The Journal of Neuroscience, March 15, 2000, 20(6):2400-2408

Transformations of an Auditory Temporal Code in the Medulla of a Sound-Producing Fish

James Kozloski and John D. Crawford

Graduate Group in Neuroscience and Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

The fish auditory system provides important insights into the evolution and mechanisms of vertebrate hearing. Fish have relatively simple auditory systems, without a cochlea for mechanical frequency analysis. However, as in all vertebrates, the primary auditory afferents of fish represent sounds as stimulus-entrained spike trains. Thus, fish provide important models for studying how temporal spiking patterns are used in higher level neural computations. In this paper we demonstrate that one of the fundamental transformations of information in the auditory system of a sound-producing fish, Pollimyrus, takes place in the auditory medulla. We discovered a class of neurons in which evoked spiking patterns were relatively independent of the stimulus fine structure and appeared to reflect intrinsic properties of the neurons. These neurons generated sustained responses but were poorly phase-locked to tones compared with the primary afferents. The interval histograms showed that spike timing was regular. However, in contrast to primary afferents, the mode of the interspike interval distribution was independent of the period of tonal stimuli. The tuning of the neurons was broad, with best sensitivity in the same spectral region where these animals concentrate energy in their communication sounds. The physiology of these neurons was similar to that of the chopper neurons known in the auditory brainstem of mammals. Our findings suggest that this medullary transformation, from phase-locked afferent input to chopper-like physiology, is basic to vertebrate auditory processing, even within lineages that have not evolved a cochlea.

Key words: auditory communication; chopper; computation; electric fish; hearing; temporal processing; neural transformation