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1 Introduction

simple cells

linear model

The primary visual cortex (V1) is arguably the most studied area in the mammalian cortex,

and one of the very few for which we can say something sensible about the computations that

it performs. V1 cells are selective for the position, shape, size, velocity, color, and eye of

presentation of a visual stimulus. The mechanism of this selectivity, as well as its rationale,

have recently begun to be understood, although some aspects still constitute an area of intense

debate.

The receptive �elds of V1 cells were �rst mapped by Hubel and Wiesel (1962) using 
ashing

bars. They termed those cells for which they could �nd regions that responded

either to the onset or to the o�set of a bright bar, but not to both. Simple cells constitute

around 50% of V1 neurons (De Valois et al., 1982; Schiller et al., 1976). This Chapter is

devoted to simple cells, but it also includes ideas that can be useful in the understanding of

the other major V1 cell type, the complex cells.

** Figure 1 About Here **

A number of researchers have proposed that simple cells behave linearly, and that their

selectivity is determined by their linear weighting functions (Figure 1A). This of

simple cells is attractive because if it were correct it would be possible to predict the responses of

a simple cell to any visual stimulus, based on a limited number of measurements. For example,

any image can be approximated by a number of small pixels. Measuring the cell response by

lighting each pixel one by one would allow the experimenter to predict the response to any

visual stimulus.

We begin the Chapter with the full de�nition of the linear model (Section 2). We explain

its basic properties, and we summarize the vast number of studies that were devoted to testing

it (Section 3). In these studies the model was found to be largely successful in explaining

the selectivity of simple cells for stimulus shape, size, position, orientation and direction of

motion. We then propose a biophysical implementation of the linear model, and we discuss
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gain

normalization

its plausibility (Section 4). In this implementation, simple cells receive both excitation and

inhibition arranged in push-pull, so that when one increases the other decreases, and vice

versa. The importance of this arrangement is that it makes it possible for the visual stimuli to

result in perfect current injection in the cell, without any conductance increase. Conductance

increases would result in nonlinear behavior.

While many aspects of simple cell responses are consistent with the linear model, there also

are important violations of linearity (Section 5). For example, scaling the contrast of a stimulus

would identically scale the responses of a linear cell. At high contrasts, however, the responses

of simple cells show clear saturation (Ma�ei and Fiorentini, 1973). Moreover, simple cells are

subject to cross-orientation inhibition: the responses to an optimally-oriented stimulus can be

diminished by superimposing an orthogonal stimulus, which would be ine�ective in driving

the cell when presented alone (Morrone et al., 1982). These nonlinearities may be partially

explained by contrast gain control mechanisms known to operate as early as in the retina

(Shapley and Victor, 1978). There is however evidence suggesting that these nonlinearities have

an important cortical component. As a result, some researchers have argued that selectivity

of simple cells must be due to nonlinear mechanisms (for review see Ferster and Koch, 1987).

Our opinion is that the linear model is a very powerful explanation of the behavior of sim-

ple cells. Part of the nonlinear behavior of simple cells can be attributed to the recti�cation

(threshold) in the generation of action potentials. The many nonlinearities that are not ac-

counted for by recti�cation can be explained by adding to the linear model a divisive inhibition

stage (Figure 1B). This stage controls the (responsiveness) of the neurons by means of

intracortical feedback from a large group of other cortical cells. This extended linear model is

called the model. Response normalization was originally proposed by Robson

(1988) to provide explanations for various failures of the linear model of simple cell responses.

The model has been expanded and formalized by Heeger (1993, 1992a,b, 1991), by Albrecht

and Geisler (1991), and by Carandini and Heeger (1994). who have shown that the normaliza-

tion model is capable, in principle, of explaining a wide variety of empirical phenomena (see

also Bonds, 1989; DeAngelis , 1992; Tolhurst and Heeger, 1996a,b; Nestares and Heeger,
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in vivo

1996). The overall motivation of the normalization model and its detailed synaptic mechanisms

are surprisingly similar to Marr's (1970) general theory of cerebral neocortex, and to much of

Grossberg's theoretical work on nonlinear neural networks (for review see Grossberg, 1988).

We propose (in Section 6) that normalization operates by shunting inhibition: cells inhibit

each other by increasing each other's membrane conductance. This decreases the gain of

the transformation of input currents into membrane potentials. The model explains response

saturation and cross-orientation inhibition because increasing stimulus contrast or adding an

orthogonal grating increases the activity of the network, resulting in increased conductance and

decreased gain. Increasing the conductance also decreases the time constant of the membrane

so the latency of the responses and the temporal �ltering properties of the cells depend on the

stimulus contrast. As a consequence the model captures a number of temporal nonlinearities

in the responses of V1 cells (Albrecht, 1995; Hawken et al., 1992; Reid et al., 1992; Dean and

Tolhurst, 1986; Holub and Morton-Gibson, 1981).

The normalization model is intentionally based on a very simpli�ed view of the cellular

physiology. As a consequence, it makes strong quantitative predictions with very few free

parameters, some of which we have rigorously tested (Section 7). We recorded from simple

cells in the primary visual cortex of paralyzed, anesthetized macaques, while presenting very

large sets of visual stimuli. We derived closed-form equations for the model responses to such

stimuli, and we found that these equations provide good �ts to the neural responses.

We conclude the Chapter with a discussion of the biophysical plausibility of the normaliza-

tion model (Section 8). Is shunting inhibition really the mechanism underlying gain control in

the cortex? We tested the model using extracellular data, so we have no direct proof that the

overall conductance grows with stimulus contrast. There are actually reasons to doubt that this

is the case: intracellular measurements have consistently failed to demonstrate large

conductance increases related to visual stimulation (Ferster and Jagadeesh, 1992; Berman

et al., 1991). As a result, the true biophysical substrate of gain control is uncertain. The

main advantage of shunting inhibition is that it constitutes the simplest possible way for the

normalization pool to control both the gain and the dynamics of a cell's response. Until further
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2 The Linear Model of Simple Cells
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2.1 Visual Stimuli In Space-Time

2.2 Spatiotemporal Weighting Functions

data are available the model should be considered to lie between a phenomenological model

and a correct biophysical explanation.

** Figure 2 About Here **

As a visual stimulus is projected on the retina it can be described by its intensity distribu-

tion ( ), that varies in the two spatial dimensions , and in time . This representation

ignores the color of the stimulus and assumes monocular viewing, but is in all other respects

complete. Consider for example a stimulus consisting of a dark vertical bar drifting from left

to right, on a white background. Figure 2A shows the bar at a particular instant in time.

Panel B shows that as the bar drifts from left to right, it can be considered as a solid in the

- - space. Panel C shows a snapshot of the volume taken from above, a space-time ( - ) plot

which ignores the dimension.

Di�erent velocities result in di�erent orientations in space-time (Adelson and Bergen, 1985;

van Santen and Sperling, 1985; Watson and Ahumada, 1985; Fahle and Poggio, 1981). For

example, if the bar in Figure 2A were going faster, its space-time ( - ) representation (Panel

C) would have been more tilted towards the horizontal. Had the bar been motionless, its

- representation would have been vertical. Had the bar been going from right to left, the

orientation of its - representation would have been opposite to the one in Figure 2C.

A de�ning property of linearity is that of : if is the response to stimulus ,

and is the response to stimulus , then the response of a linear system to the sum of the

stimuli + is just the sum of the responses, + . While the property of superposition
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may sound a little abstract, there is an equivalent statement that will make it concrete: simple

cells are linear if and only if their responses are falling

on their receptive �elds.

Figure 2D-F shows a schematic of a spatiotemporal weighting function. Panel D shows

a space-space ( - ) section of the weighting function. Panel F shows the space-time ( - )

projection of the weighting function, i.e. a snapshot of the weighting function taken from

above. The relation between the two is shown in Panel E. As we will see, real simple cell

weighting functions don't look too di�erent from this idealization (Figure 7).

The response of a linear cell is simply obtained by weighting the stimulus intensity at

each location and time by the value of the cell's weighting function at that location and at

that time, and by summing the results:

( ) = ( ) ( ) (1)

The cell travels in time from past to future (as we all do), while its retinal ( - ) location

remains �xed. The weighting function is zero for any time that lies in the future, because the

responses of the cell cannot depend on future events.

The spatiotemporal weighting function of a linear cell determines its selectivity (e.g.,

for orientation or direction of motion). In particular, several researchers have pointed out

that a linear cell is direction selective if and only if the subregions of its weighting function are

tilted along an oblique axis in space-time (Adelson and Bergen, 1985; van Santen and Sperling,

1985; Watson and Ahumada, 1985; Fahle and Poggio, 1981).

** Figure 3 About Here **

Figure 3 illustrates how this selectivity arises, by showing the responses of a linear cell with

a space-time oriented weighting function to a drifting grating stimulus. In Panels A-D the

grating drifts from left to right, and the resulting space-time orientation is very similar to the

space-time orientation of the weighting function. This results in strong responses (Panel A). In
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2.3 A Nonlinearity: Light Adaptation
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Panels E-H the grating drifts in the opposite direction, and the resulting space-time orientation

is almost orthogonal to that of the weighting function. This results in very small responses

(Panel E) because the weighting function averages out the variations in intensity present in

the stimulus.

** Figure 4 About Here **

If a linear cell's weighting function is not tilted along an oblique axis in space-time, then the

cell will not have a preference for direction of motion. Figure 4, for example, shows the space-

time projections of three di�erent weighting functions. The weighting function in Panel A

prefers stationary objects, since it is vertical in the - plane. The weighting function in Panel

B prefers moving or 
ickering objects but has no preference for the direction of motion. These

two weighting functions cannot be direction selective because they are ,

i.e. their weighting functions ( ) can be expressed as the product of a function of space

and a function of time . The weighting function in Panel C is clearly tilted along an

oblique axis in space-time, and is direction selective. Note that it is not space-time separable.

In characterizing simple cells as spatiotemporal linear neurons, we have neglected an important

(retinal) nonlinearity: light adaptation (Shapley and Enroth-Cugell, 1984). We can, however,

safely ignore light adaptation by restricting our choice of visual stimuli to luminance distribu-

tions ( ) that modulate (transiently) about a �xed mean/background luminance �. Exam-

ples are drifting grating patterns and drifting or brie
y 
ashed bars that are either brighter or

darker than the mean. In these conditions the retina can be considered to be in a �xed state of

adaptation, and its output is proportional to the \local contrast" ( ) = [ ( ) �] �

of the stimulus (Shapley and Enroth-Cugell, 1984).

To avoid confusion we (improperly) use the term to refer to the local contrast,

and we reserve the term for the maximum absolute value of the local contrast of a
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2.4 Another Nonlinearity: Recti�cation

local

energy

intracellular

extracellu-

larly

recti�cation

grating stimulus. The maximum contrast of a grating is 1, which is attained when the lowest

intensity is zero and the highest intensity is twice the mean. Finally, we use the term

to denote the variance of the stimulus over local space and recent time, and within a

band of spatiotemporal frequencies.

Spatiotemporal linear weighting functions are intended to be models the responses

of simple cells. Most of the data discussed in this Chapter, however, were obtained

. To model this, one is forced to consider also the transformation of membrane potentials

into �ring rates.

This transformation is bound to introduce a nonlinearity. The responses of a linear cell

would assume both positive and negative values. Likewise, the membrane potential 
uctuates

above and below a cell's resting potential. Firing rates, on the other hand, are by de�nition

positive. A linear cell with a high maintained �ring rate could encode the positive and negative

values by responding either more or less than the maintained rate. This is for example typical

of retinal ganglion cells (Enroth-Cugell and Robson, 1966). Simple cells, however, have very

little maintained discharge. Since their negative responses cannot be encoded in their �ring

rate, simple cells cannot act truly linearly.

** Figure 5 About Here **

As we discuss in Section 2.4, the transformation of membrane potential into spike rate can

be approximated by , that is by a function that is zero for membrane potentials

below a threshold, and that grows linearly from there on. Figure 5 shows some examples of

recti�cation. The three solid lines depict cases in which the �ring threshold is respectively 0, 5

and 10 mV away from the resting potential. Technically the �rst example of recti�cation, with

a threshold at , is called \half-recti�cation". The other two are called \over-recti�cation",

since their threshold is above the resting potential. We use the term \recti�cation" to include
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3.1 Responses to Impulses

3 Some Linear Properties of Simple Cells

linear model

a spatiotemporal linear weighting function followed by

recti�cation

all these cases.

Recti�cation is a static nonlinearity, that is one that depends only on the instantaneous

value of its input and not on its past history. Adding recti�cation after a spatiotemporal

linear weighting function does not substantially alter the selectivity or other basic properties

of the responses (Heeger, 1992a). In the following, whenever we refer to the of

simple cells, we tacitly assume it to be

, as shown in Figure 1A.

This Section describes some experimental results that provide strong evidence in favor of the

linear model of simple cells (see Heeger, 1993,1992a, for a more thorough review). Most of the

nonlinearities that are mentioned in this Section are explained by the recti�cation stage that

transforms intracellular responses into �ring rates.

** Figure 6 About Here **

When Hubel and Wiesel (1962) �rst mapped the receptive �elds of V1 cells, their stimuli

were bright 
ashing bars. Depending on whether a region responded positively to the onset

or to the o�set of a bright bar, they termed that region an ON or an OFF subregion. The

linear model predicts the existence of these subregions (Heeger, 1992a; Emerson, 1988). This

can be understood by considering the full space-time representation of a 
ashed bar, which

is shown in Figure 6A. Since the bar does not change position in time, its space-time ( - )

projection is vertical. The top and bottom ends of the rectangle are respectively the times

at which the bar is turned on and o�. The responses of a linear weighting function to such a

stimulus are depicted in Figure 6B-C. Figure 6B shows the case in which the bar is 
ashed in

an OFF subregion. As the weighting function travels down in time, the �rst subregion of the
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weighting function that hits the stimulus is inhibitory; this gives a negative response. Later the

stimulus overlaps both the excitatory and inhibitory subregions, so the response is about zero.

Finally, when the stimulus overlaps only the excitatory subregion (right panel of Figure 6B)

the weighting function gives a positive response. In sum, the response is negative just after

the bar is turned on and positive just after it is turned o�. The opposite will happen when

the bar is 
ashed in and ON subregion (Figure 6C): the response is positive just after the bar

is turned on and negative just after it is turned o�. After the responses in the left panels of

Figure 6B and C are passed through a recti�cation stage that shows only their positive parts

(shaded areas), they closely resemble the spike rate responses of a real simple cell.

** Figure 7 About Here **

Since Hubel and Wiesel's original work, the method for mapping a receptive �eld has been

made more quantitative by having a computer show sequences of bars in many di�erent posi-

tions and recording the correlation between �ring rate and light intensity. Such a correlation

depends on space and time: for each location and , one can measure the

correlation between the spike train ( ) and the sequence of stimulus intensities that occurred

seconds before at that location, ( ). The value of the correlation, which can

be positive or negative, is taken as the strength of the weighting function at that position and

time, ( ) . This method is called , and allows the measurement of full

space-time ( - - ) weighting functions (McLean et al., 1994; DeAngelis et al., 1993a,b; Shapley

et al., 1991; McLean and Palmer, 1989; deBoer and Kuyper, 1968). Figure 7 shows the full

space-time weighting function of a simple cell, measured with the reverse correlation technique.

The four upper panels represent - snapshots of the weighting function measured at di�erent

times in the past. A large number of snapshots like these are stacked to build a full space-

time weighting function, whose - structure (averaged over the axis) is shown at the bottom

of the �gure.

The reverse correlation method can be applied to any visual cell, linear or nonlinear, and

it will always give a result, i.e. a full space-time weighting function. For a linear cell, however,

9
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sine grating

3.2 Responses to Drifting Gratings

such a weighting function could then be used to predict the cell's responses to any visual

stimulus (using Equation 1). This property of linear systems can be used to test whether

simple cells are linear. For example, one can ask whether direction selectivity in simple cells

is fully explained by an underlying linear stage.

The linear model predicts that simple cells are direction selective only if their weighting

functions are oriented in space-time, and thus nonseparable (Figure 4). This prediction was

tested by McLean and Palmer (1994, 1989), Shapley, Reid and Soodak (1991), Emerson and

Citron (1992) and DeAngelis et al. (1993b). Their �ndings are mostly consistent with the

linear model. They found simple cells with weighting functions tilted along an oblique axis

(inseparable) in space-time, like the one in Figure 7. These cells were all direction selective,

and the preferred direction of motion was always correctly predicted from the orientation of

the weighting function. For example, the cell of Figure 7 was highly direction selective and

preferred stimuli moving from right to left in the - plane. A number of simple cells were

found to have space-time separable weighting functions, like the ones depicted in Figure 4A

and B. Consistent with the linear model, most of these cells were not direction selective*.

The stimulus of choice for linear systems analysis of the visual system is a stimulus whose

luminance varies sinusoidally in space and time, the . There are many advantages

to using sine gratings (reviewed in Enroth-Cugell and Robson, 1984), the most important

being that linear systems are guaranteed to respond to sinusoidal modulation with a sinusoid.

For example, had the modulation in luminance of the grating in Figure 3 been sinusoidal,

the responses in Panels A and E would have been perfect sinusoids. The deviation of the

responses from pure sinusoids can provide a quantitative measure of nonlinearity (Hochstein

and Shapley, 1976). Sine gratings were �rst used to study the neurophysiology of the visual

system by Enroth-Cugell and Robson (1966), who demonstrated the linearity of cat retinal X

ganglion cells. One of their tests of linearity involved comparing the responses to gratings with

the responses to luminance edges. The logic of this experiment is straightforward: since an

10
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edge is composed of the sum of a number of gratings, the responses of a linear cell to an edge

would be predictable from its response to gratings.

** Figure 8 About Here **

A similar experimental paradigm was applied to the study of simple cells by Movshon et

al. (1978a). They measured the sensitivity of the cells to drifting gratings of di�erent spatial

frequencies, and the sensitivity of di�erent receptive �eld regions to 
ashing bars. Since a

grating is composed of the sum of a number of bars, the response of a linear cell to a grating

is predictable (via Fourier transform) from its response to bars. Likewise, since a bar can

be thought of as the sum of a number of gratings, the response to a bar is predictable (via

inverse Fourier transform) from the response to gratings. Movshon et al. found good agreement

between the weighting function predicted by inverse Fourier transform of the grating sensitivity

and the weighting function obtained from the 
ashing bar data (Figure 8). This supports the

linear model of simple cell responses.

Many other studies have compared grating responses to impulse responses (DeAngelis et al.,

1993b; Shapley et al., 1991; Tadmor and Tolhurst, 1989; Jones and Palmer, 1987b; Jones et al.,

1987; Jones and Palmer, 1987a; Field and Tolhurst, 1986; Dean and Tolhurst, 1983; Kulikowski

and Bishop, 1981b,a; Glezer et al., 1980; Andrews and Pollen, 1979; Ma�ei et al., 1979).In

many cases, the inverse transform of the response to gratings gives a weighting function with

additional side bands beyond those measured directly. In addition, the measured response to

gratings is often more narrowly tuned for spatial frequency than predicted from the Fourier

transform of the response to impulses. This discrepancy between the grating responses and the

impulse responses can be explained by over-recti�cation, which conceals the impulse responses

of the weaker receptive �eld regions, so it is consistent with the linear model (Tolhurst and

Heeger, 1996b; Heeger, 1992a; Tadmor and Tolhurst, 1989).

Some of the above mentioned studies, on the other hand, unveiled a serious failure of linear-

ity: a discrepancy between the predicted and actual of the responses. For example, when

Movshon et al. (1978a) compared the observed and predicted weighting functions (Figure 8),

11



� �

polar plot

3.3 Responses to Contrast-Modulated Gratings

they did so only up to an arbitrary amplitude scaling factor. This scaling factor should not

be necessary according to the linear model. We will see later on that the normalization model

predicts this failure of linearity. In particular, it predicts that the cell's gain is di�erent when

it is stimulated with 
ashed bars from when it is stimulated with drifting gratings.

A contrast-modulated grating is a standing sine grating whose intensity is modulated sinu-

soidally over time. Simple cell responses to drifting and contrast-modulated gratings are quite

similar to recti�ed sinusoids (see e.g. Figure 12A). This is obviously consistent with the lin-

ear model: the spatiotemporal linear weighting function responds with a sinusoid and the

recti�cation hides everything that is below threshold.

** Figure 9 About Here **

A number of researchers (e.g. Reid et al. 1991, 1987; Tolhurst and Dean, 1991; Kulikowski

and Bishop, 1981b; Movshon et al., 1978; Ma�ei and Fiorentini, 1973) measured the responses

of simple cells while varying the spatial phase of contrast-modulated gratings. Since these

responses can be reasonably �t by a sinusoid, they can be described by just two numbers, the

amplitude and phase of the sinusoid. A useful way to display both response amplitude and

response phase at the same time is given by a like the one in Figure 9. Every point

in the polar plot corresponds to a sinusoid, whose amplitude is given by the distance from the

origin, and whose phase is given by the angle with the horizontal axis.

The linear model predicts that as the spatial phase of the contrast-modulated grating varies

between 0 and 180 , the responses should describe a \wasp-waisted" ellipse in the polar plot

(Movshon et al., 1978a). In particular, for a linear cell a polar plot of the responses would

be elliptical in shape. Over-recti�cation distorts the ellipse, producing a wasp-waist: if the

neuron has to reach a certain level of excitation before any activity is seen, there will be

a disproportionate decrease in small responses (Tolhurst and Heeger, 1996a; Heeger, 1993;

12
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Albrecht and Geisler, 1991; DeAngelis et al., 1993b). The physiological results are in line with

this prediction. Figure 9, for example, shows the responses of a simple cell to a contrast-

modulated grating positioned at 8 di�erent phases over the receptive �eld, spanning the range

from 0 to 180 . The raw data (�lled symbols) describe a wasp-waisted ellipse since the

amplitudes near the minor axes are smaller than they should be to �t an ellipse. When the

distortion introduced by recti�cation is removed (in this case assuming a resting \�ring rate"

of minus 8 spikes per second), the data fall on an ellipse (open symbols).

Because of superposition, the responses of a linear cell to contrast-modulated gratings

would be easily predictable from the responses to drifting gratings, and vice versa. Several

researchers tested whether this was the case for simple cells. Ferster and collaborators per-

formed intracellular recordings and found that the membrane potential responses were

consistent with the output of a spatiotemporal linear weighting function (Jagadeesh et al.,

1993). Other researchers performed extracellular recordings (Albrecht and Geisler, 1991; Tol-

hurst and Dean, 1991; Reid et al., 1991, 1987). These studies are generally consistent with the

linear model in that a cell's preferred direction of motion for drifting gratings can be correctly

predicted from its responses to contrast-modulated gratings. They however uncovered two

nonlinearities in simple cell responses. First, the linear prediction from contrast-modulated

grating responses underestimates the degree of directional selectivity observed with drifting

gratings. Second, the linear prediction overestimates the responses to gratings drifting in the

nonpreferred direction. Albrecht and Geisler (1991) and Heeger (1993, 1991) showed that the

�rst phenomenon can be explained by the recti�cation stage (which acts as an expansive non-

linearity), so it is consistent with the linear model of simple cells. The second phenomenon

instead is not consistent with the linear model, but it can in most cases be explained by a

gain control mechanism like that postulated by the normalization model. The normalization

model predicts that the cells are less responsive in the presence of drifting gratings than in the

presence of contrast-modulated gratings of equal contrast. This di�erence in gain can be shown

to yield the observed discrepancy in the predicted and actual responses to gratings drifting in

the nonpreferred direction (Heeger, 1993; Tolhurst and Heeger, 1996a).
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3.4 Responses to Compound Stimuli

According to the linear model of simple cells, knowing a cell's responses to gratings would

make it possible to predict the responses to any visual stimulus. This is because any visual

stimulus can be expressed as the sum of many di�erent gratings.

An important test of this prediction was performed by DeValois et al. (1979). They mea-

sured the orientation tuning of cat simple cells using individual gratings as well as checkerboard

stimuli. The motivation for their use of checkerboards is very interesting. At the end of the

1970s the issue of whether simple cells were better modeled as linear weighting functions or

as all-or-none edge detectors was the object of heated debate (see e.g. Marr, 1982, Ma�ei and

Fiorentini, 1973 and Schumer and Movshon, 1984). DeValois et al. (1979) reasoned that the

two models made very di�erent predictions of a cell's response to checkerboards. In checker-

boards the strongest sine grating components are oriented along the diagonals, whereas the

sharp edges are oriented along the rows and columns. According to the linear model the cells

will respond best when one of the diagonals is oriented in the cell's preferred orientation for

gratings. According to the edge-detector model, on the other hand, a cell will respond best

when either the rows or the columns are oriented in the cell's preferred orientation for gratings.

The results of DeValois et al. (1979) were consistent with the linear model, and falsi�ed the

edge-detector model. The responses of the cells could be predicted by having knowledge of the

location and orientation of the main sine gratings that compose the checkerboard. The precise

location and orientation of the sharp edges was not relevant in predicting the cells' responses.

A similar approach was followed by other researchers (e.g. Gizzi et al., 1990, Pollen et

al., 1988, DeValois and Tootell, 1983; Pollen et al., 1982; Ma�ei et al. 1979), who tested

linearity by comparing responses to single sine gratings with responses to sums of sine gratings

of di�erent spatial frequencies or orientations. All of these results are qualitatively explained

by the linear model (Heeger, 1992a).

The quantitative predictions of the linear model, however, are not always correct, and once

again the discrepancy points to the existence of a gain control mechanism. For example, Gizzi
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4.1 Linearity of the LGN

4 Biophysics of the Linear Model

the

responses of LGN neurons are linear functions of the stimulus intensity distribution

et al. (1990) found that simple cell responses to plaids composed of two sine gratings with

di�erent orientations were on average only 2/3 of the linear predictions based on the responses

to the individual gratings. As we will see, the normalization model explains this behavior

because it predicts that the gain of the cells is lower in the presence of plaids than in the

presence of single gratings.

We have been considering the linear model as little more than a mathematical abstraction.

This Section describes how the model might be implemented physiologically.

Unless some complicated linearization mechanism is invoked, simple cells can only be as linear

as the inputs they get. Since the input to the visual cortex is constituted by the activity

of LGN cells, we must begin our task of modeling simple cell linearity by assuming that

.

This assumption is a better approximation in the monkey than in the cat. In the cat there

are no LGN cells that are perfectly linear: the X cells are spatially and temporally linear,

but they have a (retinal) contrast gain control mechanism, which violates linearity (Victor,

1987; Enroth-Cugell et al., 1983; Enroth-Cugell and Robson, 1966). The Y cells are extremely

nonlinear (Victor, 1988; Troy, 1983; Hochstein and Shapley, 1976), but may not contribute any

input to the primary visual cortex (Ferster, 1990b,a).

In the monkey, on the other hand, there is a geniculocortical channel, the P pathway, which

is substantially linear. The other channel, the M pathway, is instead quite nonlinear, and its

nonlinearity might be due to a gain-control mechanism. The substantial linearity of the P

pathway and the nonlinearity of the M pathway have been observed in the responses of retinal

ganglion cells (Benardete and Kaplan, 1995; Lee et al., 1994; Benardete et al., 1992), and are
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4.2 Building Simple Cell Receptive Fields

re
ected in the properties of LGN cells (Movshon et al., 1994; Carandini et al., 1993; Sherman

et al., 1984; Derrington and Lennie, 1984). Even though P cells constitute around 90% of

the monkey LGN (Dreher et al., 1976), many simple cells also receive M inputs (Malpeli

et al., 1981). Indeed, while the two streams are segregated in layer 4C (Blasdel and Lund,

1983; Hendrickson et al., 1978; Hubel and Wiesel, 1972), they are not segregated at all in

the upper layers (Nealey and Maunsell, 1994; Yoshioka et al., 1994; Lahica et al., 1992). In

particular, for those neurons that do receive M input, the �rst 7-10 ms of activation are due

exclusively to the M signal (Maunsell and Gibson, 1992).

Besides the fact that monkey simple cells may receive some M input, there is another

phenomenon that makes our assumption of linearity of the geniculate input an imperfect

approximation: at high contrasts the responses of LGN cells show evidence of recti�cation.

Resting �ring rates in the LGN have been reported to be around 18 sp/s in monkey, and

respectively around 6 sp/s and 16 sp/s in cat X and Y LGN cells (Kaplan et al., 1987). An

analysis of the 136 monkey LGN cells recorded by Sherman et al. (1984) reveals that their

average resting �ring rate was only around 7 spikes/s. On average the modulation in spike rate

due to a 50% contrast grating was twice as large as the resting �ring rate for P cells (median:

2.1), and three times as large for M cells (median: 3.3). Recti�cation in the input will be

ignored in the following but should be considered in more detailed models of the visual cortex.

In their 1962 paper, Hubel and Wiesel hypothesized that the receptive �elds of simple cells

are the result of an orderly arrangement of LGN inputs. Geniculate cells have center-surround

receptive �elds. When stimulated with a spot stimulus in their center they respond either to

the onset (ON-center cells) or to the o�set (OFF-center cells) of the stimulus. According to the

scheme proposed by Hubel and Wiesel an ON subregion of a simple cell receptive �eld would

result from the sum of an aligned series of LGN ON-center inputs. Similarly, an OFF subregion

would result from the sum of an aligned series of OFF-center inputs. This arrangement has

been recently con�rmed by Reid and Alonso (1995), who recorded simultaneously from simple
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4.3 Push-Pull Arrangement of Inputs

cells and from LGN cells.

If some of the LGN inputs reach a simple cell before some others, the resulting receptive

�eld can also display direction selectivity. In the cat LGN, for instance, there is evidence for

the existence of two classes of cells, \lagged" and \nonlagged", whose responses have di�erent

latencies (Saul and Humphrey, 1992, 1990; Mastronarde, 1987). Figure 4 illustrates how the

outputs of these two classes of cells could be summed to yield a direction selective simple

cell. The weighting functions in Panels A and B were drawn to resemble respectively that of

idealized lagged and nonlagged LGN cells. These functions are space-time separable and have

the same center-surround spatial structure, but slightly di�erent spatial positions. They have

di�erent temporal structures, which result in di�erent response latencies. Panel C depicts the

weighting function obtained by summing the two LGN weighting functions. This weighting

function is oriented in space-time, so it is direction selective. It is similar to that of a direction

selective V1 simple cell. In practice, V1 simple cell weighting functions would be the result

of many, not just two, LGN inputs. In general, a nonseparable (direction selective) weighting

function can be obtained by simple addition of separable (not direction selective) weighting

functions (Adelson and Bergen, 1985; Watson and Ahumada, 1985; Fahle and Poggio, 1981),

as long as the latter di�er in their temporal structure.

The linear combination of LGN inputs involves both sums and subtractions. Indeed, besides

excitatory responses, simple cell receptive �elds also exhibit inhibitory responses, elicited by

the onset of a light on an OFF region, or the o�set of a light on an ON region. Hubel and Wiesel

(1962) pointed out that these inhibitory responses could originate either from the withdrawal

of excitation or from actual inhibition.

There is now evidence that both mechanisms are at work. Inhibitory postsynaptic poten-

tials (IPSPs) do appear in intracellular recordings of simple cells (Creutzfeldt and Ito, 1968),

and their interaction with the excitatory postsynaptic potentials (EPSPs) is subtractive (Fer-
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push-pull

ster and Jagadeesh, 1992; Berman et al., 1991). Ferster (1986) measured the selectivity of

the IPSPs and found it to be identical to that of the EPSPs. Moreover, he found that in ON

regions a light increase results in EPSPs and a light decrease results in IPSPs, while in OFF

regions a light decrease results in EPSPs and a light increase results in IPSPs (Ferster, 1988).

In other words, EPSPs and IPSPs are spatially overlapping. The inhibitory responses result

from both withdrawal of excitation and actual inhibition, just as the excitatory responses result

from both withdrawal of inhibition and actual excitation.

It is thus plausible that the inputs to a simple cell are arranged in , i.e. they

come from pairs of cells with opposite signed receptive �elds, one of which provides excitation

and the other inhibition. For example, an ON subregion would be the result of excitatory

ON-center inputs as well as of inhibitory OFF-center inputs.

This complementary arrangement of excitation and inhibition is also consistent with extra-

cellular recording studies in cat V1 (Tolhurst and Dean, 1990, 1987; Heggelund, 1986, 1981;

Palmer and Davis, 1981; Glezer et al., 1982, 1980). A similar push-pull arrangement might

also be used by ganglion cells to integrate bipolar signals (Gaudiano, 1992).

For reasons of simplicity we assume that both the excitation and the inhibition are con-

tributed by feed-forward connections. In this we di�er from a number of recent models that

consider intracortical feedback crucial in sharpening the selectivity conferred by the inputs

from the lateral geniculate nucleus (Ben-Yishai et al., 1995; Somers et al., 1995; Suarez et al.,

1995). While the feed-forward view is supported by recent evidence (Ferster et al., 1996; Reid

and Alonso, 1995), the linear model should not necessarily be identi�ed with a feed-forward

arrangement inputs. A linear receptive �eld could, in principle, be constructed with pure

feed-forward connections, pure feed-back connections, or a combination of feed-forward and

feedback.
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4.4 Linearity of Excitation and Inhibition

4.5 Simpli�ed Model of a Cortical Cell

simple cell synaptic conductances depend linearly

on the responses of LGN neurons

We now make the linking assumption that

. This assumption is quite realistic as far as excitatory

conductances are concerned, because there is evidence for direct excitatory inputs from the

LGN to simple cells (Ferster and Lindstrom, 1983), and direct synaptic transmission can be well

approximated by a linear transformation of the presynaptic �ring rate into the postsynaptic

conductance*.

There is, however, con
icting anatomical evidence of direct geniculocortical inhibition (Ein-

stein et al., 1987; Garey and Powell, 1971), and none of the physiological evidence supports

its existence (Reid and Alonso, 1995; Ferster and Lindstrom, 1983; Tanaka, 1983; Toyama

et al., 1977b,a; Toyama and Takeda, 1974; Toyama et al., 1974; Watanabe et al., 1966). Since,

most inhibitory inputs from the LGN to simple cells are disynaptic (Ferster and Lindstrom,

1983), the linearity of inhibition would seem to require an inhibitory cortical interneuron that

performs a linear integration of LGN inputs and encodes them linearly into �ring rate.

** Figure 10 About Here **

We adopt a very simpli�ed model of a cortical cell (Figure 10): a single compartment circuit

with only passive conductances. In particular we consider a leak conductance and two

synaptic conductances, one excitatory ( ) and one inhibitory ( ). The membrane potential

of a model cell then obeys

= ( ) + ( ) + ( ) (2)

where is the membrane capacitance, and , and are respectively the equilibrium

potentials of the leak, excitatory and inhibitory channels.

** Figure 11 About Here **
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the membrane potential is a linear function of the synaptic

This view of the cellular physiology deliberately ignores many known aspects of neuronal

biophysics, such as voltage- and calcium-dependent channels, the possible nonlinear interac-

tions between inputs caused by the dendritic structure, and the possible e�ects of electrotonic

distance from the soma (Koch and Segev, 1989). Our model of a cortical cell is however in

many respects a reasonable approximation. For example, Figure 11A shows the responses of

an intracellularly recorded cortical neuron to sinusoidal current injection at di�erent temporal

frequencies. The membrane potential responses are dominated by their sinusoidal (

) component. This means that if the generation of spikes is ignored, the membrane of

cortical neurons can be reasonably modeled by passive conductances, which endow it with a

linear behavior. In particular, when the �rst harmonic responses are plotted against the tem-

poral frequency of the stimulus (�lled circles in Figure 11B), they are well �t by the predictions

of a single-compartment model of the cell (dashed curve in Figure 11B).

The push-pull arrangement of the LGN inputs to a simple cell can lead (through a balance of

excitation and inhibition) to a perfectly linear integration of the synaptic conductances by the

cell membrane (Carandini and Heeger, 1994).

For the sake of simplicity, consider the steady-state behavior of the membrane ( = 0).

At steady state Equation 2 can be rewritten as

=
+ +

+ +
(3)

The push-pull arrangement (Section 4.3) guarantees that every increase in excitation will

correspond to a decrease in inhibition, and vice-versa. In particular, we assume that and

are balanced so that the total conductance of the cell is constant:

( ) + ( ) + = (4)

Equation 3 can then be rewritten as = [ + + ] , which is a linear

function of and . In words,
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conductances

4.7 Spike Rate Encoding

.

If our model of the cell membrane as a single compartment is a good approximation, the

exact balance of excitation and inhibition expressed in Equation 4 is an essential condition for

the linear integration of the synaptic conductances. If, on the other hand, there is substantial

electrotonic distance between synaptic sites on the membrane, there are other conditions in

which linear integration of the synaptic inputs is possible. For example, Blom�eld (1974),

showed that if inhibition is located on the soma, and excitation is electrotonically remote

from it, there is a range of synaptic activations in which the membrane potential will be

approximately a linear combination of the excitatory and inhibitory synaptic conductances.

This approach would not require the strict balance of excitation and inhibition (Equation 4),

but it would require additional assumptions about the dendritic structure of the cell, the sites

of the inputs, and the range of the synaptic conductances.

If simple cells integrate their synaptic inputs linearly, if those inputs depend linearly on LGN

activity, and if LGN activity is a linear function of the stimulus intensity distribution, then

simple cells will integrate the stimulus intensity distribution linearly. This Section discusses

the �nal, nonlinear stage of the model, which is responsible for the encoding of the input-driven

membrane potential responses into spike trains.

Many characteristics of �ring rate encoding are consistent with the view that the �ring rate

responses are a recti�ed copy of the membrane potential responses. An example of this can

be seen in Figure 11A. The spike responses closely mirror the membrane potential responses,

and there is a clear threshold below which no spikes are generated. Once above threshold, the

�ring rate grows with the amplitude of the membrane potential modulation. There is in fact a

large literature pointing to a linear or bilinear relation between injected current and �ring rate,

once the current is above a threshold level (see Stafstrom et al., 1984, and references therein).

There is however an additional experimental result that is not consistent with the view
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5 Some Nonlinear Properties of Simple Cells

of �ring rate encoding as recti�cation: the spike rate encoder has notable dynamic proper-

ties (Carandini et al., 1994). For example, cortical neurons typically exhibit

, meaning that the �ring rate response to steady depolarization decreases with time

(Stafstrom et al., 1984). Dynamic properties of spike encoding are also evident in Figure 11.

Figure 11B plots the temporal frequency tuning of the �rst harmonic of the spike train taken

from records like the ones in Panel A. It is clear that spike rate encoding is not at all inde-

pendent of the temporal frequency of the stimulus, as would be the case for recti�cation. The

middle temporal frequencies are transmitted much better than the low temporal frequencies,

and the very high temporal frequencies are completely cut o�.

Recti�cation cannot account for these behaviors because it is a nonlinearity, i.e., it

depends only on the instantaneous value of its argument. Strictly speaking, then, recti�cation

is incorrect, because it would predict that the spike encoding properties would not depend on

the past history of stimulation. Hence, we are forced to adopt a slightly more complicated

model of spike rate encoding. In particular, we model the spike rate encoder as a band-pass

�lter followed by recti�cation*.

The behavior of this spike encoder model is actually quite simple when incorporated into

the linear model of simple cells. In the full model, the spike rate encoder comes after a

(synaptic) linear spatiotemporal weighting function. Since a chain of linear systems is itself

a linear system, we can treat the band-pass (spike encoder) linear �lter and the (synaptic)

spatiotemporal linear weighting function as a single linear system. The weighting function of

this �nal system is partly due to the synaptic inputs and partly to the band-pass properties of

the �ring rate encoder.

Having described the linear model of simple cells, and having discussed its numerous successes

and its possible biophysical implementation, it is now the time to discuss its failures. We have

already encountered a number of occasions in which the linear model fails to yield precise
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5.1 Contrast Responses

response saturation

per se

the ratio of the responses to any two

di�erent spatial frequencies is constant, irrespective of the stimulus contrast

quantitative predictions. Indeed, the behavior of simple cells is in many ways nonlinear (see

Heeger, 1993, 1992b for a review). This Section describes some of these nonlinearities, which

will be discussed more quantitatively once we have introduced the normalization model.

** Figure 12 About Here **

Presented with a change in contrast, a linear neuron would scale its response by the same

amount. The responses of a simple cell, instead, are often not proportional to stimulus contrast.

An example of this is illustrated in the central column of Figure 12A. The central column

shows the spike histograms of a simple cell in response to a drifting grating. The di�erent rows

correspond to di�erent contrasts. As the contrast goes from 50% to 100%, the response does

not double. Instead it grows very little. This phenomenon is known as

(Sclar et al., 1990; Albrecht and Hamilton, 1982; Ohzawa et al., 1982; Dean, 1981; Ma�ei and

Fiorentini, 1973). Cells can even exhibit \supersaturation", in which increasing the contrast of

the stimulus reduces the amplitude of the responses (Bonds, 1991; Li and Creutzfeldt, 1984).

Response saturation is not due to the high �ring rates. This can also be seen in Figure 12.

The three columns in Panel A show the responses of a cell to three gratings of di�erent spatial

frequency. Even though the left column and the right column stimuli elicit fewer spikes than the

central column stimulus, there clearly is response saturation. This phenomenon thus depends

on the contrast of the stimulus , not on the amplitude of the responses it elicits in the

cell. This property of the contrast responses can be more precisely observed in Panel B, which

plots the amplitude of the responses shown in Panel A, as a function of contrast. In spite of

the amplitude saturation the three contrast responses are vertical shifts of each other. Since

the vertical axis is logarithmic, a vertical shift means that

.

** Figure 13 About Here **
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5.2 Nonspeci�c Suppression

Another way to express this property is to say that the shape of the spatial frequency

tuning curve is independent of the contrast at which it is measured. Changing the contrast

of the stimuli just scales the tuning curve. This has been observed for both spatial frequency

tuning and orientation tuning (Skottun et al., 1987; Li and Creutzfeldt, 1984; Albrecht and

Hamilton, 1982; Sclar and Freeman, 1982; Movshon et al., 1978b). An example of the contrast

invariance of the orientation tuning is shown in Figure 13.

The contrast independence of the tuning curve shapes would be easy to explain if the

contrast responses of simple cells were linear. The responses of a linear cell to two stimuli

with the same contrast could be written as ( ) and ( ). Their ratio would

be ( ) ( ), independent of the contrast . We have seen, however, that the contrast

responses of real simple cells are nonlinear, since they often saturate at high contrasts. The

contrast independence of the tuning curves is thus by no means a trivial property.

The response to a preferred stimulus can be suppressed by superimposing an additional stim-

ulus that would not elicit any response when presented alone. This phenomenon is a violation

of superposition, a de�ning property of linearity. We call it , as it has

been found to be independent of direction of motion, largely independent of orientation and

broadly tuned for spatial and temporal frequency (Carandini and Heeger, 1995; Geisler and

Albrecht, 1992; DeAngelis et al., 1992; Nelson, 1991; Bonds, 1989; Gulyas et al., 1987; Kaji

and Kawabata, 1985; De Valois et al., 1985; Li and Creutzfeldt, 1984; De Valois and Tootell,

1983; Morrone et al., 1982; Hammond and MacKay, 1981; Dean et al., 1980; Bishop et al.,

1973). After some debate, there is now consensus that that cross-orientation inhibition can

be driven dichoptically (with one grating in each eye), although monoptic suppression (with

both gratings in the same eye) is typically stronger than dichoptic suppression. (Walker et al.,

1996; Sengpiel et al., 1995; Sengpiel and Blakemore, 1994; DeAngelis et al., 1992; Freeman

et al., 1987; Ohzawa and Freeman, 1986b,a; Ferster, 1981)
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5.3 Temporal Nonlinearities

completely

unresponsive to the mask

phase advance

The origins of suppression are most likely cortical, as it is completely absent in monkey P

LGN and cat LGN (Movshon et al., 1994; Bonds, 1989). Moreover, the temporal properties

of nonspeci�c suppression are consistent with the view that it originates from complex cells

or from a large pool of simple cells. Indeed, the suppression elicited by a drifting grating is

not modulated in time (Bonds, 1989; Morrone et al., 1982), and the suppression elicited by a

contrast-modulated modulates at twice the frequency of the stimulus (Morrone et al., 1982).

** Figure 14 About Here **

Figure 14 shows an example of nonspeci�c suppression. The stimulus was a plaid made

of two gratings. One (the \test") drifted in the cell's preferred direction and evoked a large

response when presented on its own. The other grating (the \mask") drifted at right angles

with the test grating, and was ine�ective in driving the cell. Its presence, however, clearly

suppressed the responses. For example, when the mask contrast was 50% the cell responded

only when the test grating had high contrast.

From Figure 14B one can see that the presence of the mask shifts the contrast response

to the right (Bonds, 1989). This corresponds to a scaling of contrast (Heeger, 1992b). We

will see later that the contrast responses shift to the right only when the cell is

. If the cell gives even a minimal response to the mask the e�ect is

more complicated than just a rightward shift.

** Figure 15 About Here **

Simple cells display prominent temporal nonlinearities. Figure 15A provides a good exam-

ple of this. As the stimulus contrast increases, the responses occur earlier in time. This is

called (Albrecht, 1995; Carandini and Heeger, 1994; Dean and Tolhurst, 1986).

It is a nonlinearity because for a linear cell scaling the input would just scale the output, not
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6 The Normalization Model of Simple Cells

change its timing. Phase advance is not entirely cortical in origin, but has a strong cortical

component. Phase advance in cat LGN (measured at 2-5 Hz) is on average less than 20 ms

(Carandini et al., 1993), whereas phase advance in cat V1 (measured at 2 Hz) is on average

around 47 ms (Dean and Tolhurst, 1986). In the monkey LGN, phase advance is present in M

cells, but it is completely absent in P cells (Sherman et al., 1984).

Another temporal nonlinearity of simple cells was uncovered by Reid et al. (1992). They

measured the responses of cat simple cells to eight di�erent stimuli and to the compound stim-

ulus obtained by summing the eight stimuli. They found that the responses to the compound

stimulus occur earlier in time than the linear prediction obtained from the responses to the

individual stimuli. This decrease in \integration time" is quite prominent, in the range of 5-60

ms, and there is evidence that its origin is cortical (Reid et al., 1992).

Finally, a third temporal nonlinearity of simple cell responses is given by the contrast de-

pendence of their temporal frequency tuning (Holub and Morton-Gibson, 1981). In particular,

increasing stimulus contrast increases the cell's responsivity to the high temporal frequencies

(Hawken et al., 1992). An example of this is shown in Figure 15B. According to the linear

model increasing the contrast should just scale the responses, with no e�ect on their temporal

frequency tuning. The origins of this nonlinear behavior are partially subcortical, since it was

observed in the cat retina (Shapley and Victor, 1978) and in the monkey M LGN (Benardete

et al., 1992). There is however evidence that in the monkey this behavior is much stronger in

V1 than in the LGN. Preliminary results by M. J. Hawken et al. (personal communication)

indicate that on average the high-cuto� frequency of V1 cells changes from around 10 Hz at 8-

16% contrast to around 30 Hz at 64% contrast. By contrast, the average change in high-cuto�

frequency of LGN cells is negligible.

We have now seen many cases in which the linear model is an inadequate description of simple

cells. Given its numerous successes, however, it would be unwise to dispense with the linear
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normalization

normalization pool

model altogether. The linear model can be extended by endowing it with a mechanism that

controls the gain (sensitivity to input) and the time course of the cell responses (Carandini

and Heeger, 1994; Heeger, 1993, 1992b, 1991; Albrecht and Geisler, 1991; Robson, 1988). This

mechanism ensures that the gain decreases when the contrast of a stimulus is increased, or

when another stimulus is superimposed to it.

This is done in the model (Heeger, 1992b), depicted in Figure 1B. First

comes a spatiotemporal linear weighting function. This is followed by a normalization stage,

where each cell's linear response is divided by a quantity proportional to the pooled activity

of a large number of other cells (the ). The normalization stage is followed

by recti�cation.

Normalization is a nonlinear operation; one input (a cell's underlying linear response) is

divided by another input (the activity of the normalization pool). The normalization pool is

assumed to include cells tuned to all orientations, spatial frequencies and temporal frequencies,

so that its overall response is uniform across these parameters. The e�ect of normalization

is that the response of each cell is rescaled with respect to local stimulus energy. The name

\normalization" is due to the assumption that the gain of every cell in the pool is rescaled by

the same amount (\normalized").

The normalization model explains all the nonlinearities described in the previous Section,

while retaining the main features of the linear model. According to the normalization model,

a cell's selectivity is attributed to summation (the linear stage) and its nonlinear behavior

is attributed to division (the normalization stage). For example the model explains cross-

orientation inhibition because a given cell is suppressed by many other cells including those

with perpendicular orientation tunings. It explains response saturation because the divisive

suppression increases with stimulus contrast.

The rest of this Section is devoted to the description of a biophysical implementation of the

normalization model. Once the details of the model are laid out, one can derive closed-form

equations for the responses of the model to some types of visual stimulus. Section 7 will show
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how these closed-form equations perform in �tting the experimental data.

** Figure 16 About Here **

We hypothesize that normalization (division) acts by controlling the overall conductance of

the cell's membrane (Carandini and Heeger, 1994). Figure 16 shows the biophysical structure

of the model. The circuit depicted is identical to the linear model shown in Figure 10, with

the addition of a synaptic conductance, . The shunting conductance has the

property that its equilibrium potential is the same as the resting potential of the cell,

(Coombs et al., 1955; Fatt and Katz, 1953). For ease of notation we pick this value as

the origin of the membrane potential measurements:

= = 0 (5)

The membrane potential in the circuit shown in Figure 16 obeys the following equation:

= ( ) + ( ) + ( ) + ( ) (6)

=

where is the , and is what we call the *:

+ + +

+ + +

Since and are in push-pull arrangement (Equation 4, in Section 4.6), and the equilib-

rium potential of the shunt is equal to the resting potential of the cell (Equation 5), the above

equations can be rewritten as

= + (7)

= + + (8)
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6.2 Role of the Membrane Conductance

current and conductance are decoupled

the shunt conductance grows with the activity

of the normalization pool

ad hoc

gain

time constant

As a result, : the driving current is a linear

function of the excitatory and inhibitory inputs and and does not depend on the shunt

conductance . The overall conductance of the cell does not depend on the excitatory

and inhibitory inputs and and is completely controlled by the shunt conductance .

** Figure 17 About Here **

We now make a crucial hypothesis: that

. The exact relation that we hypothesize between the two is depicted in

Figure 17A. This relation is entirely : it was chosen so that it would allow us to solve the

model mathematically, and it is not based on experimental data. Its principal consequence is

that the conductance of a model cell will depend on the energy of the visual stimuli. Increasing

the energy of a stimulus, e.g. by increasing its contrast, will increase the activity of the cells

belonging to the normalization pool, and thus cause an increase in cell conductance.

The membrane conductance , in turn, determines the cell's which is the relation

between input and output . At steady state the gain is = 1 , inversely proportional

to the conductance. The conductance also has an e�ect on the time course of the response.

The membrane capacitance takes time to charge and discharge, and this time is proportional to

the membrane = , which is also inversely proportional to the conductance.

Figure 17B illustrates these concepts. It shows the responses of the membrane to a current

step, for three values of the conductance . If the conductance is very small, the response is

slow and there is high gain (that is, the voltage response to a given current is high). If the

conductance is very large (the membrane is very leaky), it has small gain and it is fast in

charging and discharging the capacitance.

To summarize, increasing the stimulus energy increases the conductance of model cells.

This has two e�ects: (1) it provides divisive inhibition, by reducing the cell's gain; and (2) it

shortens the latency of the responses, by reducing the cell's time constant.
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7 Testing the Normalization Model

7.1 Fitting the Grating Responses

The variables in the model depend on each other in a circular way: (1) each cell's �ring rate

depends on its membrane potential (Figure 5); (2) each cell's membrane potential depends on

its driving current and on its conductance (Equation 6); (3) each cell's conductance depends

on the �ring rates of the cells in the normalization pool (Figure 17A). The model is a nonlinear

neural network (Grossberg, 1988), and is in general quite complicated because both the driving

current and the conductance vary over time. As a consequence, in order to predict its responses

one is often forced to resort to computer simulations (Heeger, 1993, 1992b).

For drifting sine grating and plaid stimuli, however, we were able to solve the model and

derive closed-form equations for its responses (Carandini and Heeger, 1994). In fact the model

was designed with these equations in mind. The advantage of closed-form equations is that we

can �t them to the data and see how the model performs.

We derived two equations for the �rst harmonic responses to drifting gratings, one for response

amplitude and one for response phase. These equations are detailed in Appendix A, which

also contains a sketch of their derivation.

Here we concentrate on the expression for the response amplitude, which is:

amplitude( ) amplitude( )
( ) +

(9)

where is the contrast of the grating, and is its temporal frequency. The role of the

quantities , ( ), and is easy to understand if one keeps in mind the structure of the model

(Figure 1B). ( ) is the output of the cell's linear weighting function (Equation 1) when the

grating has unit contrast. It is a sinusoid; here we are concerned only with its amplitude,

which for a stimulus of contrast is [amplitude( ) ]. The normalization stage divides that by

a quantity that depends on the activity of a large number of neurons. Appendix A shows that

for drifting grating stimuli this quantity is ( ) + , where the function ( ) is related to
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the low-pass properties of the cell membrane. It grows with , the temporal frequency of the

stimulus. Finally, the exponent is a constant and is related to the recti�cation stage that

encodes the membrane potentials into �ring rates.

Equation 9 is very similar to one that was empirically found to �t V1 contrast responses

(Sclar et al., 1990; Albrecht and Hamilton, 1982). The model however does more than that:

it predicts the dependence of the responses on all the other stimulus parameters, besides

contrast: spatial frequency, temporal frequency and orientation. To test these predictions we

used the model to �t large data sets obtained by stimulating simple cells with drifting gratings

of a variety of contrasts, spatial frequencies, temporal frequencies and orientations (Carandini

and Heeger, 1994). Some of our results are shown in Figures 12, 13 and 15. We found that

the model provides good �ts to the data, and accounts quantitatively for all the linear and

nonlinear behaviors described in this Chapter.

Figure 12 illustrates the dependence of the responses of a simple cell on contrast and spatial

frequency. The �ts of the model capture the shape of the contrast responses and the fact that

changing the stimulus spatial frequency simply scales these responses. This means that when

the amplitude is plotted on a logarithmic scale, as in Panel B, changes in spatial frequency

shift the contrast responses vertically, without a�ecting their shape. Very similar results are

obtained when the gratings are varied in orientation instead of spatial frequency, as shown for

example in Figure 13A (Section 5.1).

The reason for this behavior can be understood by considering the expression for the

response amplitude predicted by the model (Equation 9). The expression can be seen as

the product of two factors, [amplitude( )] and ( ( ) + ) . The �rst factor depends

on , the response of the cell's linear receptive �eld to the grating at unit contrast. The

second factor depends only on the contrast and on the temporal frequency of the grating.

For a �xed temporal frequency the shape of the contrast responses is entirely controlled by

the second factor; hence, varying stimulus orientation or spatial frequency leads to a vertical

shift of the contrast responses (Figs. 12B and 13A). Likewise, the shape of the orientation

and spatial frequency tuning curves is entirely controlled by the �rst factor, hence, varying
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7.2 Fitting the Plaid Responses

stimulus contrast leads to a vertical shift of the orientation and spatial frequency tuning curves

(Fig. 13B).

Figure 15 shows that the normalization model also predicts the temporal nonlinearities of

simple cell responses (Section 5.3). Panel A shows that the model captures the phase advance

behavior observed with increasing stimulus contrast. Panel B shows that the normalization

model correctly predicts the dependence of the temporal frequency tuning on contrast. As the

contrast increases the cell is more responsive to the high temporal frequencies. The reason for

the contrast-dependence of response phase and of the cell's temporal frequency tuning can be

understood in terms of the basic properties of the normalization model (Figure 17). In model

cells, increasing stimulus contrast increases the membrane conductance, which decreases its

time constant. A decreased time constant leads to a shorter response latency, thus explaining

phase advance. Decreasing the time constant also enables the membrane potential to better

follow the high temporal frequencies. This explains the fact that at high contrast the cell

responds to higher temporal frequencies than at low contrast. This last argument can be

made more quantitative by examining Equation 9. Appendix A shows that the quantity ( )

grows with the temporal frequency of the stimulus. This is a consequence of the low-pass

properties of the membrane. At low contrasts , has a strong e�ect, considerably scaling

down the responses. At high contrasts, when ( ), the e�ect is much weaker, so the high

frequency responses are relatively enhanced.

Appendix B sketches the derivation of approximate equations for the amplitude and phase of

the �rst harmonic response to plaid stimuli. In particular the expression for response amplitude

is

amplitude( )
amplitude( ( ) + ( ))

( ) + +
(10)

where and are the contrasts of the two gratings, ( ) and ( ) are the sinusoidal

responses of the linear weighting function to the individual gratings at unit contrast, and the
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remaining symbols have the same meaning as in the expression for the response to individual

gratings (Equation 9). Since the spatiotemporal receptive �eld is linear, its response to the

plaid is just a linear combination of its responses to the individual gratings, ( ) + ( ).

The normalization stage divides that by a quantity that depends on the activity of a large

number of neurons. For plaids composed of two gratings this quantity is ( ) + +

(Appendix B). Finally, the recti�cation stage is responsible for the exponent (Figure 5).

We tested the predictions of the model by recording the responses of simple cells to stimuli

composed of two gratings whose contrasts and assumed a variety of di�erent values

(Carandini and Heeger, 1995). The two gratings always had the same temporal frequency, but

could di�er in orientation and/or in spatial frequency.

Figure 14 shows an example of our results. In this case we chose the gratings so that one of

them (the \test") would strongly drive the cell, while the other (the \mask") would not elicit

any response when presented alone. The Figure shows the responses of the cell for 5 di�erent

test contrasts, and three di�erent mask contrasts. The cell was actually tested with a wider

variety of conditions, and the predictions of the model (Equation 10 for response amplitude,

and an equation for response phase described in Appendix B) were �t to all the responses

at once. When we discussed nonspeci�c suppression (Section 5.2), we used this Figure as an

example of the rightward shift of the contrast responses that results from masking. It is clear

from the quality of the �ts that the normalization model captures this behavior. Indeed, the

e�ect of a mask on the responses of a model cell can be seen directly in Equation 10. Let

for example grating 2 be the \mask". If, as in Figure 14, the mask alone does not elicit any

response ( 0), then the suppressive e�ect of the mask is due to the fact that the mask

contrast, , appears only in the denominator. In these conditions, the e�ect of an increase of

in the denominator is to shift the contrast response to the right (Heeger, 1992b).

** Figure 18 About Here **

Things become more complicated when both gratings that compose the plaid are able to

drive the cell (even minimally) when presented alone. In these conditions each component of
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the plaid acts both as a \test" and as a \mask". An example of this is shown in Figure 18.

In this experiment, the \mask" was not as e�ective as the \test" in driving the cell, but both

component gratings did elicit some spikes when presented alone. Panel B shows that depending

on the contrast of the stimulus, increasing the contrast of the mask can either enhance or

suppress the responses. This behavior is predicted by the normalization model (continuous

curves), as the contrasts of the two gratings, and , appear both in the numerator and in

the denominator of Equation 10. Increasing one of the two can result either in an enhancement

or in a reduction in the response, depending on the amplitude and phases of and , the

responses of the linear receptive �eld to the individual gratings, and on the size of the term

( ) in the denominator.

In summary, masking will cause the rightward shift in the contrast responses shown in

Figure 14 only if the mask elicits negligible responses when presented alone. The normalization

model predicts that in the general case masking will deform the contrast responses in more

complicated ways, like that shown in Figure 18. Some researchers have indeed reported that

suppression shifts the contrast responses downward on a logarithmic scale (Morrone et al.,

1982; Dean et al., 1980), which is in apparent contradiction with the rightward shift reported

by others (Section 5.2). The normalization model might explain this discrepancy: if the mask

elicits even minimal (subthreshold) responses when presented alone, it may very well cause

a downward shift in the contrast responses. The importance of \crosstalk' between di�erent

components of a stimulus has been previously recognized (Bonds, 1992; Bauman and Bonds,

1991), and the normalization model may provide a quantitative framework to understand these

interactions.

** Figure 19 About Here **

The nature of the responses of simple cells to plaid stimuli is further illustrated by the results

of another experiment (Figure 19). When presented alone the gratings elicited the responses

shown in Panels A and C. Had the neuron been linear, it would have obeyed superposition,

and its plaid response (Panel B) would have been well �tted by the linear prediction (dashed
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8 Biophysical Plausibility of the Normalization Model

curve) obtained by summing the responses to the individual gratings. The actual response

to the plaid instead was smaller than that, and it was well �t by the normalization model

(continuous curve in Panel B), which takes into account the fact that the gratings also provide

divisive suppression. A useful way to picture this is with a polar plot (Figure 19D). Each data

point in Figure 19D corresponds to a �rst harmonic sinusoid �tted to the responses of the

simple cell. The amplitude of the sinusoid is given by the distance from the origin, and the

phase of the sinusoid is given by the angle with the horizontal axis. The data points going in

the 1 o'clock direction correspond to the responses to a single drifting grating whose contrast

was varied between 0 and 50%. The data points going in the 9 o'clock direction correspond to

the responses to the other drifting grating. The data points going in the 11 o'clock direction

correspond to the responses to the \plaid" obtained by superimposing the two gratings. The

dashed curve close to the plaid data is obtained by summing (vectorially) the curves �tting the

individual grating responses. The actual plaid responses are smaller (closer to the origin) than

this linear prediction. They also occur earlier (their angle with the horizontal axis increases,

phase advance) than the linear prediction. This trend is captured by the continuous curve

�tted by the normalization model, and is due to the fact that the local stimulus energy of

the plaid is greater than that of the individual gratings. In the model this results in higher

membrane conductance, which causes a decrease in the gain and time constant of the cell.

The two models that we have described in this Chapter call for the existence of two di�erent

kinds of inhibitory inputs to V1 simple cells. The linear model postulates hyperpolarizing

inhibition with the same selective tuning properties as the excitation. This inhibition is needed

to ensure the linearity of the simple cell responses (Section 4). The normalization model

in addition postulates shunting inhibition originating from a large number of cortical units.

This nonselective shunting inhibition is responsible for controlling the cell's gain (Section 6).

While there is strong evidence for the existence of the �rst (selective hyperpolarizing) kind of

inhibition (Ulinski and Fowler, 1995; Ferster and Jagadeesh, 1992; Berman et al., 1991; Ferster,
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8.1 Blocking Inhibition

1986), the second (nonselective shunting) kind of inhibition is for now mostly speculation. This

Section discusses the e�ects of blocking inhibition in V1, and the plausibility of nonselective

shunting inhibition.

Sillito (Sillito, 1984; Sillito et al., 1980; Sillito, 1975), blocked inhibition by iontophoresing a

GABA antagonist on a region of cortex in the vicinity of the recording electrode. Blocking

GABA strongly enhances the responses of V1 cells and dramatically broadens their orientation

tuning curves. Based on these results, Sillito concluded that the orientation tuning of a cell

is substantially sharpened by cross-orientation inhibition. Blocking GABA also largely elim-

inates direction selectivity (Sillito, 1977). In the conditions of Sillito's experiments, however,

inhibition is blocked simultaneously in a large number of cortical cells. This greatly increases

the responsiveness of all of these neurons, not just the one being recorded, potentially resulting

in epileptogenesis (Chagnac-Amitai and Connors, 1989). It is not entirely clear, therefore, how

to interpret Sillito's results.

Nelson et. al. (1994) have been able to perform a much more focused blockade of inhibi-

tion. They recorded intracellularly from a neuron while blocking inhibition

. Blocking inhibition under these circumstances does not lead to a substantial change in

orientation tuning. The normalization model is generally consistent with this result. Accord-

ing to the normalization model, blocking inhibition in a simple cell would destroy both the

underlying linearity and the gain control (normalization), but it would not have much of an

e�ect on selectivity. This is because neither the shunting (normalization) inhibition nor the

hyperpolarizing (linear) inhibition are critical for selectivity.

Removing the shunting inhibition corresponds to setting = 0 in the model. This

would turn a cell described by the normalization model into one described by the linear model.

It would result in the complete loss of the gain control mechanism. But the cell's selectivity

would be largely una�ected because the selectivity is set up by the underlying linear spatiotem-
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8.2 Evidence For Nonselective Shunting Inhibition

poral weighting function.

Removing the hyperpolarizing inhibition corresponds to setting = 0. This would interfere

with the linearity of the cell. Indeed, the exact balance of excitation and inhibition (Equation 4)

is an essential condition in our model for the linear integration of the synaptic inputs. Removing

the hyperpolarizing inhibition would, however, have little in
uence on the cell's tuning curves.

Note that the excitatory inputs alone would still provide di�erential responses for stimuli

in the ON and OFF subregions of a simple cell's receptive �eld; 
ashing a light in an ON

subregion would evoke increased excitation and 
ashing a light in an OFF subregion would

cause a withdrawal of excitation. Instead of Equation 3 the membrane potential would obey

= ( + ) ( + ) which is a nonlinear (saturating) function of the synaptic

excitation . The cell's tuning would be a distorted version of that provided by the excitatory

inputs. The distortion would only be noticeable if the excitatory inputs were large enough to

approach saturation. But even then the distortion would be subtle; saturation would result in

tuning curves with broader/
atter tops and steeper 
anks.

Shunting inhibition is a widely cited proposal for how neurons might perform division (Coombs

et al., 1955; Fatt and Katz, 1953). Its de�ning property is that it does not introduce any current

when the cell is at rest, thus a�ecting only the cell's overall conductance. Shunting inhibition

is usually thought to operate through synaptic channels, permeable to Chloride ions,

because the equilibrium potential of Chloride is close to the resting potential of a typical cell.

There is evidence that there are strong inhibitory circuits in the cortex, and that these

circuits operate through GABA-mediated shunting inhibition. A seminal study by Krnjevi�c

and his colleagues (Dreifuss et al., 1969) showed that electrical stimulation of the cortical

surface produces very large (up to 300%) increases in membrane conductance, and that similar

e�ects are obtained by iontophoretic application of GABA. In addition, Rose (1977) showed

that iontophoresing GABA over V1 cells yields divisive e�ects on their visual responses (Rose,
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1977). Cortical neurons are known to have receptors, which may be under a constant

barrage of synaptic input originating from nearby cortical cells (Salin and Prince, 1996b,a).

In a study of cat area 18, Crook et al. (1992) found that a block of inhibition from

cross-orientation sites broadens the orientation tuning, while a block of inhibition from iso-

orientation sites increases response magnitude. This suggests that under normal conditions the

cells receive inhibitory inputs from sites tuned to a wide variety of orientations. This nonspeci�c

inhibition could be mediated by basket cells, which are GABAergic, and are considered to

provide inhibition to cells tuned for all orientations (Kisvarday and Eysel, 1993; Kisvarday

et al., 1993). In addition, there is direct physiological evidence for inhibition between V1

neurons when their orientation tuning di�ers by less than 45 (Hata et al., 1988).

The normalization model predicts that a cell's conductance should increase with contrast. In

order to evaluate how substantial these increases should be, we measured responses of a sample

of simple cells for grating stimuli of a variety of temporal frequencies, contrasts and orientations

and/or spatial frequencies. We then �t the data with the normalization model and used the

best-�t parameters to estimate the time constants predicted by the model for zero contrast

(uniform gray �eld) and full contrast gratings.

** Figure 20 About Here **

Figure 20 shows our results. The estimated time constants for a zero contrast stimulus

generally varied between 5 and 100 . These time constants were estimated to drop by around

a factor of three for a full contrast grating. A threefold drop in time constant corresponds to

a threefold increase in conductance.

Our estimates of the conductance changes are surely in
ated by our assumption that LGN

cells are perfectly linear. As mentioned in Section 4.1, both cat LGN and monkey M LGN cells

exhibit a gain control that is in some ways similar to what we have been ascribing entirely to
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simple cells. Including the e�ects of known LGN nonlinearities would make our model more

plausible, but it would clash with our goal of accounting for the data with a bare minimum of

free parameters.

The conductance increase predicted by the model is based on extracellular data, and is at

odds with intracellular measurements. These have consistently failed to demonstrate

large conductance increases related to visual stimulation (Ferster and Jagadeesh, 1992; Berman

et al., 1991). Berman et al. (1991), using sharp electrodes, measured only slight (less than

20%) conductance increases for a drifting bar stimulus. There are at least three possible

explanations for this lack of conductance increase.

First, the drifting bar is a weak stimulus; our model predicts that increasing the contrast

energy of the stimulus (e.g., by using a full contrast drifting grating instead of a drifting

bar) would yield a larger change in conductance. Still, by our best estimates, we would have

expected a conductance increase in their experiment of at least 50%, that is signi�cantly greater

than the amount they reported.

Second, it is possible that sharp electrodes may themselves introduce large shunts (Stratford

et al., 1990), thus making them inappropriate for measuring conductance. On the other hand

the results of Berman and collaborators were con�rmed by Ferster and Jagadeesh (1992) using

the whole-cell patch technique, which is not thought to introduce substantial leaks in the

membrane.

Finally, it is possible that normalization is achieved by some other, as yet unknown, mech-

anism. This mechanism would manage to reduce the gain and the e�ective time constant of

the cells, without recourse to shunting inhibition.

The ultimate goal of this research is to develop detailed, quantitative, predictive models of

neural function in visual cortex. We will have succeeded - if we succeed at all - when we
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can record from a neuron while presenting a basic set of visual stimuli (to measure model

parameters) and then be able to predict the neuron's response to any visual stimulus. With

such models, we can hope to understand the neural basis of perceptual appearance.

We have presented two models of V1 simple cells. The �rst, the linear model, accounts for

the cells' selectivity but fails when the stimulus energy (or contrast) is varied. The second, the

normalization model, overcomes this limitation by endowing the linear model with a feedback

gain control mechanism. According to the normalization model the gain of each cell is rescaled

by a quantity that grows with the overall activity of a pool of cortical neurons. This e�ectively

normalizes the outputs with respect to stimulus energy. We have tested the normalization

model, using grating and plaid stimuli, with encouraging results.

Hence it appears that response normalization is one of the primary roles of short-range

suppression in cat and monkey V1. V1 neurons have a limited dynamic range, a limit to how

strong an output signal they can generate and, thus, a limit to the range of contrasts over which

they can respond di�erentially. The normalization operation preserves essential features of the

neurons' responses (spatiotemporal-frequency tuning, orientation, and direction-selectivity in

V1) while limiting the dynamic range of their outputs. For example, the response curves (for

preferred and non-preferred stimuli) in Figures 12B and 13A are vertically shifted copies of one

another; since the data are plotted on a logarithmic response scale, this means that the ratio of

responses is about the same at all stimulus contrasts, even in the face of response saturation.

This invariance, that we attribute to normalization, is critical for encoding visual information

(e.g., about motion, orientation, binocular disparity, etc.) independent of contrast.

The issue of limited dynamic range is, of course, not restricted to V1 neurons. Gain control

has been measured and modeled in a variety of other neural systems including: turtle pho-

toreceptors (Baylor and Hodgkin, 1974), the vestibulo-ocular re
ex (Lisberger and Sejnowski,

1992), and the velocity-selective neurons in the middle temporal (MT) area of the primate

cortex (Simoncelli and Heeger, 1994). In particular, the normalization model of simple cell re-

sponses is analogous to models of retinal adaptation/normalization (Grossberg and Todorovic,

1988; Shapley and Enroth-Cugell, 1984; Tranchina et al., 1984; Sperling and Sondhi, 1968),

40



et al.

in which the stimulus intensity at a particular point is normalized with respect to the mean

stimulus intensity. This makes the retinal response largely independent of the overall level of

illumination, and allows the brain to proceed to process visual information without having to

attend to the overall light level. Similarly, the normalization mechanism that we propose for

V1 simple cells allows the brain to process visual information without having to attend fur-

ther to contrast; the perceived orientation or motion direction of a stimulus is indeed largely

invariant with respect to contrast.

However, the biophysical implementation of the normalization model is uncertain. We have

presented a simple way in which normalization could be implemented physiologically, by means

of shunting inhibition that increases the overall membrane conductance. This seems to us to

be the simplest possible way that the normalization pool could control both the gain and the

dynamics of a cell's response. It is, however, important to remember that we tested the model

using extracellular data, so we have no proof that the overall conductance grows with stimulus

energy. Indeed, there is evidence to the contrary (Berman et al., 1991). It is likely, therefore,

that we will have to consider alternative mechanisms for normalization that do not require

overall conductance increases. Such alternatives include conductance increases localized to the

axon hillock and other mechanisms that control �ring rate encoding.

Another problem with our model is that there are some important aspects of simple cell

responses that we have largely ignored. First, practically all V1 cells adapt to prolonged

stimulation (Saul, 1995; Sclar et al., 1989; Ohzawa et al., 1985; Albrecht et al., 1984; Movshon

and Lennie, 1979; Ma�ei et al., 1973). Second, some V1 neurons are end-inhibited and/or

side-inhibited, that is, stimulation outside of the classical receptive �eld suppresses responses

to stimuli placed within the classical receptive �eld (Born and Tootell, 1991; DeAngelis ,

1994; and references therein). Third, some V1 neurons exhibit center-surround phenomena that

are signi�cantly more complicated; for some very speci�c stimulus con�gurations, introducing

a stimulus in the surrounding �eld can facilitate a neuron's response (Gilbert et al., 1996; Sillito

et al., 1995; Kapadia et al., 1995; Gilbert and Wiesel, 1990; van Essen et al., 1989; Nelson and

Frost, 1985; Ma�ei and Fiorentini, 1976)
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To some extent, adaptation and surround inhibition can be framed within the context of

the normalization model (Heeger, 1992b). Some aspects of adaptation can be explained by

assuming that the normalization mechanism has a long memory, and some aspects of end- and

side-inhibition can be explained by assuming that neurons with surrounding receptive �elds

contribute to the normalization pool

In some cells, however, surround inhibition is arguably much stronger than nonspeci�c

suppression and it is not clear that its nature is divisive. And there are some adaptation

results that cannot be explained simply by changing a cell's gain (see (Heeger, 1992b) for

review). Finally, the normalization model provides no explanation of surround facilitation. It

may very well be that there are additional neural circuits mediating these phenomena.
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This Appendix summarizes the derivation of closed form equations for the �ring rate responses

of model cells to drifting sinusoidal gratings.

The model predicts that the amplitude and phase of the response to a drifting grating

of contrast and temporal frequency are given by:

amplitude( ) amplitude( )
( ) +

(11)

phase( ) = phase( ) atan
1 + (( ) 1)

(12)

where

( ) =
1 +

( ) 1
(13)

The parameters are: the amplitude and phase of the linear receptive �eld response , the

exponent , the membrane time constant at rest , and the maximal increase in conductance

that normalization can achieve, .

The rest of the appendix describes the essential steps in the derivation of Equations 9, 13

and 12.

As we already mentioned, we model the �ring rate as a recti�ed copy of the membrane

potential , (0 ), where . Recti�cation is however not very

easily handled in mathematical derivations. We thus approximate recti�cation ( )
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with half-recti�cation ( = = 0) followed by elevation to the power :

(0 ) (14)

The quality of this approximation is shown in Figure 5. The value of the exponent grows

with the distance of the threshold from the resting potential . If the threshold is

very close to rest, then 1 (\half-recti�cation"). If the threshold is a bit above the rest,

5 mV higher, then 2 (\half-squaring"). If the threshold is much above rest then 3

or more. We assume the average exponent for the cells in the normalization pool to be = 2

(Heeger, 1992a). Nevertheless, when �tting the model to individual cell responses we let the

exponent be a free parameter.

For drifting sine grating stimuli the driving current ( ) to each cell in the normalization

pool is a sinusoid. This follows from the fact that is a linear function of the stimulus intensity

distribution. The amplitude of thus depends linearly on contrast:

( ) = ( ) (15)

For drifting sine grating stimuli, moreover, the sum of the squared linear inputs to all the

units in the normalization pool is constant over time and is a measure of the

: ( ) = . Here, is a measure of the grating e�ectiveness in driving the

normalization pool. This follows from the fact that the receptive �elds of adjacent simple

cells tend to exhibit either 90 or 180 phase relationships (Liu et al., 1992; Foster et al.,

1983; Palmer and Davis, 1981; Pollen and Ronner, 1981). The normalization pool thus contains

quadruples of cells with the same amplitude response but with phases 90 apart.

As a consequence, we �nd that the model reaches a steady state condition for drifting

gratings, in which the conductance is constant and is given by

= + ( ) (16)

where = + is the maximal conductance, achieved when the stimulus has contrast

= 1.
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B Appendix: Predicted Responses to Plaids

Whenever the conductance does not change in time, the membrane of the cell behaves

as a linear system. Stimulation with gratings of �xed contrasts thus results in a sinusoidal

membrane potential. It is easy then to show, from Equation 6, that the amplitude and phase

of such a sinusoid are given by

amplitude( ) =
amplitude( )

+ ( )
(17)

phase( ) = phase( ) atan( )

Equations 11, 13 and 12 can now be obtained by putting together the dependence of �ring

rate on membrane potential (Equation 14), the dependence of membrane potential on the

driving current and on the conductance (Equation 17), and the dependence of the driving

current and the conductance on stimulus contrast (Equations 15 and 16).

The expressions derived in Appendix A for the �ring rate of simple cells to drifting sinusoidal

gratings can be approximately extended to stimuli composed of more than one grating. This

Appendix describes the extension to stimuli composed of two drifting gratings. We restrict our

attention to the case in which the two gratings have the same temporal frequency .

Let and be the contrasts of the two gratings. Let and (sinusoids) be the

responses of the linear weighting function to the individual gratings. The driving current is

just the sum of the linear responses weighted by the contrasts:

( ) = ( ) + ( ) (18)

The quantity ( ) is not in general constant in time, since it contains a component at

twice the temporal frequency of the stimulus. Nonetheless, if one assumes that the relation

between population �ring rate and membrane conductance described by Figure 17A is preceded

or followed by an averaging stage, then the resulting conductance change will be approximately
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constant in time. The same result would be obtained by assuming that the normalization pool

is very large so it e�ectively performs a local spatial average.

If the conductance is approximately constant over time, the same arguments as in the last

Appendix apply, yielding:

amplitude( )
amplitude( ( ) + ( ))

( ) + +
(19)

phase( ) = phase( ( ) + ( )) atan
1 + (( ) 1)( + )

(20)

where is de�ned in Equation 13.
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Footnotes

Page 10. Some cells, however, are direction selective even though they have space-time

separable weighting functions (McLean et al., 1994; Emerson and Citron, 1992; McLean

and Palmer, 1989). The behavior of these cells cannot be accounted for by models like

those advocated in this Chapter, in which direction selectivity is due to an underlying

spatiotemporal linear stage.

Page 19. Indeed, it is widely held that in the absence of synaptic plasticity and for reason-

able presynaptic �ring rates, each presynaptic spike results in a stereotyped postsynaptic

conductance increase (Koch and Poggio, 1987; Jack et al., 1975). Synaptic transmission

can then be considered to be a linear transformation whose impulse response is given by

the shape of an isolated postsynaptic conductance increase.

Page 22. An even better model for the spike rate encoder of visual cortical cells is given

by the opposite arrangement, in which recti�cation is by a band-pass linear �lter

(Carandini et al., 1994). This arrangement however would make the model very hard to

deal with analytically. The two arrangements give identical �rst harmonic responses to

sinusoidal stimulation at a �xed temporal frequency.

Page 28. The driving current depends on the cell's synaptic inputs, but it is independent

of , the cell's membrane potential. The driving current could only be measured by

voltage clamping the cell. It is not the actual synaptic current, which depends on the

membrane potential .
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Figure Captions
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1. Schemata of the two models of simple cell function that are discussed in this Chapter.

A: The , composed of a linear and of a

stage. The cell performs a weighted average of the light intensities over local

space and recent time. The recti�cation stage converts the output of this linear stage

into �ring rate. Note that recti�cation is a nonlinearity, so the \linear model" is not

entirely linear. B: The , which extends the linear model by adding

a divisive stage. The output of each cell's linear stage is divided by the pooled output of

a large number of other cells.

2. A stimulus and a receptive �eld in space-time. A: A vertical bar translating to the

right. B: The space-time volume of stimulus intensities corresponding to motion of the

vertical bar. C: An - slice through the space-time volume. Orientation in the - slice

is the horizontal component of velocity. D: an - section of a spatiotemporal weighting

function. Dark areas represent locations where the weighting function is negative, bright

areas represent locations where it is positive. E: The same - section together with

a projection of the weighting function on the - plane. F: The - projection, which

ignores the dimension. The receptive �eld travels in time , from past to future. Panels

A-C are based on an illustration by Adelson and Bergen (1985).

3. Direction selectivity in a linear cell. A: Responses to gratings drifting in the preferred

direction. The stimulus elicits large responses. B-D: Relative space-time positions of

weighting function and stimulus at three instants in time. When the central excitatory

region of the weighting function is aligned with a dark bar (B), the response is negative.

When it is aligned with a bright bar, the response is positive (C), and so on. E: Responses

to gratings drifting in the opposite direction. The stimulus elicits small responses. F-

H: Relative space-time positions of weighting function and stimulus at three instants

in time. At any given time, each bar of the grating is covering both excitatory and

inhibitory subregions of the weighting function, whose outputs are averaged out by the
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cell. The �lled areas in Panels A and E show the parts of the responses that would be

visible after recti�cation.

4. Contour plots of three spatiotemporal weighting functions, averaged across one spatial

dimension. Continuous curves: positive contours. Dashed curves: negative contours.

A: A space-time separable weighting function, the product of a center-surround spatial

weighting function and of a monophasic temporal weighting function. B: Another space-

time separable weighting function, spatially displaced with respect to A and with a

biphasic temporal weighting function that is less delayed than the one in A. C: Non-

separable weighting function obtained by summing the ones in A and B. The result is a

space-time oriented weighting function resembling that of the direction selective cell in

Figure 7.

5. Three possible transformations of membrane potential into �ring rate. For simplicity

the resting potential is assigned the value = 0. The continuous lines represent

with threshold . The thick, intermediate and thin lines represent

respectively the cases in which the threshold is = 0, 5 and 10 mV. The dashed lines

represent approximations to recti�cation. These approximations are useful to simplify

the mathematics of the normalization model (Appendix A). They are power functions of

the positive deviation from resting potential, for di�erent exponents . The exponent

is 2 for the thicker dashed curve, 3 for the thinner dashed curve.

6. Flashed bar stimuli and ON- or OFF- subregions of a linear cell's receptive �eld. A:

Spatiotemporal structure of a 
ashed bar stimulus. The - projection of a 
ashed bar

is a vertical rectangle. B: Response of a linear cell when the bar is 
ashed on an OFF

subregion of the receptive �eld. The response is negative when the bar is turned on,

positive when it is turned o�. The left panel shows the responses as a function of time,

before recti�cation. The other three panels represent receptive �eld and stimulus at three

instants in time. C: as in B, except that the bar is 
ashed on an ON subregion of its

receptive �eld. The �lled areas in the leftmost panel in B and C show the parts of the

responses that would be visible after recti�cation.
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7. The full space-time receptive �eld of a simple cell, as obtained with the reverse correlation

method. The four upper panels represent - snapshots of the receptive �eld measured at

di�erent times in the past. Gray levels indicate the correlation between the appearance

of a bar and the �ring rate ms later. Zero correlation is indicated by mid-gray. Lighter

grays indicate points of positive correlation with the appearance of a bright bar. Darker

grays indicate points of positive correlation with the appearance of a dark bar. A large

number of snapshots like these are stacked to build a full space-time receptive �eld,

whose space-time projection is shown at the bottom. This previously unpublished Figure

is courtesy of Greg DeAngelis. Cell is part of sample published in (DeAngelis et al.,

1993a).

8. Linearity of spatial summation in four cat V1 simple cells. Spatial weighting functions

as measured with 
ashing bars ( ) and as predicted by inverse Fourier trans-

formation of the spatial frequency tuning curves ( ). For a linear cell

the two would be identical. Plots show one spatial dimension (e.g. ), and collapse all

information about the other two dimensions ( and ). Both the observed and predicted

weighting functions were independently rescaled. Positive values in each weighting func-

tion represent incremental responses to the introduction of a bright bar; negative values

represent incremental responses to the introduction of a dark bar. : The spatial

frequency tuning curves used to compute each predicted weighting function. The abscissa

of these insets is spatial frequency (in cycles/degree) and the ordinate is contrast sensi-

tivity, the inverse of the threshold contrast value for each spatial frequency. Reprinted

with permission from (Movshon et al., 1978a).

9. Linearity of spatio-temporal summation in a cat V1 simple cell. The polar plot shows the

cell's responses to standing gratings whose contrasts were modulated sinusoidally in time

at di�erent spatial phases. The amplitude of the �rst harmonic sinusoid of each response

is represented radially, while the angular coordinate indicates the temporal phase of each

response. The �lled symbols represent the unaltered data from the experiment; the open

symbols and the ellipse �tted to them represent the same data corrected for a resting
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V

push-pull

in vitro

\�ring rate" of -8 Spikes/sec. Reprinted with permission from (Movshon et al., 1978a).

10. Simpli�ed model of a cortical cell, and possible biophysical implementation of the linear

model. The cell membrane is modeled as a single compartment with passive properties

and two classes of synaptic inputs, excitatory and inhibitory. In the central excitatory

subregion of the receptive �eld the excitation is provided by ON-center cells and the

inhibition by OFF-center cells with superimposed receptive �elds. The 
anking inhibitory

subregions are obtained by the opposite arrangement of excitation and inhibition (not

shown). This arrangement of excitation and inhibition ensures the linearity

of the membrane potential . The membrane potential is encoded into �ring rate by a

recti�er. See text for explanation of symbols.

11. Encoding of input current in a visual cortical cell . Responses of an intracellularly

recorded regular spiking neuron in a slice of guinea pig cortex to sinusoidal current injec-

tion (0.8 nA). A: Time course of the responses for �ve di�erent frequencies of stimulation

(1, 2, 4, 8 and 16 Hz). The traces are dominated by their �rst harmonic. This means

that apart from the presence of the spikes the membrane is acting linearly. B: Temporal

frequency tuning of spike rate and membrane potential. Filled symbols: Amplitude of

the �rst harmonic of the membrane potential obtained by �tting a sinusoid to the raw

membrane potential traces in A. Scale is on right axis. The dashed line is the prediction

of a single compartment with only passive conductances. Open symbols: Amplitude of

the �rst harmonic of the �ring rate, obtained by �tting a sinusoid to the spike times.

This Figure was �rst presented in Carandini et al. (1994).

12. Responses of a monkey V1 simple cell to a drifting sine grating for three di�erent spatial

frequencies and three di�erent contrasts. The curves are �ts of the normalization model.

The �ts were performed on a larger data set, which included the responses to 45 di�erent

drifting gratings, that had 5 di�erent contrasts, 3 di�erent spatial frequencies, and 3

di�erent temporal frequencies. These stimuli were randomly interleaved to minimize the

e�ect of visual adaptation. A: Spike histograms of one period of the responses, averaged

over many presentations. The three columns show the responses to drifting gratings with
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a spatial frequency of 1, 0.6 and 0.4 cycles/degree (cpd). Each row corresponds to one of

three di�erent contrasts: 25, 50 and 100%. B: Amplitude of the responses as a function

of contrast. The ordinate plots the amplitude of the �rst harmonic of the same responses

as Panel A. Error bars indicate the standard error of the mean (N=3). The number next

to each curve speci�es the spatial frequency of the stimulus. Experimental methods for

this and for the following �gures are outlined in (Carandini and Heeger, 1994).

13. Responses of a monkey V1 simple cell to a drifting sine grating for di�erent stimulus

orientations and contrasts. The continuous curves are �ts of the normalization model.

The �ts were performed on a larger data set, which included the responses to additional

temporal frequencies. Error bars indicate the standard error of the mean (N=3). A:

Contrast responses for two di�erent stimulus orientations. Changing the orientation of

a grating shifts the contrast responses up and down on a logarithmic scale. B. E�ect of

contrast on the orientation tuning. Data for 40 and 80 are the same as those in panel

A. The orientation tuning is invariant with contrast.

14. Responses of a monkey V1 simple cell to a plaid composed of two drifting gratings (\test"

and \mask"), for di�erent contrasts of the two gratings. The orientations of test and

mask di�er by 90 . The curves are �ts of the normalization model. A: Spike histograms

of one period of the responses, averaged over many presentations. Rows correspond to

a �xed test contrast, columns to a �xed mask contrast. The mask does not elicit any

overt response when presented alone (top row) and strongly inhibits the responses to the

test (second and third columns) B: Amplitude of the responses as a function of contrast.

The ordinate plots the amplitude of the �rst harmonic of the same responses as Panel

A. Error bars indicate the standard error of the mean (N=3). The white, gray and black

circles refer respectively to mask contrasts of 6, 25 and 50%.

15. Responses of a monkey V1 simple cell to a drifting sine grating for di�erent contrasts

and temporal frequencies. The curves are �ts of the normalization model. The �ts were

performed on a larger data set, which included the responses to an additional orientation.

A: Spike histograms of one period of the responses, averaged over many presentations.
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Each panel corresponds to a di�erent contrast of the stimulus. Note the prominent phase

advance with increasing contrast. B: Amplitude of the responses as a function of contrast

and temporal frequency. The ordinate plots the amplitude of the �rst harmonic responses

such as those in Panel A. Data points are joined by dashed lines. The temporal frequency

tuning is strongly dependent on contrast: at low contrasts the high frequencies are more

attenuated than at high contrasts.

16. A possible biophysical implementation of the normalization model. The diagram is iden-

tical to the one for the linear model (Figure 10), except for the presence of a shunting

conductance . The equilibrium potential for the shunt is = . In the

normalization model the shunting conductance grows with the activity of a large number

of cortical cells, the normalization pool. The shunt conductance is assumed to be the

same for all the neurons in the pool. See Sections 6.1 and 6.2 for details.

17. A. Dependence of the shunt conductance on the overall activity of the normalization

pool, as postulated by the normalization model. The precise functional form is =

(1 1 1), where is the overall �ring rate of the normalization pool. This

function is entirely and does not have any experimental support. It was chosen

so that the model would be mathematically tractable and yield the desired equations.

B: E�ect of the membrane conductance on the size and time course of the membrane

potential responses. The three curves show the membrane potential responses of a model

cell to a current step for three di�erent values of the total conductance . The origin of

the abscissa is set at the time of the current step. The scale of the ordinate is linear.

Increasing the conductance of the cell reduces both the gain and the latency. The arrows

point to twice the time constant of the cell.

18. Responses of a monkey V1 simple cell to a plaid composed of two drifting gratings (

and ), for di�erent contrasts of the two gratings. The orientations of test and mask

di�ered by 90 . Error bars indicate the standard error of the mean (N=3). The

are �ts of the normalization model. The �ts were performed on a larger data set, which

included all combinations of �ve test contrasts and �ve mask contrasts (23 of the 25 data
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points are shown). A: Dependence of the response amplitude on the test contrast, for

three di�erent values of the mask contrast (white: 6%, gray: 25%, black: 50%). The

leftmost data points show that the mask alone was able to elicit some responses. In these

conditions the normalization model correctly predicts that increasing mask contrast does

not simply shift the contrast responses to the right, as was the case in Figure 14, but it

also changes their shape. B: Dependence of the response amplitude on the mask contrast,

for four di�erent values of the test contrast (white: 1%, light gray: 6%, dark gray: 12%

black: 50%). Many data points are represented both in A and in B. The prediction of

the model for the data point in the lower right of panel B is o� by 2 Spikes/sec.

19. Responses of a monkey V1 simple cell to two individual gratings of di�erent spatial

frequency (1 and 0.5 cpd), and to the \plaid" obtained by summing the two. The

continuous curves are �ts of the normalization model. A: Spike histogram of the response

to grating 1 alone, with contrast = 25%. The histogram shows one period of the

responses, averaged over many presentations. B: Spike histogram of the response to the

plaid, with contrasts = = 25%. C: Spike histogram of the response to grating

2 alone, with contrast = 25%. : linear prediction, obtained by

summing the sinusoids �tted in A and C. The linear prediction overestimates the plaid

response. D: Polar plot of the �rst harmonic responses, for a variety of grating and plaid

contrasts. Abscissa and ordinate are the cosine and sine components of the responses at

the temporal frequency of the stimulus. Response amplitude is given by the distance from

the origin. Response phase is given by the angle with the abscissa. Grating responses

are in black, plaid responses in gray. The data points corresponding to the responses in

A, B and C are surrounded by squares. The shows the linear prediction

obtained by summing the two �ts to the grating responses. The dashed parallelogram

illustrates the vectorial sum that gives rise to the linear prediction corresponding to the

dashed line in B. The actual response is smaller and occurs slightly earlier than the linear

prediction. Panel D is adapted from (Carandini and Heeger, 1995).

20. Estimated time constants for a population of cells. The estimates come from the �ts
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continuous line
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decrease in time constant

of the normalization model to 34 extracellular recording experiments on 21 monkey V1

simple cells. The experiments involved randomly interleaved grating stimuli varying

in temporal frequency, contrast and orientation (or spatial frequency). shows

, the estimated time constant at rest, i.e. for zero contrast. shows , the

estimated time constant when the stimulus is a drifting grating with 100% contrast. The

dashed diagonal line marks the identity = . The bars on the two axes show the

medians: 29 ms for the time constants at rest, 7.6 ms for the time constants at 100%

contrast. The is a regression line �t to the data points with the constraint

that it goes through the origin. Its equation is = 0 334 , implying a

.
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