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SUMMARY

Natural sounds, especially communication sounds, have highly structured amplitude and phase spectra.
We have quantified how structure in the amplitude spectrum of natural sounds affects coding in primary
auditory afferents. Auditory afferents encode stimuli with naturalistic amplitude spectra dramatically
better than broad-band stimuli (approximating white noise); the rate at which the spike train carries
information about the stimulus is 2-6 times higher for naturalistic sounds. Furthermore, the information
rates can reach 90 %, of the fundamental limit to information transmission set by the statistics of the spike
response. These results indicate that the coding strategy of the auditory nerve is matched to the structure
of natural sounds; this ‘tuning’ allows afferent spike trains to provide higher processing centres with a

more complete description of the sensory world.

1. INTRODUCTION

The world around us is, thankfully, a highly structured
place. This structure is reflected in the fact that the
signals which reach our sense organs are not completely
random, but rather exhibit correlations both in space
and in time. What does the nervous system do with this
structure? One possibility, first raised by Barlow
(1961), is that even at the sensory periphery the
statistical structure of natural signals is important in
creating efficient representations of the sensory world.
This type of specialization is likely to occur in the
initial coding of continuous sensory inputs into discrete
action potentials. Do primary sensory afferent spike
trains transmit more information when the input
stimuli are chosen from natural ensembles? In this
paper we address this question directly by comparing
the information transmission and coding efficiency for
single auditory afferents responding with stimuli
chosen from different ensembles.

Testing the hypothesis that primary afferents are
‘tuned’ to natural stimuli requires that we understand
the structure of these stimuli. This is a difficult problem.
In the olfactory system signals are carried by turbulent
air flow, and understanding the statistics and dynamics
of these turbulent plumes is still an important physics
problem (Shraiman & Siggia 1994). In vision, measure-
ments of the statistics of natural images reveal a
hierarchy of structures on all angular scales (Ruderman
& Bialek 1994). In the auditory system, stimuli are
characterized by their amplitude and phase spectra,
and communication sounds with clear behavioural
significance have been characterized for many species.
So the coding of acoustic communication signals
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provides an excellent opportunity to test Barlow’s
hypothesis.

We have chosen to study the bullfrog auditory
system, which spends much of its time processing
rather stereotyped sounds: frog calls. The peripheral
auditory system of the bullfrog is a classic system for the
investigation of behaviourally relevant stimuli (Frish-
kopfet al. 1968; Capranica & Moffat 1975). Frogs and
toads use species-specific communication signals called
advertisement calls in their reproductive behaviour
(Bogert 1960). These signals have highly structured
temporal waveforms. Out of all the possible structure
in frog calls we focus on the amplitude spectrum, which
consists of several nearly harmonic bands.

Shaping the amplitude spectrum into bands endows
stimuli with a finite correlation time, which measures
how far into the future the waveform can be predicted

" given knowledge of the past. The extreme cases are

white noise, with a correlation time of zero, and pure
tones, with an infinite correlation time. Whereas
animals use the temporal correlations of natural stimuli
in making behavioural decisions, it is not clear how
temporal correlations influence strategies for processing
these signals, or at what processing stage structure in
the input signals is important. Here we investigate
whether the coding mechanisms of primary auditory
afferent fibres are matched to the temporal correlations
of natural sounds. Specifically, we compare the ability
of primary auditory afferent fibres to code broad-band
noise and noise shaped to have a naturalistic amplitude
spectrum.

We characterize the coding of continuous sensory
stimuli in afferent spike trains using two quantitative
measures: information rate and coding efficiency
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260 F. Rieke and others Coding of naturalistic stimuli

(Bialek et al. 1993; Rieke et al. 1993). The information
rate measures, in bits per second, the rate at which the
spike train removes uncertainty about the sensory
stimulus. The coding efficiency compares this gain of
information or reduction of uncertainty to the physical
limits imposed by the statistics of the spike train itself.
We shall see that for naturalistic stimuli, but not for
white noise, auditory nerve fibres come remarkably
close to these physical limits to information trans-
mission.

2. METHODS
(a) Experimental stimuli

The amplitude spectrum of a bullfrog advertisement call is
composed of approximately 20 harmonically related bands
with a fundamental frequency near 100 Hz (Capranica
1968). The width of each of the low-frequency bands is about
30 Hz, corresponding to a correlation time of 100 ms. Our
experimental stimuli are broad-band Gaussian noise and
Gaussian noise filtered to produce an amplitude spectrum
identical to that of a bullfrog advertisement call (the call-
spectrum stimulus). Stimuli were generated digitally with a
sampling frequency of 8 kHz and stored on a digital-audio
tape for presentation during an experiment. We generated
the broad-band stimulus by drawing a random number from
a Gaussian distribution at every time point. We generated
the call-spectrum stimulus in two steps. First, we created
broad-band Gaussian noise as above. We then adjusted the
amplitude of each frequency component of the stimulus using
the amplitude spectrum of a recorded bullfrog advertisement
call as a template. The result is a signal with a highly
structured amplitude spectrum, but one in which each
frequency component is independent.

(b) Neurophysiological recordings

The bullfrog has two peripheral auditory organs: the
amphibian papilla and the basilar papilla (Capranica 1976).
We limited our investigation to the low-frequency fibres of
the amphibian papilla (best excitatory frequency (BEF)
< 600 Hz), which have coding mechanisms similar to those of
auditory fibres in other vertebrates e.g. phase locking (Narins
& Hillery 1983; Freedman et al. 1988) two-tone suppression
(Liff & Goldstein 1970; Shofner & Feng 1981), and difference
tone nonlinearities (Capranica & Moffat 1980). Surgery,
anaesthesia, and physiological recording protocols and
procedures were the same as those described by Bodnar &
Capranica (1994). Briefly, we used a ventral approach to
expose the VIIIth nerve. A glass micropipette (resistance
40-70 MW, filled with 3 m KCI) recorded from an individual
auditory nerve afferent while stimuli were presented via an
earphone in a T-tube coupler. One end of the coupler was
sealed around the tympanum of the frog; the other end
contained a 1.3 cm diameter microphone for measuring the
sound pressure waveform. Each stimulus was presented for
5-10 min, during which time the cell generated about 10000
spikes. The first 80-909%, of the experiment was used to
calculate the estimation filters described below; the re-
mainder of the experiment was used to test the quality of the
estimates. In most experiments the intensity level of the
stimulus was adjusted such that the average firing rate of a
fibre was similar for both broad-band and call-spectrum
stimuli, usually 70 dB sound pressure level for the call-
spectrum stimulus and 80 dB sound pressure level, 45 dB
spectrum level, for the broad-band stimulus. The stimulus
waveform measured in the acoustic coupler and the cor-
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responding spike response were recorded on separate chan-
nels of a digital-audio tape for offline analysis.

(c) Stimulus estimation, information rate and
efficiency

To measure the rate at which the spike train provides
information about the stimulus we decode the measured
spike train to estimate the continuous stimulus waveform.
This approach has been used in several sensory systems
(Bialek et al. 1991 ; Warland et al. 1991; Rieke et al. 1991). In
all the systems studied, the stimulus waveform could be
estimated from the spikes by filtering the spike train with a
linear filter. Thus our estimate takes the form

5est<t> :ZF<t_li>> (1)

where the spikes occur at times ¢, The estimation filter F(¢)
is determined by minimizing the mean-square error between
the estimate and stimulus s(¢),

x* = <[ dtls(t) = se ()7, (2)
i.e. by requiring that 8x?/8F(t) = 0; the average (... ) is over
the stimulus ensemble. In practice we estimate the ensemble
average by averaging over a set of experimental stimuli
drawn randomly from the ensemble. The minimization
problem can be solved analytically (see Bialek et al. 1991),
resulting in the frequency-domain filter

F(w) = [dt exp (iwt) F (1)

_ &y exp (i) $* (@) 3)
CIZ; exp (iwt) ")

where ¢; are the spike times, §(w) is the Fourier transform of
the stimulus s5(¢), and * denotes the complex conjugate. The
filter is uniquely determined by the stimulus waveform s(¢)
measured in the acoustic coupler and the measured spike
times ¢, For a given fibre the filters for two different stimulus
ensembles are likely to be different. In the experiments
discussed here addition of nonlinear filters to the estimation
scheme in equation (1) made negligible quantitative improve-
ments to the estimates.

How do we determine the information transmission rate?
We measure the random errors in the estimate, as outlined
schematically in figure 1. The estimated stimulus waveform
is determined by a compromise between the observed spike
train and our a priori knowledge of the stimulus ensemble.
When the spike train does not specify the stimulus with
complete certainty, a priori knowledge introduces systematic
errors in the estimation process. We separate random and
systematic errors in the estimate by writing the estimate at
each frequency was o as 5 (0) = g(0) [s () +7(w)]. The
gain g(w) corrects systematic errors, and the effective noise
measures the random errors defined as an input noise level.
When both the errors in the estimate and the stimulus itself
are Gaussian random variables, the information rate is
determined by the signal-to-noise

sNR (@) = <5 () /<Ja(w)[*),

of the estimate as a function of frequency (Shannon 1949),

1 (do
R = y | 210, 1+ 500 (@)

The stimuli in our experiments are Gaussian by con-
struction; we must check whether the estimate errors are
Gaussian. If there are non-Gaussian errors then equation (4)
underestimates the real information transmission rate (Bialek
et al. 1993), but if the errors are nearly Gaussian then our
estimate of R, ;  will be close to the true information rate of
the spike train.
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Figure 1. Schematic of calculation of effective noise level. For
each experiment we separate random and systematic errors
in the estimate by determining a gain g(w), which corrects
systematic errors, and an effective noise 7(w) which measures
the random errors defined as an input noise level. To
determine g and » the stimulus and estimate are divided into
0.25s segments. We perform a Fourier transform on each
segment to obtain a set of points [§(w), 5 (w)]. For each
frequency we plot one point from each segment and
determine the best fit line through the data; the slope of the
line is ¢ and the scatter of the points about the line is 7.

3. RESULTS

We characterize the coding in primary afferent
fibres by decoding the spike train to estimate the
sensory stimulus. The basic strategy of stimulus
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estimation or decoding experiments is to learn the rules
of the neural code during a fraction of the experiment
(80-909%, here), and then test our understanding of
these rules in a later section of the experiment. The
experimental data are the stimulus and spike train;
from these we construct the filter ¥ which provides the
best estimate of the stimulus from the spikes, as
described in the methods. The ‘best estimate’ can be
compared directly with the true stimulus. The estimate
of the stimulus cannot contain any more information
about the true stimulus than the spike train itself, so by
analysing the quality of the estimates we put a lower
bound on the performance of the neuron as an
information transmitting device.

Figure 2 shows amplitude spectra, estimation filters
and short sections of the spike train, stimulus waveform
and estimate for broad-band and call-spectrum stimuli.
An obvious difference between the two experiments is
the temporal width of the filters; a spike in the broad-
band noise experiment contributes to the estimate for a
period of 5-10 ms, while a spike in the call-spectrum
experiment contributes for 100-200 ms. The width of
the filter in the broad-band experiment is set by the
tuning characteristics of the fibre. The fibre’s sensitivity
to a limited range of frequencies introduces a cor-
relation time to the signal coded by the spikes, and a

Figure 2. Construction of stimulus estimates. Power spectra of the sound pressure waveform for the broad-band noise
(a) and call-spectrum stimuli (d). To study the relation between the stimulus waveform and the spike response, we
estimate the stimulus waveform from the spikes by filtering the spike train, as described in the text and Bialek et al.
(1991). Estimate filters are calculated from the first 90 9, of the data and tested on the last 109, ; the filters for this
experiment are shown in (4) (broad-band noise) and (¢) (call-spectrum). Convolving these filters with the spike train
produces our estimate of the stimulus waveform. Short sections of the measured spike train, stimulus, and estimated
stimulus are shown in (¢) (broad-band noise) and (f) (call-spectrum). Timing bars in () and (¢) are 20 ms; in (c¢)

and (f) the bars are 10 ms.
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Table 1. Collected results from ten low-frequency fibres

(The BEF for each fibre is determined from measurements of firing rate versus frequency of a pure tone. The information rates
and coding efficiencies are measured for a timing precision of A7 = 1 ms, and are quoted with standard deviations calculated
by calculating each quantity in each of four sections of the experiment. Although the information rates and efficiencies vary
broadly among the cells, the efficiency of the call-spectrum stimulus is consistently much higher than the broad-band stimulus.)

firing rate information rate

(spikes per second) (bits per second) coding efliciency
BEF
(Hz) BBS* CSSe BBS CSS BBS GSS
200 62 65 24+1 130+5 0.073+0.003 0.3740.02
240 58 46 54+3 181+7 0.17+0.01 0.6540.03
240 20 32 9+1 35+1 0.064 4 0.006 0.1740.01
245 10 23 17+1 89+3 0.18+0.01 0.7140.03
310 53 77 3742 26847 0.1340.01 0.6940.02
330 34 17 23+1 111+4 0.1140.01 0.8940.03
380 27 28 13+1 82+3 0.12-£0.01 0.4540.02
390 49 32 13+1 7143 0.064 4+ 0.004 0.3440.02
510 42 50 30+1 131+4 0.12+0.01 0.4640.02
550 33 26 9+1 68+3 0.047+0.002 0.354+0.02

* Broad-band stimulus data.
" Call-spectrum stimulus data.
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Figure 3. Quantitative characterization of the estimates. (a) Distribution of effective noise amplitudes. The effective
noise at each frequency is normalized by its standard deviation. The normalized noise amplitudes are used to create
the histogram shown. A Gaussian of unit standard deviation is plotted with each histogram for comparison; the
random errors in both experiments are well described by a Gaussian distribution. (4) Signal-to-noise ratio of the
estimates. Both the stimulus and noise are Gaussian random variables, so the signal-to-noise ratios are obtained by
dividing the stimulus power spectrum, S(w) = {|§(w)[*), by the eflective noise power, N(w) = {|i(w)|*>, The
signal-to-noise of the shaped spectrum is significantly higher than the sNr of the broad-band noise over a wide range

of frequencies.

single discrete spike contributes to the estimate for a
finite time period. In the call-spectrum experiment the
correlation time of the stimulus itself is longer than the
correlation time introduced by the fibre’s tuning; as a
result, a single spike contributes to the estimate for a
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longer time period. Does the introduction of this
correlation time increase the effectiveness of the coding
process? Qualitatively comparing the estimates in
figure 2 the answer seems to be yes.

We quantify the results of figure 2 by calculating the



rate at which each estimate provides information about
the stimulus. The information rate (measured in bits
per second) indicates how much a spike train reduces
our uncertainty about the stimulus waveform. Before
observing the spikes, our uncertainty in estimating the
stimulus is large because we know only that the
stimulus came from a particular set or ensemble: the
ensemble of stimuli with a particular amplitude
spectrum. Observation of the spike train reduces our
uncertainty in the stimulus, or equivalently reduces the
number of possible stimulus waveforms. The infor-
mation rate measures the difference in the variance or
entropy of the distribution of possible stimuli before
and after observation of the spike train.

We define an effective noise which measures the
random errors in the estimate (see figure 1); this noise
determines how accurately an observer of the spike
train in a single afferent can estimate the sensory
stimulus. The distribution of effective noise amplitudes
is nearly Gaussian for both the broad-band and the
call-spectrum stimuli (see figure 34). Thus, as discussed
in the methods, we can define a meaningful effective
noise measure at each frequency and accurately
measure the information rate from the signal-to-noise
ratio (sNR). sNRrs for the fibre in figure 2 are shown in
figure 3¢. The sNrR of the call-spectrum stimulus is
significantly higher than the sNr of the broad-band
stimulus at most frequencies. This increase in SNR
occurs even at frequencies where the power in the call-
spectrum stimulus is 10-15 dB below that of the broad-
band noise; furthermore, the increase in sNR occurs in
experiments in which the spectral amplitude at the
peaks in the call-spectrum stimulus is equal to the
spectral amplitude of the broad-band stimulus. These
results indicate that the sNr at one frequency depends
on the amplitude of other frequency components of the
stimulus—i.e. the system is not behaving linearly. The
sNRs correspond to information rates of 46+ 1 bits per
second (1.4 bits per spike) for the broad-band stimulus
and 133 +5 bits per second (7.8 bits per spike) for the
call-spectrum stimulus. Similar results were obtained
in ten cells (see table 1).

The result that sensory neurons transmit more
information about structured stimuli was a surprise.
Gaussian white noise has the maximum possible
entropy per unit time given the total power, so that
shaping the stimulus into bands lowers the stimulus
entropy and hence the available information. We find,
however, that the transmitted information increases.
The increase in sNR at frequencies where the signal
power has decreased (see figure 3) indicates that the
increased information transmission rate is caused by
nonlinear coding mechanisms which are matched to
the characteristics of the call-spectrum stimulus.

The dramatic improvements in information rate we
find for a seemingly small step toward naturalistic
stimuli leads us to ask how much additional increase in
information rate is possible. We put our measured
information rates on an absolute scale by determining
an upper bound to the information transfer rates
(MacKay & McCulloch 1952; Rieke et al. 1993). An
optimal coding scheme associates each possible output
with a separate input signal; for a neuron, this means
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Figure 4. Spike train entropy and coding efficiency. (a) The
spike timing precision A7 and mean firing rate r determine a
simple upper bound to the spike train entropy. We digitize
the spike train with time bins of width A7, each of which has
a probability p = rA7 of having a spike and 1 —p of no spike.
Each time bin makes an independent contribution to the
entropy. Correlations in the spike trains which cause
individual bins not to be independent, such as refractoriness,
will cause our simple upper bound to exceed the true
entropy. (b) The information rate R, (A7) and entropy
rate S(A7) determine the coding efficiency, e(A7)=
R, (AT)/S(AT). Here we plot efficiencies for the call-
spectrum stimulus and for broad-band noise. Error bars for
the broad-band stimulus are obscured by the data points.
Most of the increase in efficiency with the call-spectrum
stimulus is due to a higher information rate (133 bits per
second versus 46 bits per second for the broad-band stimulus).

each possible spike train represents a different stimulus
waveform. The spike train entropy measures the
number of degrees of freedom, roughly the number of
possible spike trains, given the firing statistics (see
figure 4a). Since the cell can code only as many
stimulus variables as there are degrees of freedom in
the spike train, the entropy sets a fundamental upper
limit to the information rate. We define the coding
efficiency as the ratio of the information rate to the
spike train entropy.

If the spike times are specified with infinite precision,
the entropy is infinite. Infinite timing precision is
impossible, so we introduce a finite timing precision
Ar. Because we do not know what the appropriate
timing precision is, we calculate the coding efficiency as
a function of Ar. We calculate an upper bound to the
entropy from the timing precision and the mean
interval between spikes for a particular experiment
(MacKay & McCulloch 1952; see also figure 4a). To
determine the information rate as a function of the
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spike timing precision, we specify the spike times to a
precision A7 and estimate the stimulus from the re-
digitized spike train as described above. We now have
the two components of the coding efficiency: the
information rate and the entropy rate, both functions
of the timing precision for individual spikes. Figure 44
shows the coding efficiencies for the cell from figure 2
for the broad-band and call-spectrum stimuli.

Data from ten amphibian papilla fibres ranging in
BEF from 200 Hz to 550 Hz are summarized in the
table. We focused on fibres in this frequency range
because the low-frequency fibres of the amphibian
papilla use coding mechanisms similar to those of
auditory fibres in other vertebrates. A more limited
collection of experiments on higher-frequency fibres
from the amphibian papilla showed similar improve-
ments in information rate and coding efficiency. For all
the cells studied, the information rate and coding
efficiency are significantly higher for the call-spectrum
stimulus. The information rate increases by a factor of
5.4 on average, and the coding efficiency a factor of 4.3.
The coding efficiency in some cases reaches 909,
indicating that the coding of the call-spectrum stimulus
in these afferents comes very close to fundamental
limits to information transfer.

4. DISCUSSION

Our initial aim was to determine whether primary
auditory afferents are ‘tuned’ to code natural stimuli
with high efficiency. By creating stimuli with a
naturalistic amplitude spectrum (but unstructured
phase spectrum) we discovered two important charac-
teristics of peripheral coding: (i) stimuli with natu-
ralistic amplitude spectra are coded at higher in-
formation rates and efficiencies than broad-band
stimuli; and (ii) the coding efficiency of stimuli with
naturalistic amplitude spectra can be as high as 90 %,
approaching the fundamental limit to information
transfer. These results indicate that primary auditory
afferents are indeed tuned to statistical properties of
natural stimuli, and that the amplitude spectrum is of
central importance in determining the coding strategy.

In addition to structured amplitude spectra, natural
sounds have structured phase spectra. Furthermore,
the responses of auditory afferents in the bullfrog are
sensitive to the relative phase angle of the frequency
components in a stimulus (Simmons et al. 1993 ; Bodnar
& Capranica 1994). Thus we were surprised to find
that the efficiency coding of stimuli with random phase
spectra was close to 100 %,. Although the phase spectra
of our stimulus ensembles are random, the estimation
filters do have phase structure which allows estimation
of the temporal structure in a particular stimulus
waveform from the ensemble. The sensitivity of
auditory fibres to relative phase indicates that phase
structure in the ensemble of stimuli may also influence
coding. For example, a structured phase spectrum may
improve the efficiencies in afferents which code random
phase stimuli at relatively low efficiencies. The next
generation of experiments should quantify these phase
effects in information-theoretic terms.
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Our results indicate that the dynamics of the coding
process in primary auditory afferents are matched to
the correlation structure of natural sounds; as a result
the system codes natural sounds at higher information
rates and efficiencies than white noise. We propose that
this improvement in coding occurs because the tem-
poral correlation time of natural stimuli is similar to
the time scales for spike generation, such as the mean
interval between spikes. This improvement would not
be possible if the auditory system acted linearly with
additive stimulus-independent noise; if this were the
case, lowering the power at a given frequency would
lower the snr at that frequency and broad-band
stimuli would provide the highest possible rate of
information transfer. Instead nonlinearities in auditory
processing increase the information rate and coding
efficiency for naturalistic stimuli.
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