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At the level of the cochlear nucleus (CN), the auditory pathway
divides into several parallel circuits, each of which provides a
different representation of the acoustic signal. Here, the represen-
tation of the power spectrum of an acoustic signal is analyzed for
two CN principal cells—chopper neurons of the ventral CN and
type IV neurons of the dorsal CN. The analysis is based on a
weighting function model that relates the discharge rate of a
neuron to first- and second-order transformations of the power
spectrum. In chopper neurons, the transformation of spectral level
into rate is a linear (i.e., first-order) or nearly linear function. This
transformation is a predominantly excitatory process involving
multiple frequency components, centered in a narrow frequency
range about best frequency, that usually are processed indepen-
dently of each other. In contrast, type IV neurons encode spectral
information linearly only near threshold. At higher stimulus levels,
these neurons are strongly inhibited by spectral notches, a behav-
ior that cannot be explained by level transformations of first- or
second-order. Type IV weighting functions reveal complex excita-
tory and inhibitory interactions that involve frequency compo-
nents spanning a wider range than that seen in choppers. These
findings suggest that chopper and type IV neurons form parallel
pathways of spectral information transmission that are governed
by two different mechanisms. Although choppers use a predomi-
nantly linear mechanism to transmit tonotopic representations of
spectra, type IV neurons use highly nonlinear processes to signal
the presence of wide-band spectral features.

As sensory systems are studied more completely, it is appar-
ent that they are composed of multiple parallel subsystems

(for example, see refs. 1–4). The physiological characteristics of
these segregated pathways are often quite different, leading to
the assumption that each subsystem plays a specialized role in the
processing of sensory information. The cochlear nucleus (CN),
the termination zone of auditory nerve fibers, is an ideal
structure in which to investigate the parallel processing of
information within a sensory system. Not only does the CN
contain at least seven different principal cell types—each with
distinct morphological and physiological properties—but these
distinct neuron classes project to auditory nuclei in anatomically
segregated pathways (5, 6). These findings suggest that the CN
is the origin of multiple functionally distinct subsystems of
auditory information processing.

The parallel organization of sensory systems suggests that
different neural populations may be responsible for processing
different aspects of a sensory stimulus. Distinct neuron classes of
the CN likely exist to decompose complex natural sounds into
more simple information-bearing elements—forms that are nec-
essary for subsequent processing in other auditory nuclei. What
acoustic information is contained within each of these elements
and by what mechanism do the auditory neurons compute this
information? In this paper we address these questions by con-

sidering only information that is present in the power spectra of
sounds. Sound spectra, distribution plots of the energy content
in a stimulus across frequency, have been shown to convey
information necessary for the identification and localization of
behaviorally important acoustic stimuli. For example, the iden-
tity of a speech vowel appears to be determined by its formant
frequencies, the frequencies at which there are peaks of energy
in the power spectrum (7). We limit our discussion in this paper
to the behavior of chopper and type IV neurons in the ventral
CN (VCN) and dorsal CN (DCN), respectively. Both neuron
types have been implicated in aspects of the representation of the
frequency spectra of stimuli (8, 9). We will show that these two
principal neurons of the CN compute spectral information about
the acoustic environment by using different mechanisms.

Importance of Spectral Shape in Sound Localization
Spectral shapes of acoustic stimuli provide cues that are neces-
sary for accurate sound localization in cats and humans (10, 11).
Spectral sound localization cues are produced by the direction-
dependence of sound propagation through the external ear. This
dependence is captured by the head-related transfer function
(HRTF), a measure of the ratio of the sound pressure near the
eardrum to the sound pressure in free field (12, 13). Two
examples are shown in Fig. 1 (14). Flat spectrum broadband
noise presented in free field at two different spatial locations will
be modified by two different HRTFs, like those shown in Fig. 1.
As a result, spectra at the eardrum are different and can be used
to identify the sound source directions. In the midfrequency
region between 8 and 18 kHz, HRTFs commonly exhibit broad
spectral notches (at 13.6 kHz for EO and just below 10 kHz for
E2) with center frequency positions that vary systematically with
source position in the frontal field. The variation of first notch
position with azimuth and elevation suggests that notch positions
occurring at each ear are in principle sufficient to provide a
unique determinant of sound location (14). The complex spec-
tral patterns seen at high frequencies (above 18 kHz) also change
rapidly as the sound source is moved. These high-frequency cues
have been shown to provide cats with the ability to discriminate
between two source locations (15); however, in cats, the mid-
frequency notch appears to be necessary for localizing a single
sound source (11).

Representation of Spectral Shape Across Neural Populations
At threshold, auditory neurons respond most strongly to a single
frequency called the best frequency (BF). At higher sound levels,
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they respond primarily to frequency regions surrounding BF.
Auditory nuclei are tonotopically organized, meaning that BF
values of neurons at sequential anatomical positions differ in a
systematic, sequential manner (16). For example, more ventral
areas of the DCN house neurons with progressively lower BF
values than those in more dorsal areas (17). Tonotopic organi-
zation can be viewed as a physiological correlate in the brain to
the frequency axis of the sound power spectrum.

The BF tuning of auditory neurons is the basis for two
different mechanisms by which sound spectra can be represented
across a neural population. In response to an auditory stimulus,
an array of neurons may produce a tonotopically organized
distribution of average rates that are proportional to spectral
shape (e.g., ref. 18). This tonotopic representation must involve
narrowly tuned neurons that produce discharge rates that are
monotonically related to the spectral energy near BF. Alterna-
tively, auditory neurons may provide a tonotopic representation
of stimulus features. In this case, the responses of neurons
strongly depend on the presence of wide-band spectral shapes
within their receptive fields. Previous studies have shown that
VCN chopper neurons possess the physiological characteristics
to provide a tonotopic representation of a sound spectrum (8).
In contrast, DCN type IV neurons are likely to be feature
detectors, exhibiting strong rate sensitivity to the presence of
wide-band spectral notches at BF (9, 19). The current study
corroborates these earlier findings by applying techniques of
system identification to explore the two mechanisms for the
rate-encoding of spectral information.

A System Identification Approach to Understanding Spectral
Processing in Auditory Neurons
Neurons producing the spectral shape representations described
above are assumed here to pass spectral information to other
areas of the brain in the form of average discharge rate. The
transformation of spectral information into rate is assumed to be
given by the following stimulus-response function:

r 5 R0 1 O
j 5 j1

j2

wjS~fj! 1 O
j 5 j1

j2 O
k 5 j

j2

wjkS~fj!S~fk!, [1]

where discharge rate r is a weighted sum of energy at different
frequency components of the stimulus. The frequency axis is
divided into bins of 1y8-octave width with values S( fj) equal to
the energy in one such bin. The spectrum S is expressed as dB

relative to the average bin power across frequency. In the first
sum of Eq. 1, the first-order weight, wj, quantifies the contribu-
tion of the bin with center frequency, fj, to the overall rate
response. In the second sum, the second-order weight, wjk,
captures either quadratic dependence of rate on stimulus energy
at a single frequency, fj, or interactions between energy at
frequency pairs fj and fk. R0 is the rate response to a sound with
constant spectral level of 0 dB re: the average value. The form
of this model is motivated by the fact that, in response to small
f luctuations in level of a fixed broadband stimulus, auditory
nerve fibers and VCN neurons exhibit discharge rates that are
approximately linearly related to spectral level at BF (20–22).
Eq. 1 is a small-signal linearization of a nonlinear system that is
valid over a restricted range of spectral levels S(f). Although the
range of the approximation has not been investigated, it seems
to be large enough to encompass the range of spectral levels seen
in HRTFs, where levels S( fj) vary by less than 10–20 dB from an
average value. Similar models have been used previously (e.g.,
refs. 23–25).

The system parameters R0, wj, and wjk can be deduced by
presenting stimuli with predetermined spectral shapes and re-
cording observed discharge rates. Responses to spectra with a
constant level of 0 dB are averaged to obtain an estimate of Ro.
First- and second-order weights then are estimated by recording
responses to stimuli with random spectral shapes (RSS) and
solving Eq. 1 by using least squares (normal equations, ref. 26).
Spectra of three of the RSS stimuli are shown in the bottom three
plots of Fig. 2B. The amplitudes of the spectra in each frequency
bin are pseudorandom with mean 0 dB and standard deviation
12 dB. The waveforms of the stimulus set are generated by first
discretizing spectra into tones that are logarithmically spaced at
frequency steps of 1y64 octave. Each of the frequency bins are
1y8-octave wide and contain eight of these tones, each with
identical amplitude. Sinusoidal tones with random phase are
summed for each spectrum to generate the RSS stimuli. Because
the model is valid only over a limited level range, model
parameters are computed for different overall stimulus levels at
10-dB intervals.

The first-order weights shown in Fig. 2C were obtained from
the rate responses to 192 RSS stimuli. First-order weights for two
different neurons, a VCN chopper (Fig. 2C Left) and DCN type
IV (Fig. 2C Right), are plotted as a function of frequency in terms
of octaves relative to BF. The mean and standard deviation of
the weights are determined by using a bootstrap procedure (27)
in which weights are computed repeatedly by sampling with
replacement from the set of 192 stimulus-rate pairs. As many as
192 weights (total number of first- and second-order weights) can
be computed by using the least-squares fitting method; however,
only a subset of these are useful in characterizing a neuron.
Three criteria are used to estimate a useful range of first-order
weights ([ j1, j2] in Eq. 1). First, a weight is considered signifi-
cant if it is at least one standard deviation (determined from the
bootstrap calculations) away from zero. Second, weighting func-
tions are assumed to be continuous. That is, weights near zero
that are located between two significant weights are included in
the range. Third, weights considered significant must improve
the accuracy with which Eq. 1 can predict responses to novel
stimuli (described below). The filled circles in Fig. 2C indicate
weights that are considered significant under these criteria. The
range of weights [ j1, j2] defines the bandwidth of the neuron.
Second-order weights are computed over the same or wider
bandwidth to ensure that the higher-order model includes all
contributing frequency bins.

If Eq. 1 truly describes the transformation of spectral level
into rate, then estimated parameters should accurately predict
responses to novel stimuli. A set of broadband noise stimuli
filtered by HRTFs is used to test the model and study the
representation of behaviorally relevant spectral cues. The 100

Fig. 1. Examples of HRTFs for the external ear of the cat. Plot shows gain
versus frequency for sound propagation from free field to a point near a cat’s
eardrum (14) for two directions in space. Gains were computed as the ratio of
the sound pressure measured near the eardrum divided by the sound pressure
in free field, i.e., with the cat removed. E0 was 15° to the right of midline (the
recording microphone was in the right ear) and 30° above the horizon. E2 was
also 15° to the right, but was 15° below the horizon. Test stimuli in later figures
were generated by filtering broadband noise with these and similar gain
functions, thereby producing stimuli whose spectra had the shape of these
gain functions (for details, see ref. 18). Earphone delivery of these stimuli
simulates presentation of a broadband noise from the corresponding direc-
tions in free field.
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HRTFs chosen for the stimulus set were recorded from
locations in the frontal field of a cat at 15° intervals in azimuth
and 7.5° intervals in elevation (14). Parameters estimated by
using RSS stimuli and found to be significant are used to
predict responses to HRTF stimuli of matched average level.
The quality of the model fit is quantified by a measure Q
given by

Q 5
1

1 1 O
i 5 1

n

~ri 2 r̂ i!
2y O

i 5 1

n

~ r̂ i 2 r̂# !2

, [2]

where ri are the experimental rates, r̂i are the rates predicted by
the model, and r̂ is the mean of the r̂i. Q varies from 0 to 1 where
0 indicates a poor fit and 1 is obtained for a perfect fit.

Responses of Chopper and Type IV Neurons to
Spectral Notches
The results shown in this paper were obtained in the CN of
unanesthetized, decerebrate cats by using standard extracellular
recording techniques. Stimuli were applied through a calibrated
closed acoustic system. An example of an acoustic calibration is
shown in the top plot of Fig. 2 A. Details of the animal prepa-
ration can be found in recent publications (28–30). All proce-
dures were approved by the Johns Hopkins Animal Care and
Use Committee.

Fig. 3 illustrates how chopper and type IV neurons differ in
their physiological response properties. Fig. 3 A1 and B1 are
response maps that show excitatory and inhibitory frequency
regions in the receptive fields of a chopper and a type IV neuron
at multiple sound levels. Each subplot within a response map is
constructed from average rate responses to a set of 100 tone
bursts whose frequencies are logarithmically interpolated across

Fig. 3. (A1) Response map of a VCN chopper neuron. The V-shaped excita-
tory area is centered on BF (25.5 kHz; dark gray vertical line) and flanked by
inhibitory areas at higher and lower frequencies. Each subplot shows average
rate responses to a 200-ms tone sweep over a range of frequencies at fixed
attenuation. Attenuation values are given to the right of the plots. Zero-
decibel attenuation corresponds roughly to 90- to 100-dB re: 20 mPa; however,
the actual sound pressure level varies slightly across frequency because of the
acoustic calibration (see the example in Fig. 2A). The rate scale shown at the
lower left applies to the 80-dB attenuation subplot. Subsequent plots are
shifted vertically but use the same scale factor. Horizontal lines indicate the
spontaneous rate (same at all levels). (A2) Discharge rate of the same chopper
in response to HRTF-filtered noise stimuli (400-ms duration, '40 dB re: thresh-
old) containing salient midfrequency spectral notches. Each observed rate
(gray filled circle) is plotted against the frequency at which the notch occurs
relative to BF. The solid black curve is a 1y8-octave smooth of the points. The
horizontal gray bar indicates the spontaneous rate. This chopper encodes
notch position by producing a rate minimum when the notch is centered on
BF. (B1) Response map of a DCN type IV neuron (BF 5 15.9 kHz) characterized
by a mixture of excitatory and inhibitory areas (see text). (B2) Notch responses
for the same type IV neuron at '30 dB re: threshold. Although the response
is qualitatively similar in shape to that in A2, this neuron is inhibited when the
notch is centered on BF. Note that the logarithmic frequency axes in parts 1
and 2 are the same for both A and B.

Fig. 2. (A) The acoustic calibration from one experiment. This represents the
sound pressure level near the eardrum across a range of frequencies, given
fixed electrical signal amplitude (0-dB attenuation) at the input of the ear-
phone. Broadband noise with a flat spectrum at the input to the earphone will
have this spectrum. All stimuli presented during an experiment are modified
by the shape of this calibration. (B) The spectral envelopes of four of a set of
200 stimuli (each 5.875 octaves wide) that were used to compute the unknown
system parameters of Eq. 1. The first (flat) spectrum is used to estimate R0. The
remaining three spectra are examples of RSS stimuli. Although spectra are
periodic along the frequency axis, a single period is wide enough to encom-
pass the receptive field of the neurons studied. Ordinate values of these
spectra are given in dB re: the average sound level in the stimulus. As explained
in the text, overall sound levels were varied systematically during the exper-
iment. (C) Examples of first-order weighting functions for two neurons whose
response maps are shown in Fig. 3. Mean weights (bold lines) and 6 1 standard
deviation (gray shaded region) are computed by using a bootstrap procedure.
The weights indicated by F are significantly different from zero (see text).
Weights were computed from RSS stimuli presented at the average spectral
levels given in the legends.
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a range spanning the response area of the neuron. Regions of
rate increase above spontaneous activity are excitatory areas,
whereas regions of decrease are inhibitory areas. The VCN
chopper response map in Fig. 3A1 is typical of auditory neurons
in that it has a V-shaped excitatory area centered on BF (16).
This particular chopper neuron also exhibits inhibitory side
bands. In contrast, the DCN type IV response map in Fig. 3B1
exhibits more complex patterns of inhibition. At low levels there
is a small excitatory area that represents the tip of the tuning
curve of the cell’s excitatory inputs. At higher levels, a substan-
tial inhibitory area appears that is centered on or just below BF.
This central inhibitory area is likely to be the result of glycinergic
input from DCN interneurons (vertical cells; ref. 31). At fre-
quencies away from BF, type IV response maps vary from
neuron to neuron. In general, type IV neurons exhibit a wide-
band inhibitory area that extends both above and below BF (30).
This inhibitory area is likely to be derived from two inputs: the
first being a glycinergic D-multipolar or radiate neuron in VCN,
and the second being a GABAergic input whose source has not
been identified. Detailed features of type IV response maps have
been described elsewhere (19, 28).

Chopper and type IV neurons also differ in the way that they
respond to spectral notches. Fig. 3A2 shows responses of the
same chopper neuron to HRTF stimuli with spectral notches
located at different frequency positions relative to the neuron’s
BF. Each point indicates the average discharge rate of the
chopper in response to an HRTF stimulus, plotted as a function
of the stimulus notch frequency relative to BF. The result shows
a single-neuron analog of a tonotopic population representation
in that the rate response is at a minimum when the notch is
centered on BF and increases as the notch moves away from BF.
In this chopper, as in auditory nerve fibers (32), the rate
minimum occurs because of the reduction in sound power within
the excitatory area when the notch is centered on BF. The
response of the DCN type IV neuron to a spectral notch (Fig.
3B2) is qualitatively similar to that of the chopper neuron in that
there is a minimum discharge rate when the notch is centered on
BF. However, there are two important differences. First, the
notch response goes below spontaneous rate in the type IV
neuron when the notch is centered on BF. This inhibitory
response does not occur in the chopper neuron. Second, notch
responses are qualitatively consistent with the chopper response
map in that centering the notch on BF removes energy from an
excitatory response area. This should produce a reduction in
discharge rate, although not necessarily an inhibitory response.
In contrast, the type IV neuron gives predominantly inhibitory
responses to tone energy near BF at most sound levels. Centering
a notch on BF therefore should produce an excitatory response
instead of the inhibitory one actually observed. The explanation
for this contradiction is the dual inhibitory nature of the DCN
circuit (28, 30). Type IV neurons are inhibited by vertical cells
in response to tones and by D-multipolar and perhaps also
GABAergic neurons in response to noise-notch stimuli.

For Chopper and Near-Threshold Type IV Neurons, the Model
Accurately Predicts Responses to HRTF Stimuli
Near threshold, chopper and type IV neurons respond to noise
spectra in a similar manner. Weighting functions determined
within 20 dB of threshold for a chopper (Fig. 4A1) and a type IV
(Fig. 4B1) neuron both are triangular with peak excitatory
(positive) weights that occur within 1y8 octave of BF. Negative
values in the chopper function indicate that this neuron is also
weakly inhibited at frequencies below BF. First-order weights
that were found to be significant were used to predict responses
to notch stimuli. The quality of first-order predictions for the
chopper (Q1 5 0.46; Fig. 4A3) and type IV (Q1 5 0.42; Fig. 4B3)
neurons are moderate, suggesting that both behave reasonably
linearly in the regime near threshold (see also ref. 29). However,

in both cases, when the notch is located above BF, predicted rates
undershoot actual rates.

Second-order weights for the same chopper and type IV
neurons are plotted in Fig. 4 A2 and B2, respectively. In these
checkerboard plots, on-diagonal values indicate the degree to
which a simple quadratic term S( fi)2 at a single frequency fi
contributes to the overall rate response. Off-diagonal values
describe more complex interactions between the indicated fre-
quency pairs. Although the chopper neuron has a single large
second-order weight at BF (Fig. 4A2), the type IV neuron has
a more variable second-order weight pattern with substantial
components off-BF (Fig. 4B2). In both cases, inclusion of these
second-order terms in the model (Eq. 1) improves the predicted
responses to HRTF stimuli with notches above BF. The overall
Q-value rises from 0.46 to 0.76 in the second-order chopper
prediction (Fig. 4A3) and from 0.42 to 0.54 in the type IV
prediction (Fig. 4B3). These improvements in the model suggest
that both systems have significant second-order nonlinearities
that are accurately depicted by the weight patterns shown. In the

Fig. 4. Notch response predictions at sound levels near threshold. (A1)
First-order weighting function for a chopper neuron (BF 5 25.5 kHz; same
neuron in Fig. 3A), plotted as in Fig. 2. Data were taken '20 dB above
threshold. (A2) Second-order weighting functions for the same chopper. Color
scale bar is shown at right. Note that the plot is symmetric about the diagonal,
i.e., wjkS( fj)S( fk) is the same as wkjS( fk)S( fj) and each such pair of terms is
included in Eq. 1 only once. The largest weight corresponds to a quadratic term
involving the frequency bin at BF (white square). (A3) Rate versus notch
frequency for actual data (crosses; dashed line), first-order model predictions
(unfilled circles; light solid line), and second-order model predictions (filled
circles; bold solid line). Q1 and Q2 (first- and second-order Q-values, respec-
tively) are shown in the legend. Horizontal shaded bar indicates spontaneous
discharge rate. (B1) First-order weighting function for a type IV neuron (BF 5
15.9 kHz; same neuron as in Fig. 3B). Data were taken '10 dB above threshold.
(B2) Second-order weighting function for the same type IV neuron. Largest
weight values are located off-BF and off-diagonal. (B3) Response rate predic-
tions for the same type IV neuron, plotted as in A3.
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chopper, the BF component is the most significant and is
relatively independent of all other frequency components. The
second-order term is simply required to better describe the
sigmoidal shape of the input-output function near threshold. In
contrast, responses of type IV neurons appear to depend on
more complex interactions between frequency components away
from BF. For example, the largest second-order weights for this
type IV neuron suggest that the response depends on an
inhibitory process involving frequency components located 0.25
and 0.75 octaves below BF and an excitatory process at an
adjacent frequency. However, the second-order weight estimates
somewhat depend on the frequency range over which they are
computed, and it is not yet clear how they are to be interpreted.

In chopper neurons, the noise response properties at levels
above threshold are similar to those at levels near threshold. Fig.
5 shows the weighting functions and response predictions for two
chopper neurons at '40 dB above threshold. At this higher level,
both neurons exhibit triangular first-order weighting functions
that peak at BF. Weaker inhibitory side bands are also present
(Fig. 5 A1 and B1). Note the large magnitude of the peak weights
in the first-order functions. In choppers, peak weights often
range between 5 and 10 spikesys per dB at high levels. Weight
values observed in auditory nerve fibers at these levels are
substantially smaller (1–2 spikesys per dB, ref. 33), suggesting
that chopper neurons are receiving converging input from
multiple auditory nerve fibers. Note also that first-order peak
weight values are level-dependent. The neuron shown in Fig. 5A
is the same as that depicted near threshold in Fig. 4A. In general,
peak weights are small at low sound levels but monotonically

increase in amplitude to a maximum in the middle of the
neuron’s dynamic range. Saturation effects eventually cause a
decrease in peak weight values at higher stimulus levels (not
shown).

At levels above threshold, second-order chopper response
functions often show significant positive (excitatory) quadratic
terms that involve one or a few frequency bins near BF. This
typical second-order weight pattern, similar to that observed
near threshold, is illustrated in Fig. 5 A2 and B2. Note that in
both plots, negative second-order weights exist off-BF, which
suggests that these particular choppers are weakly inhibited by
joint activity of the BF component and an adjacent component
above BF.

At levels within the dynamic range of chopper neurons, the
transformation of the stimulus spectrum into rate is predomi-
nantly a first-order (or linear) transformation of spectral level.
Rate minima are produced when the HRTF notch, a bin of
minimum spectral energy, is centered at the excitatory peak of
the first-order weighting function. Fig. 5 A3 and B3 shows
chopper rate predictions to notch stimuli at moderate levels.
Qualitatively, the shape of the rate versus notch frequency
relationship is captured by the linear model. Q-values for
first-order predictions (Q1 5 0.70 and 0.68) are high. In both
neurons, the linear model does overestimate the actual rate when
the notch is located above BF. This discrepancy can be corrected
by adding second-order terms to the model; however, the
addition of this nonlinearity does not improve the model by much
(Q2 5 0.79 and 0.70).

Spectral Notch Encoding Is a Nonlinear Process in Most Type
IV Neurons at Suprathreshold Levels
Unlike chopper response functions at suprathreshold levels, type IV
weighting functions are variable in form. In some of the first-order
weighting functions, the excitatory (positive) peaks at BF that are
observed near threshold are retained with increasing level. In
others, these peaks are replaced by wide areas of inhibition.
Second-order weighting functions are similarly variable and often
exhibit significant off-BF terms. The variability of type IV response
functions is apparent in Fig. 6, which shows the weights estimated
for two different type IV neurons at 30–40 dB above threshold.
Unlike chopper neurons, type IV neurons at suprathreshold levels
have first-order functions with large inhibitory regions, relatively
small positive peaks, and relatively low overall gains. A wide band
of negative (inhibitory) weights below BF, as in Fig. 6A1, is a
common finding in the weighting functions of type IV neurons.
Alternatively, type IV weighting functions may resemble the ex-
ample in Fig. 6B1. This weighting function reveals an excitatory
drive at BF and strong inhibition extending above and below BF.
Note that the amplitude of first-order weights rarely exceeds a value
of 2 in type IV neurons.

The responses of type IV neurons with large inhibitory values
in their first-order weighting functions are poorly described by
the model in Eq. 1. Actual responses of two type IV neurons to
HRTF stimuli are compared with model predictions in Fig. 6 A3
and B3. The inhibitory notch responses in the two examples are
clear; in both neurons, actual rates fall below spontaneous rate
as the notch approaches BF. The first-order model qualitatively
fails to predict the depth of notch responses and does not show
inhibition. It also yields a positive DC rate offset across all notch
frequencies. The second-order model corrects for the DC offset
to some extent, but overall predictions remain poor.

Q-values for a first-order model (Q1) were computed for 19
chopper and 23 type IV neurons across a range of seven levels.
Results are compiled in Fig. 7, showing the level dependence of
Q1 for each neuron. The trend in level dependence across each
of the two neural populations is summarized by computing the
median Q1 within a 10-dB range centered at the indicated level.
At low levels, both chopper and type IV neurons exhibit roughly

Fig. 5. Weighting functions and notch response predictions for two chopper
neurons studied at approximately 40 dB above threshold. The chopper in A is
the same neuron shown in Figs. 3A and 4A. The chopper in B has a BF of 10.2
kHz. Plot layout is the same as Fig. 4. Note the good match of the predictions
to actual data.
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equivalent linearity. However, as stimulus level rises, the Q1

continues to rise in choppers but begins to fall in type IV
neurons. Choppers often maintain Q1 values above 0.6 across a
30-dB range of high stimulus levels. In contrast, across these
same stimulus levels, the Q1 of type IV neurons declines toward
0. This summary corroborates previous studies that have shown
that the behavior of type IV neurons is driven by a nonlinear
process that emerges 10–20 dB above threshold (24, 29). The
results shown in Fig. 6 indicate that this nonlinearity can be
described only by a response function of order greater than 2.

Tonotopic Representation Versus Feature Detection
Although responses of chopper and type IV neurons to notches
are qualitatively similar, the data in Figs. 5 and 6 show that the
mechanisms that govern these responses are quite different. In
chopper neurons, the transformation of spectral level into
average discharge rate is predominantly a linear (first-order)
process that involves a narrow band of frequencies centered on
BF. This property suggests that axonal projections from a
tonotopic array of chopper neurons transmit, to other auditory
areas, a set of rate responses that are homomorphic with spectral
shape. In fact, chopper neurons have been shown to produce
stable tonotopic representations of vowel spectral shape (8).

Unlike choppers, type IV neurons do not encode spectral
information through a homomorphic spectral representation.
This is apparent from (i) the complexity and wide bandwidth of
their first-order weighting functions, and (ii) the strong nonlin-
earity in the stimulus-response function. The nature of these
nonlinearities has been discussed elsewhere (24, 29) and will not
be further elaborated here. It is sufficient to point out that, as
Fig. 3 illustrates, type IV neurons give inhibitory responses to
both a narrow peak of energy (tone) and a narrow notch of
energy located at BF. The rate dependence of type IV neurons
to spectral notch position (Figs. 3 and 6), in addition to their wide
bandwidth and nonlinear behavior, suggests that these neurons
are not simply detectors of spectral level. Type IV neurons
provide a second pathway of spectral information transmis-
sion—a nonlinear one that signals the presence of a specific
complex spectral feature.

The Significance of the System Identification Method
A mathematical representation of a neural system can be a
powerful tool for exploring the functional roles of component
neurons in a complex acoustic environment. The system iden-
tification approach described in this work is a straightforward
method for determining the receptive field of an auditory neuron
that is responding to noise stimuli. It clarifies the excitatory and
inhibitory nature of converging inputs to CN neurons and their
location on a tonotopic frequency axis. Moreover, it can be used
to study the nature of the information-bearing elements that are
processed within the specialized parallel pathways of the audi-
tory system.

The strength of the method lies in the fact that response functions
that describe neural receptive fields can be computed simply. The
validity of the model weighting functions can be tested by predicting
responses to novel stimuli in a manner that is easy and direct. In
principle, this method can be modified to study higher-order
nonlinearities. Admittedly, however, the latter endeavor would be
difficult because it would require the collection of large amounts of
stationary data over lengthy time periods.

This method has been shown to work well for VCN chopper
neurons. The failure of the system identification model to predict
type IV responses is somewhat surprising because the model is
essentially a linearization method that should be expected to
work over some range of sound level variation. The fact that the
model fails at suprathreshold levels suggests that the behavior of
type IV neurons is governed by a nonlinear process of high order
that cannot be linearized. Although it is possible that such a
strong nonlinearity could be linearized by using smaller sound
level deviations, such a result would not be particularly inter-
esting because fluctuations of 10–12 dB are typical of the
spectral level variations in natural stimuli.

The weighting function method discussed in this paper can
serve as a guide to the methods that must be applied in
delineating the nature of stimulus representations in a partic-
ular neuron. If the behavior of a neuron is found to be linear
or nearly linear by using the model in Eq. 1, tonotopic
representations sufficiently describe the neuron’s spectral

Fig. 7. A summary of Q1-values obtained in rate predictions of 19 chopper
(Left) and 23 type IV (Right) neurons. Q1-values obtained at multiple levels for
a single neuron are connected by a thin gray line. The level dependence is
summarized (bold black line) by computing the median Q1-value within a
10-dB range centered at the indicated level (i.e., abscissa position of the filled
square).

Fig. 6. Weighting functions and notch response predictions for two type IV
neurons studied at approximately 30 (A) and 40 (B) dB above threshold. The
type IV in A is the same neuron shown in Figs. 3B and 4B. The type IV in B has
a BF of 9.9 kHz. Plot layout is the same as Fig. 4. Note the poor match of the
predictions to the data.

Yu and Young PNAS u October 24, 2000 u vol. 97 u no. 22 u 11785

CO
LL

O
Q

U
IU

M



information encoding mechanism. If the behavior cannot be
linearized, then receptive fields derived by any single method
are unlikely to be informative about the manner in which a
neuron encodes arbitrary stimuli. Such neurons must be
studied carefully with a variety of stimuli. Considerations of

biological function will be important in extracting the impor-
tant response properties of such neurons.

This work was supported by Grants DC00115 and DC00979 from the
National Institute on Deafness and Other Communication Disorders.

1. Merigan, W. H. & Maunsell, J. H. R. (1993) Annu. Rev. Neurosci. 16,
369–402.

2. Rauschecker, J. P. (1997) Acta Otolaryngol. Suppl., 532, 34–38.
3. Young, E. D. (1997) Proc. Natl. Acad. Sci. USA 94, 933–934.
4. Kaas, J. H., Hackett, T. A. & Tramo, M. J. (1999) Curr. Opin. Neurobiol. 9,

164–170.
5. Helfert, R. H., Snead, C. R. & Altschuler, R. A. (1991) in Neurobiology of

Hearing: The Central Auditory System, eds. Altschuler, R. A., Bobbin, R. P.,
Clopton, B. M. & Hoffman, D. W. (Raven, New York), pp. 1–25.

6. Young, E. D. (1998) in The Synaptic Organization of the Brain, ed. Shepherd,
G. M. (Oxford, New York), 4th Ed., pp. 121–157.

7. Peterson, G. E. & Barney, H. L. (1952) J. Acoust. Soc. Am. 24, 175–184.
8. Blackburn, C. C. & Sachs, M. B. (1990) J. Neurophysiol. 63, 1191–1212.
9. Young, E. D., Spirou, G. A., Rice, J. J. & Voigt, H. F. (1992) Philos. Trans. R.

Soc. London B 336, 407–413.
10. Middlebrooks, J. C. & Green, D. M. (1991) Annu. Rev. Psychol. 42, 135–159.
11. Huang, A. Y. & May, B. J. (1996) J. Acoust. Soc. Am. 100, 1070–1080.
12. Wightman, F. L. & Kistler, D. J. (1989) J. Acoust. Soc. Am. 85, 858–867.
13. Musicant, A. D., Chan, J. C. K. & Hind, J. E. (1990) J. Acoust. Soc. Am. 87,

757–781.
14. Rice, J. J., May, B. J., Spirou, G. A. & Young, E. D. (1992) Hear. Res. 58,

132–152.
15. Huang, A. Y. & May, B. J. (1996) J. Acoust. Soc. Am. 100, 2341–2348.
16. Irvine, D. R. F. (1986) The Auditory Brainstem (Springer, Berlin).

17. Spirou, G. A., May, B. J., Wright, D. D. & Ryugo, D. K. (1993) J. Comp. Neurol.
329, 36–52.

18. Rice, J. J., Young, E. D. & Spirou, G. A. (1995) J. Acoust. Soc. Am. 97,
1764–1776.

19. Spirou, G. A. & Young, E. D. (1991) J. Neurophysiol. 65, 1750–1768.
20. Conley, R. A. & Keilson, S. E. (1995) J. Acoust. Soc. Am. 98, 3223–3234.
21. May, B. J. & Huang, A. Y. (1997) J. Acoust. Soc. Am. 101, 2705–2719.
22. May, B. J., LePrell, G. S. & Sachs, M. B. (1998) J. Neurophysiol. 79, 1755–1767.
23. Berg, B. G. & Green, D. M. (1990) J. Acoust. Soc. Am. 88, 758–766.
24. Nelken, I., Kim, P. J. & Young, E. D. (1997) J. Neurophysiol. 78, 800–811.
25. DiCarlo, J. J., Johnson, K. O. & Hsiao, S. S. (1998) J. Neurosci. 18, 2626–2645.
26. Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. (1986)

Numerical Recipes: The Art of Scientific Computing (Cambridge Univ. Press,
Cambridge).

27. Efron, B. & Tibshirani, R. J. (1993) An Introduction to the Bootstrap (Chapman
& Hall, New York).

28. Nelken, I. & Young, E. D. (1994) J. Neurophysiol. 71, 2446–2462.
29. Nelken, I. & Young, E. D. (1997) J. Neurophysiol. 78, 790–799.
30. Davis, K. A. & Young, E. D. (2000) J. Neurophysiol. 83, 926–940.
31. Voigt, H. F. & Young, E. D. (1990) J. Neurophysiol. 64, 1590–1610.
32. Poon, P. W. F. & Brugge, J. F. (1993) J. Neurophysiol. 70, 655–666.
33. Calhoun, B. M., Miller, R. L., Wong, J. C. & Young, E. D. (1998) in

Psychophysical and Physiological Advances in Hearing, eds. Palmer, A. R., Rees,
A., Summerfield, Q. & Meddis, R. (Whurr, London), pp. 170–177.

11786 u www.pnas.org Yu and Young


