Functional Specialization

Functional specialization: shape perception

Malach et al.

Functional properties of LO1 & LO2

Functional specialization: motion perception

Subdividing MT+ (retinotopy)

Subdividing MT+ (ipsilateral stimulation)

Subdividing MT+

Huk, Dougherty, & Heeger, J Neurosci, 22:7195-7205, 2002

Human MT and MST

Functional specialization

Match each cortical area to its corresponding function:

V1	Motion
V2	Stereo
V3	Color
V3A	Texture
V3B	Segmentation, grouping
V4	Recognition
V5	Attention
V7	Working memory
V9	Mental imagery
IPS1	Decision-making
IPS2	Sensorimotor integration
Etc.	Etc.

Selectivity

Columnar architecture

fMRI spatial and temporal resolution

Convention spatial resolution

Voxel size: $3 \times 3 \times 3 \text{ mm}^3$ FOV: 192 × 192 × 72 mm³ 24 slices in 1.5 sec

Response to periphery

Response to annulus

Response to center

Stimulus:

High spatial resolution fMRI (3D zoomed EPI with OVS)

Voxel size: $0.7 \times 0.7 \times 0.7 \text{ mm}^3$ FOV: 157 x 39 x 21 mm³ 30 slices in 3 sec

Zoomed field of view

Reliability

Neurovascular coupling limits spatial specificity

3.5 mm full-width at half-max (Engel el et al., 1997)

Reina de la Torre et al Anatomical Record (1998)

Spatial specificity (spread and mislocalization) depends on vein size.

Sluggishness of hemodynamics limits temporal specificity

Sluggishness of hemodynamics limits temporal specificity

Columns with fMRI: proof of principle

Cheng, Waggoner, & Tanaka, Neuron (2001)

Adaptation

Orientation-selective adaptation protocol

Probe orientation

Orientation-selectivity in human V1

Orientation-selective adaptation

Adaptation index

Larsson, Landy, & Heeger, J Neurophysiol (2006)

- Adaptation indices constant across visual areas
- No significant differences between V1 and extrastriate visual areas
- Adaptation in V1 can account for adaptation in extrastriate visual areas

Direction-selective adaptation

Huk, Ress, & Heeger (2001) Neuron, 32:161-

Pattern motion

Component vs. pattern motion selectivity

component-motion cell

pattern-motion cell

pattern moving up-right strong response

grating component moving up-right => strong response

Pattern motion adaptation protocol

Huk & Heeger, Nature Neurosci, 5:72-75, 2002

Pattern motion adaptation

Huk & Heeger, Nature Neurosci, 5:72-75, 2002

Coherent vs. transparent percepts

Huk & Heeger, Nature Neurosci, 5:72-75, 2002

Adaptation vs motion direction

Response gain reduction

Bandwidth reduction

Attractive shift

Repulsive shift

Estimated tuning bandwidth

Classification

Classifying stimulus orientation with conventional resolution fMRI

Kamitani & Tong, Nat Neurosci (2005)

Classifying orientation

Classifier weights

Stimulus

clockwise

Justin Gardner

Classifying percepts during binocular rivalry

Haynes & Rees, Curr Biol (2005)

Object-category classification

Haxby et al, Science (2001)

How the human brain interacts with the world in real life

Simple sensory stimuli:

The full complexity of real life:

Do we share the same conscious experience from the same sensory stimulus?

Hasson et al., Science (2004)

Brain activity interpretation competition

"Mind reading" competition at Human Brain Mapping 2006 (<u>http://www.ebc.pitt.edu/competition.html</u>)

fMRI responses to video from 3 segments of the Home Improvement TV series, rated for a variety of features (e.g., faces, emotions).

Utilize data from segments 1 and 2 to train classifier, then generate predicted behavior ratings for segment 3.

Neuroscience-based lie detector

NeuroImage

www.elsevier.com/locate/ynimg NeuroImage 28 (2005) 663 - 668

Classifying spatial patterns of brain activity with machine learning methods: Application to lie detection

C. Davatzikos,^{a,*} K. Ruparel,^b Y. Fan,^a D.G. Shen,^a M. Acharyya,^a J.W. Loughead,^b R.C. Gur,^b and D.D. Langleben^{b,c}

- Claim 88% accuracy
- Technology underlying commercial venture (http://www.noliemri.com/)