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Functional specialization:
shape perception
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Functional specialization:
motion perception

MT+ (V5)



  

Subdividing MT+ (retinotopy)
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large RF
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Subdividing MT+ (ipsilateral 
stimulation)



  

Subdividing MT+

Huk, Dougherty, & Heeger, J Neurosci, 22:7195-7205, 2002
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Functional specialization

Match each cortical area to its corresponding function:

V1
V2
V3
V3A
V3B
V4
V5
V7
V9
IPS1
IPS2
Etc.

Motion
Stereo
Color
Texture
Segmentation, grouping
Recognition
Attention
Working memory
Mental imagery
Decision-making
Sensorimotor integration
Etc.



  

Selectivity



  

Primary visual
cortex

Columnar architecture

Columnar architecture

1 cm

1.5-2 mm

1 cm

Hubel & Wiesel

Horton & Hedley-Whyte, 
Philos Trans R Soc Lond B 
(1984)



  

fMRI spatial and temporal resolution

Time series of fMRI images

Time

Typical pixel size: 
3mm x 3mm x 3mm

Typical frame time: 2 sec



  

Convention spatial resolution
Voxel size: 3 x 3 x 3 mm3

FOV: 192 x 192 x 72 mm3

24 slices in 1.5 sec
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High spatial resolution fMRI
(3D zoomed EPI with OVS)

Zoomed field of view

Voxel size: 0.7 x 0.7 x 0.7 mm3

FOV: 157 x 39 x 21 mm3

30 slices in 3 sec
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Neurovascular coupling limits spatial 

specificity

I
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III

IV

V

VI

Reina de la Torre et al 
Anatomical Record (1998)

3.5 mm full-width at half-max 
(Engel el et al., 1997)

Spatial specificity (spread and mislocalization) depends on 
vein size.



  

Sluggishness of hemodynamics limits 

temporal specificity
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Columns with fMRI: proof of principle

Cheng, Waggoner, & Tanaka, Neuron (2001)

Voxel size: 0.5 x 0.5 x 3 mm3

FOV: 240 x 240 x 9 mm3

3 slices in 9.6 sec

Same session

Different sessions



  

Adaptation
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Adaptation 
index:

fM
R

I 
re

sp
on

se
 a

m
pl

it
ud

e

Visual area

Orientation-selective adaptation
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Larsson, Landy, & Heeger, 

J Neurophysiol (2006)



  

Adaptation index

Visual area
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constant across visual 
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differences between 
V1 and extrastriate 
visual areas

• Adaptation in V1 can 
account for adaptation 
in extrastriate visual 
areas

Larsson, Landy, & Heeger, 

J Neurophysiol (2006)



  

Visual area

MT+ V1 V2 V3 V4v V3A
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component-motion cell

=

pattern-motion cell

pattern moving up-right 
strong response

=

grating component moving 
up-right => strong response

Component vs. pattern motion 
selectivity



  

Component gratings

Adapted 

direction 

plaids

Mixed 

direction 

plaids

Component gratings

Pattern motion adaptation protocol

Huk & Heeger, Nature Neurosci, 5:72-75, 2002



  

Huk & Heeger, Nature Neurosci, 5:72-75, 2002

Pattern motion adaptation
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tiples of 90° from trial to trial to minimize adaptation. The
response modulations in MT+ were not significantly different
from zero (A.C.H., p = 0.35; D.J.H., p = 0.74, two-tailed t-test),
demonstrating that the two blocks of plaids elicited similar
response levels when the effects of both component- and pat-
tern-motion adaptation were absent. This result provides further
evidence that adaptation, due to the repetition of pattern direc-
tion, was the key factor in the original experiment.

DISCUSSION
Our findings demonstrate that human MT+ contains a popula-
tion of pattern-motion cells and that the activity of those neu-
rons is linked to the perception of coherent pattern motion. The
pattern-motion responsivity of human MT+ adds to the case for
a homology to macaque MT, which includes a relatively large
proportion of pattern-motion cells1. We also observed lesser
degrees of pattern-motion adaptation in V2, V3, V3A and V4v.
Macaque V3 is known to have a minority of pattern-motion
cells13, but there are no published investigations of pattern-
motion cells in macaque V2, V3A or V4. Although our data
demonstrate pattern-motion responses in each of these visual
areas, we cannot determine if pattern motion is computed sepa-
rately in each visual area or if the responses in V2–V4 are affect-
ed by the adaptation that is taking place in MT+. We emphasize
that fMRI adaptation studies14–17 can reveal the selectivities of
subpopulations of neurons in the human brain, even when those
neurons are intermingled at a spatial scale that is finer than the
spatial sampling resolution (voxel size) of the fMRI measure-
ments.

METHODS
We collected fMRI data in 3 subjects, males, 25–39 years old, all with
normal or corrected-to-normal vision. Experiments were undertaken
with the written consent of each subject, and in compliance with the safe-
ty guidelines for MR research. Each subject participated in several scan-
ning sessions: one to obtain a high-resolution anatomical volume, one
to identify MT+, one to identify the retinotopically organized cortical
visual areas, 2–3 to measure motion adaptation, one to measure base-
line responses and 1–3 to perform control measurements. In each subject,
we collected 8–20 repeats of the pattern-motion adaptation experiment
and 8–16 repeats of the various control experiments.

Stimulus and protocol. Stimuli were presented on a flat-panel display (NEC,
multisynch LCD 2000, Itasca, Illinois) placed within a Faraday box with a
conducting glass front, positioned near the subjects’ feet. Subjects lay on
their backs in the MR scanner and viewed the display through binoculars.

Subjects viewed a pair of circular patches 12° in diameter centered 7.5°
to the left and right of a central fixation point. Patches were filled with
a plaid stimulus comprised of two superimposed sinusoidal gratings.
Individual component gratings had 20% contrast, and spatial and tem-
poral frequencies were selected to yield a variety of pattern directions
when superimposed in various combinations (Fig. 1).

Each scan consisted of 6 (32-s) cycles; each cycle consisted of alter-
nating adapted-direction and mixed-direction blocks. Adapted-direc-
tion blocks consisted of 8 consecutive trials in which the plaid stimulus
always appeared to move in the same direction (horizontally, at 12.9 or
1.9°/s; Fig. 1a); mixed-direction blocks consisted of 8 trials in which the
direction of the plaids varied from trial-to-trial (possible plaid direc-
tions, computed from the intersection-of-constraints of the component
gratings, were ±31°, ±123° from horizontal at 5.3°/s and 6.3°/s; Fig. 1b).
The component gratings with orientations of ±72° had spatial frequen-
cies of 0.5 cycles/degree and temporal frequencies of 2 cycles/second 
(Fig. 1a, components above first plaid); the component gratings with
orientations ±45° had spatial frequencies of 0.5 cycles/degree and tem-
poral frequencies of 0.67 cycles/second (Fig. 1a, components above sec-
ond plaid). In the component-motion experiment, perceptual
transparency was achieved by scaling one component’s spatial frequency
up to 1 cycle/degree and the other down to 0.125 cycle/degree, producing
a 3-octave separation. (Temporal frequencies were also scaled accord-
ingly to leave component velocities unchanged.)

To control attention, subjects performed a speed discrimination judg-
ment on each stimulus presentation16. Each 2-s trial consisted of 
1300 ms of plaid motion followed by a 700-ms luminance-matched blank
period during which subjects pressed a button to indicate which plaid
(left or right of fixation) moved faster. The speed differences were deter-
mined by an adaptive staircase procedure, adjusting the speeds from trial
to trial so that subjects would be approximately 80% correct.

Across different blocks and experiments, we chose to equate percent-
correct performance, instead of the exact stimulus speed (although speeds
did remain within a few percent), because in previous work, we and oth-
ers have noted large attentional effects on MT+ responses, but no effects
of slight differences in speed18–20. Although the speed discrimination
thresholds were larger for non-coherent (transparent gratings) than for
coherent plaids (but not for mixed- versus adapted-direction blocks),
the differences were not very large (percent speed-increment thresholds
were ∼15% versus ∼10% for non-coherent versus coherent, respective-
ly). These small speed differences might affect the responses of some
individual neurons (although speed tuning curves of all direction-selec-
tive cells are rather broad), but these speed differences would not be
expected to evoke measurable changes in the pooled activity (as mea-
sured with fMRI) of large populations of neurons.

In the adaptation experiments, equal numbers of scans were collected
with the plaids moving in opposite directions (for example, inward
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Fig. 2. Pattern-motion adaptation in human visual cortex. (a) Average
time series in MT+. Pattern-motion adaptation produced strong modu-
lations in MT+ activity. Transparent component motion evoked much
less adaptation. Each trace represents the average MT+ response, aver-
aged across subjects and scanning sessions. (b) Adaptation index across
all visual areas. Pattern-motion adaptation was largest in MT+, but also
evident in other extrastriate visual areas. Adaptation was weak and
roughly equal across visual areas in the transparent component-motion
experiment. Height of bars, geometric mean across subjects (arithmetic
mean yielded similar results). Error bars, bootstrap estimates of the 68%
confidence intervals.
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Coherent vs. transparent percepts

Huk & Heeger, Nature Neurosci, 5:72-75, 2002
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Classification



Kamitani & Tong, Nat Neurosci (2005)

Classifying stimulus orientation with 

conventional resolution fMRI



Classifying orientation
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Haynes & Rees, Curr Biol (2005)
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How the human brain interacts with the 

world in real life

Simple sensory stimuli:

The full complexity of real life:



  

Do we share the same conscious 

experience from the same sensory 

stimulus?

Hasson et al., Science (2004)



  

“Mind reading” competition at Human Brain Mapping 2006
(http://www.ebc.pitt.edu/competition.html)

fMRI responses to video from 3 segments of the Home Improvement TV series, 
rated for a variety of features (e.g., faces, emotions).

Utilize data from segments 1 and 2 to train classifier, then generate predicted 
behavior ratings for segment 3.

Brain activity interpretation competition

http://www.ebc.pitt.edu/competition.html
http://www.ebc.pitt.edu/competition.html
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Patterns of brain activity during deception have recently been

characterized with fMRI on the multi-subject average group level.

The clinical value of fMRI in lie detection will be determined by the

ability to detect deception in individual subjects, rather than group

averages. High-dimensional non-linear pattern classification methods

applied to functional magnetic resonance (fMRI) images were used to

discriminate between the spatial patterns of brain activity associated

with lie and truth. In 22 participants performing a forced-choice

deception task, 99% of the true and false responses were discriminated

correctly. Predictive accuracy, assessed by cross-validation in partic-

ipants not included in training, was 88%. The results demonstrate the

potential of non-linear machine learning techniques in lie detection and

other possible clinical applications of fMRI in individual subjects, and

indicate that accurate clinical tests could be based on measurements of

brain function with fMRI.

D 2005 Elsevier Inc. All rights reserved.

Introduction

A large body of functional neuroimaging literature has

elucidated relationships between structure and function, as well
as functional activity patterns during a variety of functional
activation paradigms. Statistical parametric mapping (SPM)

(Friston et al., 1995) has played a fundamental role in these
studies, by departing from the conventional biased ROI- and
hypothesis-based methods of data analysis and enabling unbiased

voxel-by-voxel examination of all brain regions. While a great deal
of knowledge has been gained during the past decade regarding
brain regions that are activated during various tasks using voxel-

based SPM analysis, the quantitative characterization of entire
spatio-temporal patterns of brain activity, as opposed to voxel by
voxel examination, has received much less attention, especially as
a means for deducing ‘‘the state of the mind’’ from functional

imaging data. The important distinction between a voxel-based
analysis and the analysis of a spatio-temporal pattern is the same as
the distinction between (mass) uni-variate and multi-variate

analysis (Davatzikos, 2004). Specifically, a pattern of brain activity
is not only a collection of active voxels, but carries with it
correlations among different voxels. Notable efforts towards the
functional activity pattern analysis have been made (Strother et al.,

1995; McIntosh et al., 1996), some of which, attempt to use these
methods to classify complex activation patterns using machine
learning methods (Cox and Savoy, 2003; LaConte et al., 2005).

In this paper, we present an approach to the problem of
identifying patterns of functional activity, by using a high-
dimensional non-linear pattern classification method. We apply

this approach to one of the long-standing challenges in applied
psychophysiology, namely lie detection. Deception is a socially
and legally important behavior. The limitations of the specificity
of the currently available physiological methods of lie detection

prompted the exploration of alternative methods based on the
correlates of the central nervous system activity, such as EEG and
fMRI (Rosenfeld, 2001; Spence et al., 2001; Langleben et al.,

2002). Using SPM-based analyses of multi-subject average group
data, several recent fMRI studies demonstrated differences in
brain activation between truthful and non-truthful responses in

various experimental paradigms (Langleben et al., 2002; Langle-
ben et al., in press; Ganis et al., 2003; Kozel et al., 2004a,b; Lee
et al., 2002). In order to translate these data into a clinically

relevant application, discrimination between lie and truth has to
be achieved at the level of single participants and single trials
(Kozel et al., 2004b), not just via group analysis. The potential of
the SPM-based approach to achieve this goal is limited due to the

between-subject variability of regional brain activity. In the
current work, we have overcome this limitation using a multi-
variate non-linear high-dimensionality pattern classification tech-

nique (Lao et al., 2004) applied to spatial patterns of brain
activation recorded via fMRI. Using data acquired with a
previously reported formal deception paradigm (Langleben et

al., in press), we have tested the hypothesis that truthful and non-

1053-8119/$ - see front matter D 2005 Elsevier Inc. All rights reserved.
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•Claim 88% accuracy
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Neuroscience-based lie detector
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