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ABSTRACT

This paper describes a method for synthesizing images that
match the texture appearance of a given digitized sample.
This synthesis is completely automatic and requires only the
“‘target’’ texture as input. It allows generation of as much
texture as desired so that any object can be covered. The
approach is based on a model of human texture perception,
and has potential to be a practically useful tool for image
processing and graphics applications. Some of this work
has been reported previously [8].

1. INTRODUCTION

Textures have often been classified into two categories, de-
terministic textures and stochastic textures. A deterministic
texture is characterized by a set of primitives and a place-
ment rule (e.g., a tile floor). A stochastic texture, on the
other hand, does not have easily identifiable primitives (e.g.,
granite, bark, sand). Many real-world textures have some
mixture of these two characteristics (e.g. woven fabric,
woodgrain, plowed fields).

Much of the previous work on texture analysis and
synthesis can be classified according to what type of texture
model was used. Some of the successful texture models
include reaction-diffusion [17, 18], frequency domain [9],
fractal [5, 10], and statistical/random field [2, 4, 6, 7, 11,
13] models. Some (e.g., [6]) have used hybrid models
that include a deterministic (or periodic) component and
a stochastic component. In spite of all this work, scanned
images and hand-drawn textures are still the principle source
of texture maps in computer graphics.

This paper focuses on the synthesis of stochastic tex-
tures. Our approach is motivated by research on human
texture perception. Current theories of texture discrimina-
tion are based on the fact that two textures are often difficult
to discriminate when they produce a similar distribution of
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responses in a bank of (orientation and spatial-frequency
selective) linear filters [1, 3]. The method described here,
therefore, synthesizes textures by matching distributions (or
histograms) of filter outputs. This approach depends on the
principle (not entirely correct) that all of the spatial infor-
mation characterizing a texture image can be captured in the
first order statistics of an appropriately chosen set of linear
filter outputs. Nevertheless, this model (though incomplete)
captures an interesting set of texture properties.
Computational efficiency is one of the advantages of
this approach compared with many of the previous tex-
ture analysis/synthesis systems. The algorithm involves a
sequence of simple image processing operations: convolu-
tion, subsampling, upsampling, histograming, and nonlinear
transformations using small lookup tables. These operations
are fast, simple to implement, and amenable to special pur-
pose hardware implementations (e.g., using DSP chips).

2. PYRAMID TEXTURE MATCHING

The pyramid-based texture analysis/synthesis technique
starts with an input (digitized) texture image and a noise im-
age (typically uniform white noise). The algorithm modifies
the noise to make it look like the input texture. It does this
by making use of an invertible image representation known
as an image pyramid, along with a function that matches the
histograms of two images.

2.1. Steerable Pyramid

An image pyramidis a particular type of subband transform.
The defining characteristic of an image pyramid is that the
basis/projection functions are translated and dilated copies
of one another (translated and dilated by a factor or 29 for
some integer 7). The subbands are computed by convolving
and subsampling. For each successive value of j, the
subsampling factor is increased by a factor of 2. This
yields a set of subband images of different sizes (hence the



name image pyramid) that correspond to different frequency
bands.

In an independent context, mathematicians developed a
form of continuous function representation called wavelets
(see [16] for an introduction to wavelets), that are very
closely related to image pyramids. Both wavelets and
pyramids can be implemented in an efficient recursive
manner.

Textures that have oriented or elongated structures are
not captured by radially symmetric basis functions. To syn-
thesize anisotropic textures, we adopt the steerable pyramid
transform. [12, 15]. This transform decomposes the image
into several spatial frequency bands. In addition, it further
divides each frequency band into a set of orientation bands.

The steerable pyramid, unlike most discrete wavelet
transforms used in image compression algorithms, is non-
orthogonal and overcomplete; the number of pixels in the
pyramid is much greater than the number of pixels in the
input image. This is done to minimize the amount of
aliasing within each subband. Avoiding aliasing is crit-
ical because the pyramid-based texture analysis/synthesis
algorithm treats each subband independently.

The steerable pyramid is self-inverting; the filters used
for analysis (building the pyramid) are the same as those
use for synthesis (collapsing the pyramid). This allows the
reconstruction (synthesis) to be efficiently computed despite
the non-orthogonality.

A C code implementation of the steerable pyramid is
available at:

http://www.cis.upenn.edu/~eero/home.html.

Psychophysical and physiological experiments suggest
that image information is represented in visual cortex by
orientation and spatial-frequency selective filters. The steer-
able pyramid captures some of the oriented structure of
images similar to the way this information is represented in
the human visual system.

2.2. Histogram Matching

Histogram matching is a generalization of histogram equal-
ization. The algorithm takes an input image and coerces it
via a pair of lookup tables to have a particular histogram.
The two lookup tables are: (1) the cumulative distribution
function (cdf) of one image, and (2) the inverse cumula-
tive distribution function (inverse cdf) of the other image.
These two lookup tables are used by the histogram matching
function to modify an image to have the same histogram as
another image.

2.3. Texture Matching

Our texture matching algorithm works by modifying an
input noise image so that it looks like an input texture
image. First, match the histogram of the noise image to
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the input texture. Second, make pyramids from both the
(modified) noise and texture images. Third, loop through
the two pyramid data structures and match the histograms
of each of the corresponding pyramid subbands. Fourth,
collapse the (histogram-matched) noise pyramid to generate
a preliminary version of the synthetic texture. Matching the
histograms of the pyramid subbands modifies the histogram
of the collapsed image. In order to get both the pixel
and pyramid histograms to match we iterate, rematching
the histograms of the images, and then rematching the
histograms of the pyramid subbands.

Whenever an iterative scheme of this sort is used there
is a concern about convergence. In the current case we have
not formally investigated the convergence properties of the
iteration, but our experience is that it always converges.
However, stopping the algorithm after several (5 or so)
iterations is critical. As is the case with nearly all discrete
filters, there are tradeoffs in the design of the steerable pyra-
mid filters (e.g., filter size versus reconstruction accuracy).
Since the filters are not perfect, iterating too many times
introduces artifacts due to reconstruction error.

The core of the algorithm is histogram maiching which
is a spatially local operation. How does this spatially local
operation reproduce the spatial characteristics of textures?
The primary reason is that histogram matching is done on
a representation that has intrinsic spatial structure. A local
modification of a value in one of the pyramid subbands
produces a spatially correlated change in the reconstructed
image. In other words, matching the pointwise statistics of
the pyramid representation does match some of the spatial
statistics of the reconstructed image. Clearly, only spatial
relationships that are represented by the pyramid basis
functions can be captured in this way so the choice of basis
functions is critical. As mentioned above, the steerable
pyramid basis functions are a reasonably good model of the
human visual system’s image representation.

Some examples are shown in figure 1 (sce for many
more examples).

3. CONCLUSION AND EXTENSIONS

This paper presents a technique for creating an image that
looks like a digitized texture image. The advantage of this
approach is its simplicity; you do not have to be an artist and
you do not have to understand a complex texture synthesis
model/procedure. You just crop a textured region from a
digitized image and run a program to produce as much of
that texture as you want.

The approach presented in this paper, like other tex-
ture synthesis techniques, has its limitations (see [8] for
examples). The analysis captures some but not all of the
perceptually relevant structure of natural textures. Hence,
this approach should be considered one of many tools for



texturing objects in computer graphics.

Pyramid-based texture analysis/synthesis can also be
used to produce solid textures for creating textured 3-d
objects without the distortions inherent in texture mapping
(see [8] for examples).

The pyramid-based texture scheme may be useful for
image data compression. In our current implementation,
each subband histogram is encoded with 256 bins. However
the subband histograms of many ‘‘natural’’ images have
a characteristic shape [14], suggesting that a very small
number of parameters may be sufficient.

Finally, if a small number of parameters suffice, then
it may also be possible to write an interactive tool for
texture synthesis, with a slider for each parameter in the
representation.
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Figure 1: In each pair left image is original and right image is synthetic: granite, figured sepele wood, stucco, panda fur, slag
stone, figured yew wood, burled mappa wood, denim.
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