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This chapter has three thrusts: (1) It formulates in a common framework mathe-
matical representations of two global sensory procedures: summation of intensity and
the method of ratio production (Luce, 2002, 2004). Until recently, these two topics
have not been treated together in the literature. (2) Although the psychophysical rep-
resentations we arrive at include both free parameters and free functions, a message of
this work, especially illustrated in Luce and Steingrimsson (2005a,b)1, is that one can
evaluate their adequacy without ever estimating either the parameters or the functions.
Rather, it is sufficient just to evaluate parameter-free behavioral properties that give rise
to the representations. (3) A closely related message is that, to the degree that the the-
ory holds, no individual differences arise in the defining behavioral properties except,
of course, for the fact that each person has his or her own sense of the relative intensities
of two stimuli, i.e., the subjective intensity ordering. At the same time, the potential ex-
ists for substantial individual differences in the representations in the following sense:
there is a strictly increasing psychophysical function and a strictly increasing numeri-
cal distortion function that are not otherwise prescribed without additional axioms. The
work on the forms of these functions, although quite well developed, is not yet in final
manuscript form. Nonetheless, we cover it in some detail in Sections 5 and 6.

The chapter describes the theory and discusses our joint experimental program to
test it. Some of this, SL-I and SL-II, is in articles now under revision for publication.

1In the remainder of the chapter, the four collaborative articles by Steingrimsson and Luce are identified
as SL-I, SL-II, etc.
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Additional manuscripts, SL-III and SL-IV, on the forms of the psychophysical function
and the forms of the weighting function are nearing completion. Portions of all of these,
including much of the experimental work, derive in part from Steingrimsson’s (2002)
UCI dissertation.

We formulate the exposition in terms of loudness judgments about pure tones of the
same frequency and phase. However, many other interpretations of the primitives are
possible and each must be evaluated empirically in a separate experimental program.
An investigation of brightness summation across the two eyes is currently underway
by the second author.

1 Primitives and Representations

1.1 Ordering of joint presentations
Let x denote the signal intensity less the threshold intensity of a pure tone presented to
the left ear. We stress that we mean an intensity difference, not the more usual intensity
ratio that leads to differences in dB. Let u denote the intensity less the threshold of a
pure tone of the same frequency and phase presented to the right ear. Thus, 0 is the
threshold intensity in each ear. The notation (x, u) denotes the simultaneous presen-
tation of x and u in the left and the right ear, respectively. The assumption of a fixed
threshold is, of course, an idealization–in reality, the threshold is a random variable
which we idealize as a single number. In making this idealization and others like it,
we rely on the position articulated shortly before his death by the youthful philosopher
Frank Ramsey (1931, p. 168; 1964, p. 70) in talking about decision making under un-
certainty: “Even in physics we cannot maintain that things that are equal to the same
thing are equal to one another unless we take ‘equal’ not as meaning ‘sensibly equal’
but a fictitious or hypothetical relation. I do not want to discuss the metaphysics or
epistemology of this process, but merely to remark that if it is allowable in physics it is
allowable in psychology also. The logical simplicity characteristic of the relations dealt
with in a science is never attained by nature alone without any admixture of fiction.”

In the task we used, respondents were asked to judge if (x, u) is at least as loud as
(y, v), which is denoted (x, u) % (y, v). The results we report show conditions such
that this loudness ordering is reflected by a numerical mapping Ψ : R+ × R+ onto−→
R+, where R+ := [0,∞[ , 2 that is strictly increasing in each variable and is order
preserving, i.e.,

(x, u) % (y, v) ⇔ Ψ(x, u) ≥ Ψ(y, v), (1)
Ψ(0, 0) = 0. (2)

And we assume that loudness and intensity agree to the extent that

(x, 0) % (y, 0)⇔ x ≥ y,

(0, u) % (0, v)⇔ u ≥ v.

2The notation A := B means that A is defined to be B.
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Thus, Ψ(x, 0) and Ψ(0, u) are each strictly increasing.
We assume that the respondent can always establish matches of three types to each

stimulus:
(x, u) ∼ (zl, 0), (x, u) ∼ (0, zr), (x, u) ∼ (zs, zs), (3)

where ∼ means equally loud. The left and right matches zl and zr are called asymmet-
ric and zs is called a symmetric match. Symmetric matches have the decided advantage
of reducing the degree of localization change between (x, u) and the matching pair.
The asymmetric matches encounter some difficulties which we discuss in Sec. 5.1 and
overcome in Sec. 5.2.

Note that each of the z’s is a function of both x and u. To make that explicit and
suggestive we use an operator notation:

x⊕i u := zi (i = l, r, s). (4)

It is not difficult to show that each of the⊕i defined by (4) is, indeed, a binary operation
that is defined for each pair (x, u) of intensities. The operator ⊕i may be referred to
as a summation operator; however, one must not confuse ⊕iwith +. Some readers of
our work have expressed discomfort over the fact that we can explore, for example,
whether or not the operation is associative, i.e.,

x⊕i (y ⊕i z) = (x⊕i y)⊕i z (i = l, r, s) (5)

despite the fact that the notation

(x, (y, z)) ∼ ((x, y), z)

is, itself, meaningless. Such a defined operator is, however, a familiar and commonly
used trick in the theory of measurement to map something with two or more dimensions
into a structure on a single dimension. See for example the treatment of conjoint mea-
surement in Sec. 6.2.4 of Krantz, Luce, Suppes, and Tversky (1971) and in Sec. 19.6 of
Luce, Krantz, Suppes, and Tversky (1990).

One can show (see Proposition 1 of Luce, 2002) that % is a weak order (i.e., tran-
sitive and connected), that (x, u) is strictly increasing in each variable, and that 0 is a
right identity of ⊕l, i.e.,

x = x⊕l 0, (6)

and 0 is a left identity of ⊕r, i.e.,

u = 0⊕r u, (7)

whereas 0 is not an identity of ⊕s at all. However, the symmetric operation is idempo-
tent in the sense that

x⊕s x = x. (8)

These properties play important roles in some of the proofs.
We assume that the function Ψ(x, u) is decomposable in the sense that it depends

just on its components Ψ(x, 0) and Ψ(0, u),

Ψ(x, u) = F [Ψ(x, 0),Ψ(0, u)]. (9)
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One natural question is: What is the nature of that dependence, i.e., what is the
form of F ? A second natural question is: How do Ψ(x, 0) and Ψ(0, u) depend on the
physical intensities x and u, respectively? These are ancient problems with very large
literatures which we make no attempt to summarize here. Some references will appear
below. Neither question, it should be mentioned, is resolved in any fully satisfactory
manner if one restricts attention just to the primitive ordering% of the conjoint structure
of intensities, hR+×R+,%i. Some additional structure beyond the ordering is needed
to achieve an effective theory. Below in Sec. 4 we will encounter two examples of such
additional linking structures, which in these cases are two forms of a distribution law.
This important point, which is familiar from physics, does not seem to have been as
widely recognized by psychologists as we think that it should be.

Two points should be stressed. The first is that the theory is not domain specific,
which means that it has many potential interpretations in addition to our auditory one.
For example, also in audition, Karin Zimmer and Wolfgang Ellermeier3, interpreted
(x, u) to mean a brief signal of intensity x followed almost immediately by a another
brief signal of intensity u. Other interpretations, using visual stimuli, are brightness
summation of hemifields or across the two eyes are some other possibilities. Each
conceivable interpretation will, of course, require separate experimental verification,
although drawing on our experience with the two ear experiments should be beneficial.

The second point is that the approach taken here is entirely behavioral and so is
independent of any particular biological account of the behavior. Consequently, we do
not make any attempt to draw any such conclusions from our results.

1.2 Ratio productions
To the ordering of signal pairs we add the independent structure of a generalized form
of ratio production4. This entails the presentation to respondents of a positive number p
and the stimuli (x, x) and (y, y), where y < x, with the request to produce the stimulus
(z, z) for which the loudness “interval” from (y, y) to (z, z) is perceived to stand in
the ratio p to the “interval” from (y, y) to (x, x). Because the z chosen by respondent
is a function of p, x, and y, we may again represent that functional dependence in
operational form as:

(x, x) ◦p (y, y) := (z, z). (10)

This operation, which we call (subjective) ratio production is somewhat like Stevens’
magnitude production (for a summary, see Stevens, 1975) which is usually described
as finding the signal (z, z) that stands in proportion p to stimulus (x, x). Thus, his
method is the special case of ours but with (y, y) = (0, 0)–the threshold intensity or
below. Thus, (x, x) ◦p (0, 0) = (z, z).

We assume two things about ◦p: (i) it is strictly increasing in the first variable and
non-constant and continuous in the second, and (ii) thatΨ over ◦p is also decomposable

3As reported at the 2001 meeting of the European Mathematical Psychology Group in Lisbon, Portugal.
4In a generalized ratio estimation the respondent is presented with two pairs of stimuli, (y, y) to (z, z)

and (y, y) to (x, x) where y < x, z, and is asked to state the ratio p = p(x, y, z) of the interval between
the first two to the interval between the second two. This is discussed in SL-III and is summarized below in
Sec. 6.1. This procedure is, of course, conceptually related to S. S. Stevens’ magnitude estimation where no
standard is provided (see after (10)).
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in the sense that
Ψ[(x, x) ◦p (y, y)] = Gp[Ψ(x, x),Ψ(y, y)]. (11)

1.3 The representations
On the above assumptions, Luce (2002, 2004) presented necessary and sufficient qual-
itative conditions for the representations. These are discussed below in Secs. 3 and
4.5

Ψ(x, u) = Ψ(x, 0) +Ψ(0, u) + δΨ(x, 0)Ψ(0, u), (12)

W (p) =
Ψ ((x, x) ◦p (y, y))−Ψ(y, y)

Ψ(x, x)−Ψ(y, y) (x > y ≥ 0), (13)

where δ is a non-negative constant and W : [0,∞[ onto−→ [0,∞[ is strictly increasing.
The “summation” formula (12) has been dubbed p-additive because it is the unique
polynomial function of Ψ(x, 0) and Ψ(0, u) with Ψ(0, 0) = 0 that can be transformed
into additive form (see Sec. 3.2).

Under certain assumptions one can also show that, for some γ > 0,

Ψ(x, 0) = γΨ(0, x), (14)

which we call constant bias; however, for other assumptions constant bias is not forced.
More specifically, if the properties in Secs. 3 and 4 hold for asymmetric matches, then
constant bias, (14), holds in addition to the two representations (12) and (13) (Luce,
2002, 2004). In contrast, if the properties hold using symmetric matches, then one can
prove that (12) holds with δ = 0, that (13) holds, but that constant bias, (14), need not
hold. Because constant bias seems intuitively unlikely–the ears often do not seem to be
identical–we are probably going to be best off with the symmetric theory. We discuss
data on whether our young respondents satisfy the assumption of having symmetric
ears above threshold. We also investigate empirically whether or not δ = 0 (Sec. 3.3),
which has to hold if symmetric matches satisfy the conditions. If δ = 0, empirical
testing of the theory is simplified considerably.

Nothing in the theory giving rise to (12) and (13) dictates the explicit mathematical
forms for Ψ(x, 0) as a function of the physical intensity x, for Ψ(0, u) as a function of
u, or for W (p) as a function of p. One attempt to work out the form ofΨ based just on
the summation operation is summarized in Sec. 5.4. It leads to a sum of power func-
tions. Another, also leading to a power function form, is based on ratio productions,
Sec. 6.3. The experimental data make clear that our endeavors are incomplete. Our
attempts to find out something about W, which is also incomplete, are summarized in
Sec. 6.

Where do the above representations come from and how do we test them? Various
testable conditions that are necessary and sufficient for the representations are outlined

5In Luce (2002) all of the results are presented in terms of psychophysical functions on each signal
dimension, as was the first submitted version of Luce (2004). As a reviewer, Ehtibar Dzhafarov saw that they
could be neatly brought together as a psychophysical function over the signal pairs, and Luce adopted that
formulation.
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and the results of several experimental tests are summarized. Note that we make no
attempt to fit the representations themselves directly to data. In particular, no paramet-
ric assumptions are imposed about the nature of the functions Ψ and W. In Sec. 5.4 we
will see how to test for the power function form of Ψ using parameter-free properties,
and in Sec. 6, again using parameter-free properties, we arrive at two forms for W .

2 Methods of testing
The many experiments discussed employ empirical interpretations of the two opera-
tions. One is x ⊕i u := zi (i = l, r, s), (4), which involves estimating a value
zi that is experience equal in loudness to the joint-presentation (x, u). The other is
(x, x) ◦p (y, y) := (z, z) (y < x), (10), which involves estimating a value z that
makes the loudness “interval” between (y, y) and (x, x) be a proportion p of the inter-
val between (y, y) and (z, z). The first procedure is referred to as matching and the
second as ratio production.

The stimuli used were, in all cases, 1,000 Hz pure tones of 100 ms duration that
included a 10 ms on and off ramp. Throughout, signals are described as dB relative to
SPL.

2.1 Matching procedure
To describe the testing, we employ the notation hA,Bi to mean the presentation of
stimulus A followed 450 ms after by stimulus B, where A and B are joint presenta-
tions. Then the three matches of (3) are obtained using whichever is relevant of the
following three trial forms:

h(x, u), (zl, 0)i, (15)
h(x, u), (0, zr)i, (16)
h(x, u), (zs, zs)i. (17)

In practice, respondents heard a tone followed 450 ms later by another tone in the left,
right, or both ears, as the case might be. Respondents used key presses either to adjust
the sound pressure level of zi, i = l, r, s (by one of four differently sized steps), to
repeat the previous trial, or to indicate satisfaction with the loudness match. Following
each adjustment, the altered tone sequence was played. This process was repeated until
respondents were satisfied that the second tone matched the first tone in loudness.

2.2 Ratio production procedures
The basic trial form is hhA,Bi, hA,Cii where hA,Bi and hA,Ci represent the first
and the second intensity interval respectively. The hA,Bi and hA,Ci were separated
by 750 ms, and between A and B (and A and C) the delay was 450 ms.

An estimate of x ◦p,i y = vi, in the case of i = s, was obtained using the trial type

hh(y, y), (x, x)i, h(y, y), (vs, vs)ii, (18)
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where the value of vs was under the respondents’ control. In practice, respondents
heard two tones separated by 450 ms (the first interval) then 750 ms later, another such
set of tones was heard (the second interval). The first tone in both intervals is identical
and more quiet than the second tone. Respondents continued to alter the sound pressure
level of vs until they experienced the second loudness interval as being a proportion p
of the second one.

As mentioned above, the special case of y = 0 is an operation akin to Stevens’
magnitude production, which involves finding the signal (z, z) that stands in proportion
p to stimulus (x, x). With i = s was estimated using the trial type

h(x, x), (vs, vs)i. (19)

In practice, respondents hear two tones, separated by 450 ms, and they adjust the sec-
ond tone to be a proportion p of the first tone.

Trial forms in the case of i = r, l are constructed in a manner analogous to (18) and
(19).

2.3 Statistics
The four SL articles examined parameter-free null hypotheses of the form L = R. Not
having any a priori idea of the distribution of empirical estimates we used the non-
parametric Mann-Whitney U-test at the 0.05 level. To improve our statistical certainty,
we used Monte Carlo simulations based on the bootstrap technique (Efron and Tibshi-
rani, 1993) to verify that the hypothesis that both L and R could be argued to come
from the same underlying distribution, at the 0.05 level. This was our criterion for
accepting the null hypothesis, supporting the behavioral property.

2.4 Additional methodological observations
During the course of doing these studies we encountered and overcame or attenuated
the impact of some methodological issues (details in SL-I).

The well-known time-order error–i.e., the impact of (x, u) depends on whether it
occurs before or after (y, v)–means that it is important to use some counter-balancing
or ensure that the errors are balanced on the two sides of a behavioral indifference.

Some experiments require us to use an estimate from one step as input to a second
one. If a median or other average from the first step is used as the input in a second
step, then whatever error it contains is necessarily carried over into that second one,
but all information about the variance is lost. After some experience we concluded that
the results are more satisfactory if we used each individual estimate from the first step
as an input to the second one. Then the errors of the first estimate are carried into the
second step and average out there, while preserving the variance information.

Variability for ratio productions tends to be higher than for matching. This fact
means that some attention needs to be paid to the amount of practice respondents’
receive, the evaluation of results, and obtaining an adequate number of observations.
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3 Summations and Productions Separately
Much of the mathematical formulation of the theory was first developed for utility
theory (summarized in Luce, 2000) under the assumption that the following property
holds:

Joint-presentation symmetry:
(x, u) ∼ (u, x). (20)

This means that the ears are identical in dealing with intensities above their respective
thresholds. We know this need not always hold (e.g., single-ear deafness, exposure of
one ear to percussive rifle shots), but at first we thought that it might be approximately
true for young people with no known hearing defects. Note that jp-symmetry, (20), is
equivalent to ⊕l ≡ ⊕r and ⊕s all being commutative operations, i.e.,

x⊕i y = y ⊕i x (i = l, r, s).

3.1 Evidence against symmetric hearing using symmetric match-
ing

Using symmetric matching

z = x⊕s y and z0 = y ⊕s x

were obtained using trial of form (17). There were from 34-50 matches per stimulus
per respondent. We used tones with intensities a = 58 dB, b = 64 dB, and c = 70
dB SPL, which gave rise to six ordered stimulus pairs: (a, b), (a, c), (b, c) and (b, a),
(c, a), (b, c). For each pair, we tested statistically whether the null hypothesis z = z0

held. With 15 respondents there were 45 tests of which 23 were rejected. The pattern
of results suggests that jp-symmetry fails for at least 12 of the 15 respondents.

The negative outcome of this experiment motivated the developments in Luce (2002,
2004) where jp-symmetry is not assumed to hold.

In Sec. 5.1 we turn to the use of asymmetric matches to study the properties un-
derlying the representation. They sometimes exhibit an undesirable phenomenon for
which we provide an explanation, and after the fact show that the properties below
using asymmetric matches, under stated conditions, are unaffected.

3.2 Thomsen condition
The representation (12) with δ = 0,

Ψ(x, u) = Ψ(x, 0) +Ψ(0, u), (21)

is nothing but an additive conjoint representation (Ch. 6 of Krantz, Luce, Suppes, &
Tversky, 1971). And, for δ > 0, the p-additive representation, (12), can be rewritten as

1 + δΨ(x, u) = [1 + δΨ(x, 0)] [1 + δΨ(0, u)] ,
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so under the transformation

Θ(x, u) = ln [1 + δΨ(x, u)] , (22)

the conjoint structure again has an additive representation. So data bearing on the
existence of an additive presentation is of interest whether or not δ = 0.

With our background assumptions–weak ordering, strict monotonicity, solvability,
and that intensity changes in either ear affect loudness–we can show a property that is
analogous to the numerical Archimedean property that for any two positive numbers a
and b, one can find an integer n such that na > b. Thus, by Krantz et al. (1971, Ch. 6)
we need only the following condition in order to construct an additive representation
Θ.

Thomsen condition:

(x, t) ∼ (z, v)
(z, u) ∼ (y, t)

¾
=⇒ (x, u) ∼ (y, v) (23)

If all of the ∼ are replaced by %, the resulting condition is called double cancella-
tion. The reason for that term is that the condition can be paraphrased as involving the
two “cancellations” t and z, each of which appears on each side of the hypotheses, to
arrive at the conclusion.

We know of no empirical literature in audition, other than our study described be-
low, that tests the Thomsen condition, per se. What has been published concerning
conjoint additivity all examined double cancellation, which we feel is a somewhat less
sensitive challenge than the Thomsen condition. Of the double cancellation studies,
three support it: Falmagne, Iverson, & Marcovici (1979), Levelt, Riemersma, & Bunt
(1972), and Schneider (1988), where the latter differed from the other studies in having
frequencies varying by more than a critical band in the two ears. Rejecting it were
Falmagne (1976) with but one respondent, and Gigerenzer and Strube (1983) with 12
respondents. Because of the inconsistent pattern of results, we felt it necessary to test
the Thomsen condition within our own experimental context. Our experimental design
was closest to that of Gigerenzer and Strube (1988).

The Thomsen condition was tested by successively obtaining the estimates, z0, y0,
and y00, in

(x, t) ∼ (z0, v)

(z0, u) ∼ (y0, t)

(x, u) ∼ (y00, v)

using the trial form in (17), where the first of two tones in the second joint-presentation
is varied. The property is said to hold if y0 and y00 are found to be statistically equiva-
lent.

We used two stimuli sets, A and B, in our test of the Thomsen condition:

A : x = 66, t = 62, v = 58, and u = 70 dB,
B : x = 62, t = 59, v = 47, and u = 74 dB.
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Stimulus set B consisted of stimuli having the same relative intensity relationship as
those used by Gigerenzer and Strube (1988), although we used 1,000 Hz whereas they
used both 200 Hz and 2,000 Hz, a difference that may be relevant.

We initially ran the respondents on A, after which we decided to add B in order to
have a more direct comparison with their study.

With 12 respondents, there were 24 tests of which 5 rejected the null hypothesis.
Of the 5 failures, 4 occurred in set A and 1 in B. This fact suggests that a good deal of
practice may regularize the behavior (see SL-I for details).

3.3 Bisymmetry
On the assumption that we have a p-additive representation, (12), we next turn to the
question of whether or not δ = 0. All of the experimental testing is a good deal simpler
when δ = 0 than it would be otherwise–an example is the testing of the property called
joint-presentation decomposition (Sec. 4.1).

Given the p-additive representation, one can then show (Luce, 2004, Corollary 2
to Theorem 1, p. 450) that for people who violate jp-symmetry, (20), then δ = 0 is
equivalent to the property:

Bisymmetry:

(x⊕i y)⊕i (u⊕i v) = (x⊕i u)⊕i (y ⊕i v) (i = l, r, s). (24)

Note that the two sides of bisymmetry simply involve the interchange of y and u.
Bisymmetry is not predicted when δ 6= 0 except for constant bias with γ = 1. Because
we have considerable evidence against γ = 1 (Sec. 3.1), whether bisymmetry holds
tells us whether or not δ = 0.

Testing involved obtaining the estimates

wi = x⊕i y and w0i = u⊕i v, [right side of (24)],
zi = x⊕i u and z0i = y ⊕i v [left side of (24)].

Then in a second step, obtain

ti = wi ⊕i w0i and t0i = zi ⊕i z0i.

The property is said to hold if ti and t0i are found to be statistically equivalent. The
property was tested using both symmetric and left matches using trials of the form (17)
and (15), and intensities x = 58 dB, y = 64 dB, u = 70 dB, and v = 76 dB. With
6 respondents there were no rejections of bisymmetry. So we assume δ = 0 in what
follows (SL-I).

3.4 Production commutativity
If we rewrite (13)6 as

Ψ [(x, x) ◦p (y, y)] =W (p)[Ψ(x, x)−Ψ(y, y)] +Ψ(y, y),
6To those familiar with utility theory, the following form is basically subjective weighted utility (Luce &

Marley, 2004).
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then by direct substitution the following behavioral property follows.

Production commutativity: For p > 0, q > 0,

[(x, x) ◦p (y, y)] ◦q (y, y) ∼ [(x, x) ◦q (y, y)] ◦p (y, y). (25)

Observe that the two sides differ only in the order of applying p and q, which is the
reason for the term “commutativity.” This property also arose in Narens’ (1996) theory
of magnitude estimation. Ellermeier and Faulhammer (2000) tested that prediction in
the special case where y = 0 for p, q > 1 and Zimmer (2004) did so for p, q < 1. Both
studies found it sustained. The general form of production commutativity has yet to be
tested with p, q < 1.

In the presence of our other assumptions, production commutativity turns out to be
sufficient for (13) to hold.

Production commutativity was tested using symmetric ratio productions requiring
four estimates in two steps. The first consisted of

(x, x) ◦p (y, y) ∼ (v, v),
(v, v) ◦q (y, y) ∼ (w,w),

and in the second of

(x, x) ◦q (y, y) ∼ (v0, v0),
(v0, v0) ◦p (y, y) ∼ (w0, w0).

The property is considered to hold if w and w0 are found to be statistically equivalent.
Trials were of the form in (18). The intensities we used were x = 64 dB and u = 70
dB and the proportions that we used were p = 2 and q = 3, giving rise to four trial
conditions in each step. Four respondents yielded 4 tests and the null hypothesis of
production commutativity was not rejected in any of them (SL-I).

3.5 Discussion
The results of the experiments on the Thomsen condition and on proportion commu-
tativity support the forms Ψ in (12) and ΨΘ in (13) separately. Although we have no
evidence at this point for assuming that ΨΘ = Ψ, we do know that both are strictly
increasing with%, and so there is a strictly increasing, real-valued function connecting
them: ΨΘ = f(Ψ).

So our next task is to ask for conditions necessary and sufficient for the function f to
be the identity function. To show this requires some interlocking of the two structures
hR+ × R+,%i and hR+ × R+,%, ◦pi, which were reduced to the one dimensional
structures of the form hR+,≥,⊕ii and hR+,≥, ◦p,ii, respectively. We now turn to that
interlocking issue.
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4 Links Between Summation and Production
It turns out that two necessary properties of the representations establish the needed
interlock or linkage between the primitives, and these properties along with those dis-
cussed earlier are sufficient to yield a common representation (Theorem 2 of Luce,
2004). In a sense, the novelty of the present theory lies in formulating their interlock
purely behaviorally.

The links that we impose are analogues to familiar “distribution” properties such
as those in set theory, namely,

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C), (26)
(A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C). (27)

If we replace ∪ by ⊕ and ∩ by ◦p we get, respectively, what are called below simple
joint-presentation decomposition (Sec. 4.1) and segregation (4.2).

To help formulate these properties, the following induced production operations
◦p,i, i = l, r, s, which are special cases of the general operation ◦p defined by (10), are
introduced:

(x ◦p,l y, 0) : = (x, 0) ◦p (y, 0), (28)
(0, u ◦p,r v) : = (0, u) ◦p (0, v), (29)

(x ◦p,s y, x ◦p,s y) : = (x, x) ◦p (y, y). (30)

4.1 Simple joint-presentation decomposition
As suggested above, the analogue of (26), linking the two operations ⊕i and ◦p,i is:

Simple Joint-Presentation (SJP-) Decomposition:

(x⊕i u) ◦p,i 0 = (x ◦p,i 0)⊕i (u ◦p,i 0) (i = l, r, s). (31)

Comment: When δ 6= 0, the corresponding property becomes vastly more complex
to test because the term u ◦p,i 0 is replaced by u ◦q,i 0 where q = q(x, p). Thus, one
must first determine q(x, p) empirically and then the condition corresponding to (31)
with q replacing the second p on the right is checked.

Simple JP-decomposition has two levels of estimation which were done in two
steps. First, the estimates

ts = (x⊕s u) ◦p,s 0,
ws = x ◦p,s 0,
ss = u ◦p,s 0,

were obtained using trials of the form in (18). The averages of ws and ss were used in
the second step, which consisted of the match

t0s = ws ⊕s ss,
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using trials of the form in (16). The property is considered to hold if ts and t0s are found
to be statistically equivalent. We used one pair of intensities, x = 64 dB and u = 70
dB. With 4 respondents there were 8 tests and SJP-decomposition was not rejected in
6 (SL-II).

4.2 Segregation
The second property linking the two operations, the analogue of (27) but taking into
account the non-commutativity of ⊕i, is:

Segregation: For all x, u, p ∈ R+,

Left segregation:

u⊕i (x ◦p,i 0) ∼ (u⊕i x) ◦p,i (u⊕i 0) (i = l, r, s). (32)

Right segregation:

(x ◦p,i 0)⊕i u ∼ (x⊕i u) ◦p,i (0⊕i u) (i = l, r, s). (33)

If jp-symmetry, (20), holds, then right and left segregation are equivalent. Other-
wise they are distinct.

Note that because 0 is a right identity of ⊕l, (7), testing left segregation is easier
for i = l, and, similarly, right segregation is easier for i = r. For i = s both need to be
tested.

For each respondent (except one), we studied only one form of segregation, either
left or right (see SL-II for details).

In the case of right segregation, four estimates must be made

wr = x ◦p,r 0,
tr = wr ⊕r u,
zr = x⊕r u,
t0r = zr ◦p,r u.

The property is said to hold if tr and t0r are not found to be statistically different.
Note that the intensities wr and zr are first estimated in the right ear but then they

must be presented in the left ear for the case (wr, u) ∼ (0, wr ⊕r u). The converse
is true for left segregation. The trials used for matching were of the forms in (15–17)
depending on the matching ear. Symmetric ratio productions were obtained using (18)
and (19) or their equivalent asymmetric productions.

We used one intensity pair, x = 72 dB and u = 68 dB, except for one respondent
where each was decreased by 4 dB to avoid productions limited by a 85 dB safety
bound. A theoretical predication is that the property holds for both p < 1 and p ≥ 1,
hence p = 2/3 and p = 2 were used.

Four respondents produced 10 tests and the null hypothesis was accepted in 8 of
them (SL-II).
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4.3 Discussion
Given the complexity of testing these two properties of the model and given the poten-
tial for artifacts, we feel that the support found for the model leading to the additive
representation, (12) with δ = 0, and the subjective proportion representation, (13), is
not too bad.

Assuming that there is a common Ψ underlying the representations, an interesting
theoretical challenge exists. Taken by itself, the p-additive representation of ⊕i could
have δ ≶ 0. For δ < 0, it is not difficult to see that Ψ is bounded by 1/ |δ| and so
Ψ : R+ × R+ onto−→ I = [0, 1/ |δ|]. (Of course, we have data on bisymmetry that
suggests δ = 0. However, we cannot really rule out that δ may be slightly different
from 0.) On the face of it, boundedness seems quite plausible. Psychophysical scales
of intensity seem to have upper bounds tied in with potential sensory damage and
so infinite ones are decidedly an idealization. However, bounded Ψ is definitely not
possible7 because one can repeatedly iterate the operator as, e.g., in the second step:
(x ◦p,i y) ◦p,i y. This forces Ψ to be unbounded. So the challenge is to discover a
suitable modification of (13) that is bounded and work out its properties.

5 Sensory Filtering, Multiplicative Invariance, and Forms
for Ψ

5.1 Asymmetric matching and jp-symmetry
At the beginning of Sec. 3 we used symmetric matches to check joint-presentation
symmetry and left until now the use of asymmetric left and right matches. They some-
times exhibited the following phenomenon which at first seemed disturbing but, in fact,
seems to have rather mild consequences. Consider the asymmetric matches

(x, u) ∼ (x⊕l u, 0), (u, x) ∼ (u⊕l x, 0),
(x, u) ∼ (0, x⊕r u), (u, x) ∼ (0, u⊕r x).

Suppose that jp-symmetry fails, as it often seems to, and suppose that (x, u) Â (u, x).
Then one expects to observe that both x⊕l u > u⊕l x and x⊕r u > u⊕r x–that left
and right matches will agree in what they say about jp-symmetry. We carried out such
an experiment, obtaining the asymmetric matches above using the trial forms in (15)
and (16) and the same stimuli as in Sec. 3.1. Although the expected agreement held for
4 respondents, it did not for 2, even after considerable experience in the experimental
situation. Moreover, for those who were qualitatively consistent in the sense above, the
magnitude of the differences x⊕l u−u⊕l x and x⊕r u−u⊕r x varied considerably.
Evidently, matching in a single ear had some significant impact. Of course, one impact
manifest itself in a sharp change of localization, which at first seems a bit odd to people.
But the inconsistency just described is more worrisome for our experiments. This
means that an experimental procedure that relies on the assumption of bias independent

7This fact was pointed out by Ehitbar Dzhafarov in a personal communication in his role as referee of
Luce (2004).
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of the matching ear will not be reliable. In practice this has not proven to be an obstacle
in our other experiments. We offer a possible account of this effect in the next two sub-
sections.

5.2 Sensory filtering in the asymmetric cases
Suppose that asymmetric matching has the effect of either enhancing (in the brain) all
signals in the matching ear or attenuating those in the other ear. If these effects entail
a simple multiplicative factor on intensity, i.e., a constant dB shift, then the two ideas
are equivalent. If we assume that there is an attenuation or filter factor η on the non-
matched ear, then for the left matching case the experimental stimulus (x, u) becomes,
effectively, (x, ηu). And when matching in the right ear, (x, u) it becomes effectively
(ηx, u), where 0 < η ≤ 1. Thus, when we ask the respondents to solve the three
indifferences of (3) what they actually do, according to this theory, is set

zl = x⊕l ηu⇔ (zl, 0) ∼ (x, ηu),
zr = ηx⊕r u⇔ (0, zr) ∼ (ηx, u),
zs = x⊕s u⇔ (zs, zs) ∼ (x, u).

Note that the filter plays no role in the symmetric matches.
Under a further condition called multiplicative invariance (Sec. 5.3), which is equiv-

alent to δ = 0 and that Ψ(x, 0) and Ψ(0, x) are each a power function of x, but with
different powers, one can show that the filtering concept does indeed accommodate the
above phenomenon of asymmetric matching in connection with checking jp-symmetry.

5.3 Multiplicative invariance
Fortunately, we were able to show that filtering did not distort any of the experimental
tests of the properties of Secs. 3 and 4 where asymmetric matching is used, provided
that the operations ⊕i have an additive representation (shown in Secs. 3.2 and 3.3) and
that the following property holds:

σ−Multiplicative Invariance (σ−MI): For all signals x ≥ 0, u ≥ 0, for any factor
λ ≥ 0, and for ⊕i, i = l, r, defined by (3) and (4), there is some constant σ > 0
such that:

λx⊕l λσu = λ(x⊕l u), (34)

and
λx⊕r λσu = λσ(x⊕r u). (35)

We observe that this property is, itself, invariant under sensory filtering because with
filtering that expression becomes

λx⊕l ηλσu = λ(x⊕l ηu),
ηλx⊕r λσu = λσ(ηx⊕r u).

Using the fact that ηλσ = λση and setting v = ηu or y = ηx yields (34) and (35) with
a trivial change of notation. So the filter does not affect any further uses of σ−MI.
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Turning to our other necessary properties in Secs. 3 and 4, elementary calculations
show that they are invariant under filtering either with no further assumption or assum-
ing multiplicative invariance, see Table 1:

Assumption
Property None σ−MI
Thomsen X
Bisymmetry X
Prod. Comm. X
SJP-Decomp. X
Segregation X

Table 1: Effect of filtering on properties.

We examine one important implication of σ−MI in the next subsection and report
some relevant data.

5.4 Ψ a sum of power functions
So far, we have arrived at a representation with two free parameters, δ and γ, and two
free increasing functions, Ψ and W , and shown that, most likely, δ = 0. It is clear that
one further goal of our project is to characterize behaviorally each of the functions to a
specific family with very few free parameters. In this section we take up one argument
for Ψ being a sum of power functions and in Sec. 6.1 we give a different argument for
the power function form of Ψ and also consider two possible forms for W, rejecting
one and possibly keeping the other.

Assuming that the representation (12) holds (see Secs. 1.3 and 3.2) and that δ = 0
(see Sec. 3.3), then one can show that multiplicative invariance is equivalent toΨ being
a sum of power functions, (48), with exponents βl and βr such that σ = βl/βr, i.e.

Ψ(x, u) = αlx
βl + αru

βr = αlx
βl + αru

βl/σ. (36)

The proof is a minor modification of that given by Aczél, Falmagne, and Luce (2000,
Sec. 2.2.1) for σ = 1. Thus, multiplicative invariance is a behavioral test for the power
function form (36).

Note that
Ψ(x, 0)

Ψ(0, x)
=

αl
αr

xβl−βr .

Thus the constant bias property (14) holds iff γ = αl
αr

and σ = βl
βr
= 1.

Recall that x and u in (34) and (35) are intensity differences between the signal in-
tensity actually presented and the threshold intensity for that ear. However, the exper-
imental design and results are typically reported in dB terms. In the current situation,
this practice represents a notational difficulty because, e.g. λx in dB terms is:

10 log(λx) = 10 log λ+ 10 log x.
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Thus, in dB the multiplicative factor is additive. In the following, the intensity notation
will be maintained in equations but actual experimental quantities will be reported in
dB’s where λdB = 10 log λ stands for the additive factor.

In order to test multiplicative invariance, it is most desirable to estimate σ and not
to have to run a parametric experiment. To that end, using the representation (36) one
can show that

(0⊕l x)dB = c1 +
1

σ
xdB, (37)

(x⊕r 0)dB = c2 + σxdB, (38)

from which
(x⊕r 0)dB = c3 + σ2(0⊕l x)dB (39)

follows. This appears to be a suitable way to estimate σ–suitable in the sense that if
(36) holds, then this is what it must be.

In terms of the power function representation itself one can show that the constants
c1 in (37), c2 in (38), and c3 in (39) are explicit functions of γ and η and, solving for
these parameters, one can show that

log η =
σc1 + c2
10(1 + σ)

, (40)

log γ =
βrc3

10(1 + σ)
. (41)

5.5 Tests of 1−MI
We did this experiment before we had developed the general result about σ−MI. The
test was carried out in two steps: The first is an experimental one in which the respon-
dents estimate

ti = (λx)⊕i (λu) and zi = x⊕i u,
obtained using trial-form (15) or (16) as the case might be. This is followed by a
purely “arithmetic” step in which the multiplication t0i = λ × zi is performed by the
experimenter. Multiplicative invariance is said to hold if ti and t0i are found statistically
equivalent.

For the experiment we used x = 64 dB and u = 70 dB and two values for λdB , 4
and −4 dB (λ = 2.5 and 0.4, respectively).

Of 22 respondents, 12 satisfied multiplicative invariance in both tests, three failed
both, and seven failed one. So we have a crude estimate of about half of the respondents
satisfying multiplicative with σ = 1. The fact of so many failures led us to explore how
to estimate σ and then to check multiplicative invariance using that estimate.

5.6 Estimating σ

For 7 of the respondents for whom we tested 1−MI, we also collected the estimates
zr = (x ⊕r 0) and zl = (0 ⊕l x) using trial-forms (15) and (16), and the three in-
stantiations of x, 58, 66, and 74 dB SPL. Then, using linear regression, we obtained an
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estimate for σ and statistically tested whether σ = 1. These results, including the nu-
merical direction of the estimated σ’s, for the testing of 7 respondents are summarized
Table 2.

Result for
σ−MI Total Statistics

σ = 1 σ 6= 1
Numerical

σ < 1 σ > 1
Passed 5 3 2 4 1
Failed 2 2 0 1 1

Table 2: Summary of σ-estimation results.

There seems to be some limited evidence of gaining a little, but not a lot, by going
to σ−MI.

To evaluate these results further we examined the previous data testing 1−MI (22
respondents) and asked in what direction would σ have to deviate from 1 in order not
to reject σ−MI. These results are summarized Table 3.

Result for
σ−MI Total σ < 1 σ > 1 contradictory

Passed 12 2 7 3
Failed 10 2 7 1

Table 3: Summary of direction needed to fit data.

The contradictory results occur when one of the 1−MI conditions passed robustly,
and so it may just be an issue of variance.

What is immediately striking is that for 14/22 respondents we anticipate a value of
σ > 1, whereas for the subset of 7 respondents for which we estimated of σ (Table 2)
5/7 had estimates of σ < 1. For these 7 respondents, σ > 1 was expected for 5
respondents, σ < 1 for 1, and was contradictory for 1 respondents. In only one case
was the expected numerical direction of σ the same as the one obtained. This means
the pattern of results appears wrong in 5/7 cases.

In conclusion, the results of the σ estimation do not seem to provide a correction
factor that explains the respondents deviation from 1−MI. Thus, we have evidence for
about 50% of respondents being well described by the sum of power functions, but we
do not know what forms fit the other half.

6 Ratio Estimation and the Forms for W
To those familiar with the empirical literature on “direct scaling” methods, our discus-
sion may seem unusual because so far it has focused exclusively on ratio production
and not at all on ratio estimation and its close relative magnitude estimation. Mag-
nitude estimation is far more emphasized in the empirical and applications literatures
than is magnitude production. We remedy this lacuna in the theory now.
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Here it is useful to define:

ψl(x) := Ψ(x, 0), (42)
ψr(u) := Ψ(0, u), (43)
ψs(x) := Ψ(x, x). (44)

We will work with the generic ψi, i = l, r, s.

6.1 Ratio estimation interpreted within this theory
A fairly natural interpretation of ratio estimations can be given in terms of (13) with
y = 0. Instead of producing zi(x, p) = x ◦p,i 0, i = l, r, s, such that zi(x, p) stands in
the ratio p to x, the respondent is asked to state the value of pi that corresponds to the
subjective ratio of z to x. This value may be called the perceived ratio of intensity z to
intensity x. If we change variables by letting t = z/x, then pi is a function of both t
and x, i.e., pi = pi(t, x). Note that pi is a dimensionless number. According to (13)
and using the definition of ψi,

W (pi(t, x)) =
ψi(tx)

ψi(x)
. (45)

This relation among the three unknown functions, ψi, pi,W, is fundamental to what
follows.

The empirical literature on magnitude estimates has sometimes involved giving
a standard x and in some experiments it was left up to the respondent to set his or
her own standard. Stevens (1975, p. 26-30) argued for the latter procedure. From
our perspective, this means that it very unclear what a person is trying to do when
responding–comparing the present stimulus with some fixed internal standard or to the
previous signal or to what? And, therefore, it means that averaging over respondents,
who may be doing different things, is even less satisfactory than it usually is.

The literature seems to have assumed implicitly that the ratio estimate pi(t, x) de-
pends only on t, not on x, i.e.,

pi(t, x) = pi(t). (46)

The only auditory data we have uncovered on this is in Hellman and Zwislocki (1961).
They had 9 respondents provide ratio estimates to five different standard pairs (x0, 10)
where x0 = 40, 60, 70, 80, 90 dB SPL. The geometric-mean results for the respondents
are shown in their Fig. 6. If one shifts the intensity scale (in dB) so that all the standard
pairs are at the same point of the graph, we get the plot shown in the left panel of Fig. 1.
For values above the standard, there does not seem to be any difference in the curves, in
agreement with (46). But things are not so favorable for values below the standard. Of
course, there are possible artifacts. Experience in this area suggests that many people
are uneasy about the lower end of the numerical scale, especially below 1. They seem
to feel “crowded” in the region of fractions. Also, in our theory one should treat the
abscissa as the intensity less the threshold intensity, which they had no reason to do.
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Figure 1: Adapted from the data in Fig. 6. of Hellman and Zwitlocki (1961)
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They reported an average threshold of 6 dB SPL. The right panel of Fig. 1 shows such
a correction. It does not materially affect the failure of (46) for p < 1.

One would like to see their study redone with two changes: First, set the standards
at (x0, 100). Second, collect data on individual thresholds and plot the data in terms of
the intensity less the threshold intensity for individual respondents.

6.2 Psychophysical power functions
Anyhow, assuming that (45) holds, then (46) immediately yields

W (pi(t)) =
ψi(tx)

ψi(x)
, (47)

which is a Pexider functional equation (Aczél, 1966, p. 144) whose solutions with
ψi(0) = 0 are, for some constants αi > 0, βi > 0,

ψi(t) = αit
βi (t ≥ 0), (48)

W [pi(t)] = tβi (t ≥ 0). (49)

Recall that the ψi are the production psychophysical functions defined in terms ofΨ by
(42) for i = l and by (43) for i = r. So (48) agrees with our earlier result about sums
of power functions being implied when multiplicative invariance is satisfied, (Sec. 5.4).
And, of course, (46) holds if the psychophysical function is a power function.

6.3 Do ratio estimates also form power functions?
The conclusion (49) tells us that, when we observe empirically the estimation func-
tion pi(t), it is a power function, but it is seen through the distortion W−1. Stevens
(1975) claimed that the magnitude estimation psychophysical functions are, them-
selves, power functions, which was approximately true for geometric means over re-
spondents; however this is not really the case for data collected on individuals. See
Fig. 2. (This is Fig. 1, p. 292, of Green & Luce, 1974). This fact is again a caution
about averaging over respondents.

Moreover, Stevens (1975) attempted to defend the position that both the magnitude
and production functions are power functions although he was quite aware that empir-
ically they do not prove to be simple inverses of one another (p. 31). Indeed, he spoke
of an unexplained “regression” effect which has never really been fully illuminated
(Stevens, 1975, p. 32).

So let us consider the possibility that, as Stevens claimed,

pi(t) = ρit
νi (t > 0, ρi > 0, νi > 0). (50)

Note that because pi is dimensionless, the parameter ρi is a constant, not a free para-
meter. It is quite easy to see that if (49) holds, then pi is a power function, (50), if, and
only if, W (p) is also a power function with exponent ωi := βi/νi, i.e.,

Wi(p) =

µ
p

ρi

¶ωi
= Wi(1)p

ωi (p ≥ 0). (51)
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Figure 2: Reproduction of Fig 1 of Luce and Green (1974)

This form has different implications depending on whether the constant ρi = 1 or 6= 1.
Note that ρi = 1 holds iff Wi(1) = 1. From here on we assume that Wi, being a
cognitive function, is independent of i = l, r and so can be denoted W. Both cases rest
on an exploration of the property of threshold production commutativity:

(x ◦p,i 0) ◦q,i 0 = (x ◦q,i 0) ◦p,i 0 = x ◦t,i 0, (52)

which by (13), is equivalent to

W (p)W (q) =W (t). (53)

To increase generality, we suppose that (53) holds for p > 1, q > 1 and, separately,
for p < 1, q < 1, but not necessarily for the crossed cases: p > 1 > q or q > 1 > p.
Assuming the continuity of W (p) at p = 1, it is easy to show that if this obtains the
following statements are equivalent: (1) There exist constants ω> and ω< such that

W (p) =W (1)

½
pω> , p ≥ 1
pω< , p < 1

. (54)

(2) The relation among p, q, and t is given by:

t = pq

½
W (1)1/ω> , p ≥ 1
W (1)1/ω< , p < 1

. (55)

If we also assume that (53) holds for p > 1 > q or p < 1 < q, then ω> = ω<. Some
pilot data we have collected strongly suggests that (55) does not hold for the crossed
cases p > 1 > q and p < 1 < q and that W (1) < 1. Further empirical work will be
reported in SL-IV.

The only published data we are aware of concerning (52) is that of Ellermeier and
Faulhammer (2000) and Zimmer (2004). They restricted their attention to the case
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of ρi = 1 which is equivalent to W (1) = 1. Narens (1996) arrived at pq = t as a
consequence of his formalization of what he believed Stevens (1975) might have meant
theoretically when invoking magnitude methods. Ellermeier and Faulhammer (2000)
and Zimmer (2004) tested (55) experimentally and unambiguously rejected it. To our
knowledge no one has attempted to collect sufficient data to see how well (55) fits the
data with W (1) 6= 1. We do know from Ellermeier and Faulhammer (2000) that, on
average, t < pq, which means that W (1) < 1, on average, which was also supported
by our pilot data sited above. This has the following implication. If (x, x) and (y, y)
are presented and a respondent is asked to produce z such that the interval from (y, y)
to (z, z) is the same as the interval from (y, y) to (x, x), they will select z < x. This
has yet to be checked empirically.

So the answer to the question of the heading—Do ratio estimates form power
functions?—is that at this point we do not know. The key prediction (55) has not yet
been checked. If, however, the general power function form is rejected, then the task
of finding the form of W remains open. We discuss next one interesting, but ultimately
unsuccessful, attempt, the Prelec function.

6.4 If ratio estimation is not a power function, what is W?
6.4.1 Prelec’s function

Within the context of utility theory for risky gambles and for 0 < p ≤ 1, a weighting
function was proposed and axiomatized by Prelec (1998) that had a desirable feature.
Depending on the combinations of the parameters, the function is concave, convex, S-
shaped, or inverse S-shaped. Empirical data on preferences among gambles seemed to
suggest that the inverse S-shaped form holds (Luce, 2000, Sec. 3.4, especially Fig. 3.10
on p. 99). The Prelec form for the weighting function, generalized from the unit interval
to all positive numbers is

W (p) =

½
exp [−λ (− ln p)µ] (0 < p ≤ 1)
exp

£
−λ0 (ln p)µ

¤
(1 < p)

, (56)

where λ > 0, λ0 > 0, and µ > 0. The special case of µ = 1 is a power function with
W (1) = 1, which we know is wrong.

6.4.2 Reduction invariance: a behavioral equivalent of Prelec’s W

Prelec gave one axiomatization of the form (56) and Luce (2001) gave the following
simpler one:

Reduction Invariance: Suppose that positive p, q, t = t(p, q) are such that (52) is
satisfied for all x > 0. Then for any natural number N,

(x ◦pN ,i 0) ◦qN ,i 0 = x ◦tN ,i 0. (57)

In words, if the compounding of p and q in magnitude productions is the same as the
single production of t, then the compounding of pN and qN is the same as the single
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production of tN . On the assumptions that (53) holds for pN , qN , and tN and that W
is strictly increasing function on the interval ]0, 1], Luce (2001) showed that reduction
invariance, (57), is equivalent to the Prelec function (56) holding in the unit interval.
Indeed, it turns out that its holding for two values of N such as N = 2, 3 are sufficient
to get the result. Another pair that works equally well is N = 2/3, 2. It is not difficult
to see how to extend the proof to deal with the interval ]1,∞[ . One can also show that
it works for N any positive real number; however, any two values without a common
factor suffice.

Zimmer (2004) was the first to test this hypothesis and she rejected it. Her method
entailed working with bounds and showing that the observed data falls outside them.
In SL-IV, we also tested it using our ratio-production procedure. We too found that it
failed. The fact that W is a cognitive distortion of numbers may mean that it will also
fail empirically in other domains, such as utility theory, when reduction invariance is
studied directly.

Testing was done using two-ear (i = s) productions. First, the two successive
estimates

vs = x ◦p,s 0, (58)
ts = zs ◦p,s 0, (59)

were obtained. Then, using the simple Up-Down method (Levitt, 1971), t was esti-
mated such that x ◦t,i 0 ∼ ts. With the estimate of t and N the following estimates
were obtained:

t0s = (x ◦pN ,i 0) ◦qN ,i 0
w0s = x ◦sN ,i 0.

The property is said to hold if t0s and w0s are found statistically equivalent.
We used the two instantiations, x = 64 dB and x = 70 dB, and the proportions,

presented as percentages, p = 160% and q = 80, except for one respondent where
q = 40% another for another where p = 140%. The power N was chosen as close to 2
as would provide numbers close to a multiple of five for each of pN , qN , and tN .

The property was rejected for six of six respondents. For three the failure was
beyond much question. But taking into account the complexity of the testing procedure
and the multiple levels of estimation, the failure for the other three was not dramatic.
Indeed, had our data been as variable as Zimmer’s (2004), we almost certainly would
have accepted the property of reduction invariance in those three cases.

When we tested reduction invariance, we did not know about the potential problems
of testing this property using the mixed case of p > 1, q < 1 outlined in Section 6.3.
Without further testing, the failure we observed is potentially related to this issue, how-
ever Zimmer’s (2004) data are not based on mixed cases; she used p < 1, q < 1. This
further suggests the property should be tested with p > 1, q > 1; we aim to report such
data in SL-IV.
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6.5 Predictions about co-variation and sequential effects
Given that ψi is a power function, we have the following inverse relationships about
ratio productions and estimates:

ri(p) = W (p)1/βi (p given), (60)
pi(r) = W−1(rβi) (r given). (61)

In the usual dB form in which data are plotted these are

ri,dB(p) =
1

βi
WdB(p), (62)

pi,dB(r) = W−1dB (r
βi) =W−1dB

µ
exp

1

10
(βirdB)

¶
. (63)

6.5.1 What happens when W is a power function?

First suppose that W is a power function of the form (51). Then a routine calculation
yields

W−1(rβi) = ρir
νi ,

and so

ri,dB(p) =
1

υi

¡
pdB − ρi,dB

¢
,

pi,dB(r) = νirdB + ρi,dB.

In response to overwhelmingly clear empirical evidence, several authors have for-
mulated sequential models in which the response in dB on trial n, 10 logRn, depends
linearly on the present signal in dB, 10 logSn, the previous one, 10 logSn−1, the pre-
vious response 10 logRn−1, and in some cases 10 logSn−2 (DeCarlo, 2003; DeCarlo
& Cross, 1990; Jesteadt, Luce, and Green, 1977; Lacouture, 1997; Lockhead, 2004;
Luce & Steingrimsson, 2003; Mori, 1998; Petrov & Anderson, 2005)8. Both Lockhead
and Petrov and Anderson provide many other references to the literature. Setting

rs,n =
Sn
Sn−1

, ps,n =
Rn

Rn−1
,

then each weighting function yields a sequential model for estimation. With symmetric
stimuli (x, x), we see that for power functions

Rn,dB = Rn−1,dB + νs (Sn,dB − Sn−1,dB) + ρi,dB .

8We thank A. A. J. Marley for supplying some of these references.
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6.5.2 What happens when W is a Prelec function

If we assume that W is given by (56), then putting that form into the expressions for

(62) and (63), doing a bit of algebra, and defining τ i :=
1
βi

³
log 10
10

´µ−1
yields the

following forms for ri(p)dB and pi(r)dB , respectively:

ri(p)dB = τ i

⎧⎨⎩ −λ (−pdB)µ 0 < p ≤ 1

λ0 (pdB)
µi 1 < p

, (64)

pi(r)dB =
1

τ
1/µ
i

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
³
−βi

λ rdB

´1/µ
0 < r ≤ 1

³
βi
λ0 rdB

´1/µ
1 < r

. (65)

When µ is approximately 1, then ri(p) and pi(r) are approximately power func-
tions, i.e., ri(p)dB and pi(r)dB are approximately linear, but with a change of the
power at p = 1 and r = 1, respectively. Of course, it cannot be exactly a power func-
tion without contradicting the data of Ellermeier and Faulhammer (2000) and Zimmer
(2004). Some examples of (64) are shown in Fig. 3. Such functions seem consistent
with the data reported in Fig. 1.

Figure 3. ψ(x) =

½
(.5x)1.2 if 0 ≤ x < 50
−(−.cx)1.2 if −50 < x < 0,

were c = 0.3, 0.5, 0.7 from top to bottom

Proceeding as with the power function but using Prelec’s function we get the fol-
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lowing predicted sequential effects:

Rn,dB = Rn−1,dB+τ
1/µ
s

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
h
−βs

λ (Sn,dB − Sn−1,dB)
i1/µ

Sn,dB ≤ Sn−1,dB

h
βs
λ0 (Sn,dB − Sn−1,dB)

i1/µ
Sn,dB > Sn−1,dB

.

Some aspects of Stevens magnitude estimation and production functions can be
illuminated by these results. Let us assume that when the experimenter provides no
reference signal x, each respondent selects his or her own. Thus, the usual data, which
are averaged over the respondents, is the average of approximately piece-wise linear
functions with the break occurring in different places. Although (60) and (61) are per-
fect inverses, it is no surprise that under such averaging the results are not strict inverses
of one another. Something like this may provide an account of Stevens’ “regression”
phenomenon.

7 Summary and Conclusions

7.1 Summary of the theory
The theory has three primitives:

1. The (loudness) ordering % on R+ × R+, where R+ is the set of non-negative
numbers corresponding to signals which are intensities less threshold intensity
(intensities less than the threshold are subsumed as 0).

2. The presentation of signal pairs, (x, u), to (the two ears of) the respondent with
the defined matching operations ⊕i; and

3. Judgments of “interval” proportions, ◦p.

Within the fairly weak structural assumptions of the theory, necessary and sufficient
properties were stated that yield the representations: There exist a constant δ ≥ 0 and
two strictly increasing functions Ψ and W such that

Ψ(x, u) = Ψ(x, 0) +Ψ(0, u) + δΨ(x, 0)Ψ(0, u),

W (p) =
Ψ ((x, x) ◦p (y, y))−Ψ(y, y)

Ψ(x, x)−Ψ(y, y) (x > y ≥ 0),

and, under some conditions, there is a constant γ > 0 such that

Ψ(x, 0) = γΨ(0, x),

which is quite restrictive.
The property characterizing the form of Ψ(x, u) is the Thomsen condition, (23).

We showed next that for most people the ears are not symmetric in the sense that
(x, u) ¿ (u, x), in which case δ = 0 is equivalent to bisymmetry of the operation
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⊕s. The property underlying the second expression, the one involving ◦p, is propor-
tion commutativity, (25). Axiomatized by themselves these representations really are
Ψ and ΨΘ, where Θ is an additive representation over stimulus pairs, and they are
not automatically the same function. To establish that equality requires two linking
expressions, simple joint presentation decomposition, (31), and one of two forms of
segregation, either (32) or (33). These are types of distribution conditions.

Next we took up the form of Ψ(x, u) in terms of the intensities x and u. The
property of σ−MI, (34) and (35), turns out to be equivalent to Ψ being a sum of two
power functions with the exponents in the ratio of σ. A predicted linear regression
permits one to estimate σ. We also explored a simple filtering model to allow one to
account for the, to us, unexpected phenomena connected with asymmetric matching.
If it takes the form of an attenuation factor η, one can show that none of the tests of
properties that we used with asymmetric matching were invalidated by the filtering.
We gave formulae for estimating η and γ, respectively (40) and (41).

Our final topic was the form of the ratio estimation predicted by the theory, and that
rests heavily on the form of W (p) as a function of p. We explored two cases: where
ratio estimates are power functions W (1) 6= 1, and one where W (1) = 1 and W is a
Prelec one. Unlike the power function which is either concave or convex, the Prelec
function, which includes the power function as a special case, can also be, depending
upon the parameter pairs, either S-shaped or inverse S-shaped. Both offered accounts
of magnitude methods without a standard and of the ubiquitous sequential effects.

The case when W is a power function leads to a prediction that has not been ex-
plored. We described a straightforward experiment aimed at testing the power function
but with W (1) 6= 1. The alternative explored, the Prelec function for W, has been
shown to be equivalent to a behavioral property called reduction invariance, (57); two
studies, one of them ours, show that this condition fails. Thus the problem of the form
of W remains open.

7.2 Summary of experimental results
The theory discussed implies that properties 3, 5, 6, and 7 in Table 4 below should
hold. Although the results are not perfect, we are reasonably satisfied. Had property
1–symmetry in the sense that (x, u) ∼ (u, x)–been sustained, which it was not, we
could have used a somewhat simpler theoretical development formulated for utility
theory. Given that we must deal with the asymmetric case in most instances, we have
the representation

Ψ(x, u) = Ψ(x, 0) +Ψ(0, u) + δΨ(x, 0)Ψ(0, u).

It is simplified to δ = 0 iff bisymmetry, Property 4, holds, which was well supported.
And given that fact, then from multiplicative invariance, Property 2, when it is sus-
tained, two things follow: First, filtering in asymmetric matches does not affect the
tests of any of the basic properties. Second, the property of multiplicative invariance
is the behavioral equivalent to the psychophysical function being a sum of power func-
tions. We found that roughly half of the respondents satisfied 1−MI. For the other half
we had hoped that using an estimate of σ and experimentally checking σ−MI would
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improve matters. This did not seem to happen. So additional work on the dependence
of Ψ(x, u) on x and on u is clearly needed.

Property #R #Tests #Failures
1. JP-symmetry 15 45 23
2. Thomsen 12 24 5
3. Bisymmetry 6 6 0
4. Prop. Comm. 4 4 0
5. JP-Decomposition 4 8 2
6. Segregation 4 10 2
7. 1−MI∗ 22 44 13
8. Reduction invariance 6 12 12
∗12 Rs passed both tests

Table 4: Summary of experimental results.

Given the potential for experimental artifacts, we have concluded that sufficient
initial support for the theory has been received to warrant further investigation–both
for auditory intensity and for other interpretations of the primitives.

A third issue was peculiarities in asymmetric matching which were explained in
terms of a filtering model. Should a power function model with exponents in the ratio
σ obtain, we gave estimation equations for the three free parameters: γ, σ, η.

7.3 Conclusions
The studies summarized here seem to establish the following points.

• As in classical physics, one does a lot better by having two or more interlocked
primitive structures rather than just one in arriving at constrained representations.
Our structures were hR+ × R+,%i, which we reduced to the one dimensional
structure hR+,≥,⊕ii, and hR+ × R+,%, ◦pi, which we reduced to the one di-
mensional structure hR+,≥, ◦p,ii.

• The adequacy of such a representation theory that has both free functions and
free parameters can be judged entirely in terms of parameter-free properties with-
out, at any point, trying to fit the representations themselves to data. Again, this
is familiar from classical physics.

• As usual, more needs to be done. Among the most obvious things are:

– Collect more data. Several specific experiments were mentioned.
– Continue to try to improve the experimental methodology.
– Try to extend the theory to encompass auditory frequency as well as inten-

sity.
– Study interpretations of the primitives other than auditory intensity.
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– Try to find the mathematical forms for ψ(x) and for W (p) are each char-
acterized by a behavioral property that is sustained empirically.

• We are the first to admit, however, that the approach taken is no panacea:

– We do not have the slightest idea how to axiomatize response times in a
comparable fashion.

– What about probabilistic versions of the theory? Everyone knows that
when stimuli are close together, they are not perfectly discriminated and
so not really algebraically ordered. Certainly this was true of our data, es-
pecially for our data involving ratio productions. Recognition of this fact
has, over the years, led to probabilistic versions of various one dimensional
ordered structures. But the important goal of blending probabilities with
two interacting structures, ⊕ and ◦p, in an interesting way has proved to be
quite elusive.

– Also we do not know how to extend the approach to dynamic processes
that, at a minimum, seem to underlie both the learning that goes on in psy-
chophysical experiments and the ever-present sequential effects. One thing
to recall about dynamic processes in physics is that they are typically for-
mulated in terms of conservation laws (mass, momentum, angular momen-
tum, energy, spin, etc.) that state that certain quantities, definable within
the dynamic system, remain invariant over time. Nothing really compara-
ble seems to exist in psychology. Should we be seeking such invariants?
We should mention that such invariants always correspond to a form of
symmetry. In some systems the symmetry is captured by the set of auto-
morphisms and in others by more general groups of transformations. For
further detail see Luce et al. (1990), Narens (2002), and Suppes (2002).

7.4 Acknowledgements
Many of the experiments discussed here were carried out in Dr. Bruce Berg’s auditory
laboratory at U.C. Irvine and his guidance is appreciated. Others were conducted at
New York University and we thank the Center for Neural Science and Dr. Malcolm
Semple for making resources and laboratory space available to us. We also thank
Dr. Joetta Gobell for valuable comments on earlier versions.

References

Aczél, J. (1966). Lectures on Functional Equations and their Applications.New York:
Academic Press.

Aczél, J., Falmagne, J.-C., & Luce, R. D. (2000). Functional equations in the behav-
ioral sciences. Math. Japonica, 52, 469-512.

DeCarlo, L. T. (2003). An application of a dynamic model of judgment to magnitude
estimation. Perception & Psychophysics, 65, 152-162.

30



DeCarlo, L. T., & Cross, D. V. (1990). Sequential effects in magnitude scaling: Mod-
els and theory. Journal of Experimental Psychology: General, 119, 375-396.

Efron, B. and Tibshirani, R. J. (1993). An introduction to the bootstrap. Chapman
and Hall, New York.

Ellermeier, W., & Faulhammer, G. (2000). Empirical evaluation of axioms funda-
mental to Stevens’ ratio-scaling approach. I. Loudness production. Perception
& Psychophysics, 62, 1505-1511.

Falmagne, J.-C. (1976). Random conjoint measurement and loudness summation.
Psychological Review, 83, 65-79.

Falmagne, J.-C., Iverson, G., & Marcovici, S. (1979) Binaural “loudness” summation:
Probabilistic theory and data, Psychological Review, 86, 25-43.

Gigerenzer, G., & Strube, G. (1983). Are there limits to binaural additivity of loud-
ness? Journal of Experimental Psychology: Human Perception and Perfor-
mance, 9, 126-136.

Green, D.M., & Luce, R. D. (1974). Variability of magnitude estimates: a timing
theory analysis. Perception & Psychophysics, 15, 291-300.

Hellman, R. P., & Zwislocki, J. (1961). Some factors affecting the estimation of loud-
ness. Journal of the Acoustical Society of America, 33, 687-694.

Jesteadt, W., Luce, R. D., & Green, D.M. (1977). Sequential effects in judgments of
loudness. Journal of Experimental Psychology: Human Perception and Perfor-
mance, 3, 92-104.

Krantz, D. H., Luce, R. D, Suppes, P., & Tversky, A. (1971). Foundations of Mea-
surement, I. New York: Academic Press.

Lacouture, Y. (1997). Bow, range, and sequential effects in absolute identification: A
response-time analysis. Psychological Research, 60, 121-133.

Levelt, W. J. M., Riemersma, J. B., & Bunt, A. A. (1972). Binaural additivity of loud-
ness. British Journal of Mathematical and Statistical Psychology, 25, 51-68.

Levitt, H. (1971). Transformed up-down methods in psychoacoustics. Journal of the
Acoustical Society of America, 49, 467-477.

Lockhead, G. R. (2004). Absolute judgments are relative: A reinterpretation of some
psychophysical data. General Psychology (In Press).

Luce, R. D. (2000). Utility of Gains and Losses: Measurement-Theoretical and Ex-
perimental Approaches. Mahwah, NJ: Lawrence Erlbaum Associates. Errata:
see Luce’s web page at http:www.socsci.uci.edu.

Luce, R. D. (2001). Reduction invariance and Prelec’s weighting functions. Journal
of Mathematical Psychology, 45, 167-179.

31



Luce, R. D. (2002). A psychophysical theory of intensity proportions, joint presenta-
tions, and matches. Psychological Review, 109, 520-532.

Luce, R. D. (2004). Symmetric and asymmetric matching of joint presentations. Psy-
chological Review, 111, 446-454.

Luce, R. D., Krantz, D. H., Suppes, P., & Tversky, A. (1990). Foundations of Mea-
surement, III. San Diego, CA: Academic Press.

Luce, R. D., & Marley, A. A. J. (2004). Ranked additive utility representations of
gambles: Old and new axiomatizations. Journal of Risk and Uncertainty, in
press.

Luce, R. D., & Steingrimsson, R. (2003). A model of ratio production and estimation
and some behavioral predictions. In the Proceedings of the Nineteenth Annual
Meeting of the International Society for Psychophysics (pp. 157-162).

Marchant, T., and Luce, R. D. (2003). Technical note on the joint receipt of quantities
of a single good. Journal of Mathematical Psychology. In press.

Mori, S. (1998). Effects of stimulus information and number of stimuli on sequential
dependencies in absolute identification. Canadian Journal of Psychology, 52,
72-83.

Narens, L. (1996). A theory of ratio magnitude estimation. Journal of Mathematical
Psychology, 40, 109-129.

Narens, L. (2002). Theories of Meaningfulness. Mahwah, NJ: Lawrence Erlbaum
Associates.

Petrov, A. A., & Anderson, J. R. (2005). The dynamics of scaling: A memory-based
anchor model of category rating and absolute identification. Psychological Re-
view, in press.

Prelec, D. (1998). The probability weighting function. Econometrica, 66, 497-527.

Ramsey, F. P. (1931). The Foundations of Mathematics and Other Logical Essays.
New York: Harcourt, Brace & Co. See Ch. VII. Reprinted in H. E. Kyburg, &
H. E. Smokler (Eds.) (1964). Studies in Subjective Probability. New York: Wi-
ley, pp. 61-92.

Schneider, B. (1988). The additivity of loudness across critical bands: A conjoint
measurement approach. Perception & Psychophysics, 43, 211-222.

Steingrimsson, R. (2002). Contributions to Measuring Three Psychophysical At-
tributes: Testing Behavioral Axioms for Loudness, Response Time as an Inde-
pendent Variable, and Attentional Intensity. Psychology Ph.D. Dissertation, U.C.
Irvine.

32



Steingrimsson, R., & Luce, R. D. (2005a). Empirical evaluation of a model of global
psychophysical judgments: I. Behavioral properties of summations and produc-
tions. Journal of Mathematical Psychology, under revision.

Steingrimsson, R., & Luce, R. D. (2005b). Empirical evaluation of a model of global
psychophysical judgments: II. Behavioral properties linking summations and
productions. Journal of Mathematical Psychology, under revision.

Steingrimsson, R., & Luce, R. D. (2005c). Empirical evaluation of a model of global
psychophysical judgments: III. Perceptual filtering and a form for the psychophys-
ical function. Submitted for publication.

Steingrimsson, R., & Luce, R. D. (2005d). Empirical evaluation of a model of global
psychophysical judgments: IV. Forms for the weighting function. In preparation.

Stevens, S. S. (1975). Psychophysics: Introduction to its Perceptual, Neural, and
Social Prospects.New York: Wiley.

Suppes, P. (2002). Representation and Invariance of Scientific Structures. Stanford,
CA: CLSI Publications.

Zimmer, K. (2004). Examining the validity of numerical ratios in loudness fractiona-
tion. Perception & Psychophysics, in press.

33


