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Abstract

A model is presented, consonant with current views regarding the neurophysiology and psychophysics
of motion perception, that combines the outputs of a set of spatiotemporal motion-energy filters to es-
timate image velocity. A parallel implementation computes a distributed representation of image
velocity. A measure of image-flow uncertainty is formulated; preliminary results indicate that this uncer-
tainty measure may be used to recognize ambiguity due to the aperture problem. The model appears to
deal with the aperture problem as well as the human visual system since it extracts the correct velocity
for some patterns that have large differences in contrast at different spatial orientations.

1 Introduction

The world we live in is constantly in motion—an
observer (either a biological organism or a com-
puter being) who depends on visual perception to
gain an understanding of his environment must
be able to interpret visual motion. Some of the
important functions of motion perception are: (1)
to act as an early warning system; (2) to allow an
observer to track the location of moving objects
and recover their three-dimensional structure; (3)
to help an observer determine his own movement
(egomotion) through the environment; (4) to help
an observer divide the visual field into meaning-
ful segments (e.g., moving vs. stationary or rigid
vs. nonrigid).

The perception of visual motion does not de-
pend on prior interpretation or recognition of
shape and form. However, it does depend on
there being motion information, i.e., changes in
intensity over time throughout the visual field.
Without texture, a perfectly smooth moving sur-
face yields an image sequence in which most
local regions do not change over time. But in a
highly textured world (e.g, natural outdoor
scenes with trees and grass), there is motion in-
formation throughout the visual field.

It is generally believed that the analysis of
visual motion proceeds in two stages. The first
stage is the extraction of two-dimensional motion

information (direction of motion, speed, dis-
placement) from image sequences. The second
stage is the interpretation of image motion. Opti-
cal flow, a two-dimensional velocity vector for
each small region of the visual field, is one rep-
resentation of image motion. This paper ad-
dresses the issue of extracting a velocity vector for
each region of the visual field by taking advan-
tage of the abundance of motion information in a
highly textured image sequenced.

Most machine vision efforts that try to extract
image flow employ just two frames from an im-
age sequence; either matching features from one
frame to the next [1] or computing the change in
intensity between successive frames along the
image gradient direction [2,3]. In a highly tex-
tured world neither of these approaches seems
appropriate, since there may be too many fea-
tures for matching to be successful and the image
gradient direction may vary randomly from point
to point. In fact, an error analysis of gradient-
based methods [3] confirms that a major prob-
lem with the approach is that large errors are
made where the image is highly textured, pre-
cisely where there is the greatest amount of mo-
tion information!

There have recently been several approaches
to motion measurement based on spatiotemporal
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filters [4,5,6,7,8,9,10,11] that utilize a large num-
ber of frames sampled closely together in time.
These papers describe families of motion-sensi-
tive mechanisms each of which is selective for
motion in different directions. To be able to use
such mechanisms in computing optical flow, one
must overcome two obstacles: (1) the aperture
problem; (2) the fact that the filter outputs do not
depend solely on the velocity of a stimulus, but
rather on its spatial frequency, temporal fre-
quency, and contrast.

In the next section, I review the mathematics of
motion in the spatiotemporal-frequency domain.
A family of motion-sensitive Gabor filters are
described in section 3. Section 4 derives a model
for extracting image velocity from the outputs of
these filters. Section 4.3 reformulates the model
as a parallel mechanism that computes a dis-
tributed representation of image velocity. In sec-
tion 5,1 formulate a measure of uncertainty in the
velocity estimates. Section 6 discusses how the
model deals with the aperture problem, compar-
ing its performance to that of the human visual
system.

2 Motion in the Frequency Domain

Several authors [4,5,6,7,8,12] have pointed out
that some properties of image motion are most
evident in the Fourier domain. This section des-
cribes one-dimensional motion in terms of spa-
tial and temporal frequencies and observes that
the power spectrum of a moving one-dimensional
signal occupies a line in the spatiotemporal-
frequency domain. Analogously, the power spec-
trum of a translating two-dimensional texture
occupies a tilted plane in the frequency domain.
One-Dimensional Motion. The spatial frequency
of a moving sine wave is expressed in cycles per
unit of distance (e.g., cycles per pixel), and its
temporal frequency is expressed in cycles per
unit of time (e.g, cycles per frame). Velocity
which is distance over time or pixels per frame,
equals the temporal frequency divided by the
spatial frequency:

v = o,/o, (1)

When a signal is sampled evenly in time fre-
quency components greater than the Nyquist fre-
quency (1/2 cycle per frame) become undersam-

pled, or aliased. As a consequence, if a sine wave
pattern is shifted more than half its period from
frame to frame it will appear to move in the op-
posite direction. For example, a sine wave with a
spatial frequency of 1/2 cycle per pixel can have a
maximum velocity of one pixel per frame and a
sine wave with spatial frequency 1/4 cycle per
pixel can have a maximum velocity of two pixels
per frame. In other words, the range of possible
velocities of a moving sine wave is limited by its
spatial frequency.

Now consider a one-dimensional signal mov-
ing with a given velocity v that has many spatial-
frequency components. Each such component @,
has a temporal frequency of @, = @.v, while each
spatial-frequency component 2w, has twice the
temporal frequency @, = 2m.. In fact, the tem-
poral frequency of this moving signal as a func-
tion of its spatial frequency is a straight line pass-
ing through the origin where the slope of the line
is v.

Two-Dimensional Motion. Analogously, two-
dimensional patterns (textures) translating in the
image plane occupy a plane in the spatiotem-
poral-frequency domain:

W, = U, + v, (2)

where v = (#,v) is the velocity of the pattern [§].
For example, the expected value of the sample
power spectrum of a translating random-dot field
is a constant within this plane and zero outside of
it.

If the motion of a small region of an image
may be approximated by translation in the image
plane, the velocity of the region may be com-
puted in the Fourier domain by finding the plane
in which all the power resides. To extract optical
flow we could take small spatiotemporal win-
dows out of the image sequence and fit a plane to
each of their power spectra. Below I present a
technique for estimating velocity by using
motion-sensitive spatiotemporal Gabor-energy
filters to efficiently sample these power spectra
(as depicted in figure 3).

The Aperture Problem in the Frequency Domain.
An oriented pattern, such as a two-dimensional
sine grating or an extended step edge, suffers
from what has been called the aperture problem



(for example, see Hildreth [13]). For such a pat-
tern there is not enough information in the image
sequence to disambiguate the true direction of
motion. At best, we may extract only one of the
two velocity components as there is one extra de-
gree of freedom. In the spatiotemporal-frequency
domain the power spectrum of such an image se-
quence is restricted to a line and the many planes
that contain the line correspond to the possible
velocities. Normal flow, defined as the compo-
nent of motion in the direction of the image
gradient, is the slope of that line.

3 Motion-Sensitive Filters

Adelson and Bergen [9] have pointed out that
image motion is characterized by orientation in
space-time. For example, figure 1(a) depicts a
vertical bar moving to the right over time. Im-
agine that we film a movie of this stimulus and
stack the consecutive frames one after the next.
We end up with a three-dimensional volume
(space-time cube) of luminance data like that
shown in figure 1(b). Figure 1(c) shows anx — ¢
slice through this space-time cube; the slope of
the edges in the x — ¢ slice equals the horizontal
component of the bar’s velocity (change in posi-
tion over time). The figure also depicts a lincar

Fig. 1. Spatiotemporal orientation. (a) A vertical bar translat-
ing to the right. (b) The space-time cube for a vertical bar
moving to the right. (<) An x — ¢ slice through the space-time
cube. The orientation of the edges in the x — ¢ slice is the
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filter that is tuned for the motion of this moving
bar. Thus, motion is like orientation in space-
time and spatiotemporally oriented filters can be
used to detect it. Three-dimensional Gabor-
energy filters, presented below, are such oriented
spatiotemporal filters.

3.1 Gabor-Energy Filters
A one-dimensional sine- (or odd-) phase Gabor

filter is simply a sine wave multiplied by a Gaus-
sian window:

2
g(t) = exp {2;2} sin (2not) (3)

1
T
These filters were originally introduced by Gabor
[14]. The power spectrum of a sine wave is a pair
of impulses located at @ and —o in the frequency
domain. The power spectrum of a Gaussian is it-
self a Gaussian (i.e., it is a lowpass filter). Since
multiplication in the space (or time) domain is
equivalent to convolution in the frequency do-
main, the power spectrum of a Gabor filter is the
sum of a pair of Gaussians centered at® and —©
in the frequency domain, i.e., it is a bandpass
filter. Thus, a Gabor function is localized in a
Gaussian window in the space (or time) domain

(©)

horizontal component of the velocity. Motion is like orienta-
tion in space-time and spatiotemporally oriented filters can
be used to detect it. (Redrawn from Adelson and Bergen
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Fig. 2. Perspective views of (a) a two-dimensional sine-phase
Gabor function and (b) its power spectrum.

and it is localized in a pair of Gaussian windows
in the frequency doamin.

Daugman [15,16] has extended Gabor filters to
a family of two-dimensional functions, an exam-
ple of which is shown along with its power spec-
trum in figure 2.

An example of a 3D (space-time) Gabor fil-
ter is

1

glxy.t) = =
Vv2n*%e 0,0,

2 2 2
X exp< — = il Y s L )
261 202 20}

X sin (2nw,x + 2no, ¥ + 2no,t)

(4)
where (®,,,,0,) is the center frequency (the
spatial and temporal frequency for which this
filter gives its greatest output) and (c,.0,,0) is the
spread of the spatiotemporal Gaussian window.
Three-dimensional Gabor functions look some-
thing like a stack of plates with small plates on
the top and bottom of the stack and the largest
plates in the middle of the stack. The stack can be
tilted in any orientation in space-time.

It is a simple matter to tune the filter to dif-
ferent frequencies and orientations while trading
bandwidth for localization. To change the fre-
quency tuning we independently vary o, , and
o,. Narrowing the Gaussian window in the
space-time domain broadens the bandpass win-
dow in the spatiotemporal-frequency domain
and vice versa.

Gabor filters have the additional property that
they can be built from separable components,
thereby greatly increasing the efficiency of the
computations. A new technique for computing

Gabor filter outputs from separable convolutions
is presented in [17]. Let k& be the size of the con-
volution kernel, let m be the number of images in
a sequence, and let each image be # pixels in size.
By simplifying the complexity of three-dimen-
sional convolution from O(k’n*m) to O(kn’m),
separability speeds it up by two orders of magni-
tude, given a kernel size of 10 pixels.'

The model presented in the following sections
employs quadrature pairs of filters, odd-phase
and even-phase filters of identical orientation
and bandwidth. The sum of the squared output
of a sine-phase filter, equation (4), plus the
squared output of a cosine-phase filter gives a
measure of Gabor energy that is invariant to the
phase of the signal. The frequency response of
such a Gabor-energy filter is the sum of a pair of
3D Gaussians (a one-dimensional version of this
cquation is derived in [18]):

G(0,,0,,0,) = (3) exp {—4m*[c (0, — @)’

+ of(m}. — o:n_,,o}2 + oj(w, — (:){{])2]}

(3) exp {—4n’[oi(, + 0,)°
)* + oiw, + ©,)]}
(5)

Equation (5) means that a motion-energy filter
with center frequency (w,,.0,,,,) will give an out-
put of G(w,.®,w,) for a moving sine grating with
spatial and temporal frequencies (o,,0,,,). The
filter will give a large output for a stimulus that
has a lot of power near the filter’s center fre-

quency and it will give a smaller output for a

)
+ oo, + o,,

lComplcxity is defined as the order of magnitude, O(), of the
number of operations required for a computation.



stimulus that has little power near the filter’s cen-
ter frequency.

In principle, the model could be built using
oriented spatiotemporal bandpass filters other
than Gabor filters. For example, Mallat [19] and
Adelsen and Simoncelli [34] have proposed an
orthonormal multiscale representation for two-
dimensional images that could be extended to
space-time. Also, it may be important for some
applications to eliminate delay and use filters
with a causal temporal response (Gabor filters
are not causal) like those suggested by Adelson
and Bergen [9] or Watson and Ahumada [8].

3.2 A Family of Motion-Energy Filters

The model uses a family of Gabor-energy filters
all of which are tuned to the same spatial fre-
quency band but to different spatial orientations
and temporal frequencies, ie., o, = mf.u -t m_in is
constant for all of the filters in one such family.

Eight of the twelve energy filters used in the
present implementation have their peak re-
sponse for patterns moving in a given direction—
for example, one of them is most sensitive to
rightward motion of vertically oriented patterns,
while another is most sensitive to leftward mo-
tion. The other four filters have their peak re-
sponse for stationary patterns, each with a dif-
ferent spatial orientation. The power spectra of
the 12 filters are pairs of 3D Gaussians (each pair
of Gaussians corresponds to one filter) that are
positioned on the surface of a cylinder in the
spatiotemporal-frequency domain (figure 3):
eight of them around the top of the cylinder, eight
of them around the middle, and eight around
the bottom.

We can build several such families of filters
tuned to different spatiotemporal-frequency
bands. For the current implementation I have
opted to compute a Gaussian pyramid [20] for
each image in the sequence and I convolve with a
single family of filters at cach level of the pyra-
mid. This is essentially the same as using families
of filters with equal bandwidths that are spaced
one octave apart in spatial frequency, but are
tuned to the same temporal frequencies. Filters
higher up in the pyramid achieve their peak re-
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Fig. 3. The power spectra of the 12 motion-sensitive Gabor-
energy filters are positioned in pairs on a cylinder in the
spatiotemporal-frequency domain. Each symmetrically posi-
tioned pair of ellipsoids represents the power spectrum of one
filter. The plane represents the power spectrum of a translat-
ing texture. A filter will give a large output only for a stimulus
that has a lot of power near the centers of its corresponding el-
lipsoids and it will give a relatively small output for a stimulus
that has no power near the centers of its ellipsoids. Each
velocity corresponds to a different tilt of the plane. and thus to
a different distribution of outputs for the collection of
motion-¢nergy mechanisms.

sponse for patterns with lower spatial frequency,
but with the same temporal frequency. Thus, the
lower-frequency filters have their greatest out-
puts for patterns moving at greater velocities.

Psychophysical evidence [21,6] suggests that
human motion channels exhibit such a relation-
ship between spatial frequency and velocity. This
makes sense from a computational viewpoint
since patterns containing only high spatial fre-
quencies may move at only low velocities, where-
as patterns containing only lower spatial fre-
quencies may move at greater velocities (see the
discussion in section 2 on sampling and tem-
poral aliasing).

4 Motion Energy to Extract Image Flow

Spatiotemporal bandpass filters like Gabor-
energy filters and those filters discussed in pre-
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vious papers [89,11] are not velocity-selective
mechanisms, but rather are tuned to particular
spatiotemporal frequencies. A single such mech-
anism cannot distinguish between variations in
the spatial-frequency content of the stimulus,
variations in its temporal-frequency content, or
variations in its contrast. But, an unambiguous
velocity estimate may be computed from the out-
puts of a collection of such mechanisms.

In what follows I describe a new way of com-
bining the outputs of a collection of motion-
energy mechanisms in order to extract velocity.
The role of the filters is to sample the power spec-
trum of the moving texture. The problem is to es-
timate the slope of the plane in the frequency do-
main that corresponds to the actual velocity.
First, I derive equations for Gabor energy result-
ing from motion of random textures or random-
dot fields. Based on these equations I formulate a
least-squares estimate of velocity.

Consider an analogous two-dimensional prob-
lem—estimating the slope of a line that passes
through the origin by viewing it with a finite
number of circular windows. Figure 4 shows a
dotted line and two circular windows. We are
given a family of such windows, a finite number
of them centered at known positions. The only
information we have is the number of points
from the dotted line that lie within each window
(in particular, we do not know the spacing be-
tween the dots). The upper window in the figure
encloses many points while the lower one en-
closes significantly fewer. Thercfore, the line
must pass close to the center of the upper window
while staying far from the center of the lower one.
Notice that it is impossible to estimate the slope
given only one circular window since the number
of dots within a particular window depends both
on the slope of the line and on the dot density.

4.1 Extracting Pattern Flow

In order to extract image velocity from the out-
puts of motion-energy filters we replace, in figure
4, both the dotted line with a plane and the cir-
cular windows with 3D Gaussian windows. A cir-
cular window simply counts the number of
points it encloses. A Gaussian window counts the
points and weights each according to its distance

Fig. 4. A problem analogous to that of extracting velocity—
estimating the slope of a line that passes through the origin by
viewing it with a finite number of circular windows. The
upper window encloses many points while the lower one en-
closes significantly fewer. In other words, the line must pass
close to the center of the upper window while staying far from
the center of the lower one.

from the center of the window. This is formalized
by Parseval’s theorem that states that the integral
of the squared values over the space-time domain
is proportional to the integral of the squared
Fourier components over the frequency domain:

f f f |f(xp.0)| dx dy dt

# J J‘ J‘ |F(mx,m},,m!)|3 dmi‘ d(')_v dm:
(6)

1l

# J_mj_‘J_mP(mx,my‘w,) do, dw, do,

where F(w,0,®,) is the Fourier transform of
fleyd) and Plo,m,o,) is the power spectrum.
Convolution with a bandpass filter results in a
signal that is restricted to a limited range of fre-
quencies. Therefore, the integral of the square of
the convolved signal is proportional to the in-
tegral of the power of the original signal over this
range of frequencies.

Parseval’s theorem may be used to derive an
equation that predicts the output of a Gabor-
energy filter in response to a moving random tex-
ture. The expected value of the sample power



spectrum of a translating random-dot field is
zero, except within a plane [equation (2)] where it
is a constant k. The frequency response of a
Gabor-energy filter is the sum of a pair of 3D
Gaussians. By Parseval’s theorem, Gabor energy
in response to a moving random texture is twice
the integral of the product of a 3D Gaussian and
a plane—by substituting equation (2) for ®, in
equation (5), multiplying by two, and integrating
over the frequency domain we get

Hu, v, k; 0, 0, 0)

k: = o i )
= j_mj_mcxp {—dn’loi(w, — mxn)z

2 2
i3 0_1'((’)_1' . (")_1'0)7

+ ci(uw, + vw, — 0,)*} dodo, (7
where (0, @

L @yr®;,) 18 the center frequency of the
motion-energy filter, (6,,0,,0,) is the spread of the
filter's spatiotemporal Gaussian window, (u, v) 18
the velocity of the stimulus, and & is proportional

to image contrast. This integral evaluates to
Wi, v, K 0, 0,0, 0,) = Hiut, v, §)

X exp |—4n’clo;o;

X H(u,v; @, Oy, o)
(8)
Hi(u,v
H (4, 0; 0y, @y, ©y) = ﬁ—ﬁ
Ho(u, v} @y, 0y, 0,) = (U0, + 0o, + mq})2
Hy(u, v) = (uc,6)* + (v5,6,)’°
+ (o,6,)°
kE

Hu, v, k)= ———

8n/Hy(u, 0)

Equation (8) means that a motion-energy filter
with center frequency (0, ®,, ), Will give an
output of #(u, v, k) for a random-dot texture
moving with speed (u, v). If we multiply the grey
levels at each pixel of the image sequence by a
constant k, then the filter's output will increase by
a factor of k%

For a family of Gabor-energy filters, we get a
system of equations (one for each filter) in the
three unknowns (u, v, k). The factor Hy(u, v, k)
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which appears in each of these equations does
not depend on the center frequency of the fil-
ters—it can be eliminated by dividing each equa-
tion by the sum or average of them all This
results in a system of equations depending only
on u and v that predict the outputs of the family
of Gabor-energy filters. These predicted energies
are exact for a pattern with a flat power spectrum.

But, what if the power spectrum of the pattern
is not flat? In particular, what if the image con-
trast is different for different spatial orientations?
Rather than dividing each filter output by the
sum of all of the filter outputs, we can group the
filters according to their spatial orientation and
normalize each spatial orientation separately.
Filters that differ only in their temporal-fre-
quency tunings line up in vertical columns in the
spatiotemporal-frequency domain (see figure 3).
One such column is sensitive only to a small
range of spatial frequencies and orientations.

In order to specify a procedure for estimating
velocity, we must now introduce some additional
notation. Let m(i = 1 — 12) be the twelve mea-
sured motion energies where each i corresponds
to the output of a filter with a different center fre-
quency. For each m;, let #(u, v) be the corres-
ponding predicted motion energy,

2,(u,v)
= exp {—4n'cio;07H (1, U3 0y, Oy ©,)]
)

where H(u, v o, @, m,j) is defined in equation
(8). In addition, let /7, be the sum of the outputs of
those filters that have the same preferred spatial
orientation as the ith filter, and let Z,(u, v) be the
corresponding sum of the predicted motion
energies,

M= m (10)
JEM;

R,= 2 A(u,0)
FEM;

where M, is the set of motion-energy filters that
share the same spatial orientation as the ith
filter.

A least-squares estimate for (u, v) minimizes
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the difference between the predicted and mea-
sured motion energies, i.e., it minimizes

12

Hu,v) = Z [m,- — m; %]h (11)

There are standard numerical methods for es-
timating v = (u, v) to minimize equation (11), e.g,
the Gauss-Newton gradient-descent method [22].

Alternatively, the least-squares estimate of v =
(1, v) maximizes

12

flu,v) = (2n) %~ exp {L > |:m,-

o o

B 1 12

for some constant, o.

Equation (12) is a response surface; the loca-
tion of the peak in this surface coresponds to the
velocity extracted by the model. Section 5 des-
cribes how equation (12) can be used to compute
a distributed representation of image velocity.

4.2 The Algorithm

The main steps in the computations performed
by the model are: (1) to convolve the image se-
quence with 3D Gabor filters; (2) to compute mo-
tion energy as the squared sum of the sine- and
cosine-phase Gabor-filter outputs; (3) to estimate
velocity by either minimizing equation (11) or
maximizing equation (12). In this section I ex-
plain the additional steps that need to be com-
puted and I summarize the entire algorithm.

Firstly Parseval’s theorem, equation (6), relates
an integral over the space-time domain to an in-
tegral over the frequency domain—since the
filters are localized in both domains, convolving
with a Gaussian is one way to approximate this
integral. We can think of the model as computing
the average image velocity within this Gaus-
sian window.

Of course, Gaussian convolution will tend to
smooth over motion boundaries and other re-
gions where the velocity changes rapidly from

point to point. Some possible solutions to this
problem are: (1) to use images of higher resolu-
tion; (2) to use a different method for combining
information other than Gaussian convolution,
e.g., relaxation labeling methods (for references,
sce Hummel and Zucker [23]) or finite-element
regularization methods (for references, see Ter-
zopoulos [24] or Poggio et al. [25]).

There are two situations for which this smooth-
ing problem is particularly bad. First, in regions
moving with high speed we must use filters that
are higher in the pyrmid, ie., of lower spatial
resolution. Second, where there is a region of low
image contrast adjacent to one of high contrast
the filter outputs for the high-contrast region
(since they are greater on average) will bias the
velocity estimates for the low-contrast region.
The former situation may be controlled by incor-
porating eye/camera movements—an initial low-
resolution estimate may be used to drive tracking
eye movements thereby decreasing the image
velocity and allowing for estimates of higher spa-
tial resolution. The latter situation may be
avoided by adaptation (automatic gain con-
trol)—for example, we may ‘equalize’ image con-
trast by computing the zero-crossings [26] of each
image and then applying the model to the result-
ing zero-crossing image sequence.

Finally, a problem with Gabor filters is that all
but the sine-phase filters have some dc response.
If an image is very bright (large mean luminance)
and of low contrast the output of the filter may be
dominated by response to the dc rather than to
the image-contrast signal. Clearly this is undesir-
able. This difficulty can be alleviated by first sub-
tracting the local mean luminance, e.g., by con-
volving with a center-surround filter that has a
very sharp positive center and a broad negative
surround. The dc problem may also be alleviated
by using only sine-phase filters—if the stimulus
has uncorrelated random phase, then a phase-
independent motion energy can be computed
from sine-phase filters alone by averaging their
squared outputs within appropriately sized
windows.

In summary, an algorithm for extracting image
flow proceeds as follows:

1. Compute a Gaussian pyramid for each image
in the image sequence.
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Convolve each of the resulting image sequen-
ces with a center-surround filter to remove the
dc and lowest spatial frequencies.

3. Compute the sine- and cosine-phase Gabor-
filter outputs using the separable convolutions
described in [17].

4, Compute motion energy as the squared sum
of the sine- and cosine-phase Gabor-filter
outputs.

5. Convolve the resulting motion energies with a
Gaussian to approximate the integral in Par-
seval’s theorem.

6. Find the “best” choice of u and v given by
equation (11) or (12), e.g., by employing the
Gauss-Newton gradient-descent method or
the parallel technique presented in section
4.3.

7. Compute the uncertainty in the velocity es-

timate as discussed in section 5.

4.3 Parallel Distributed Processing

Electrophysiological studies of the middle tem-
poral (MT) area in macaque and owl monkeys
reveal cells that are velocity tuned. Thus, it is

generally believed that one of the functions of

MT cells is to encode local image velocity. This
section describes how the conditional probability
density given by equation (12) can be used to
compute a distributed representation of image
velocity.

The distributed representation of image ve-
locity is made up of velocity-tuned units analog-
ous to the velocity-tuned cells of area MT. The
outputs of each of the velocity-tuned units are
computed in parallel by combining the motion-
energy measurements (recall that the motion-
energy filters are not themselves velocity tuned
since they confound spatial frequency, temporal
frequency, and image contrast).

The last step in the algorithm in section 4.2 is to
find the maximum of a two-parameter function,
f(u, v) in equation (12). One way to locate this
maximum is to evaluate the function in parallel
at a number of points (say, on a fixed-square
grid), and pick the largest result. The maximum
can be located to any precision by using a finer or
coaser grid. The grid need only be of limited ex-
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tent since bandpass filtering limits the range of
possible velocities (as discussed in section 2). In
the context of the model each point on the grid
corresponds to a velocity. Thus, evaluating the
function for a particular point on the grid gives
an output that is velocity tuned.

For a fixed velocity the predicted motion en-
ergies #,(u. v) defined by equation (9) are fixed
constants, denote them by w;, cach wherei corres-
ponds to a different motion-energy filter and
each n corresponds to a different velocity. We
may rewrite equation (12) for a fixed v as

fu= el 5 B m“’—]} (13)

3
20 i=1 Wiy

where o is a fixed constant, f, is the response of a
single velocity-tuned unit, and w;, and W, are
constant weights corresponding to the ith filter
and the nth velocity. A mechanism that computes
a velocity-tuned output from the motion-energy
measurements performs the following opera-
tions:

1. Alinear stage, a weighted summation given by
[mi - ?ﬁ,—(“fm[‘ﬁ}“)l.

2. A nonlinear stage, squaring.

3. A second linear stage, the summation over i.

4. A second nonlinear stage, multiplication by 1/
20 and exponentiation.

The model’'s computations are simply a series of
linear steps (convolutions, weighted sums) alter-
nating with point nonlinearities (squaring, ex-
ponentiation). The model is therefore encom-
passed by the general framework for parallel
distributed processing put forth by Rummelhart
and McClelland |27].

An example of the resulting distributed rep-
resentation is shown in figure 5 that displays a
map of velocity space with each point corre-
sponding to a particular velocity. The brightness
at each point is the velocity-tuned output for that
particular velocity, i.e., brightness is proportional
to the likelihood of being the true velocity. There-
fore, the maximum in the distribution of outputs
corresponds to the velocity estimate and the
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Fig. 5. Distributed representation of image velocity for a
random-dot field moving leftward and downward one pixel
per frame. Each point in the image corresponds to a different
velocity—for example, v = (0, 0) is at the center of the image;
v = (2, 2) is at the top-right corner. The maximum in the dis-
tribution of outputs corresponds to the velocity estimate and
the broadness of the peak reflects the uncertainty in the
estimate.

broadness of the peak reflects the uncertainty in
that estimate.

4.4 Some Results

All of the results presented in this paper were
produced with a single choice for each of the
model’s parameters—the spatial frequency tun-
ing of each Gabor filter is \/w? + @;, =} cycles
per pixel; the temporal frequency tunings are
either w,, = 0 cycles per frame (stationary filters),
or o, = *} cycles per frame (right/left, up/down,
etc.); the standard deviation of all of the spatial
Gaussians is 6, = 6, = 4 (the spatial kernel size
of the filters is 23 pixels) and that of the temporal
Gaussians is o, = 1 (the temporal kernel size is 7
frames). Except for the Yosemite fly-through se-
quence discussed below, all of the results are
computed using only the lowest level of the
pyramid.

Each vector in the flow fields depicted below
represents a motion in a direction given by the
vector's angle at a speed given by the vector’s
length. Errors in the velocity estimates are ex-
pressed in terms of the percentage error in each
component of the actual velocity vectors.

Translating Image Sequences. Translating image
sequences were generated from a textured image
by: (1) blowing the image up to four times its
original size; (2) shifting the resulting image by
an integral number of pixels i horizontally and j
vertically for each consecutive frame; (3) reduc-
ing each image in the resulting sequence back to
the original resolution. The final result is an
image sequence with velocity (i/4, j/4) pixels
per frame.

The model gives accurate velocity estimates
(within 10% of the actual velocities) for translat-
ing image sequences of a wide variety of textured
patterns including random-dot patterns (with dot
densities ranging from 5 to 50%), images of fractal
textures, some sine-grating plaid patterns (dis-
cussed in section 6), and natural textures (dis-
cussed below).

Noise Sensitivity. Translating random-dot image
sequences were used to study the error in the
velocity estimates. For image sequences with
speeds ranging from 0.25 to 1.75 pixels per frame,
the absolute value of the error in the velocity es-
timates is proportional to the actual speed (see
figure 11). The mean percentage error is —2.9%
and the standard deviation is 3.6%.

Noise sensitivity was studied by adding spatio-
temporal white (Gaussian) noise to translating
random-dot sequences. Define the signal-to-
noise ratio (S/N) to be the brightness of the image
dots divided by the standard deviation of the
noise. If S/N = 10, then the mean percentage
error in the estimates is —4.3% and the standard
deviation is 4.1%. This demonstrates that when
the standard deviation of the sensor noise is as
much as 10% of the sensor's dynamic range most
velocity estimates are still within 10% of the ac-
tual values.

Images of Natural Textures. Image sequences were
generated from each of the 14 natural textures

2Brownian fractal functions (see Mandlebrot [28] for defini-
tions and references) are characterized by similarity across
scales, and have an expected power spectrum that falls off as
P(©) = w™? for some constant B. Fractals may be used to
generate natural-looking textures.
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Fig. 6. (a) Fourteen natural textures (the two texture squarcs
in the upper left are the same, and so are the two in the upper
right). Each texture square was used to generate motion se-
quences translating 1/2 pixel per frame in each of eight direc-
tions. The velocities extracted by the model are accurate to
within 10%. (b) Example flow field extracted from a motion
sequence generated from the straw texture in the upper-left
corner of (a). The actual motion was (—0.5, 0.0). The mean of
the extracted velocities is (—0.473, —0.04) and the standard
deviation for both the horizontal and vertical components
is 0.01.
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field, For 72% of the flow vectors the estimated speed is within
10% of the actual value. For 94% of the flow vectors the es-
timated speed is within 20% of the actual value.

Fig. 7. (a) A frame from a motion sequence of counterclock-
wise rotating spiral. The perceived direction of motion is
toward the center of the image and the actual displacement in
that direction is 2n/7 pixels per frame. (b) The extracted flow
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Fig. 8 A rotating random-dot sphere. (a) A frame from the
motion sequence. (b) The actual flow field. (c) Flow field ex-
tracted by the model. (d) Difference between (b) and (c).

shown in figure 6(a). A sample flow field, shown
in 6(b), was extracted from an image sequence of
the straw texture in the upper-left corner of 6(a).
The model correctly estimates the velocity (to
within 10%) for every one of these textures. This is
particularly impressive for the straw texture in
the upper-left corner, the brick texture in lower-
right corner, and the texture second from the
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lower-right corner of 6(a), because they have such
strong spatial orientations. The model is capable
of recovering accurate velocity estimates for these
textures since it normalizes each spatial orienta-
tion scparately in equations (11) and (12). Con-
versely if we were to normalize the filter outputs
isotropically (i.e., by dividing each motion energy
by the sum of them all), then the estimates for
these three textures would be erroneous.
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A Rotaring Spiral. Figure 7(a) shows one frame of
a rotating-spiral image sequence. The spiral,
defined in polar coordinates by r = 0, was rotated
counterclockwise one full revolution over seven
frames. Figure 7(b) shows the extracted flow field.
The flow vectors point inward corresponding to
what human observers see.

A Rotating Sphere. Figure 8(a) shows one frame of
a random-dot image sequence of a sphere rotat-
ing in front of a stationary background. Figure
8(b) shows the actual flow field for this image se-
quence; 8(c) shows the flow field extracted by the
model: and 8(d) shows the difference between
them. The impact of the Gaussian smoothing is
clearly evident as there are errors along the mo-
tion boundary.

A Realistic Example. Figure 9(a) shows one
frame of a computer-gencrated image sequence
flying through Yosemite valley. Each frame was
generated by mapping an aerial photograph onto
a digital-terrain map (altitude map). The obser-
ver is moving toward the horizon. The clouds in
the background were generated with fractals (see
Mandlebrot [28] and recent IEEE SIGGRAPH’
conference proceedings for definitions and refer-
ences) and move to the right while changing their
shape over time.

Since the image velocities in the Yosemite fly-
through image sequence are as high as 5 pixels
per frame, we must use three levels from the
pyramid. In future research, I hope to develop a
rule for automatically combining estimates from
the different levels. For now, I simply pick the
level that is most appropriate for a given image
region—the level-zero estimate is chosen if the
actual velocity is between 0 and 1.25 pixels per
frame, the level-one estimate is chosen if it is be-
tween 1.25 and 2.5 pixels per frame, and the level-
two estimate is chosen if it is between 2.5 and 5.0
pixels per frame.

In the Yosemite fly-through image sequence,
there are regions of low contrast adjacent to high-
contrast regions (e.g., the face of El Capitan and
the cloud region are of low contrast). This exacer-
bates the smoothing problem as discussed in sec-

SIGGRAPH is the IEEE special interest group in com-
puter graphics.
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tion 4.2. For this image sequence, contrast was
first equalized by computing the zero-crossings
[26] of each image. The model was then applied
to the resulting zero-crossing image sequence.
Using the zero-crossing image sequence im-
proves the accuracy of the velocity estimates only
within the low-contrast regions. If we window the
low-contrast regions to remove them from the
context of the surrounding high-contrast regions,
then there is little difference between the ac-
curacy of the velocity estimates using either the
zero-crossing image sequence or the original
grey-level image sequence.

Figure 9(b) shows the actual flow field for this
image sequence; 9(c) shows the flow field extrac-
ted by the model; and 9(d) shows the difference
between them. The impact of Gaussian smooth-
ing is evident along the boundary at the horizon.
Small errors are also evident on the face of El
Capitan (in the lower left) since it is moving with
high speed (see the discussion in section 4.2), and
in the cloud region since the clouds change shape
over time while moving rightward.

5 Image-Flow Uncertainty

Information from perceptual sources is inheren-
tly noisy and uncertain. A sensing system can
make substantial gains by explicitly representing
the uncertainty in sensor data and taking actions
to reduce it. In particular, estimates of image mo-
tion are noisy due to the stochastic nature of most
textures—thus equation (8) is correct only on av-
erage. Decisions and computations that rely on
motion estimates will be more robust if we keep
track of uncertainty.

Section 4.3 describes how a distributed rep-
resentation of image velocity may encode both a
velocity estimate and the uncertainty in that es-
timate. For many applications, however, it is con-
venient to have a numerical measure of uncer-
tainty rather than to work with the entire distri-
bution.

This section uses tools from probability and
statistical estimation theory to formulate a mea-
sure of uncertainty for image flow by characteriz-
ing the variability in the model’s velocity es-
timates for translating image sequences of Gaus-
sian white-noise random textures. Since image
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Fig. 9. (a) One frame of an image sequence flying through
Yosemite valley. (b) The actual flow field. (c) Flow field ex-
tracted by the model. (d) Difference between (b} and (c).

textures are stochastic the predicted motion en-
ergies given by equation (8) are correct only on
average. For a particular region of a translating
image sequence the measured motion energies
deviate from the expected value.

Below I posit an additive Gaussian model for
the variability in the motion-energy measure-
ments. If a normal distribution is a valid approx-
imation for this variability, then the least squares
estimate is optimal in the sense that it is equal to
the maximum-likelihood estimate. Normality
can be tested empirically by translating a camera
a fixed distance in front of a variety of planar tex-
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tured surfaces. If the camera motion is known,
then the actual image translation is easily com-
puted, and we can compare the predicted motion
energies given by equation (8) to those measured
from the image sequence. However, if normal
distributions were not valid approximations for
the measurement variability, then least-squares
estimation would not be optimal. In addition, the
uncertainty measure formulated below would
not be accurate.

First, I review some aspects of statistical pa-
rameter estimation in the presence of additive
noise. T use the notation 8 to denote estimates of
the parameter 6.



Consider the case in which we take indepen-
dent measurements, m = (m,,..., m,,), that are
nonlinearly related to an unknown parameter,
v = (u,v), in the presence of zero-mean additive
Gaussian noise, n = (#y,. .., fj3),

m = R(v) +n (14)
n; ~ N(0, 6})

for some nonlinear vector function, R(y)=

[Z,(¥),.-.,Z(v)]. Equation (14) may be re-
written as
[m; — #(¥)] ~ N(0, o}) (15)

The error in the measurements may be represen-
ted by the Fisher information matrix (see
DeGroot [29] for definition). For a jointly normal
density the information matrix, denoted by V,' is
the inverse of the variance-covariance matrix, V,,.
Assuming that the measurements are indepen-
dent, the information matrix is diagonal with
entries

L_’ U v N 0
o1
B 0
g G2
Vs (16)
0 0 1
G2

and the conditional probability density is given
by

fmly) = (Zn)‘*”(jz o) (17)

X exp{ 1 [m; — ,?f’,-(v)]l}

=1 207

The posterior density, f(v¥|m), is the probability
that a certain value of v is equal to the true value,
given the measurements m. In the absence of
prior information on the parameter v, the pos-
terior density and the conditional density are one
in the same. The maximum-likelihood estimate
(MLE), ¥ = (4, 0), is that which maximizes the
conditional density, thus maximizing the prob-
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ability that the estimate is equal to the true
value.

The uncertainty in the estimate may be rep-
resented as an information matrix, V,'(¥), com-
puted from V' and from ¥ (see Melsa and Cohn
[30] for derivation):

Vi) = IOV (18)

where J(v) is the Jacobian matrix of R(v) and J'(v)
is the transpose of J(v). The information matrix,
V;'(¥), is a random variable that depends on the
estimate v. In general the estimate must be rea-
sonably close to the true value for this uncer-
tainty measure to be accurate.

The eigenvectors and eigenvalues of the infor-
mation matrix, V;'(¥), are the directions and
values in parameter space (e.g., in image-velocity
space) of minimum and maximum information.
The mean-squared-error, given by the trace of the
variance-covariance matrix, is an estimate of the
actual squared-error of the estimate, that is,
Tr [V,(¥)] is an estimate of [|[(u — &, v — )"

If there is only partial information about v then
the minimum-information eignevalue is zero.
For example, in the presence of the aperture
problem (as discussed in section 6) there is only
partial information about image motion. We rep-
resent uncertainty with the information matrix,
V;'(#), instead of using the variance-covariance
matrix, V,(¥), because the latter may be undefined
when there is only partial information.

Equation (18) may be used to compute the un-
certainty of an image-flow estimate. But we must
have a statistical model, called a sensor model, of
the measurement variability (denoted above by
V:h.* As discussed at the beginning of this sec-
tion, we posit a Gaussian model for the vari-
ability in the motion-energy measurements

m;, =K, Z(u,v) +n; (19)

where #,(u, v) is defined in equation (9), K is an
unknown constant that depends on image con-
trast, and », is additive process variability. The
procedure presented in section 4 for estimating
image velocity picks the estimate, (i, 0), to mini-
mize equation (11) rewritten here as

4Note that the sensor model is not a statistical model of the
camera noise, but rather a model of the motion-energy
measurement variability.
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Fig. 10. Four hundred Gaussian white-noise random textures
were generated, and each was used to generate a translating
image sequence with the same velocity (one pixel per frame
upward and rightward). The plot shows a histogram of
[m; — R; #u, v)]* for the motion-energy filter that is most
sensitive for rightward motion. The data in this histogram
pass both the chi-squared and the Kolomogorov-Smirnov
tests for Gaussianity. The distribution is zero-mean and its
variance is 0.12.

12

I(u,0) = 2 |m; — K, 2{u, v)]* (20)
i=1
2 m;
‘ ;"r(“ v)

where K. is used as an estimate of K, with 77, and
Z{u, v) as defined in equation (10).

Figure 10 shows a histogram of [m; — R (u,
v)] for one motion-energy filter over several hun-
dred trials. It is zero-mean Gaussian:

|m,- = K,‘ "%.f(”a U)] B N(O‘ 0‘2) (21)

Although the data in figure 10 pass statistical
tests for Gaussianity, some other examples fail
these tests. Further experimentation with real
image sequences is called for.

The Jacobian matrix is given by

R, ﬁﬁé’;}(j,ﬁ)_ g, 6#(:; u)\

' /

I »a

where [0#{u,v)/0u] and [0#(u,v)/dv] are ob-
tained by differentiating equation (9).°

The conditional probability density of the
motion-energy measurements given the actual
image velocity is given by

f(rilu, v) = 2n)~°|V,| 71
X exp {_ %[m — KR()]"V:'[m — KR(")]}(ZS)

Equation (23) may be used as in section 4.3 to
compute a distributed representation of image
velocity.

The variances, of v, are given by

var(m. _ i, s 0) ”)) (24)
’ Z(u,v)

_ [ #{u,v) _ P
( F.(u.0) ) var (m;)

+ (‘—?My [var (m) + var (m,)]
P u,v)

+ 2( "?fi(us U] _ 1)( 'Iifr'(”s U])
Hu,v) #(u,v)
X [cov (mm;) + cov (m;m;)]

+ 2(M)2 lC(}V (mg, ”13}]
A (u,v)

where m; is the output of the ith filter, m, and m,
are the outputs of the two filters that share the
same orientation the ith filter, and #{u, v).
#\(u,v) and #,(u, v) are the corresponding pre-
dicted motion energies given by equation (9). In
[18] I derive an equation for the covariances of
the motion-energy measurements, cov (m, m;),
for image sequences of translating Gaussian
white-noise random textures. The covariances of
¥, may be expressed similarly.

5To be thorough, we could treat the K/'s as variables and in-
clude derivatives [9[K; #,(i, 9)]/0K;}) = #;(#, 0) in the Jacobian
matrix. But we are not interested in meanng K, so there is
no reason to estimate the uncertainty in K;.
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Fig. 11. Two hundred translating Gaussian white-noise ran-
dom textures were gencrated with each of four different
velocities ranging from 0.0 pixels per frame to \/i pixels per
frame. (a) The average absolute error in the velocity estimates
as a function of speed. The best-fit line through the data
points has a slope of 0.029 and a y-intercept of 0.0024. (b) The
average square-root of the trace of the estimated variance-
covariance matrix as a [unction of speed plotted on the same
scale as in (a). The best-fit line through the data points has a
slope of 0.030 and a y-intercept of 0.0010,

The results presented in [18] demonstrate that
this is a reasonably good characterization of the
measurement variability. However since v,, now
depends on the actual value of (u,v) we must
make one further approximation—we approx-
imate the measurement variability using the
image velocity estimate, v (i, 0) = VU, ).

In summary, we may estimate image-flow un-
certainty by

1. computing the image-velocity estimate, (i, 0),
as discussed in section 4;

2. computing the measurement variability es-
timate, v,,(&, 0);

3. computing the information matrix, V;'(i, 0),
using equations (18) and (22).

A test of the accuracy of the uncertainty mea-
sure is to compare the mean-squared-error,
Tr [V/(4, 0)], with the actual squared error-of-
velocity estimates, |[(u — i, v — 0)|>. Figure 11
shows that the uncertainty measure reflects the
actual error for translating random-dot image
sequences.
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However, the uncertainty measure significant-
ly underestimates the actual errors for the Yose-
mite fly-through image sequence (figure 9) be-
cause these errors are mainly due to the blurring
problem discussed in section 4.2, not due to the
motion-energy measurement variability.

6 Dealing with the Aperture Problem

In this section, I use a class of moving stimuli
known as sine-grating plaids in order to test the
model’s capability for solving the aperture prob-
lem and I compare the model’s performance to
that of the human visual system. I also suggest
that the uncertainty measure presented in the
previous section might be used to recognize when
there is an ambiguous velocity estimate resulting
from the motion of a strongly oriented pattern.

6.1 Sine-Grating Plaids

A sine-grating plaid is the sum of two moving
gratings and may be seen as a single coherent
plaid motion. The gratings are not combined as
the vector sum or vector average of the two com-
ponent normal-flow velocities, but rather as the
intersection of the perpendiculars to the two
velocity vectors. Figure 12(a) depicts a single grat-
ing moving behind an aperture—the arrows rep-
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resent flow vectors and the diagonal line rep-
resents the locus of velocities compatible with the
grating’s motion. There is an infinite number of
such compatible motions any of which will result
in exactly the same stimulus. Figure 12(b) shows
a plaid composed of two orthogonal gratings
moving at the same speed—the intersection of
the perpendiculars to the two normal-flow veloci-
ties (the intersection of the two constraint lines) is
the only shared motion, and corresponds to what
is secen. Figure 12(c) shows a plaid composed of
two oblique gratings, one moving slowly and the
other more rapidly—one grating moves right-
ward and the other moves downward and right-
ward, but the pattern moves wupward and
rightward.

The model recovers the correct pattern-flow
velocity for a number of such plaids. Examples of
flow fields extracted by the model for plaids
made up of gratings with equal contrasts and
spatial frequencies are shown in figure 13. The
combined motion extracted by the model in
both 13(a) and 13(b) is accurate to within 5%.

The model does not always recover the correct
pattern-flow velocity for sine-grating plaids—for
example, the model’s estimates are in error (cor-
rect direction of motion but wrong speed) when
the spatial frequencies of the gratings are not
equal to the spatial-frequency tuning of the
filters.

6.2 Sine-Grating Plaids and the Aperture Problem

Adelson and Movshon [31] studied the phenom-
enon of coherence by varying the angle between
the two gratings, their relative contrasts, and their
relative spatial frequencies. They found that for a
range of relative angles, contrasts, and spatial fre-
quencies the two gratings are scen as a single
coherent plaid motion, and that beyond this
range the two gratings look like separate motions
moving past one another. The phenomenon of
coherence tests the ability of the human visual
system to solve the aperture problem; given the
ambiguous motion of a single moving grating,
how much additional information is needed
from the second grating to give an unambiguous
coherent percept?

The model is capable of extracting the correct
pattern-flow velocity for plaids that have large

®

(c)

Fig. 12. The perceived motion of two moving gratings is the
intersection of the perpendiculars to the two velocity vectors.
(a) A single moving grating—the diagonal line indicates the
locus of velocitics compatible with the motion of the grating.
(b) and (c) Plaids composed of two moving gratings. The lines
give the possible motions of each grating alone. Their inter-
section is the only shared motion, and corresponds to what is
seen. (Redrawn from Adelson and Movshon [31].)

differences in contrast, e.g., for plaids made up of
orthogonal gratings, the velocity estimates are ac-
curate to within 10% for contrast ratios of greater
than 32 : 1. This is comparable with human per-
formance [32]. As the contrast difference between
the two component gratings gets larger than this,
the model begins to tilt the extracted velocity vec-
tor toward the higher-contrast grating. Although
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Fig. 13. (a) Flow field extracted by the model for a plaid pat-
tern made up of a sine grafting moving leftward one pixel per
frame plus a sine grating moving downward one pixel per
frame. The combined motion extracted by the model is one
pixel leftward and one pixel downward each frame. (b) Flow
field for a plaid pattern made up of a sine grating moving
leftward one pixel per frame plus a sine grating moving
downward and leftward a quarter pixel each [rame. The coun-
terintuitive combined motion is leftward one pixel per frame
and upward a half pixel per frame as shown in the flow field
extracted by the model. The spatial frequency of the gratings
for both (a) and (b) was 0.25 cycle pixel™.

the perceived velocity of plaids has not yet been
measured precisely Adelson [32] notes that ob-
servers also see the direction of motion tilt toward
the higher-contrast grating when the relative con-
trast difference is large.

To withstand large contrast ratios, it is crucial
that the spatial bandwidths of the model’s filters
be less than their temporal bandwidths—in the
[requency domain, this means that the filters are
oblong hotdog-shaped (longer in ¢ than in x and
y) instead of spherical. As an illustrative exam-
ple. consider a plaid made up of rightward- and
upward-moving gratings. The idea of normaliz-
ing the filter outputs separately for each spatial
orientation is that the upward- and downward-
sensitive filters should give the same responses
relative to one another regardless of the contrast
ratio between the two gratings. If the filters were
spherical in shape, then the response of the
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downward-sensitive filter would be dominated
by the rightward-moving grating (the impulse
from the rightward-moving grating is closest to
the center-frequency of the downward-sensitive
filter). This would be bad because we want the
relative responses ol the upward- and downward-
sensitive filters to be unaffected by varying the
contrast of the rightward-moving grating. But,
since the filters are oblong in shape the response
of the downward-sensitive filter is dominated by
the grating moving upward for a wide range of
relative contrasts.

6.3 Recognizing Ambiguity

An isotropic texture (e.g., a random-dot field)
does not suffer from the aperture problem since
there is enough information within a local win-
dow to disambiguate the true direction of motion.
A strongly oriented pattern (e.g., a sinc grating)
offers only partial information about image
velocity. Between these two extremes there is a
continuum of stimuli offering information about
image velocity that is more and more ambiguous.
The level of ambiguity should be reflected by the
level of uncertainty in the velocity estimate.
The distributed representation of image veloc-
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(c)

Fig 14. Distributed representation of image velocity for sine-
grating plaids made up of orthogonal gratings. The gratings
moved 1 pixel frame™! leftward and downward and their spa-
tial frequency was 0.25 cycle pixel ™. (a) The two component
gratings had the same contrast. The location of the maximum
in the distribution corresponds to the velocity extracted by the
model. (b) One grating had twice the contrast of the other
grating. (¢) One grating had four times the contrast of the
other grating. (d) One grating had zero contrast; the aperture
problem is evident, as there is a ridge of maxima. Each
velocity-tuned unit along this ridge has the same output (to
within 1 part in 100,000).

ity introduced in section 4.3 forms a surface in
velocity space; the height of the surface at a par-
ticular velocity is the likelihood that it is the true
velocity. Some examples will illustrate that am-
biguity due to the aperture problem is reflected
by the shape of this response surface.

Figure 14 shows the distributed representation
of image velocity for some sine-grating plaids. As
the relative contrast of one of the component
gratings is varied the peak in the surface gets

@

broader in one direction. This is evident by com-
paring figures 14(a), (b), (c), and (d). In (a), the
two component gratings are of equal contrast
and the peak is symmetrical. When the contrast
ratio is increased as in (b) and (c), the location of
the peak does not change, but its shape elongates
in one direction. Eventually as shown in (d), the
peak turns into a ridge.

Figure 15 shows the distributed represen-
tations for image sequences generated from the
straw-texture image. There is enough informa-
tion in these image sequeqnces for the model to
disambiguate the true direction of motion as
there are clearly defined peaks in the dis-
tributions. The shape of each peak matches the
orientation of the texture thereby reflecting the
image-flow uncertainty.

When there is an unambiguous peak we can
extract the correct pattern-flow velocity. but how
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Fig. 15. Translating image sequences were generated from the
straw texture shown in the middle. Each pane shows the dis-
tributed representation of velocity computed from sequences
moving 1/2 pixel frame™! in cach of eight directions. The

do we know if there is a ridge or a peak? In-
tuitively, it is a peak if it falls off sharply in all
directions and it is a ridge if it stays constant in
one direction. We know from differential geome-
try (for example, see doCarmo [33]) that a surface
can be characterized locally by its maximum and
minimum curvatures. If the minimum curvature
of a surface is small or zero at a point while the
maximum curvature is large then the surface
looks like a ridge. If both curvatures are large
then it looks like a peak.

In [17] I suggest using the minimum curvature
of the surface at the peak divided by the height of
the peak as a measure of ambiguity due to the
aperture problem. We may pick a value to actas a
threshold; if the curvature measure is above this

locations of the peaks in these distributions correspond to the
velocities extracted by the model. The shape of each peak
matches the orientation of the texture thereby reflecting the
image-flow uncertainty.

value we pick the pattern flow given by the loca-
tion of the peak, and if it falls below this value we
may pick the normal-flow vector or we may
choose any other velocity along the ridge (a
familiar example of when people see motion
other than in the normal-flow direction is the
barberpole illusion).

Instead, we may use the information matrix in-
troduced in section 5 to recognize ambiguity.
Define the ambiguiry mesure as the quotient of the
minimum eigenvalue of the information matrix
divided by its maximum eigenvalue. Figure 16
shows a plot of the ambiguity measure as the
relative contrast of a plaid’s component gratings
is varied. The ambiguity measure decreases
monotonically with the contrast of the test grat-
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Fig. 16. The inflluence of contrast on the ambiguity measure.
One grating had a fixed contrast of 0.3 while the other was of
variable contrast. The two gratings moved at an angle of 120°,
both had a spatial frequency of 0.25 cycle pixel™!, and their
speeds were chosen so that the coherent plaid moved at a
speed of 2/3 pixel frame™!. The plot shows the ambiguity
measure as the contrast of the test grating was varied. The dot-
ted lines indicate the test-grating contrast needed to attain
threshold (0.001) ambiguity.

ing for a wide range of relative contrasts.

Figure 17 shows the values of the ambiguity
measure for each pixel of the rotating spiral
image sequence (figure 7). As we move away from
the center of the image there is less and less cur-
vature in the contour of the spiral. The ambiguity
measure reflects this variation in the level of
velocity ambiguity.

The results in Figures 16 and 17 indicate that
the ambiguity measure may lead to a relaible test
for ambiguity due to the aperture problem.

7 Summary

This paper presents a model for computing local
image velocity consonant with current views
regarding the neurophysiology and psy-
chophysics of motion perception. The power
spectrum of a moving texture occupies a tilted
plane in the spatiotemporal-frequency domain.
The model uses 3D (space-time) Gabor filters to
sample this power spectrum and by combining
the outputs of several such filters the model es-

Fig. 17. The brightness at each pixel is proportional to the
ambiguity measure for the rotating spiral image sequence
(figure 7). The ambiguity measure reflects the ambiguity in
the image sequence.

timates the slope of the plane (i.e.. the velocity of
the moving texture). The model gives accurate es-
timates of two-dimensional velocity for a wide
variety of test cases including realistic images, se-
quences generated from images of natural tex-
tures, and some sine-grating plaid patterns.

The error in the velocity estimates for translat-
ing image sequences is from two sources. First,
since image textures are stochastic, equation (8)
is correct only on average. Second, the maxi-
mum-likelihood estimate is equal to the least-
squares estimate only if the variability in equa-
tion (8) is well approximated by a Gaussian
process.

The primary source of error for realistic image
sequences is that the model assumes image trans-
lation, ignoring motion boundaries, accelera-
tions, deformations (rotation, divergence, shear),
and motion transparency. Rather, the model
computes the average image velocity within a
Gaussian-shaped window.

A parallel implementation of the model results
in a distributed representation of image velocity.
The computations leading to this distributed rep-
resentation are simply a series of linear steps
(convolutions, weighted sums) alternating with



point nonlinearities (squaring, exponentiation).
The model is therefore encompassed by the
general framework for parallel distributed pro-
cessing put forth by Rummelhart and McClel-
land [27].

A measure of image-flow uncertainty is for-
mulated and it is demonstrated that this uncer-
tainty measure reflects the actual error in the
velocity estimates for translating image sequen-
ces of random textures. It is suggested that the un-
certainty measure might be used to test for am-
biguity due to the aperture problem.

The model appears to solve the aperture prob-
lem as well as the human visual system since it
extracts the correct velocity for patterns having
large differences in contrast at different spatial
orientations (> 32 : 1 contrast ratio for some pat-
terns). As discussed in [18] the model’s capability
for velocity discrimination is also comparable to
that of the human visual system.

This paper demonstrates the promise of com-
puting optical flow using spatiotemporal filters.
There are any number of related techniques
using different filters, or using different rules for
combining the filter outputs.

In [17] and |18] T show that the model may be
used to simulate psychophysical data on velocity
discrimination and on the coherence of sine-
grating plaids. In [17] 1 compare the com-
putations performed by the model to the stages of
the visual motion pathway of the primate brain,
and I suggest how the model might be used to
simulate electrophysiological data.

For the most part, simulating physiological
and psychophysical data merely demonstrates
that the model is consistent with some of the ex-
perimental results on biological motion percep-
tion. The emphasis in future research will be to
compare the predictions made by this model to
those made by alternative image-flow models
and to test those predictions with further ex-
periments. Thus, the model may prove to be an
interesting framework for future research in the
psychophysics and neurophysiology of motion
perception as well as in computer vision.
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