II. Bayes motion estimation

Visual motion

- Physiology: "motion pathway" heavily studied; arguably the strongest extrastriate success story
- Perception: Human motion perception heavily studied. Humans are adept at tasks which require motion processing.
- Provides a rich source of visual information for prediction, depth perception, material properties, etc [Gibson, 1950]

"Aperture Problem"

[Wallach 1935; Horn & Schunck 1981; Marr & Ullman 1981] Figure: Movshon, Adelson, Gizzi, Newsome, 1985

Intersection-of-constraints (IOC)

[Adelson & Movshon, 1982]

Visual motion ambiguity

Simple plaid perception = IOC

[Adelson & Movshon, 1982]

Simple plaid perception = IOC

[Adelson & Movshon, 1982]

IOC failure

[Stone etal 1990]

The "Thompson effect"

Contrast affects perceived speed

[Thompson '82]

Helmholtz (1866)

Helmholtz (1866)

Perception is our best guess as to what is in the world, given our current sensory input and our prior experience

Helmholtz (1866)

Perception is our best guess as to what is in the world, given our current sensory input and our prior experience

=> Bayes

Some Bayesian perceptual models

- Shading/lighting [Kersten 90; Knill, Kersten, Yuille 96; Mamassian, Landy, Maloney 01]
- Motion [Simoncelli 93; Weiss etal. 02; Stocker & Simoncelli 06]
- Surface orientation [Bülthoff & Yuille 96; Saunders & Knill 01]
- Color constancy [Brainard & Freeman 97]
- Contours [Geisler, Perry, Super 01]
- Sensory-motor tasks [Körding & Wolpert 04]

Brightness Constancy

- Assume translational motion (locally)
- Differential approximation (Taylor series) $\vec{\nabla}I \cdot \vec{v} + I_t = 0, \qquad \vec{\nabla}I = [Ix, Iy]$
- Insufficient constraint, so combine over a neighborhood (space and/or time):

$$min\sum (\vec{\nabla}I\cdot\vec{v}+I_t)^2$$

[Fennema & Thompson '79; Horn and Schunck '81]

With noise...

• Additive Gaussian noise in temporal derivative:

$$\vec{\nabla}I\cdot\vec{v}+I_t=n$$

• Likelihood (combined over neighborhood):

$$P(\vec{\nabla}I, I_t | \vec{v}) \propto \exp[-\sum (\vec{\nabla}I \cdot \vec{v} + I_t)^2 / 2\sigma^2]$$

[Simoncelli, Adelson, Heeger '91]

With prior...

• Simplest prior choice: Gaussian (preference for slow speeds)

$$P(\vec{v}) \propto \exp[-||\vec{v}||/2\sigma_p^2]$$

• Posterior:

 $P(\vec{v}|\vec{\nabla}I, I_t) \propto$

$$\exp[-||\vec{v}||/2\sigma_p^2 - \sum(\vec{\nabla}I\cdot\vec{v}+I_t)^2/2\sigma^2]$$

[Simoncelli, Adelson, Heeger '91]

Bayesian posteriors

Bayesian posteriors

world

observer

world

observer

probability

world

observer

P(m|v) P(v)

world

observer

P(m|v) P(v)

world

observer

 $P(m|v) \times P(v) \sim P(v|m)$

world

observer

world

observer

[Simoncelli & Heeger, ARVO '92]

[Simoncelli & Heeger, ARVO '92]

[Simoncelli & Heeger, ARVO '92]

[Weiss, Simoncelli, Adelson, '02]

- + Theory: Optimal solution
 - unknown likelihood
 - unknown prior

- + Theory: Optimal solution
 - unknown likelihood
 - unknown prior
- + Perception: Accounts for psychophysical data
 - qualitative
 - deterministic (what about response variability?)

- + Theory: Optimal solution
 - unknown likelihood
 - unknown prior
- + Perception: Accounts for psychophysical data
 - qualitative
 - deterministic (what about response variability?)
- + Physiology: Seems loosely plausible...
 - but mechanism unspecified and non-unique

- + Theory: Optimal solution
 - unknown likelihood
 - unknown prior
- + Perception: Accounts for psychophysical data
 - qualitative
 - deterministic (what about response variability?)
- + Physiology: Seems loosely plausible...
 - but mechanism unspecified and non-unique

[Stocker & Simoncelli, NIPS*04 / Nature Neurosci 06]

Prior/likelihood from psychophysics

- Assume Gaussian likelihood, with contrastdependent width
- Assume prior is smooth
- Assume MAP estimates (max posterior)
- Speed-matching and speed-discrimination data are sufficient to determine prior and

 V_1

 V_2

Effect increases with contrast ratio, decreases with speed

[Stocker & Simoncelli, '06]

Effect increases with contrast ratio, decreases with speed

world

observer

 $P(m|v) \times P(v) \sim P(v|m)$

Trial-to-trial variability

width of likelihood

Model accounts for perceptual data

Model comparison

Speed tuning in area MT is approximately constant in log(v)

- Maunsell & Van Essen 83
- also Nover et. al. 05

Area MT contrast-response function:

$$r(c) = \alpha \frac{c^k}{c^k + c_{50}^k} + \beta$$

- Sclar et. al. 90

150 100 Α. В 60 Firing rate 100 60 40 50 20 Ö 0 0.01 0.3 1.D 0.1 0.3 0.1 0.01 10 Contrast

Area MT contrast-response function:

$$r(c) = \alpha \frac{c^k}{c^k + c_{50}^k} + \beta$$

- Sclar et. al. 90

Likelihood width under Poisson variability:

$$w(c) \propto \left(\frac{1}{r(c)}\right)^2$$

Hypothesis 1: MT encodes likelihood

Responses are separable in speed and contrast Prior is imposed on readout

Hypothesis 2: MT population encodes posterior

Each MT cell provides a "labelled line" for posterior at a particular velocity [Simoncelli, '03]

=> Speed and contrast are linked

Hypothesis 2a

Cell speed tuning depends on contrast

=> Should prefer higher speeds at lower contrast

Recent physiological evidence suggests not

[Priebe & Lisberger '05; Pack & Born '05; Krekelberg & Albright (unpublished)]

Hypothesis 2b

Responses are separable in speed and contrast

Contrast-response functions linked to speed tuning

Credits

- Reverse-engineered prior/likelihood: Alan Stocker
- Plaid motion modeling: Edward Adelson, David Heeger, Yair Weiss
- Physiological model: David Heeger