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Visual motion
• Physiology:  “motion pathway” heavily studied; 

arguably the strongest extrastriate success story

• Perception: Human motion perception heavily 
studied.   Humans are adept at tasks which 
require motion processing.

• Provides a rich source of visual information for 
prediction, depth perception, material properties, 
etc [Gibson, 1950]



“Aperture Problem”
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Fig. 1. Three different motions that produce the same physical stimulus.

moves to the left. Note that  in all three cases the appearance of the

moving grating, as seen through the window, is identical: the bars appear

to move up and to the left, normal to their own orientation, as if produced

by the arrangement shown in Fig. 1A. The fact that a single stimulus can

have many interpretations derives from the structure of the stimulus rather

than from any quirk of the visual system. Any motion parallel to a gra-

ting's bars is invisible, and only motion normal to the bars can be detected.

Thus, there will always be a family of real motions in two dimensions that

can give rise to the same motion of an isolated contour or grating

(Wohlgemuth, 1911, Wallach, 1935; Fennema and Thompson, 1979; Marr

and Ullman, 1981).

[Wallach 1935; Horn & Schunck 1981; Marr & Ullman 1981]
Figure: Movshon, Adelson, Gizzi, Newsome, 1985



Intersection-of-constraints (IOC)
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Fig. 4. A single grating (A) and a 90 deg plaid (B), and the representation of their motions in velocity
space. Both patterns move directly to the right, but have different orientations and 1-D motions. The
dashed lines indicate the families of possible motions for each component.

in spatial extent, and uniformly stimulated the entire retinal region they

covered. This sidesteps the issue which arises in considering stimuli like

the diamond of Fig. 2, of how the identification of spatially separate

moving borders with a common object takes place. Moreover, the plaid

patterns were the literal physical sum of the grating patterns, which makes

superposition models particularly simple to evaluate.

These stimuli were generated by a PDPll computer on the face of     

a display oscilloscope, using modifications of methods that are well-

established  (Movshon et al., 1978).  Gratings were generated by modulat-

[Adelson & Movshon, 1982]
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Simple plaid perception = IOC

[Adelson & Movshon, 1982]



Simple plaid perception = IOC

[Adelson & Movshon, 1982]



IOC failure

[Stone etal 1990]
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The “Thompson effect”

[Thompson ‘82]

Contrast affects perceived speed



Helmholtz (1866)



Helmholtz (1866)

Perception is our best guess as to what is in 
the world, given our current sensory input 
and our prior experience



Helmholtz (1866)

Perception is our best guess as to what is in 
the world, given our current sensory input 
and our prior experience

=> Bayes



Some Bayesian perceptual models
• Shading/lighting [Kersten 90; Knill, Kersten, Yuille 96; 

Mamassian, Landy, Maloney 01]

• Motion  [Simoncelli 93; Weiss etal. 02; Stocker & 
Simoncelli 06]

• Surface orientation  [Bülthoff & Yuille 96; Saunders & 
Knill 01]

• Color constancy [Brainard & Freeman 97]

• Contours  [Geisler, Perry, Super 01]

• Sensory-motor tasks [Körding & Wolpert 04]



Brightness Constancy

• Assume translational motion (locally)

• Differential approximation (Taylor series)

• Insufficient constraint, so combine over a 
neighborhood (space and/or time):

[Fennema & Thompson ‘79; Horn and Schunck ‘81]

min
∑

(!∇I · !v + It)2

!∇I · !v + It = 0, !∇I = [Ix, Iy]



With noise...
• Additive Gaussian noise in temporal 

derivative:

• Likelihood (combined over neighborhood):

P (!∇I, It|!v) ∝ exp[−
∑

(!∇I · !v + It)2/2σ2]

!∇I · !v + It = n

[Simoncelli, Adelson, Heeger ‘91]



[Simoncelli, Adelson, Heeger ‘91]

With prior...

• Simplest prior choice: Gaussian (preference 
for slow speeds)

• Posterior:

P (!v) ∝ exp[−||!v||/2σ2

p
]

P (!v|!∇I, It) ∝

exp[−||!v||/2σ2
p −

∑
(!∇I · !v + It)2/2σ2]



V

Vy

x

V

Vy

x
?

V

Vy

x

Bayesian posteriors



V

Vy

x

V

Vy

x
?

V

Vy

x

V

Vy

x

V

Vy

x
?

V

Vy

x

Bayesian posteriors



Bayesian perception

memory



Bayesian perception

memory

m

likelihood

v

pr
ob

ab
ili

ty

P(m|v)



Bayesian perception

prior

memory

v

pr
ob

ab
ili

ty

P(m|v) P(v)



Bayesian perception

prior

memory

v

pr
ob

ab
ili

ty

P(m|v) P(v)

prior



Bayesian perception
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+ Theory: Optimal solution

- unknown likelihood 

- unknown prior

Bayesian motion model
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+ Perception: Accounts for psychophysical data

- qualitative

- deterministic (what about response variability?)
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+ Theory: Optimal solution

- unknown likelihood 

- unknown prior

+ Perception: Accounts for psychophysical data

- qualitative

- deterministic (what about response variability?)

+ Physiology: Seems loosely plausible...

- but mechanism unspecified and non-unique

[Stocker & Simoncelli, NIPS*04 / Nature Neurosci 06]

Bayesian motion model



Prior/likelihood from 
psychophysics

• Assume Gaussian likelihood, with contrast-
dependent width

• Assume prior is smooth

• Assume MAP estimates (max posterior)

• Speed-matching and speed-discrimination 
data are sufficient to determine prior and 
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Effect increases with contrast ratio, 
decreases with speed

[Stocker & Simoncelli, ‘06]



Effect increases with contrast ratio, 
decreases with speed

[Stocker & Simoncelli, ‘06]



prior

Bayesian perception

v^

v

pr
ob

ab
ili

ty

P(m|v) P(v) ~  P(v|m)x



Trial-to-trial variability

v(m)ˆ

pr
ob

ab
ili

ty

likelihood

posterior

noise in m

v
pr

ob
ab

ili
ty

v̂

p(v(m)|v)ˆ

prior



v

v

stimulus observer model subject response

v

v

100 %

0 %

v

likelihood
prior

v

v v

prior likelihood p(v |v )^

p(v |v )^

m

m

P(v1  > v2 )^ ^

estimation stage decision stage

"v
1 

se
en

 fa
st

er
" 

psychometric function

1 1 

2 2 

1 

2 2

1 

1 

2 

1 



p(v|v)^

0

1

v

P(v2 > v 1)^ ^likelihood

prior

vv

slope of prior

p(v|v)^

0

1

v

P(v2 > v 1)^ ^

likelihood

prior

vv

width of likelihood



Model accounts for perceptual data
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- Maunsell & Van Essen 83
- also Nover et. al. 05

Speed tuning in area MT
is approximately constant
in log(v)

SINGLE-UNIT RESPONSES IN MACAQUE MT 1137 
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FIG. 6. A: responses of four units in MT to different 

speeds of motion in their respective preferred directions. 

Each curve has been normalized to its greatest average 

rate of firing response. Portions of curves that are below 
the background rate of firing for each unit are dashed. 

Each unit’s tuning curve is narrow compared to the 

range that they covered collectively. Each unit’s response 

fell to background level or showed inhibition at speeds 

far from the peak. B: average speed tuning curves of 

units in MT. The tuning curves of 109 units were ndr- 

malized to their greatest average rate of firing and each 

shifted so their peak responses were superimposed. 

Points on either side were then averaged. Bars indicate 

the standard deviation of each point and a dashed line 

marks the average normalized background rate of firing. 

which they responded and the broadness of 
speed tuning. While our sample had differ- 
ences in preferred speed and in broadness 
and symmetry of tuning, the appearance is 
one of a continuum rather than distinct 
classes. Figure 6B is the average tuning for 
speed from all units examined. The peaks of 
the normalized curves were aligned, and 
points on either side were averaged. Bars 
show the standard deviation for each point, 
and the dashed line is the background rate 
of firing. The average tuning for speed in MT 
is impressively sharp, with full width at half- 
peak (relative to background) equivalent to 
a 7.7-fold change of speed. As with the av- 
erage direction tuning curve, the slope is 
greatest near the peak, yielding greatest sen- 

sitivity to differences in speed near the pre- 
ferred speed. Of the 20 units that did not 
have well-defined optimal speeds, most were 
only weakly responsive and only a few re- 
sponded vigorously over the full range of 
speeds tested. 

The distribution of preferred speeds is 
shown in Fig. 7A. The total spans two orders 
of magnitude, from 2 to 256”/s, and there 
is a single peak near 32”/s. This conflicts with 
the report of Dubner and Zeki (16), based 
on qualitative analysis of responses, that 73% 
of units in macaque MT had best responses 
to speeds in the range l-5”/s and that 10% 
had optimal responses to speeds in the range 
lOO-2OO”/s. In our sample, 78% responded 
best in the intervening range. In a later study, 
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FIG. 7. A: distribution of preferred speeds for 89 units 

in MT. Twenty units with no clear preferred speed were 

excluded. The distribution has a single peak near 32”/ 

s. B: average normalized response of units in MT to 

different speeds. The filled circles show the average nor- 

malized response to motion in the preferred direction 

for 45 representative units (including several lacking 

clear tuning for speed), which were tested with speeds 

from 0.5 to 5 12”/s. The open circles show the average 

normalized response of 20 units to motion in the null 

direction. Bars show the standard errors of means and 

the dashed line is the average normalized background 

rate of firing. Collectively, neurons in MT are most sen- 

sitive to speeds in the range from 8 to 64”/s. 
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Contrast 

Fig. 2, Contrast-response functions obtained from two 

simple cells (A, B) and two complex cells (C, D) in Vl. For 

simple cells the graphs show the amplitude of the fi com- 

ponent of response evoked by moving gratings of the 

optimal spatial frequency and orientation; for complex ceils 

the graphs show the amplitude of_&. A and C are examples 

from the Ieast sensitive thirds of their respective popu- 

lations; B and D are from the most sensitive thirds. 

cortex from those in the LGN: the median value 

of R_ in both cortical areas is less than three- 

quarters that in the LGN. 

The distributions of cSO for P- and M-c& 

GARY SCLAK et al 

Table I. FvIedian vaIues for the parameters of equalron t i I 
calculated for each of the structures studied 

L’lsual structure (units) R,, (‘50 4 
-_ ____.., “__ 

(Fig. 5) refkct the weal-established difference 

between the contrast sensitivities of the two 

classes of cells. Median values differ by a factor 

of almost 5. Although the distribution for VI 

resembles the envelope of the combined dis- 

tributions for P- and M-cells, it would be 

unwarranted to conclude that the more sensitive 

ceifs in VI receive input from M-cells and the 

less-sensitive from P-cells. Since neurons in 

LGN have no true threshold and give graded 

responses to even the lowest contrasts (Derring- 

ton & Lennie, f984), Vt neurons driven solely 

by P-cells could achieve low values of c’50 

through summation of signals from multiple 

inputs. This point is illustrated more clearly by 

a comparison of the distribution of es0 for ceells 

in MT with those for the LGN and Vl: 29% 

(I 8/63) of the MT cells examined had values of 

1‘511 lower than any seen in VI or LGN. 

Because the samples from the LGN. Vi and 

MT were not perfectly matched for eccentricity, 

we must consider whether differences in eccen- 

tricity (and corresponding differences in recep- 

Fig. 3. Contrast-response functions obtained from four 

neurons in MT. Al1 panels show the amplitude of the fb 

component of response evoked by a moving grating of 

optimal spatial frequency and orientation. The measure- 

ments shown in A were obtained from one of the least 

sensitive neurons encountered in MT. The average of the 

preferred temporal frequencies for MT units, which were 

judged by listening to responses, was 5.4 c/see. The average 

of preferred spatial frequencies. which were measured, 

Maximum Responss (Rmax) 

Fig. 4. Distributions of the saturating response (R,,f fcr 

neurons in parvocelfular LGN. rna~~~el~~lar tGN. VI 

was 0.7 c.deg and MT 
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Area MT contrast-response 
function: 

r(c) = α
ck

ck + ck
50

+ β

Likelihood width under Poisson 
variability:

- Sclar et. al. 90
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Hypothesis 1: MT encodes likelihood

Responses are separable in speed and contrast
Prior is imposed on readout



Hypothesis 2: MT population encodes posterior

Each MT cell provides a “labelled line” for posterior at a 
particular velocity [Simoncelli,  ‘03]

=> Speed and contrast are linked



Hypothesis 2a

Cell speed tuning depends on contrast

=> Should prefer higher speeds at lower contrast

Recent physiological evidence suggests not
[Priebe & Lisberger ‘05;  Pack & Born ‘05; Krekelberg & Albright (unpublished)]



Hypothesis 2b

Responses are separable in speed and contrast

Contrast-response functions linked to speed tuning 



Credits

• Reverse-engineered prior/likelihood: Alan 
Stocker

• Plaid motion modeling:  Edward Adelson, David 
Heeger,  Yair Weiss

• Physiological model: David Heeger


