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Categorical Clustering of the Neural Representation of Color
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Cortical activity was measured with functional magnetic resonance imaging (fMRI) while human subjects viewed 12 stimulus colors and
performed either a color-naming or diverted attention task. A forward model was used to extract lower dimensional neural color spaces
from the high-dimensional fMRI responses. The neural color spaces in two visual areas, human ventral V4 (V4v) and VO1, exhibited
clustering (greater similarity between activity patterns evoked by stimulus colors within a perceptual category, compared to between-
category colors) for the color-naming task, but not for the diverted attention task. Response amplitudes and signal-to-noise ratios were
higher in most visual cortical areas for color naming compared to diverted attention. But only in V4v and VO1 did the cortical represen-
tation of color change to a categorical color space. A model is presented that induces such a categorical representation by changing the
response gains of subpopulations of color-selective neurons.

Introduction
The perceptual space of colors is both continuous and categori-
cal: humans can easily discriminate between thousands of differ-
ent hues, but use only a handful of color categories. This means
that, depending on the perceptual task, two colors can be per-
ceived to differ in hue but still belong to the same color category
(Kaiser and Boynton, 1996).

Inferotemporal cortex (IT) is hypothesized to support cate-
gorical perception of color (Dean, 1979; Heywood et al., 1998;
Komatsu, 1998; Matsumora et al., 2008; Yasuda et al., 2010).
Macaque IT receives inputs from area V4, an area with a large
proportion of color-selective neurons (Zeki, 1973, 1974; Conway
and Tsao, 2006; Conway et al., 2007; Tanigawa et al., 2010). Al-
though macaque IT neurons are tuned to all directions in color
space, the distribution is not uniform. Rather, the population
distribution contains three prominent peaks in color tuning,
aligned with the unique hues red, green, blue, and yellow
(Stoughton and Conway, 2008). Furthermore, performing a cat-
egorization task alters the responses of individual color-selective
neurons in macaque IT (Koida and Komatsu, 2007).

The visual system encodes color by means of a distributed
representation: the activity of many neurons preferring different
colors, but with broad and overlapping tuning curves. This
means that similar colors evoke similar patterns of activity, and
neural representations of color can be characterized by low-
dimensional “neural color spaces” in which the positions of col-
ors capture similarities between corresponding patterns of
activity (Brouwer and Heeger, 2009).

Activity in visual cortex depends on task demands (Corbetta
et al., 1990). Such task-dependent modulations in cortical activ-
ity have been characterized as additive shifts in baseline response
levels, multiplicative changes in response gain, and narrowing of
tuning curves (Kastner and Ungerleider, 2000; Treue, 2001; Cor-
betta and Shulman, 2002; Maunsell and Treue, 2006; Reynolds
and Heeger, 2009). However, it is not known whether and how
task-dependent modulations in activity affect distributed neural
representations. Simply boosting the responses of all color-
selective neurons in a visual cortical area by the same amount
would not change the corresponding neural color space.

We used functional resonance imaging (fMRI) to characterize
how task-dependent changes in cortical activity affect the cortical
representations of color. We used a forward model to extract
neural color spaces from the fMRI responses in each of several
visual cortical areas, reducing the fMRI responses to a lower-
dimensional space of basis functions (Brouwer and Heeger,
2009). Subjects viewed different stimulus colors while perform-
ing a task that diverted attention away from the stimuli, or a
color-naming task. Our results show that neural color spaces
shifted to a categorical representation for the color-naming task
in human ventral V4 (V4v) and VO1. Within-category stimulus
colors were more clustered in the neural color space for the color-
naming task than the diverted attention task, whereas between-
category colors were more widely separated. We propose a model
for how this categorical representation can be induced by chang-
ing the gains of subpopulations of color-selective neurons.

Materials and Methods
Subjects and scanning sessions. Five healthy subjects (male, between 24
and 34 years of age) participated and provided written informed consent.
Experimental procedures were in compliance with the safety guidelines
for MRI research and approved by the University Committee on Activi-
ties Involving Human Subjects at New York University. Subjects had
normal or corrected-to-normal vision. Normal color vision was verified
by use of the Ishihara plates (Ishihara, 1917) and a computerized version
of the Farnsworth–Munsell 100 hue scoring test (Farnsworth, 1957).
Each subject participated in three experimental sessions, consisting of 10
runs of the main experiment. Subjects also participated in a retinotopic
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mapping session and a session in which a high-resolution anatomical
volume was acquired.

Visual stimulus presentation. Visual stimuli were presented with an
electromagnetically shielded analog LCD flat panel display (NEC 2110;
NEC) with a resolution of 800 � 600 pixels and a 60 Hz refresh rate. The
LCD display was located behind the scanner bore and was viewed by
subjects through a small mirror at a distance of 150 cm, creating a field of
view of 16 � 12° visual angle. The display was calibrated using a Photo
Research PR650 SpectraColorimeter. By measuring the red, green, and
blue spectral density functions at different luminances, we determined
the necessary calibration parameters to linearize the gamma function and
to convert any desired color space coordinate to the appropriate monitor
red, green and blue values (Brainard, 1996).

Stimuli. The color stimuli were square-wave spiral gratings, within a
circular aperture (0.40 to 10° of visual angle) on a neutral gray back-
ground (Fig. 1A). The 12 stimulus colors were defined in DKL (Der-
rington, Krauskopf and Lennie) color space (Derrington et al., 1984;
Kaiser and Boynton, 1996). This space is a spherical color space spanned
by the three cone-opponent axes: the achromatic axis L � M and the two
chromatic axes L � M and S � (L � M) that define the isoluminant
plane. Along the L�M axis, the excitation of the S-cones is constant,
whereas the excitation of L and M cones covaries such that their sum is
constant. Conversely, along the S � (L � M) axis, only the excitation of
the S-cones changes, whereas the excitation of the L and M cones remains
constant. The cone contrast that can be achieved along each axis is lim-
ited by the gamut of the display. The maximal L-, M-, and S-cone con-
trasts were 11, 22, and 86%, respectively, comparable to other studies
(e.g., Hansen and Gegenfurtner, 2006). The 12 stimulus colors were
equally spaced in the isoluminant (40 cd/m 2) plane of DKL space, equi-
distant from a center white point (Fig. 1 B, C). We chose the DKL space
because it represents a logical starting point to investigate the neural
representation of color in visual cortex. Although there is evidence for
additional higher-order color mechanisms in visual cortex (Krauskopf et
al., 1986), the color tuning of neurons in V1 can be approximated by
linear weighted sums of the two chromatic axes of DKL color space
(Lennie et al., 1990).

Psychophysics. Subjects performed a color categorization task outside
the scanner, using a large number of stimuli (64) which represented a
denser sampling of the same circular color space as that of the 12 stimuli
used in the fMRI experiments (Figs. 1, 2). Subjects were presented with
five empty “bins” (top half of the screen) and 64 small discs (bottom half
of the screen), each rendering one of the 64 stimulus colors. Subjects were
instructed to drag (using the computer mouse) each of the 64 discs
into one of the five bins, grouping the colors together as they saw fit.
The mean color category boundaries, averaged across subjects, were
used to analyze the fMRI measurements (see “Categorical clustering
index” below).

fMRI experimental protocol. Visual stimuli appeared for a duration of
1 s in a randomized order. Using an event-related design, interstimulus
intervals ranged from 2 to 5 s, in steps of 1.5 s. All 12 colors were pre-
sented six times in each run, along with six blank trials. This created a
total of 78 trials per run, with one run lasting �6 min. In the even-
numbered runs, subjects performed an rapid serial visual presentation
detection task continuously throughout each run. A sequence of white
digits was displayed at fixation for 250 ms each, subtending �0.25° of
visual angle with a luminance of 80 cd/m 2. The subject’s task was to fixate
the digits and indicate, by means of a button press, whether the current
digit matched the one from two steps earlier. In the odd-numbered runs,
subjects performed a color-naming task, using one of five buttons to
indicate the most appropriate color name: one of the four unique hues
(blue, red, yellow, green) or purple. In these runs, subjects were in-
structed to fixate a white fixation dot (luminance, 80 cd/m 2; diameter
0.20°).

fMRI preprocessing. fMRI data were preprocessed using standard pro-
cedures. The first four images of each run were discarded, allowing lon-
gitudinal magnetization to reach steady state. We compensated for head
movements within and across runs using a robust motion estimation
algorithm (Nestares and Heeger, 2000), divided the time course of each
voxel by its mean image intensity to convert to percentage signal change
and compensate for distance from the RF coil, and linearly detrended and
high-pass filtered the resulting time course with a cutoff frequency of
0.01 Hz to remove low-frequency drift (Smith et al., 1999).

fMRI response amplitudes. The response amplitudes to each color were
computed separately for each voxel and separately for each run using
linear regression. A regression matrix was constructed by convolving a
canonical hemodynamic response function (HRF) and its numerical de-
rivative with binary time courses (Friston, 2007) corresponding to the
onsets of each of the 12 stimulus colors (with ones at each stimulus onset,
and zeros elsewhere). The resulting regression matrix had 24 columns: 12
columns for the HRF convolved with each of the stimulus onsets and 12
columns for the HRF derivative. Response amplitudes were estimated by
multiplying the pseudoinverse of this regression matrix with the prepro-
cessed fMRI response time courses. We included the derivative because
the HRF of an individual voxel may have differed from the canonical
HRF (e.g., due to partial voluming with large veins). At least some of the
response variability was captured by including the derivative; the vari-
ance of the estimated response amplitudes across runs was smaller with
the derivative included than without it (Henson et al., 2002a,b; Brouwer
and Heeger, 2009, 2011). The values obtained for the derivative regres-
sors were discarded after response amplitudes were estimated, because
we intended to have the derivates account only for differences in the
timing of the responses, not the response amplitudes. We thus obtained,
for each voxel and each run, one response amplitude for each of the 12
colors.
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Figure 1. Stimuli. A, Color stimuli were square-wave spiral gratings, within a circular aperture (0.40 to 10 degree radius). Stimulus duration was 1 s, and the interstimulus interval was 2–5 s in
steps of 1.5 s. B, Locations of the 12 different stimulus colors in DKL space. C, The same 12 colors in CIE (Commission internationale de l’eclairage) 1931 xyY space. Diagonal lines represent the axes
of DKL space. Dashed triangle, Gamut of the LCD monitor used in the fMRI experiments.
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Voxel selection. We selected a subset of voxels within each visual corti-
cal area that showed the highest differential responses between colors.
Specifically, we computed the ANOVA F statistic of response amplitudes
across colors for each voxel. Voxels were included whose F statistic was
above the 75th percentile of F statistics for voxels in each visual area. The

75th percentile split was arbitrary and used solely to select the most
reliable voxels. A range of F statistic thresholds (25th to 75th percentile)
yielded similar results and supported the same conclusions.

Normalization of response amplitudes. Response amplitudes were nor-
malized by removing a baseline from each voxel’s response, separately for

Figure 2. Schematic overview of the analysis procedure using simulated data. A, Voxel time courses were preprocessed (motion compensation, drift correction, high-pass filtering). B, Response
amplitudes for each voxel were computed from the preprocessed voxel time courses, for each stimulus color, for each run, using linear regression (general linear model). C, Neural color space. A
forward model (see Materials and Methods) was used to transform the data from the high-dimensional space of fMRI responses (dimensionality equal to the number of voxels) to a lower-
dimensional space of six channels (each specified by a basis function for its color tuning curve). We refer to this six-dimensional space of channel responses as a neural color space; each stimulus color
evokes a vector of six channel responses, i.e., a position in the six-dimensional space. The distances between colors in this space capture similarities between the corresponding patterns of activity.
D, Voxel-based tuning curve. A von Mises function was fitted to the responses of each voxel to the 12 colors, separately for each task and visual area. The best-fit parameters of each tuning curve
specified color preference, tuning width, and gain. E, Mean response and SNR. Response amplitudes were averaged across voxels, separately for each task and visual area. The SNR of each voxel was
computed as the mean response of the voxel across stimulus colors divided by the SD across colors. The SNR of each visual area was computed by averaging SNRs across voxels. F, Two-dimensional
visualization of the neural color space. The six-dimensional channel response matrices (C) were reduced by means of principal component analysis (PCA) to two dimensions for visualization. G,
Clustering. The neural color spaces (C) were used to compute a categorical clustering index. The clustering index reflected the similarity between activity patterns evoked by stimulus colors within
a perceptual category, compared to between-category colors. In addition, k-means and EM clustering algorithms were used to partition the neural color spaces into clusters. H, Hierarchical
organization of the neural color space. The k-means and EM algorithms were used to compute hierarchical clustering, visualized by means of dendrograms.
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each run, in each scanning session. Specifically, let v be the number of
voxels, and let s be the number of stimulus colors, giving us, for each run,
a matrix of estimated response amplitudes B� of size v � s. For each B�,
we computed the mean voxel responses across all stimulus colors, yield-
ing a vector m of mean response amplitudes of length v (one per voxel).
This vector was normalized to a unit vector and removed by linear pro-
jection from the responses to each stimulus color: B � B� � m(mTB�).

Combining across sessions. Measurements were combined across sub-
jects and scanning sessions to increase sensitivity (Brouwer and Heeger,
2009, 2011). The estimated response amplitudes from a visual cortical
area in a single session formed a v � n matrix, with v being the number of
voxels (or dimensions) and n being the number of repeated measure-
ments (one response amplitude for each color per run). In principle,
sessions could have been combined in two ways. First, we could have
concatenated the sessions, leaving the number of voxels (v) the same, but
increasing the number of measurements (n). This would have required
precise registration across sessions. We chose, instead, to stack the data
sets, yielding a matrix B of size V � n, where V was the total number of
voxels summed across sessions and subjects. We primarily present results
from this “supersubject,” although we also report results from individual
subjects.

Forward model. We used a forward model (Brouwer and Heeger, 2009,
2011) to extract lower-dimensional neural color spaces from the spatially
distributed patterns of voxel responses (Fig. 2). We characterized the
color selectivity of each neuron as a weighted sum of six hypothetical
channels, each with an idealized color tuning curve (or basis function)
such that the transformation from stimulus color to channel outputs was
one to one and invertible. Each basis function was a half-wave-rectified
and squared sinusoid in DKL color space. We assumed that the response
of a voxel was proportional to the summed responses of all the neurons in
that voxel, and hence that the response tuning of each voxel was a
weighted sum of the six basis function. To the extent that this is a reason-
able approximation (Cardoso et al., 2012), it enabled us to estimate neu-
ral color spaces from the fMRI measurements. Data acquired with the
diverted attention task (even runs) were analyzed separately from data
acquired with the color-naming task (odd runs). Using leave-one-out
validation, the measured voxel response amplitudes (B) were partitioned
in training (B1) and testing data sets (B2). The training data were used to
estimate the weights on the six hypothetical channels, separately for each
voxel. With these weights in hand, we computed the channel responses
associated with the spatially distributed pattern of activity across voxels
in the test data. The estimated channel responses were stored as an n � c
matrix C, where n was the number of stimulus colors (12), and c was the
number of channels (6). A bootstrapping procedure was used to obtain a
large number of channel response matrices C. On each iteration, we used
a modified leave-one-out procedure that randomly selected one run to
leave out for each session and then computed the channel responses C.
Repeating this 100 times yielded 100 estimated channel response matri-
ces for each task and visual area.

The channel responses C defined a six-dimensional neural color space
for each visual area and each task condition. We used principal compo-
nent analysis (PCA) previously to extract neural color spaces from the
high-dimensional space of voxel responses (Brouwer and Heeger, 2009).
In the current study, we instead used the forward model because it con-
strained the dimensionality reduction. The forward model was defined
by six channels (idealized tuning functions) that respond to different
colors in a circular color space. According to the model, each color pro-
duces a unique pattern of responses in the channels, represented by a
point in the six-dimensional channel space. By fitting the voxel responses
to the forward model, we projected the voxel responses into this six-
dimensional subspace. Any covariation between or variation within vox-
els that could not be captured by the model (i.e., not in the subspace) was
projected out. PCA, on the other hand, reduces dimensionality based on
covariation between voxel responses, regardless of whether such covari-
ation reflects color-selective signals or simply correlated noise unrelated
to color. Neural color spaces extracted using PCA were qualitatively sim-
ilar to those extracted with the forward model, but PCA yielded neural
color spaces that were highly variable across runs, tasks, and visual areas.
Compared to our previous work (Brouwer and Heeger, 2009), the cur-

rent experimental protocol included more colors (12 instead of 8) and
two separate task conditions, reducing the number of trials of each trial
type. With fewer trials, correlated noise between voxels might have over-
whelmed color-selective responses using PCA, while the constrained fit
to the forward model was robust.

Visualization of color spaces. To visualize the neural color spaces ex-
tracted using the forward model, we made two-dimensional plots of the
color spaces using PCA. We computed the principal components for
each channel response matrix C, and projected the channel responses
onto the principal components creating a new n � c matrix S of principal
component scores. The first two principal component scores for each
color formed a coordinate pair, i.e., a location in a two-dimensional
space, creating a two-dimensional plot of the neural color space that was
easily visualized. PCA defined a two-dimensional plot that accounted for
the greatest proportion of the variance in the six-dimensional channel
responses C. The first two principal component scores accounted for
almost all of the variance of the six-dimensional channel response matrix
C (mean r 2 across visual areas and task conditions, 0.85). Reanalysis of
our previously published data (Brouwer and Heeger, 2009) using this
combination of the forward model (to reduce the dimensionality from
the number of voxels to the number of channels) and PCA (to further
reduce the dimensionality to two) yielded two-dimensional neural color
spaces that were similar to those that we published previously using only
PCA, supporting the same conclusions. Reanalysis of the current data
using PCA to reduce dimensionality directly from the number of voxels
to two also yielded two-dimensional neural color spaces that were similar
to those published previously. Specifically, the neural color spaces from
areas V4v and VO1 were close to circular, whereas the neural color spaces
of the remaining areas (including V1) were not circular, replicating our
previously published results and supporting the previously published
conclusions (Brouwer and Heeger, 2009).

Categorical clustering index. The neural color spaces (estimated chan-
nel responses C) were quantified in terms of categorical clustering, sep-
arately for each task and all visual areas. Categorical clustering quantified
the extent to which the patterns of cortical activity evoked by within-
category stimulus colors (e.g., shades of green) were more similar than
patterns of activity evoked by between-category colors (e.g., blue vs yel-
low). We first calculated the distances between each color pair in the
channel response matrices C. The clustering index was then computed as
the average between-category distance divided by the average within-
category distance. The statistical significance of differences in categorical
clustering between tasks was computed using a nonparametric random-
ization test (explained in detail below). However, the most important
statistical test was a comparison between the measured categorical clus-
tering indices and the amount of clustering expected from a perfectly
circular color space. This is because a circular space will already show
some categorical clustering as color categories are formed by sets of
neighboring colors within the space. For the current experiment, the
baseline value for 12 colors and five categories was computed to be 2.27.
A nonparametric test was used to determine whether the clustering indi-
ces were statistically greater than this baseline. Specifically, a distribution
of clustering index values were computed for each of the 100 boot-
strapped channel response matrices, separately for each task and visual
area. Clustering was statistically significant if the baseline value was be-
low the fifth percentile of this distribution of clustering indices (indicat-
ing 95% of the clustering indices computed for this visual area were
above the baseline value of 2.27).

Expectation-maximization and k-means clustering. In addition to our
own clustering index, we used two complementary clustering algorithms
to quantify the amount of categorical clustering in the neural color spaces:
expectation-maximization (EM) clustering (Dempster et al., 1977) and
k-means (MacQueen, 1967). k-means minimizes the sum, over all clus-
ters, of the within-cluster sums of point-to-cluster-centroid distances.
EM models each cluster as a multidimensional normal distribution. The
input to both algorithms was the number of clusters that should be
identified (five) as well as the 100 bootstrapped channel response matri-
ces C. Thus, for each visual area and task, the input constituted a matrix
of n � 6 points, where n � 1200 was the number of colors (12) times the
number of bootstrapped channel response matrices (100). The output of
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both algorithms was an n element vector indicating cluster membership.
The correspondence between EM clustering and perceptual clustering
was quantified using the adjusted Rand index (Rand, 1971; Hubert and
Arabie, 1985). This index computed the fraction of the 1200 recon-
structed channel responses for which the algorithm placed the stimulus
color in the correct psychophysical color category. Without adjustment,
the Rand index is bounded between 0 (no correspondence) and 1 (com-
plete correspondence). However, this does not take into account that
random groupings will produce some correspondence just by chance.
The chance value was used to adjusted the Rand index, making it take on
a value of 0 for Rand indices expected by chance (Hubert and Arabie,
1985). A high value for the adjusted Rand index indicated a close corre-
spondence between perceptual categories and clustering within the neu-
ral color space. The statistical significance of differences in adjusted Rand
indices between tasks was computed using a nonparametric randomiza-
tion test (see “Statistics” below).

Like the categorical clustering measure, the Rand indices were com-
pared to a baseline index computed from a perfectly circular neural color
space. Strictly speaking, a circular color space consists of 12 separate
clusters (one for each stimulus color) with equidistant spacing from each
other. There is no optimal way of grouping these 12 separate clusters into
a smaller set of five category clusters. The EM clustering algorithm is
initialized with random assignments of colors to clusters, consequently
returning a different random clustering on each iteration. However, the
EM algorithm tends to group nearby colors from a perfectly circular
color space, resulting in an inflated Rand index. We thus compared the
observed adjusted Rand index values with a null distribution of Rand
indices computed from a perfectly circular color space. This null distri-
bution was created using a Monte Carlo simulation: we repeatedly (1000
times) ran the EM clustering algorithm (initialized each time with ran-
dom starting weights) on a perfectly circular color space and computed
the resulting adjusted Rand index. The percentage of this null distribu-
tion greater than the actually observed Rand index value was designated
as the (one-tailed) p value.

Hierarchical clustering. We used both the EM algorithm and k-means
to compute hierarchical clusterings, and to compare color-category hi-
erarchies between the neural and perceptual color spaces. We computed
a distance matrix between the channel responses evoked by each color
pair and transformed it into a dendrogram (a cluster tree) in which the
height of each pair of branches represented the distances between clus-
ters. A similar dendrogram was computed from the psychophysical data,
based on the frequency with which subjects placed two colors in the same
category. Short distances in the dendrogram corresponded to pairs of
colors that were always placed in the same category bin.

Mean response amplitudes, SNR, and goodness of fit. Mean response
amplitudes were computed by averaging the responses across voxels,
runs, and subjects, separately for each visual cortical area and task con-
dition (diverted attention, color naming). Signal-to-noise ratios (SNRs)
were computed by calculating the mean response amplitude for each
voxel (averaged across color and runs) and dividing by the SD of the
responses (across colors and runs). The SNRs were then averaged across
voxels, sessions, and subjects, separately for each visual cortical area and
task condition. We also computed the goodness of fit of the GLM model
to each voxel’s response time course (r 2). The statistical significance of
differences in mean response amplitudes, SNR, and goodness of fit be-
tween tasks was computed using a nonparametric randomization test
(see below).

Voxel tuning curves: gain, offset, and tuning width. We fitted voxel-
based tuning curves to the normalized response amplitudes, separately
for each voxel, using von Mises functions (Jammalamadaka and Sen-
gupta, 2001): f(x��, k) � [exp(k � [cos(x � �)])/[2 � � � I0(k)] � g] �
b, where the values of x corresponded to the stimulus colors. The free
parameters of this function are � (preferred direction in color space), k
(tuning width), g (gain), and b (offset). I0(k) is the modified Bessel func-
tion of order 0. Nonlinear least squares fitting was used to estimate the
parameters for each voxel to the 12 colors, separately for each task and
separately for each subject and scanning session, but averaged across runs
within a scanning session. For each visual area, we then computed the
median of these parameter estimates and took the reciprocal of the k

parameter to transform it to a more intuitive measure of tuning width (in
degrees) at half maximum. The statistical significance of differences in
gain and tuning width between tasks was computed using a nonparamet-
ric randomization test (see “Statistics” below).

Statistics. The differences between tasks in the various measures out-
lined above (categorical clustering, adjusted Rand indices, mean re-
sponse amplitudes, SNR, goodness of fit, voxel-based tuning gain, and
voxel-based tuning width) were all analyzed using the same nonparamet-
ric randomization test. For each of these measures, we obtained a null
distribution for the difference between tasks (color naming, diverted
attention), separately for each visual area. This null distribution was
created by randomly shuffling the task labels (color naming, diverted
attention) a large number of times (1000) and recomputing after each
reshuffling the resulting mean for each task. The measured difference
value was then compared with this null distribution; the proportion of
the null distribution greater than the measured value was designated as
the (one-tailed) p value. We preferred this approach over more conven-
tional parametric methods (e.g., two-way ANOVA), as we had no reason
to assume that these measures were distributed normally, or that vari-
ances were comparable across tasks. However, a two-way ANOVA sup-
ported the same conclusions to those reached using the nonparametric
randomization test. Unlike an ANOVA, the nonparametric randomiza-
tion test does not provide a single summary statistic for all comparisons
(differences in measures between tasks across all visual areas). Instead,
each visual area is associated with a its own statistical significance. To
simplify and reduce clutter, we report the largest p value found across
visual areas for each measure.

MRI acquisition. MRI data were acquired with a Siemens 3T Allegra
head-only scanner using a head coil (NM-011; NOVA Medical) for
transmitting and an eight-channel phased array surface coil (NMSC-021;
NOVA Medical) for receiving. Functional scans were acquired with gra-
dient recalled echoplanar imaging to measure blood oxygen level-
dependent changes in image intensity (Ogawa et al., 1990). Functional
imaging was conducted with 24 slices oriented perpendicular to the cal-
carine sulcus and positioned with the most posterior slice at the occipital
pole (repetition time, 1.5 s; echo time, 35 ms; flip angle, 75°; 2.0 � 2.0 �
2.5 mm; 104 � 80 grid size). A T1-weighted magnetization-prepared
rapid gradient echo (MPRAGE; 1.5 � 1.5 � 3 mm) anatomical volume
was acquired in each scanning session with the same slice prescriptions as
the functional images. This anatomical volume was aligned using a ro-
bust image registration algorithm (Nestares and Heeger, 2000) to a high-
resolution anatomical volume. The high-resolution anatomical volume,
acquired in a separate session, was the average of several MPRAGE scans
(1 � 1 � 1 mm) that were aligned and averaged, and used not only for
registration across scanning sessions, but also for gray matter segmenta-
tion and cortical flattening (see below).

Defining visual cortical areas. Visual cortical areas were defined using
standard retinotopic mapping methods (Engel et al., 1994, 1997; Sereno
et al., 1995; Larsson and Heeger, 2006), with the exact procedure de-
scribed in detail previously (Brouwer and Heeger, 2009, 2011). There is
some controversy over the definition of human V4 and the areas just
anterior to it (Tootell and Hadjikhani, 2001; Hansen et al., 2007). We
adopted the convention of defining V4v, VO1, and VO2 as adjacent
visual cortical areas on the ventral surface of the occipital lobe, each with
a representation of the entire contralateral hemifield (Brewer et al., 2005;
Wandell et al., 2007). We defined the ROIs conservatively, avoiding the
boundaries (reversals) between adjacent visual field maps, to reduce the
risk of assigning a voxel to the wrong visual cortical area. Area hMT�
(the human MT complex) was defined, using data acquired in a separate
scanning session, as an area in or near the dorsal/posterior limb of the
inferior temporal sulcus that responded more strongly to coherently
moving dots relative to static dots (Tootell et al., 1995a,b), setting it apart
from neighboring areas LO1 and LO2 (Larsson and Heeger, 2006).

Results
Psychophysics
Given five color categories in which to place 64 stimulus colors,
subjects were consistent where they placed category boundaries
(Fig. 3). The most stable categories were “green” and “blue.” Four
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of five subjects separated the darker purples and the brighter
magentas/pinks into two different categories (although they var-
ied somewhat in the boundary location between the categories),
whereas they combined the orange and yellow stimulus colors
into a single category. The remaining subject (S1) combined all
mixtures of red and blue into a single category, but separated the
orange and yellow stimuli into two distinct categories. Averaging
across subjects, the five categories used for the analysis of the
subsequent fMRI measurements were “blue” (including 3 of 12
colors in the fMRI experiment), “purple” (2 of 12 colors), “ma-
genta/pink” (2 of 12 colors), “yellow” (2 of 12 colors), and
“green” (3 of 12 colors).

Greater categorical clustering in V4v and VO1 for
color naming
We extracted neural color spaces from the fMRI measurements,
separately for each visual area and each task condition (diverted
attention vs color naming). In each of these low-dimensional
neural color spaces, the distances between each pair of stimulus
colors represented the similarity between the patterns of activity
evoked by the colors.

Clustering of the within-category colors was evident in the
neural color spaces, particularly in VO1 and V4v, and particularly
for the color-naming task (Fig. 4A,B; visualized in 2D using PCA;
see Materials and Methods). In contrast, the neural color space
extracted from neighboring visual area V3 was largely circular
and therefore low in categorical clustering (Fig. 4C). To quantify
these results, we computed an index of categorical clustering
from distances between pairs of colors (Fig. 5A). The key test of
categorical clustering was the comparison of the clustering index
with a baseline value corresponding to a perfectly circular neural
color space (see Materials and Methods). Below this baseline, any
change in the index value confounds categorical clustering with
circularity of the neural color space. The clustering indices were
significantly greater than the baseline value only areas V4v and
VO1, and only for the color-naming task (nonparametric ran-
domization test, p � 0.001). The categorical clustering indices in
all other visual areas fell short of this baseline.

The categorical clustering indices were significantly larger for
color naming than diverted attention in all but one (V2) visual
area (p � 0.001, nonparametric randomization test), but the
difference between color naming and diverted attention was sig-
nificantly greater in VO1 relative to the other visual areas (p �
0.01, nonparametric randomization test). One possibility is that
all visual areas exhibited clustering of within-category colors, but
that the categorical clustering indices were low in visual areas

with fewer color-selective neurons, i.e., due to a lack of statistical
power. Another possibility is that the increase in categorical clus-
tering index observed in areas other than V4v and VO1 solely
reflected an increase in the circularity of the color spaces, but no
increase in clustering. To distinguish between these two possibil-
ities would require considerably larger data sets to gain statistical
power or other methods capable of isolating the responses of a
large number of color-selective neurons in each visual area.

Categorical clustering in area V4v was close to baseline (i.e.,
close to that expected for a perfectly circular color) for the di-
verted attention task, replicating our earlier findings (Brouwer
and Heeger, 2009). But no visual area exhibited categorical clus-
tering significantly greater than baseline for the diverted atten-
tion task.

Color sensitivity in the retina varies as a function of location,
most notably the increase in S-cones as a function of eccentricity,
and the complete absence of S-cones in central fovea. We previ-
ously reported a lack of a systematic shift in a classifier’s ability to
distinguish between different colors as function of eccentricity
(Brouwer and Heeger, 2009). Similarly, we found no significant
change in categorical clustering as a function of eccentricity in the
current experimental data.

Clustering in V4v and VO1 resembled perceptual
color categories
Clustering in the neural color spaces was similar to that measured
psychophysically. Qualitatively, the only discrepancy we found
between the neural color spaces and the psychophysical catego-

Figure 3. Psychophysics: color categorization. First row, Twelve stimulus colors used in the
fMRI experiments. Second row, Sixty-four colors (taken from the same circular color space as the
12 colors in the first row) used in the psychophysics experiment. Rows S1, S2, S3, S4, and S5
represent the category boundaries for each subject, respectively. Subjects were asked to parti-
tion the 64 stimulus colors into five bins, according to what they felt was a natural division of the
continuous color space into five categories. The color representing each category is the average
of all the colors that the subject included in the category.

Figure 4. Categorical clustering in neural color spaces. A, Visual area VO1. B, V4v. C, V3. Left,
Diverted attention task. Right, Color-naming task. Channel responses were estimated from the
fMRI measurements using the forward model and visualized in 2D plots using principal compo-
nent analysis. Coordinates of each stimulus color in the plots correspond to the first two princi-
pal component scores of the channel responses (see Materials and Methods). Each individual
point is the mean coordinate averaged across 100 bootstrapped estimates of the channel re-
sponses (see Materials and Methods). Errors bars represent the horizontal and vertical SDs of
each coordinate.
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ries was that the turquoise/cyan stimulus color in the neural
spaces was grouped with the blues, while psychophysically, this
stimulus color was placed in the green category. We used a stan-
dard clustering algorithm, EM clustering, to quantify the com-
parison. The algorithm was used to partition the neural color
spaces into five clusters. We then compared this clustering with
the psychophysical categories using the adjusted Rand index (see
Materials and Methods; Fig. 5B). A high value for the adjusted
Rand index indicated a close correspondence between perceptual
categories and clustering within the neural color space. Only for
the color-naming task, and only in V4v and VO1, were the ad-
justed Rand index values statistically greater than the baseline
Rand index expected from a perfectly circular color space (p �
0.01, nonparametric Monte Carlo simulation; see Materials and

Methods). These results were highly similar to those obtained
using k-means (data not shown), a different but widely used clus-
tering algorithm, as well as our own clustering index.

Hierarchical clustering in areas V4v and VO1 resembled the
perceptual hierarchy of color categories
We used the EM algorithm to compute a hierarchical organiza-
tion of the neural color spaces and to compute a hierarchical
organization of perceptual color categories. The resulting den-
drograms (cluster trees) extracted from VO1 (Fig. 6B) and V4v
(data not shown) for the color-naming task resembled the den-
drogram extracted from the psychophysical measurements (Fig.
6C). In these dendrograms, the height of each pair of branches
represents the similarity between the two colors being connected,
as measured by the frequency with which these colors were placed
in the same cluster. The VO1 dendrogram for the color-naming
task revealed seven different categories at the lowest level of the
hierarchy (Fig. 6B): two greens, two turquoise colors, cyan, blue,
two purples, two magentas, and yellow/orange. At the next level,
these were combined into three categories: green/yellow, blue/
turquoise, and magenta/purple, each containing four of the 12
stimuli. The psychophysical color category judgments exhibited a
similar dendrogram (Fig. 6C), with two exceptions: (1) the tur-
quoise color was not consistently placed in the green category
(evident at the lowest level of the dendrogram), and (2) the VO1
hierarchy combined greens and yellows before combining these
with blues and purples, whereas the psychophysical hierarchy
combined greens and blues before combing these with purples/
magenta and yellows. In contrast, the VO1 dendrogram for the
diverted attention task (Fig. 6A) exhibited only weak correspon-
dence with perceptual dendrogram. The V4v dendrograms were
very similar to those extracted from VO1. None the dendrograms
extracted from any of the other visual areas, for either task, were
similar to the perceptual dendrogram.

Response amplitudes, SNR, voxel-based tuning curves, and
model fits
Mean response amplitudes were larger for the color-naming task
in all visual areas (p � 0.001, nonparametric randomization test;
Fig. 7A). However, there were no significant differences in mean
responses amplitudes between different stimulus colors. Apart
from differences in response amplitudes, the temporal dynamics
of evoked responses were not significantly different between
tasks. We fitted the event-related responses, averaged across vox-
els, to a canonical hemodynamic response function with six free
parameters (Friston, 2007). We found no significant differences
in the estimated parameters between tasks (p � 0.50, nonpara-
metric randomization test).

The larger response amplitudes were accompanied by greater
SNR. We computed SNR, separately for each voxel, as the ratio
between the mean response amplitude and SD across repeated
stimulus presentations, and then averaged across voxels in each
visual area. The SNR was greater for color naming in most visual
areas (V2, V3, V4v, VO1, LO1, LO2, and MT�: p � 0.05, non-
parametric randomization test; V1, p � 0.51; VO2, p � 0.47).
Converging evidence for greater SNR was observed by comparing
the goodness of fit to each voxel’s response time course (r 2; see
Materials and Methods). The r 2 values were significantly greater
for the color-naming task in all visual areas (p � 0.01, nonpara-
metric randomization test).

The larger response amplitudes were accompanied by nar-
rower voxel-based tuning curves and greater response gains. We
fitted the responses of each voxel to a circular Gaussian tuning

Figure 5. Color-category specific clustering. A, Categorical clustering indices for each visual
area and for each of the two task conditions. Light gray bars, Diverted attention task; dark gray
bars, color-naming task; dashed line, baseline categorical clustering index for a perfectly circular
color space that shows no clustering at all. Asterisks indicate visual areas/tasks for which the
index was significantly greater than expected from a circular color space. Error bars indicate the
SD in clustering across bootstrapped channel responses. B, Adjusted Rand indices for each visual
area and each task (same format as in A). The adjusted Rand index quantifies the correspon-
dence between clustering in the neural color spaces and the perceptual categories. The solid line
indicates the mean of the baseline distribution of adjusted Rand indices for a perfectly circular
color space that shows no clustering at all, computed using a Monte Carlo simulation. The
dashed lines indicate the 5th and 95th percentiles for the baseline distribution. Asterisks indi-
cate visual areas/task for which the index was significantly greater than expected from a circular
color space. Error bars indicate the SD in the adjusted Rand indices computed across boot-
strapped channel responses.
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curve (see Materials and Methods) separately for each task, and
then averaged the fitted parameter values across voxels in each
visual area. The gains of the best-fit tuning curves were greater for
the color-naming task in all visual areas ( p � 0.01, nonpara-
metric randomization test). In addition, tuning widths were
narrower in all visual areas ( p � 0.01, nonparametric random-
ization test), with exception of areas VO1 ( p � 0.053) and
hMT� ( p � 0.45).

How much of the response variability in the voxels was cap-
tured by the forward model? After computing the forward model
weights (see Materials and Methods), we created a matrix of pre-
dicted voxel responses, given the weights and the forward model.
We then calculated the fit (r 2) between these predicted and the
actual voxel responses, separately for each visual area and task.
This revealed a significant increase in the model fit during the
color-naming task in all visual areas (p � 0.0001), with the ex-
ception of area V3, which showed a significant decrease (p �
0.001). The best fit between the forward model and data was
observed in V4v, in both tasks, while the biggest increase in fit
quality was observed in area VO1, where the model fit almost
doubled during color naming. The r 2 values were not very high
(ranging from 0.05 for area MT� to 0.12 for area V4v), however,

raising concern that the forward model might have failed to char-
acterize responses of color-selective neurons. Previously, we
demonstrated that stimulus color could be decoded from the
evoked responses using either the (same) forward model or a
maximum likelihood classifier (Brouwer and Heeger, 2009). De-
coding accuracies with the forward model and classifier were
indistinguishable from one another (r � 0.94). Decoding accu-
racies from the current data set were similar; forward-model de-
coding and maximum-likelihood decoding and were nearly
indistinguishable. This suggests that the residuals not captured by
the forward model constituted primarily measurement and/or
physiological noise because there was little, if any, information
about color in the residuals not captured by the forward model.

One possible concern is that areas VO1 and V4v exhibited
categorical clustering, even during the diverted attention task,
but that we could only observe such categorical clustering during
the color-naming task because it was associated with higher SNR.
Therefore, in a separate analysis, we selectively reduced the SNR
associated with the color-naming task by removing voxels with
high SNR and repeating the analysis. Specifically, we removed the
voxels with r 2 values above the 50th, 60th, 70th, 80th, and 90th
percentiles. Removing these high SNR voxels from the color-
naming task data had a dramatic effect on the average SNR, and
even removing the best 10% of voxels reduced the average SNR of
the color-naming task such that it was no longer significantly
different from the average SNR in the diverted attention task. The
categorical clustering measure was largely unaffected by reducing
SNR: areas V4v and VO1 continued to show significant clustering
during the color-naming task, while the other visual areas did
not, even with 50% of the best voxels removed from each visual
area.

Individual subjects
These results were evident also in individual subjects. Mean re-
sponse amplitudes and SNRs were greater for color naming in
most visual areas and most individual subjects. For example, re-
sponse amplitudes from V4v were larger for color naming in four
of five subjects, and from VO1 in four of five subjects (p � 0.001,
nonparametric randomization test). Categorical clustering from
VO1 and V4v was numerically greater during color naming in all
five subjects, but the clustering index and Rand index values were
statistically greater than baseline for only one of five subjects (p �
0.05, nonparametric randomization test). This likely reflects a
limitation in measuring response amplitudes precisely in the
presence of physiological and instrumentation noise.

Given that the clustering index values were not statistically
significant in each subject individually, we were concerned that
the results, when combined across subjects, might rely mostly on
a subset of the subjects. We therefore repeated the same analyses
described above, combining across subjects, but leaving one sub-
ject out in turn. The results obtained in this way were similar to
those obtained by combining all subjects, and supported the
same conclusions, regardless of which subject was left out.

A neural model of categorical clustering
We propose a model for how a categorical representation of color
can be induced by changes in the gain of color-selective neurons.
The proposed gain changes are similar to those observed during
spatial and feature-based attention tasks. In the model, color is
encoded by the activity of many neurons, each tuned to a differ-
ent hue. During the diverted attention task (or during passive
viewing), the maximum firing rates of all these neurons are sim-
ilar (Fig. 8A), and, consequently, the low-dimensional (2D) neu-

Figure 6. Hierarchical clustering. A, Dendrogram extracted from VO1 activity during the
diverted attention task. The height of each pair of branches in the dendrogram (cluster tree)
represents the similarity between the patterns of activity evoked by the two colors being con-
nected. B, Dendrogram extracted from VO1 activity during the color-naming task. C, Dendro-
gram extracted from color categorization psychophysics (see Fig. 2). The height of each pair of
branches represents the relative frequency with which subjects placed the two stimulus colors
in the same category.
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ral color space extracted from the activity of these neurons is
circular (Fig. 8B). When subjects are actively attending to the
color stimuli, we propose that there is an increase in gain for all
color-selective neurons across all visual cortical areas. Such an
increase in gain is hypothesized to cause the observed increases in
response amplitudes and SNR (assuming that the noise is addi-
tive). We verified through model simulations that the neural
color space is not affected by this nonspecific gain increase. We
also verified that the neural color space is not affected by an
additive increase in baseline responses.

To model the transformation (i.e., clustering) in the neural
color space, we propose that some visual areas (e.g., V4v and
VO1) implement an additional color-specific change in gain,
such that the gain of each neuron changes as a function of its
selectivity relative to the centers of the color categories (Fig. 8C).
Specifically, neurons tuned to a color near the center of a color
category are subjected to larger gain increases than neurons tuned
to intermediate colors. This color-specific gain change mimics
the responses of macaque IT neurons observed when monkeys
perform a color categorization task (Koida and Komatsu, 2007).
The resulting neural color space, with color-specific gain modu-
lations, exhibits clustering (Fig. 8D).

This model predicts narrower voxel-based tuning curves with
color-specific gain increases, as observed in our data for the
color-naming task. Each voxel contains a large number of neu-
rons with a wide range of color preferences. The voxel-based
tuning curves depend on the distributions of color preferences,
response gains, and tuning widths of all of the neurons in each
voxel. If the gain increases for only one subpopulation of neurons
(all with the same preferred color), with no change in neural
tuning widths, then the voxel-based tuning curves will appear to
have both higher gain and narrower tuning. A similar prediction
follows from increasing the gains of several subpopulations of
neurons, each subpopulation with a different preferred color.

The model also predicts that the response gains of each voxel
should differ, depending on the distance from its preferred color
to color-category centroids. We did not find significant differ-
ences in gain dependent on the preferred color of each voxel.
There was only a weak correlation between distance and gain in
area V4v for color naming. We suspect that our measurements
lacked the necessary statistical power to test this prediction. In
addition, the choice of stimuli may not have included a suffi-
ciently large number of colors sampling hue densely enough to
reveal the hypothesized color-selective changes in gain. A related
prediction of the model is that mean response amplitudes (aver-
aged across voxels) should depend on stimulus color, with colors
near the category centroids evoking the largest responses for the
color-naming task. We did not observe evidence for this predic-
tion, but again the statistical power in our measurements may
have been limited by not sampling hue densely enough.

Discussion
Categorical clustering of neural representation of color in
V4v and VO1
Task-dependent modulations of activity are readily observed
throughout visual cortex, associated with spatial attention,
feature-based attention, perceptual decision making, and task
structure (Kastner and Ungerleider, 2000; Treue, 2001; Corbetta
and Shulman, 2002; Reynolds and Chelazzi, 2004; Jack et al.,
2006; Maunsell and Treue, 2006; Reynolds and Heeger, 2009).
These task-dependent modulations have been characterized as
shifting baseline responses, amplifying gain and increasing SNR
of stimulus-evoked responses, and/or narrowing tuning widths.

The focus in the current study, however, was to characterize
task-dependent changes in distributed neural representations,
i.e., the joint encoding of a stimulus by activity in populations of
neurons. We measured distributed patterns of fMRI responses to
color and computed neural color spaces from these measure-
ments. Neural color spaces from areas V4v and VO1 showed
significant categorical clustering for the color-naming task, but
not for the diverted attention task. These were the only visual
areas that exhibited clustering, although we observed signifi-

Figure 7. Response amplitudes, gain, and voxel tuning width. A, Response amplitudes,
averaged across all voxels within each visual area, for each of the two task conditions.
Light gray bars, Diverted attention task; dark gray bars, color-naming task. Error bars
indicate SDs across subjects and scanning sessions. Asterisks indicate visual areas for
which the responses were significantly greater during the color-naming task compared to
the diverted attention task. B, Estimated gain in each visual, for each task. Error bars
indicate SDs across subjects and scanning sessions. C, Estimated average tuning width
(full-width at half maximum, in degrees) for each visual area and for each task. Error bars
indicate SDs across subjects and scanning sessions.
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cantly larger response amplitudes and greater signal-to-noise ra-
tios in all visual areas for color naming. When subjects engaged in
color naming, the neural representations of color in V4v and
VO1 were transformed, making patterns of activity of within-
category colors more similar, while making patterns of activity of
between-category colors more dissimilar. The clustering was sim-
ilar to the subjective perception of color categories, thus revealing
a neural correlate of perceptual color categories in human visual
cortex.

Categorical specificity of areas V4v and VO1
A multitude of studies have shown that both human and macaque
V4 and adjacent areas respond strongly and selectivity to chromatic
stimuli (Zeki, 1973; Hadjikhani et al., 1998; Bartels and Zeki, 2000;
Wade et al., 2002; Brewer et al., 2005; Conway and Tsao, 2006; Con-
way et al., 2007; Koida and Komatsu, 2007; Stoughton and Conway,
2008; Wade et al., 2008; Brouwer and Heeger, 2009). We showed
previously that the neural representation of color in V4v and adja-
cent area VO1 (during a similar, but less demanding diverted atten-
tion task to that used in the current study) better matched our
perceptual experience of color, compared to other visual areas
(Brouwer and Heeger, 2009). However, few studies have investi-
gated the neural representation of color categories, the representa-
tion of the unique hues, or the effect of task demands on these
representations.

Previous evidence for a potential categorical representation in
the visual system comes from the observation that although ma-
caque IT neurons are tuned to all directions in color space, the
distribution is not uniform. Rather, the population distribution
contains three prominent peaks in color tuning, aligned with the
unique hues red, green, blue, and, to a lesser extent, yellow
(Stoughton and Conway, 2008). In addition, changes in the re-
sponse properties of color-selective neurons as a result of task
demands have been observed in macaque IT. When animals were

rewarded for categorizing a stimulus as
being either green or red, color signals dif-
ferentiating these two colors were en-
hanced, although color selectivity was
conserved (Koida and Komatsu, 2007).

Neural correlates of color categories
have also been identified in the human
brain using EEG. Specifically, successive
within-category colors change the ampli-
tude and latency of the event-related po-
tential components associated with the
perceived mismatch between the current
visual input (i.e., a shade of green) and
preceding stimuli (i.e., different shades of
green), relative to successive presenta-
tions of between-category colors (Fonte-
neau and Davidoff, 2007; Liu et al., 2009;
Thierry et al., 2009; Mo et al., 2011). Fur-
thermore, the effects appear to be lateral-
ized, providing support for the influence
of language on color categorization, the
principle of linguistic relativity, or Whor-
fianism (Hill and Mannheim, 1992; Liu et
al., 2009; Mo et al., 2011). Indeed,
language-specific terminology influences
preattentive color perception. The exis-
tence in Greek of two additional color
terms, distinguishing light and dark blue,
leads to faster perceptual discrimination

of these colors and an increased visual mismatch negativity of
the visually evoked potential in native speakers of Greek, com-
pared to native speakers of English (Thierry et al., 2009).

In the current study, we took a step further and derived, from
our fMRI measurements, the underlying neural representations
(i.e., the neural color spaces), and found evidence for categorical
clustering, but only when subjects were performing the color-
naming task. Unlike the previous EEG study, however, we found
no evidence of lateralized categorical clustering: clustering
was statistically significant for V4v and VO1 in both hemi-
spheres, and not significantly different between hemispheres
(data not shown).

Macaque versus human color vision
There is a continuing debate on the relationship between human
V4v and macaque V4. Whereas some have argued that human V4
consists of a dorsal and ventral part (V4v and V4d) (Hansen et al.,
2007), differences in retinotopy and functional properties suggest
that these two human cortical regions are distinct. Unlike V4v,
putative human V4d does not respond more strongly to color
than to grayscale stimuli (Tootell and Hadjikhani, 2001; Wade et
al., 2002, 2008; Winawer et al., 2010; Goddard et al., 2011). Ma-
caque V4v (adjacent to V3v) and V4d (adjacent to V3d) represent
complementary parts of the contralateral hemifield. In humans,
on the other hand, V4v (adjacent to V3v) and LO1 (adjacent to
V3d) each contain representations of the entire contralateral
hemifield (Press et al., 2001; Larsson and Heeger, 2006; Bridge
and Parker, 2007; Swisher et al., 2007). In further support of this
distinction, we did not find significant categorical clustering in
LO1 and LO2, although the clustering values from these areas
were consistently higher than those from neighboring areas
hMT� and V3AB. Instead, we found significant categorical clus-
tering only in the ventral visual areas V4v and VO1.

Figure 8. A neural model for categorical clustering. A, Color is represented by the activity of broadly tuned neurons, each with
a different preferred color. Each black curve is a simulated tuning curve. For the diverted attention task, all neurons have the same
gain (peak height of the tuning curves). B, Circular neural color space extracted from the simulated responses in A. C, For the
color-naming task, responses from some visual areas (e.g., V4v and VO1) are enhanced, but only for neurons that prefer colors near
the category centers (e.g., red, green, blue, yellow). D, Neural color space extracted from the simulated responses in C, showing
categorical clustering.
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This is also cause for caution, in general, when comparing the
pathways of color vision between species. Color perception might
differ between humans and macaques. Macaque and human
photoreceptors differ in their spectral sensitivities (Kaiser and
Boynton, 1996), as do the proportions of long-, middle-, and
short-wavelength photoreceptors (Dobkins et al., 2000). Despite
these differences, it is reasonable to hypothesize that the same
computational processes underlie the transformations in neu-
ral representations across the hierarchy of visual areas, in both
species.

A neural model of color categorization
We proposed a model that explains the clustering of the neural
color spaces from V4v and VO1, as well as the changes in response
amplitudes (gain) and SNR observed in all visual areas. In this
model, the categorical clustering observed in V4v and VO1 is
attributed to a color-specific gain change, such that the gain of
each neuron changes as a function of its selectivity relative to the
centers of the color categories.

Our study was not designed to distinguish between the possi-
ble contributions of spatial and featural attention to these gain
changes. The diverted attention task required subjects to attend at
fixation, and the color-naming task required them to attend in-
stead to the peripheral locations of the colored stimuli, con-
founding any change in featural attention with the change in
spatial attention. If color-selectivity varies with eccentricity, then
the shift in spatial attention alone (with no change in featural
attention) might have caused color-specific gain changes. How-
ever, both the present study and a previous one (Brouwer and
Heeger, 2009) found no evidence for differences in color-
selectivity as a function of eccentricity. Consequently, the change
in categorical clustering for the color-naming task was likely
dominated by featural attention. Although the origin of neural
signals responsible for adjusting the gains of the color-selective
neurons is beyond the scope of the current study, other research
suggests that neural activity in prefrontal cortex encodes task-
specific rules (Miller and Cohen, 2001).
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