cells. For example, the orien- 
lar choice of linear weighting functions. tation of a grating might be represented as the ratio of the 

Reid, Soodak, & Shapley 
1 

Model 

FIG. 10. Nonpreferred response predicted from 
counter-phase data vs. that measured directly with 
drifting gratings. A : relative responses for a direction- 
selective simple cell (data provided by C. Reid). B: 
simulation results for a typical model cell. For both 
model cells and real cells, the response predicted 
from counter-phase data overestimates that measured 
directly with drifting gratings. 
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FIG. 11. Preferred response predicted from coun- 
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terphase data vs. that measured directly with drifting 
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gratings. A: relative responses for a direction-selec- 
tive simple cell (data provided by C. Reid). B: simula- 
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A B 
responses of two cells, each with a different orientation pref- 
erence. Indeed, physiologists have found that the ratio of a 
cell’s responses to two stimuli is largely independent of stim- 
ulus contrast (see Fig. 6 and footnote 2). But cortical cells 
have a limited dynamic range, and their responses saturate 
for high contrasts. How is it possible for response ratios to 
be independent of stimulus contrast in the face of response 
saturation? Normalization and automatic gain control are 
standard engineering techniques for dealing with limited 
dynamic range. 

There is significant empirical support for normalization 
in striate cortex (see Heeger 1992a for review). Normaliza- 
tion can explain a wide variety of physiological data, in- 
cluding physiological measurements of response versus 
contrast, contrast adaptation, and nonspecific suppression 
(e.g., cross-orientation inhibition). 

Why squaring 
A number of researchers have characterized simple cells 

as rectified linear operators (e.g., Movshon et al. 1978). 
Variants of this characterization have used different types 

Preferred Direction 

0 
1 10 100 

Contrast 
* Drifting Gratings (Rp) 
-%- Counterphase Gratings (Rl +R2) 

A 

of rectification. For example, over-rectification is like half- 
wave rectification but with a threshold; the neuron has to 
reach a certain level of excitation before it will fire action 
potentials. Albrecht and Geisler ( 199 1) modeled simple- 
cell responses with the use of an exponential nonlinearity in 
which they allow the exponent to vary from one cell to the 
next. The normalization model adopted in this paper uses 
half-squaring, that is, half-wave rectification followed by 
squaring. 

These nonlinear functions (half-wave rectification, 
over-rectification, half-squaring, and exponentiation with a 
power other than 2) are closely related. We can express 
them all as special cases of the following function 

~(x)=Lx- TJ” (9) 

where Tand n > 0 are constants. Half-squaring corresponds 
to the case in which n = 2 and T = 0. Half-wave rectifica- 
tion corresponds to the case in which n = 1 and T = 0. 
Overrectification corresponds to the case in which n = I 
and T > 0. Albrecht and Geisler’s exponential nonlinearity 
corresponds to the case in which T = 0 and n is allowed to 
vary from one cell to the next. 

Non-preferred Direction 

0 
1 10 100 

Contrast 
--O- Drifting Gratings (Rn) 
-S- Counterphase Gratings (RI -R2) 

B 
FIG. 12. Comparison of model cell’s response to counter-phase and drifting gratings (preferred spatial frequency and 

orientation), as a function of contrast. A : response to gratings drifting in the preferred direction ( l ) and predictions of 
preferred response computed from counterphase data (o ). B: response to gratings drifting in the nonpreferred direction ( l ) 
and predictions computed from counterphase data (o ) . 
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In this paper we have fixed the exponent at 2, and we 
have fixed the threshold at 0, but they could in principle be 
allowed to vary. Obviously, adding these two parameters to 
the model would allow more flexibility in fitting physiologi- 
cal data. 

There are, on the other hand, two theoretical reasons for 
using half-squaring. First, squaring is a useful computation. 
Several algorithms have been proposed for computing ve- 
locity from the squared responses of a set of spatiotemporal 
linear operators (Adelson and Bergen 1986; Heeger 1987; 
Heeger and Simoncelli 1993; Grzywacz and Yuille 1990; 
Simoncelli and Adelson 199 1). Second, squaring makes 
the model analytically tractable (see APPENDIX A). This al- 
lows us to derive closed form expressions for fitting physio- 
logical data. 

What would be the consequences of replacing half-squar- 
ing with a more general non-linearity with variable thresh- 
old and exponent parameters? We would gain flexibility in 
fitting data, but we would loose the ability to study the 
model’s behavior analytically. In all likelihood, the normal- 
ization model (with or without variable threshold and expo- 
nent parameters) is only an approximation to the behavior 
of real simple cells. It will be a useful model if it proves to be 
a reasonably good approximation. It will be all the more 
useful if it is analytically tractable. 

Why feedback 

The normalized, half-squared, linear model is similar to a 
model recently proposed by Albrecht and Geisler ( 199 1). 
The main difference is that Albrecht and Geisler ( 199 1) use 
a feed-forward gain control mechanism instead of feedback 
normalization advocated in this and other papers (Caran- 
dini and Heeger 1993; Heeger 199 1, 1992a,b). 

There are three empirical results that favor the feedback 
model. First, the feed-forward model predicts that normal- 
ization would be evident in geniculate cell responses. This 
appears not to be the case (Bonds 1989). 

Second, the two models (feed-forward and feedback) 
predict different dynamic behavior. Tolhurst et al. ( 1980) 
found that simple cells respond with an initial transient 
burst of activity when a stimulus first appears. The feed-for- 
ward model does not predict this behavior. 

The feedback model, on the other hand, behaves simi- 

FIG. 13. IlhMration of spatiotemporal lin- 
ear cell responding to drifting grating stimuli. 
A : stimulus drifting in the preferred direction. 
B: stimulus drifting in the nonpreferred direc- 
tion. Response to the nonpreferred direction 
is 0, i.e., the direction index is 1. 

larly to real simple cells; it takes some time after a stimulus 
first appears before the model cells are fully normalized. 
The initial transient burst of activity is evident in Fig. 5. 
The dynamics of the feedback network are derived in AP- 
PENDIX A. One particularly interesting observation is that 
the amount of time it takes to reach steady state depends on 
the stimulus. For high-contrast stimuli, the network reaches 
steady state very quickly. For low-contrast stimuli, the feed- 
back network is much slower. The model thus predicts that 
transient behavior in simple cells should depend in a partic- 
ular way on stimulus contrast. 

Third, the feedback model predicts that the normaliza- 
tion signal originates in cortical cells. There is, in fact, evi- 
dence that this is true (Bishop et al. 1973; Bonds 1989; 
DeValois and Tootell 1983; Morrone et al. 1982). 

Fitting data 

In this paper, no attempt was made to fit model parame- 
ters to the data; the simulations merely point out the qualita- 
tive similarities between the behavior of model cells and 
real cells. We are now in a position to test the model quanti- 
tatively. The proper experiment at this time would be to 
repeat the measurements of drifting and counter-phase grat- 
ing responses using several different contrasts. We could 
then infer the value of the semisaturation constant g2 from 
the contrast series. Given g2, we could analyze the data 
compensating for the effects of the nonlinearities: first mul- 
tiply by a2 plus the Fourier energy of the stimulus, and then 
take square roots. If the model is correct, then this analysis 
(compensating for the nonlinearities) would reveal the un- 
derlying linear responses. 

APPENDIX A 

This appendix serves several purposes. First, it describes the 
feedback normalization network and shows that it has the proper 
steady-state behavior. The network is designed so that for drifting 
grating stimuli, the steady-state response is given by Eq. 3. Second, 
it shows that the feedback signal must be averaged over time to 
avoid unstable oscillations. Third, it shows that the dynamics of 
the network (the amount of time it takes to reach steady state) 
depends on the stimulus. 

Figure A 1 illustrates the network. The normalized responses are 
denoted by Ri (t). The feedback signal is denoted by G(t). There 
are three additional parameters: 0 is the semi-saturation constant, 
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Stimulus 
Ri(t) = A,(t) 

K- G(t - 1) 
a2 (A3) 

Linear Sum 

Multiply by 
Feedback 

Half-Square 
(0 
(0 

R 0 i 

where Aj (t) = LLi (t) 12 is a half-squared, linear response. 
To show that the network has the desired steady-state behavior 

we rewrite Eq. Al substituting for Ri( t) from Eq. A3 

T[G(t) - G(t - l)] = -G(t - 1) + G,(r) ow 

where 

d 
’ = a[ c2 + 2 A,(t)] bw 

C AjCt) 

G (t) = K i S  a2 + C Aj(t) 1 i 
FIG. A 1. Diagram of feedback normalization network. Ri (t) is the nor- In steady state, G(t) = G( t - 1 ), the left-hand side of Eq. A4 is 

malized response, G( t ) is the feedback signal, c is the semisaturation con- 
stant, cy specifies the temporal averaging of the feedback, and Kdetermines 

zero, and the equation simplifies to G(t) = G,(t). Thus it is clear 

the maximum attainable response (see text for details). 
that GJ t) is the steady-state value for the feedback signal. 

The reader may find it odd to talk about G,(t) as a steady-state 

cy specifies the temporal averaging of the feedback, and K deter- 
mines the maximum attainable response. 

The signals in the network are updated over time according to 
the following equations 

value given that it is, in general, a time-varying function Of Aj ( t). 
For drifting grating stimuli, however, Ci Ai< t) is constant over 
time. The underlying linear weighting functions in the model are 
designed in quadruples: four cells with the same amplitude re- 
sponse but with phases in steps of 90°. For a drifting sine grating 
stimulus, the sum of the four responses is proportional to the 

G(t) = (1 - a)G(t - 1) + CY C Rj(t) (A0 
squared contrast of the stimulus, and it is constant over time (inde- 

[ v&l2 

pendent of the stimulus phase). The phase independence is a sim- 
ple consequence of the 90’ phase offsets, analogous to the trigono- 

R,(t) = Li(t) (A2) metric identity: sin2 (0) + cos2 (0) = 1. 
CT Substituting G,(t) for G( t - 1) in Eq. A3 gives the response of a 

where Lj( t) is the linear response defined in Eq. I, where [x] = 
model cell, once the network has reached in steady state 

max( X, 0) is half-wave rectification, and where it is assumed4 that Ri(t) = K Ai(t) 

G(t) 5 K. c2 + C Aj(t) WI 

These two equations were used to compute the model simula- i 
tions. They are written here as a pair of time-difference equations 
for ease of implementation on a computer. The network could 
also be expressed in terms of a pair of differential equations, model- 
ing the cortical cell’s membrane as an RC circuit whose conduc- 
tance grows with the activity of all the neurons in the pool (Caran- 
dini and Heeger 1993 ) . 

The feedback signal G(t) is the time average of the pooled re- 
sponse, Ci Ri( t). In other words, G(t) is computed by convolving 
CjRj(t)withal ow-pass filter. The low-pass filter has an exponen- 
tial impulse response, and cu determines its time constant. 

The linear response Lj (t) is multiplied by the feedback signal, 
but this actually results in divisive suppression. In the figure the 
multiplication is shown after linear summation. It could also oc- 
cur before the summation (just by distributing the multiplication 
across all of the inputs). In principle, the suppression could be due 
to corticofugal inhibition from cortical axons onto geniculate cell 
dendrites, it could be due to presynaptic inhibition (affecting the 
release of neurotransmitter) from cortical axons onto geniculate 
axons, it could be due to inhibition from cortical axons onto den- 
drites of other cortical cells, or it could be some combination of 
these. As mentioned in the DISCUSSION, however, there is evidence 
that the suppression is mostly intracortical, i.e., that it originates in 
cortical cells and that it affects only cortical cells (Bishop et al. 
1973; Bonds 1989; DeValois and Tootell 1983; Morrone et al. 
1982). 

Because we assume that G(t) 5 K, we can rewrite Eq. A2 

that is precisely the same as Eq. 3. 
From Eq. A4, we can also analyze the dynamics of the network. 

The solution to Eq. A4 is a complex exponential function with 
time constant, 7. From Eq. A.5, it is clear that the time constant 
depends on the input. For high-contrast stimuli, Cj Aj( t) is large, 
7 is small, and the network converges quickly. For low-contrast 
stimuli, on the other hand, the time constant is longer. Note that 
the time constant depends on the Fourier energy of the stimulus 
(proportional to pooled activity of a number of model cells), not 
on responsiveness of any particular model cell. 

If T is too small, then the feedback network becomes unstable. 
In particular, 7 must be P/2 to avoid unstable oscillations. In other 
words, we must ensure that 

2a2 
a< cr2 + 2 Ai VW 

The total activity, Cj Aj( t), is bounded, because it is propor- 
tional to the Fourier energy of the visual stimulus. Let A0 be the 
largest possible value for Cj Aj( t). Likewise, let go be the smallest 
possible value for 0 (because we choose 0 in the model we can 
guarantee that it will never be smaller than co). Then we choose cy 
as follows 

AS long as (T > go and Cj !j(t) 5 Ao, then r will be 912. For 
the simulations reported in this paper, the parameters were chosen 

4 We can ensure that G(t) I K by clipping values larger than K, i.e., by as follows: K = 1 SO that zj Aj(t) 5 1, pi = 0.1, and CY = 0.01 to 
using G’(t) = min[G(t), K]. satisfy the above constraint. 
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APPENDIX B The other three normalized responses are written similarly 

This appendix derives expressions approximating the model’s 
behavior in Figs. 9-12. This appendix shows I) that the linear 
prediction from counterphase data underestimates the direction 
index (computed from drifting grating responses); 2) that the lin- 
ear prediction from counterphase data overestimates the response 
to gratings drifting in the nonpreferred direction; and 3) that, for 
an appropriate choice of contrast, the linear prediction from coun- 

R, = k tRd2 
o2 -I- c2 

terphase data correctly esti 
in the preferred direction. 

mates the response to gratings drifting 

Three approximations are made in deriving these results. First, 
the ellipse fitting procedure is ignored, and it is assumed that we 
have measured counterphase grating responses for the spatial 
phases giving the maximum and minimum responses. Second, the 
initial transient burst of activity is ignored. Third, it is assumed 
that the feedback normalization signal, Cj Rj( t) in Eq. Al, is con- 
stant over time. The normalization signal is indeed constant over 
time for a drifting grating stimulus (see APPENDIX A). For a coun- 
ter-phase grating stimulus, however, the normalization signal oscil- 
lates over time. The magnitude of the oscillations depends on the 
extent of temporal averaging (smaller cy in Eq. Al yields more 
averaging). 

In the following derivations, the responses of the underlying 
linear operator are denoted by R,, R,, R, , and R,. In particular, 
R, is the magnitude of the fundamental Fourier component of the 
response for a grating drifting in the preferred direction, and R, is 
the response magnitude for a grating drifting in the nonpreferred 
direction. R, and R, are the magnitudes for counter-phase gratings 
with spatial phases eliciting the largest and smallest (respectively) 
responses. Likewise, the response magnitudes of the model cell 
(normalized, half-squared, linear operator) are denoted by &,, 
l?,, l?,, and &. 

The response of a model cell is given by Eq. 3, rewritten here as 

Ai 
RiCt) G Km 

1 I 

where G; is the semisaturation constant and K and k1 are con- 
stants. Ai( t) is the response of an unnormalized, half-squared, 
linear operator. E is the Fourier energy of the stimulus (because 
the linear weighting functions tile the spatiotemporal frequency 
domain, the feedback normalization signal is proportional to the 
Fourier energy of the stimulus). This expression is an approxima- 
tion to the actual model behavior. It is exact for drifting grating 
stimuli, because for those stimuli the feedback normalization sig- 
nal, & Rj( t) in Eq. Al, is constant over time. 

The following statements are true of the underlying linear re- 
sponse magnitudes 

R, = R, + R, 

R, = R,-R2 

R, = CR, + &d/2 

R2 = CR, - Rw 

These equalities are used in the derivations below. 
We can write the normalized response magnitudes in terms of 

the underlying linear response magnitudes. For example 

The denominators of the expressions for R, and R2 have c2/2, 
whereas the denominators of the expressions for &, and R, have 
c2. Counter-phase gratings and drifting gratings of equal contrast 
have different Fourier energy. 

We now show that the linear prediction from counterphase data 
underestimates the direction index. The direction index (com- 
puted from drifting grating responses) for a model cell is (& - 
&)/(&, + l?,). The linear prediction from counterphase data is 
R2/&. The first expression is always greater than or equal to the 
latter 

I$ - R, R;-R2, 
-= R;+Rf, 43 + RI 

= (Rp - RdR, + 4,) 
R; + Rf, 

wp - Rd2 
2 (R,+R,)' since R,, R, 2 0 

= R;/Rf 

= I?,/& 

Next we show that the linear prediction from counterphase data 
overestimates the response to a grating drifting in the nonpreferred 
direction. The response to a grating drifting in the nonpreferred 
direction is R,. The linear prediction from counterphase data is 
l?, - R2. The first expression is always less than or equal to the 
latter 

R,=k-$$ 

= k tR, - R2)2 

cr2 + c2 

5 k (R’ - R2)(R1 ’ R2) 
o2 + c2 

SinceR > R I- 2 2 0 

Rf-R; 
=k- 

CT2 + c2 

R;-R; Sk- CT2 + c2/2 

= R, 42 

Next we show that for an appropriate choice of contrast, the 
linear prediction from counter-phase data correctly estimates the 
response to a grating drifting in the preferred direction. Two re- 
sults are derived: 1) when the contrast is relatively large, the linear 
prediction from counterphase data overestimates the preferred re- 
sponse (evident in Fig. 124; and 2) when the contrast is rela- 
tively small, the linear prediction underestimates the preferred 

where c is Michelson contrast; k, k,, and k2 are constants; CJ = response (also evident in Fig. 12A ) . For an appropriate choice of 

cl /k, ; and k = k,/k:. The denominator depends on the semisa- contrast, in between these two extremes, the linear prediction is 

turation constant and on the Fourier energy of the stimulus. A close to the preferred response (as in Fig. 11). 

drifting grating with Michelson contrast c has Fourier energy The response to a grating drifting in the preferred direction is 

equal to c2. &,. The linear prediction from counterphase data is R, + R2 
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R; + R; 
R,+R,=k------ tJ2 + c2/2 

= k 2(R: + R2,) 
2c2 + c2 

= k (Rf + R;) + (Rf - R;) 
o2 + c2 

= (R,+ R,) fg-$ ( 1 
= R&l + (R,IR,)] $$ 

( i 
The counterphase prediction overestimates the preferred response 
I?, + & > &, if and only if the following condition holds 

[I + (R,I~,)I $$ ’ 1 
( 1 

i.e., 

c2 > o-2 I$ - I?, - i 1 Rn 
Likewise, the counterphase prediction underestimates the pre- 
ferred response & + & < &, if and only if 

c2 < c2 & - Rn 
i 1 R, 
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