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Cortical Discrimination of Complex Natural Stimuli:
Can Single Neurons Match Behavior?
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A central finding in many cortical areas is that single neurons can match behavioral performance in the discrimination of sensory stimuli.
However, whether this is true for natural behaviors involving complex natural stimuli remains unknown. Here we use the model system
of songbirds to address this problem. Specifically, we investigate whether neurons in field L, the homolog of primary auditory cortex, can
match behavioral performance in the discrimination of conspecific songs. We use a classification framework based on the (dis)similarity
between single spike trains to quantify neural discrimination. We use this framework to investigate the discriminability of single spike
trains in field L in response to conspecific songs, testing different candidate neural codes underlying discrimination. We find that
performance based on spike timing is significantly higher than performance based on spike rate and interspike intervals. We then assess
the impact of temporal correlations in spike trains on discrimination. In contrast to widely discussed effects of correlations in limiting the
accuracy of a population code, temporal correlations appear to improve the performance of single neurons in the majority of cases.
Finally, we compare neural performance with behavioral performance. We find a diverse range of performance levels in field L, with
neural performance matching behavioral accuracy only for the best neurons using a spike-timing-based code.
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Introduction
The analysis of the performance of single cortical neurons on
perceptual tasks has played a central role in understanding the
link between the brain and behavior (for review, see Parker and
Newsome, 1998; Romo and Salinas, 2003). This is appropriate
because a clear understanding of the capacity of single neurons is
a prerequisite for understanding any neural code, be it a single
neuron code or a population code. A striking and well established
result in many cortical brain areas is that the performance of
single cortical neurons can match the behavioral performance of
an animal (Britten et al., 1992; Hernandez et al., 2000). Previous
studies used relatively simple synthetic stimuli to probe both neu-
ral and behavioral performance. However, cortical neurons can
display highly nonlinear responses when probed using complex
natural stimuli (Theunissen et al., 2000; Bar-Yosef et al., 2002;
David et al., 2004; Machens et al., 2004; Felsen et al., 2005;
Sharpee et al., 2006). Thus, whether single cortical neurons can
match behavioral performance in a task involving complex nat-
ural stimuli remains unknown.

The combined knowledge of behaviorally relevant stimuli and
the underlying neural circuitry make songbirds an attractive sys-

tem with particular relevance for human speech (Doupe and
Kuhl, 1999). In particular, field L, the avian homolog of primary
auditory cortex, provides a model for investigating the cortical
processing of natural stimuli, e.g., birdsongs. As a population,
field L neurons show selectivity for conspecific songs (Grace et al.,
2003). Modulation tuning of neural ensembles in field L facili-
tates discrimination across different classes of sounds as well as
within the class of conspecific sounds (Woolley et al., 2005).
Thus, field L provides an ideal test bed for comparing neural and
behavioral discrimination of a behaviorally important class of
sounds, i.e., conspecific songs. However, neural discrimination
performance at the single neuron level in field L remains poorly
understood.

Behaviorally, songbirds can discriminate accurately between
songs based on a single presentation (Cynx, 1993; Shinn-
Cunningham et al., 2006). In this situation, the available sensory
information consists of a single spike train in response to a song
from each neuron in the relevant population. Thus, to assess the
contribution of single neurons to behavior, it is important to
quantify the information available from single spike trains. Pre-
vious studies have revealed that the information in single spike
trains is present at fine timescales (Wright et al., 2002), and the
optimal timescale for neural discrimination of conspecific songs
is �10 ms (Narayan et al., 2006). These observations suggest that
a spike-timing-based code could mediate song discrimination.
However, several questions remain open. How does the accuracy
of discrimination based on a single spike train using a spike-
timing code compare with other candidate codes, i.e., rate and
interval codes? How does temporal correlation impact perfor-
mance based on a spike-timing code? How does average neural
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performance compare with the performance of the best neurons?
Which codes are consistent with behavioral performance? Here
we address these questions, using extensive computational anal-
yses of experimental data and modeling.

Materials and Methods
The experimental methods have been described in detail previously (Sen
et al., 2001; Narayan et al., 2006). Here we give an overview of the dataset
and focus on describing the computational methods and modeling.

Neural data
The data analyzed here come from a previous study in which we recorded
responses from field L of anesthetized and awake adult male zebra finches
(Narayan et al., 2006). For each recording site, we obtained 10 trials of
neural responses to 20 conspecific zebra finch songs. The data were cat-
egorized into three groups based on the type of recording and isolation of
the spike waveforms: anesthetized single unit (n � 6), anesthetized mul-
tiunit (n � 18), and awake multiunit (n � 14). As reported in the previ-
ous study, the multiunits comprised small clusters of neurons (approxi-
mately two to five) dominated by single units. There were no statistically
significant differences in discrimination performance, optimal temporal
resolution, and temporal integration time constant between the three
groups (Narayan et al., 2006).

Computational methods
Potential alternatives for quantifying neural discrimination. To quantify
neural performance, we adopted a metric-based spike train classification
framework, although we did consider alternative methods. The same
problem could be addressed, in principle, using ideal observer analysis
(Green and Swets, 1966) or information theory (Rieke et al., 1997). In
this study, we were interested not only in the information present in spike
counts or average rate but also at fine temporal resolutions. Ideal ob-
server analysis can be used to obtain discriminability measures on a fine
timescale. Specifically, one can compute the log likelihood ratio for two
different stimuli based on observed spike counts in a small time bin. If
spike counts are statistically independent across different time bins, then
the total discriminability accumulated over time can be obtained simply
by summing the binwise log likelihood ratios. However, the statistical
independence assumption may not be satisfied by experimental data.
Indeed, the spike trains in our dataset contained significant temporal
correlations (see Results), which complicate the application and inter-
pretation of ideal observer analysis. Nevertheless, we compared the per-
formance of the classifier with the ideal observer in a computational
model (supplemental data, available at www.jneurosci.org as supple-
mental material).

Another potential approach is information theory, a powerful model-
independent framework for quantifying neural performance. Informa-
tion present at fine temporal resolutions can be estimated using the
so-called “direct” method for computing mutual information. This
method requires estimating the probability distributions of different
spike sequences or “words” in the neural response (Strong et al., 1998;
Wright et al., 2002). Our dataset, which consisted of 10 trials for each
song, was insufficient for estimating the word distributions necessary for
applying this method, especially for the long words necessary to probe
the relatively long integration timescale on the order of hundreds of
milliseconds (Narayan et al., 2006).

Having considered these alternatives for quantifying neural perfor-
mance, we adopted a spike train classifier based on (dis)similarity mea-
sures for single spike trains (Victor and Purpura, 1997; Machens et al.,
2003; Narayan et al., 2005, 2006). This approach makes no assumptions
about the statistical structure of the spike trains, e.g., Poisson statistics. It
is applicable to single spike trains and does not require estimating the
underlying probability distribution of spike trains. It is flexible and can
be used in conjunction with different (dis)similarity measures between
spike trains. Data from many cortical neurophysiology laboratories have
similar constraints, i.e., presence of temporal correlations and limited
numbers of trials. Spike train classification provides a computational
framework for the analysis of such datasets.

Spike train classification. In a previous study, we used a classification

method based on the van Rossum spike distance metric (VR) to quantify
timescales underlying discrimination (van Rossum, 2001; Machens et al.,
2003; Narayan et al., 2006). In that approach, a template spike train was
chosen from one of the 10 trials for each song. The remaining spike trains
were assigned to the song with the closest template based on VR. This
procedure was repeated 100 times for different templates. The percentage
of correctly classified spike trains (percentage correct) was used as a
measure of discrimination. The chance level for classification was 5%
because a spike train could be assigned to 1 of 20 songs.

For this study, we expanded the classification framework by exploring
VR further and by investigating other (dis)similarity measures, i.e., the
Victor and Purpura spike timing metric (VPspike), the Victor and Pur-
pura spike interval metric (VPinterval), and a correlation-based similarity
measure, Rcorr (Schreiber et al., 2003).

VR metric. The VR metric quantifies the dissimilarity between pairs of
spike trains by first filtering them using a decaying exponential kernel
with a time constant �:

f�t� � �
i�1

M

H�t � ti�e
��t�ti�

� , (1)

where ti is the ith spike time, M is the total number of spikes, and H(t) is
the Heaviside step function. The spike distance is then computed as the
Euclidean distance (integral of the squared difference) between a pair of
filtered spike trains, f and g:
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The parameter � can be varied to examine discrimination over different
timescales of the neural response (van Rossum, 2001).

Victor–Purpura metrics (VPspike and VPinterval). Victor and Purpura
(1997) introduced a family of spike distance metrics that measure dis-
similarity between two spike trains in terms of the minimum cost of
transforming a spike train into another spike train through a series of
elementary operations. For all of the metrics, two permitted operations
are the addition of a single spike and the deletion of a single spike, both
for a cost of 1. The metric based on spike times (VPspike) allows a spike to
be shifted by an amount dt for a cost of qdt. The parameter q has units of
time �1, and the quantity 1/q is a measure of the temporal resolution of
the metric. The metric based on spike intervals (VPinterval) permits
changing of the length of an interspike interval by an amount dt for a cost
qdt. An important difference between the two metrics is that the shifting
of an interspike interval in VPinterval changes the spike times of all subse-
quent spikes, whereas the shifting of a spike time in VPspike only causes a
change in the intervals immediately preceding and after the shifted spike.
Additionally, (dis)similarities based on VPspike are not necessarily equiv-
alent to (dis)similarities based on VPinterval. For example, random dele-
tions of spikes in the data tend to reduce performance based on VPinterval

more than VPspike (Victor and Purpura, 1996).
Correlation-based similarity measure (Rcorr). The Rcorr measure was

based on a recently proposed correlation-based measure of spike simi-
larity (Schreiber et al., 2003). The similarity between two spike trains, Bri

and Brj, was calculated as follows:

Rcorr �
s
3

i•s
3

j
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3
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3

j�
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where Bsi and Bsj were obtained by filtering Bri and Brj using a Gaussian filter
with mean 0 and SD �. A value close to 1 indicates similar spike trains,
whereas a value close to 0 is indicative of dissimilarity. The width of the
filter was adjusted so that 2.8� 	 � of VR (see below, Analysis of kernel
shape in VR).

Performance, biological interpretability, and choice of metrics. We com-
pared the classification performance attained with the different (dis)sim-
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ilarity measures. Mean 
 SEM performances (n � 38) for all of the
recorded sites were 48.5 
 3.8, 44.6 
 3.8, and 60.4 
 4.1% for VR,
VPspike, and Rcorr, respectively. Of the three measures, VR was the easiest
to interpret biologically. In essence, the overall computation of VR con-
sists of three steps: filtering, comparison, and integration (see Eqs. 1, 2).
Biophysically, the filtering could be accomplished at a synapse. Interest-
ingly, the optimal timescale for the filter is typically �10 ms for the data,
which is well matched to synaptic timescales. Several biophysical mech-
anisms have also been described for temporal integration (for review, see
Major and Tank, 2004). Although the precise mechanisms of the com-
parison step remains unclear, it seems plausible that a comparison occurs
during song identification. Rcorr is similar to VR mathematically (one can
think of the two measures as the cosine of the angle and the distance
between two vectors, respectively). Although Rcorr outperformed VR, the
difference in performance was attributable to the normalization factor in
Rcorr (data not shown), which is difficult to interpret biologically. The
VPspike measure was also relatively difficult to interpret in terms of bio-
logical mechanisms. Based on these considerations, we used a classifier
based on VR to evaluate neural performance based on spike timing and
rate. The spike timing measure (VRtiming) was defined as VR at a time
resolution of 10 ms, and the spike rate measure (VRrate) was VR at a
resolution of 1000 ms. To evaluate interval-based coding, we used a
classifier based on VPinterval, the only such measure in the literature.

Analysis of kernel shape in VR. We examined how the shape of the filter
kernel influenced the performance of the VR metric. Three different
kernels were used: a decaying exponential with a time constant �, a
Gaussian with an SD �, and an alpha function with parameter �. The
areas of all kernels were normalized to 1. To obtain equivalent timescales
with the different kernels, the full width of each kernel at a height of 1/e
was adjusted to be equal to �. This yielded the relationship � 	 2.8� 	
3.0/�.

Analysis of effects of jitter in onset. The effect of onset jitter on the
classification performance was studied by introducing a fixed time shift
to every spike time in each trial. The time shifts for each trial were inde-
pendently sampled from a 0 mean Gaussian distribution whose SD was
varied from 0 to 20 ms.

In addition to examining the effects of random onset jitter on perfor-
mance, we searched for the “optimal” onset alignment of the spike trains
that would yield the best performance. For each stimulus, the first trial
spike train was selected as a reference, and the best relative shift of each of
the remaining nine trials was determined using a grid search algorithm,
to maximize the value of Rcorr averaged over all pairs of spike trains
(Schreiber et al., 2003). The Rcorr values were computed from 2-s-long
spike trains (beginning at the stimulus onset) that were convolved with
an exponential kernel with a decay time constant of 10 ms. Because this
optimization problem was combinatorially explosive even for small
numbers of trials, the range of possible shifts was restricted to [�10, 10]
ms with a step size of 2 ms. This allowed for a maximal relative shift of 20
ms between a pair of spike trains. The grid search results were further
refined using an iterative grid-walk procedure to find the nearest local
maximum. During each iteration, a shift of 
1 ms was considered along
each of the nine possible search dimensions, and the optimal shift was
updated based on the dimension that would produce the maximum
improvement in the mean Rcorr. The procedure was repeated until there
was no improvement in Rcorr. The SD of the optimal shifts yields an
estimate of the onset jitter.

Analysis of effects of temporal correlations. To reduce “within-trial”
temporal correlations, spike trains were binned at 1 ms intervals, and the
bins were randomly shuffled across trials. Shuffling typically reduced
negative correlations at small lags and increased the number of short-
duration interspike intervals (data not shown). The discrimination per-
formance of the shuffled data were compared with the performance of
the original data using the VR metric.

We compared the autocorrelation histogram before and after shuffling
to relate the effects of shuffling on temporal correlations to changes in
discrimination performance. The autocorrelation histogram for each
unit was computed using standard methods (Dayan and Abbott, 2001)
and was normalized to unity at zero lag. We then used a jackknife resa-

mpling method to correct for bias and compute the SD of the estimate.
Typically, both bias and SD of the estimates were small.

We explored several measures to quantify the differences in the auto-
correlation before and after shuffling, e.g., difference taken at the nega-
tive peak of the autocorrelation from the real data, as well as the differ-
ence in area between the two autocorrelations both with and without
considering the signs for the area for a wide range of lags. Here we report
the measure that was most strongly correlated with performance: the
signed difference in area between the two autocorrelations from 0 to 10
ms lags (Darea). The correlation between Darea and the change in discrim-
ination performance after shuffling was computed across all of the units.
One unit with a very low firing rate did not show the characteristic dip in
the autocorrelation function (see Fig. 5A) but showed an unusual offset
in the baseline values of the real and shuffled autocorrelations, which
would have produced an artifact in the Darea measure. For this unit, Darea

was set to 0.

Behavioral data
The behavioral measures of performance are based on Cynx (1993) and
Shinn-Cunningham et al. (2006). These studies reported the behavioral
accuracy of zebra finches in discriminating between conspecific songs,
finding near perfect performance levels in the range of 90 –100%. In these
studies, the chance level of performance for zebra finches was 50%. To
compare the behavioral range with the neural performance levels in this
study in which the chance level was 5%, we plotted both the neural data
and behavioral range of performances between chance level and perfect
performance, a method used in psychoacoustics (Shinn-Cunningham et
al., 2006).

Results
A major goal of this study was to quantify neural discrimination
performance in field L in the discrimination of conspecific songs.
To address this problem, we used a classification framework for
single spike trains in response to songs based on a spike distance
metric (Fig. 1) (see Materials and Methods). Before proceeding to
quantify neural performance, we investigated several additional
aspects of the spike train classifier that were not addressed in
previous studies (supplemental data, available at www.jneurosci.
org as supplemental material).

Figure 1. Song classification based on neural responses. A schematic of the supervised clas-
sification procedure used to obtain a measure of neuronal performance using a spike distance
metric.
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Discrimination based on spike timing, spike rate, and
interspike intervals
We examined the differences in accuracy when songs were clas-
sified using information present in spike timing, rate, or inter-
spike intervals (see Materials and Methods). Figure 2A shows the
performance as a function of spike train duration for a represen-
tative site in our data. The mean accuracies (
1 SEM; n � 38)
achieved were 48.4 
 3.8, 18.7 
 1.1, and 9.5 
 0.6% for spike
timing, rate, and spike intervals, respectively (Fig. 2B). Thus,
classification performance based on spike timing was better com-
pared with rate and interspike interval. Here it may be useful to
remind the reader that we have used the term spike-timing code
specifically to refer to the presence of information at short time-
scales (�10 ms) relative to the rate code (1000 ms).

Robustness and constraints for biological implementation
The classification scheme makes some assumptions that may not
be satisfied exactly in a biological system. One of these assump-
tions is that the spike trains being compared are aligned at the
onset of stimuli. We next explored how the performance changed
as this ideal assumption was relaxed (for the similar analysis for
other assumptions, see supplemental data, available at www.
jneurosci.org as supplemental material).

We tested the performance of the classifier at different levels of
onset jitter. Figure 3A shows that the discrimination accuracy was
48.4 
 3.8% (mean 
 SEM; n � 38) with no onset jitter, and it
decreased gradually as the level of onset jitter was increased to 20
ms, when the accuracy dropped to 22.2 
 1.7%. Thus, perfor-
mance degraded gracefully, with a statistically significant de-
crease in performance noticeable only above an onset jitter of 5

ms when the accuracy was 40.4 
 3.3%. This provides a con-
straint on the accuracy of alignment necessary in a biological
implementation to match the performance of the classifier. In
addition to examining the effect of adding onset jitter, we also
investigated the effect of “de-jittering” the spike trains by shifting
each trial to maximize the average pairwise cross-correlation be-
tween trials (see Materials and Methods). After de-jittering, per-
formance improved to 50.2 
 3.7% (Fig. 3B). In the auditory
system, onset cues are precise, highly salient, and represented at
multiple levels (for review, see Phillips et al., 2002). Such cues
may facilitate the temporal alignment of a sensory input signal
with a stored template signal during a classification process. In
our dataset, the onset jitter of responses was estimated to be 3.9
ms, using the de-jittering procedure (Fig. 3A) (see Materials and
Methods).

Effects of temporal correlations
We tested the effect of temporal correlations in the spike trains by
shuffling the spike trains across trials (see Materials and Meth-
ods). The discrimination accuracy curve for a representative neu-
ron is shown in Figure 4A. The peak accuracy was 55.6% before
shuffling, and it reduced to 40.3% after shuffling. Thus, for this
site, temporal correlations present in the original spike trains
enhanced discrimination performance. The majority of sites (23
of 38) showed an increase in performance in the presence of
temporal correlations (average increase of 10.7%), whereas the
remaining sites showed a decrease (average decrease of 4.2%)
(Fig. 4B).

Figure 2. A, A comparison of accuracy as a function of spike train length for a single site,
when the discrimination is based on spike timing (VRtiming is VR at a resolution of 10 ms), spike
rate (VRrate is VR at a resolution of 1000 ms), or interspike intervals (VPinterval at 10 ms resolu-
tion). The error bars represent 1 SD computed from 100 repetitions of the song classification
procedure (Fig. 1). Chance level for classification is 5% (dashed line). B, Mean performance
accuracy (
1 SEM; n � 38) for all recording sites using the three different codes. The perfor-
mance of the three codes were significantly different from each other (T � 2 s; p � 0.05,
repeated-measures ANOVA followed by Scheffé’s multiple comparison test).

Figure 3. Onset jitter. A, This figure illustrates the effect of onset jitter on the neural perfor-
mance (mean 
 SEM; n � 38). The jitter level represents the SD of the Gaussian distribution
that was randomly sampled to obtain the amount of jitter that was added to each trial in the
dataset. The performance was measured using VR (T � 2 s; � � 10 ms). A statistically signifi-
cant decrease in performance was observed at an onset jitter of 5 ms or greater (*p � 0.05,
repeated-measures ANOVA followed by Scheffé’s multiple comparison test). The onset jitter in
field L responses, estimated using a de-jittering procedure (see Materials and Methods), was 3.9
ms (arrows). B, A comparison of discrimination accuracy (mean
SEM; n�38) obtained using
the original spike trains and the de-jittered spike trains (see Materials and Methods). The dif-
ference was statistically significant ( p � 0.05, paired t test).
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The autocorrelation histogram of the original spike trains typ-
ically showed a negative dip for lags between 0 and 10 ms relative
to the autocorrelations of the shuffled data (Fig. 5A). At longer
lags, the two histograms were similar to each other. The differ-
ence in the area of the autocorrelations, Darea (see Materials and
Methods) (Fig. 5A, inset), was negatively correlated with the
change in discrimination accuracy before and after shuffling and
had a correlation coefficient of �0.81 (Fig. 5B).

Neural versus behavioral performance
Figure 6 illustrates that the classification accuracy for the 38 neu-
ral sites we recorded from ranged from 10.5 to 97.4%, with a

mean of 48.5% (VR, T � 2 s; � � 10 ms). The classification
performance for the three candidate codes we considered i.e.,
spike timing, spike rate, and interspike intervals, are shown for
both the average and the best neuron (see Discussion). The range
of behavioral accuracy reported for zebra finches performing a
discrimination task on conspecific songs is also indicated (gray
shaded region). Neural performance was within the range of be-
havioral performance levels only for the best neurons using
spike-timing information.

Discussion
Can single neurons match behavioral discrimination of
natural stimuli?
We considered several candidate neural codes, i.e., spike timing,
rate, and interval, for song discrimination. Performance based on

Figure 4. A, A comparison of discrimination accuracy at a single site for real data (solid line)
and shuffled data (dashed line; see Materials and Methods). B, The mean accuracy obtained
from the shuffled spike trains versus the performance of the unshuffled spike trains for all sites
(
1 SD; n � 38). The site shown in A is indicated (A). The performance was measured using VR
(T � 2 s; � � 10 ms). The performance based on the shuffled data were significantly different
from the performance based on the original data (T � 2 s; p � 0.05, paired t test).

Figure 5. A, The autocorrelation histograms for real data (blue) and shuffled data (red) from a
representative unit plotted for lags ranging from �100 to 100 ms (bin size of 1 ms). The inset is a
zoomed-in version of the autocorrelation histograms, showing the region from �10 to 10 ms. Note
the negative dip in the autocorrelation in the range of lags between 1 and 10 ms (inset). B, The
relationship between the difference in discrimination accuracy before and after shuffling and Darea

(see Materials and Methods). Each circle represents one unit. The correlation was�0.81 ( p �0.01;
n � 38). The least-squares linear regression fit to the data is also shown.
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a spike-timing code was highly diverse, spanning a range from
near-chance level to near perfect. Part of the reason for such a
broad range of performances, including neurons that performed
poorly, may be that we did not “tune” the stimuli for each neuron
separately but sampled all neurons using the same stimuli (Pu-
rushothaman and Bradley, 2005). Such a sampling strategy is
more reflective of the situation during natural behavior in which
an incoming stimulus impinges on a population of neurons with
a broad range of stimulus selectivities, including those that may
not be optimally tuned for processing the given stimulus. On
average, neural discrimination based on a spike-timing code out-
performed neural discrimination based on rate and interval
codes. This is consistent with growing evidence that single audi-
tory cortical spike trains can contain significant amounts of in-
formation at a fine temporal resolution (Furukawa and Middle-
brooks, 2002; Wright et al., 2002; Lu and Wang, 2004; Nelken et
al., 2005; Narayan et al., 2006; Schnupp et al., 2006). Although
spike-timing-based codes can be potentially susceptible to onset
jitter, we found that the average onset jitter in the neural re-
sponses in our dataset was smaller than jitter levels that produced
a significantly detectable drop in discrimination performance
(Fig. 3A).

In some previous studies, behavioral performance has been
found to be more strongly correlated with the performance of the
best neurons rather than the average neuron, as posited by the
lower envelope principle (Parker and Newsome, 1998). Thus, for
each of the candidate codes, we also examined the performance of
the best neurons in our dataset. We found that neural perfor-
mance could match behavioral performance of songbirds in a
song discrimination task only for the best neurons using a spike-
timing code. This finding can be contrasted with previous find-
ings in motion direction discrimination in middle temporal area
MT (Parker and Newsome, 1998) and flutter vibration discrimi-
nation in the somatosensory cortex (Romo and Salinas, 2003). In
both cases, a rate code was sufficient to explain behavioral per-
formance. Our finding is consistent with the spirit of the lower
envelope principle, extending its application beyond rate coding

(i.e., based on long timescales on the order of seconds) of syn-
thetic stimuli to spike-timing-based coding (i.e., based on shorter
timescales on the order of 10 ms) of natural stimuli.

Effect of temporal correlations on neural performance
Although the role of correlations in a population code has re-
ceived much attention, the role of temporal correlations on the
performance of single neurons is less well understood. In the
context of population coding, correlations have generally been
thought to limit cortical performance (Zohary et al., 1994), al-
though this need not be the case (Romo et al., 2003). In the
temporal domain, an elegant study in area MT by Osborne et al.
(2004) demonstrated that the performance of single neurons in
direction discrimination was reduced by temporal correlations in
the spike train (Osborne et al., 2004). In this study, we used an
approach inspired by Osborne et al. (2004) to compare the per-
formance based on the real spike trains versus shuffled spike
trains, which did not contain within-trial temporal correlations
(see Materials and Methods). This analysis revealed that the tem-
poral correlations present in single spike trains improved neural
performance in the majority of cases. This is not directly compa-
rable, nor contradictory, to the results of Osborne et al. (2004)
because of many differences between the two studies. In particu-
lar, Osborne et al. (2004) used stimuli with constant amplitude,
i.e., speed, whereas we used natural stimuli in which the ampli-
tude, i.e., amplitude envelope of songs, varied with time. A sec-
ond difference is that Osborne et al. (2004) examined the effects
of temporal correlations on spike counts in increasingly longer
windows, whereas we considered a spike-timing-based code.

An analysis of the spike train autocorrelations revealed a spe-
cific feature that was significantly correlated with the enhance-
ment in performance: the signed area of the negative dip in the
autocorrelation histogram within a range of lags between 0 and
10 ms (Fig. 5). Larger negative areas were correlated with better
performance. A dip in the autocorrelation arises, fundamentally,
as a result of a decrease in the probability of spiking at short lags
(relative to the autocorrelation of the shuffled data). Our results
indicate that such a decrease in the spike train autocorrelation
can increase discrimination accuracy of a spike-timing-based
code. Interestingly, studies on cortical coding that have found
correlations to limit performance have mainly considered the
effect of positive correlations on a rate code (Zohary et al., 1994;
Osborne et al., 2004). Thus, the effects of correlation on coding
accuracy can depend on the particular form of the correlation as
well as the specific type of code being considered (Abbott and
Dayan, 1999; Sompolinsky et al., 2001). A recent theoretical study
investigated the information content of the dynamic response of
single cells to natural stimuli (Shamir et al., 2007). The study
found that positive temporal correlations reduced the informa-
tion content of the neural response, whereas negative temporal
correlations increased the information content relative to the un-
correlated (shuffled) case. This basic intuition is consistent with
the results of Osborne et al. (2004), as well as our current findings.
A plausible candidate mechanism underlying the dip in the auto-
correlation is refractoriness (Berry and Meister, 1998; Schaette et
al., 2005), although fast delayed inhibition (Wehr and Zador,
2003; Narayan et al., 2005) may also contribute. Previous studies
in the sensory periphery using time-varying stimuli have demon-
strated that temporal correlations can decrease the trial-to-trial
variability of neural responses (Berry and Meister, 1998; Schaette
et al., 2005) and improve performance (Ratnam and Nelson,
2000; Chacron et al., 2001). Our study provides examples at the

Figure 6. The figure shows the mean neural accuracy (
1 SD; n � 38) for individual sites of
anesthetized multiunit, anesthetized single unit (open circles and filled triangles), and awake
multiunit data (open triangles) computed using the VR distance (T � 2 s; �� 10 ms). The best
(solid horizontal lines) and mean (dashed horizontal lines) neural performance based on spike
timing, rate, and interspike intervals are indicated against the left vertical scale. The range of
behavioral discrimination performance is indicated by the gray region against the right vertical
scale (Cynx, 1993). The chance level for classification is 5% for the neural data and 50% for the
behavioral data (gray dashed line).

Wang et al. • Cortical Discrimination of Complex Natural Stimuli J. Neurosci., January 17, 2007 • 27(3):582–589 • 587



cortical level, in which correlations can improve rather than de-
grade neural performance.

Recognition and readout
The performance of the spike train classifier can be thought of as
an estimate of the information available at the level of field L for
song identification. Our analysis suggests that information
present at a fine timescale is important for such identification.
This information may be extracted by downstream circuitry and
represented in terms of the firing rates of single neurons to create
a simple readout for recognition. In such a scheme, a downstream
“readout” neuron would fire only when a particular song was
presented, representing the output of the classification process.
Neurons in areas downstream from field L, e.g., HVC (used as a
proper name), interfacial nucleus of the nidopallium (NIf), and
caudal mesopallium (cM), which show selectivity for specific
songs, may represent such readout neurons. However, the bio-
logical mechanisms underlying the readout remain unclear.
Here, theoretical work on the readout of spike-timing codes
(Buonomano, 2000; Hopfield and Brody, 2001; Hopfield, 2004;
Gutig and Sompolinsky, 2006) can guide the formulation of ex-
perimental hypotheses. A promising experimental approach for
testing such hypotheses may be to record simultaneously in the
input and the readout areas, with intracellular recordings in
the readout area, as illustrated elegantly in the olfactory system
(MacLeod et al., 1998; Perez-Orive et al., 2002) and in a recent
study in the birdsong system (Coleman and Mooney, 2004). Sim-
ilar recordings in field L and downstream areas, e.g., cM, NIf, and
HVC, may provide new insights into biological mechanisms un-
derlying the readout of spike-timing codes.

Limitations and future directions
Our study took only the first steps toward understanding the
relationship between neural responses and behavior for natural
stimuli. One of the limitations of this study is that the neural and
behavioral performance measures were obtained from separate
studies (Cynx, 1993; Best et al., 2005; Narayan et al., 2006; Shinn-
Cunningham et al., 2006). Ideally, this comparison should be
performed simultaneously in the same subject. In addition to a
more careful comparison between neural and behavioral perfor-
mance using the same stimuli in the same subject on a trial-by-
trial basis, such simultaneous experiments allow the exciting pos-
sibility of microstimulating neurons to bias perception (for
review, see Cohen and Newsome, 2004). Such experiments may
establish a firmer link between neural and behavioral perfor-
mance. Although we focused on single neuron codes, informa-
tion about auditory stimuli is typically distributed over a large
population of neurons, which adds another dimension for cod-
ing. Nevertheless, our analysis provides important constraints on
population coding by characterizing the performance of individ-
ual neurons and the diversity of performance levels in a popula-
tion. A rigorous computational analysis of population coding in
field L will require simultaneous recordings from neural popula-
tions to characterize interneuronal correlations, because these
correlations may significantly impact the performance of the
population (Zohary et al., 1994; Romo et al., 2003). Finally, in the
present study, individual songs were presented in quiet back-
grounds. Another way to extend this study would be to make the
task more difficult by adding a masking noise in the background,
e.g., a chorus of other birds. Neurometric functions obtained
over a range of targets to masker ratios can then be compared
with the psychometric functions (Best et al., 2005; Shinn-
Cunningham et al., 2006). These experiments should further

challenge the capacity of single cortical neurons in discriminating
natural stimuli in more complex environments, e.g., a cocktail
party.
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