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ABSTRACT 

Understanding how neurons represent, process, and manipulate information is one of the 

main goals of neuroscience.  These issues are fundamentally abstract, and information theory 

plays a key role in formalizing and addressing them. However, application of information theory 

to experimental data is fraught with many challenges.  Meeting these challenges has led to a 

variety of innovative analytical techniques, with complementary domains of applicability, 

assumptions, and goals.  
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INTRODUCTION 

The goal of this review is to identify some of the questions in neuroscience for which 

information-theoretic techniques provide useful insights and approaches, and to survey the 

variety of techniques that are applicable to the analysis of neurophysiologic data. 

How neurons represent, process, and transmit information is of fundamental interest in 

neuroscience.    The basic biophysics that underlies neuronal action potential generation is well 

established, as is the biophysics underlying many aspects of synaptic physiology and dendritic 

information processing.  Nevertheless, the features of neuronal activity that convey and 

manipulate information are not well understood. Among the possibilities are relatively 

straightforward features, such as the number of spikes fired by a population of neurons (Shadlen 

& Newsome, 1998), but also more subtle ones, such as, their precise times of occurrence (Berry, 

Warland & Meister, 1997, Gawne, 2000, Softky, 1994, Théunissen, Roddey, Stufflebeam, 

Clague & Miller, 1996), the pattern of intervals (Sen, Jorge-Rivera, Marder & Abbott, 1996), the 

presence or absence of correlations and synchrony (Dan, Alonso, Usrey & Reid, 1998, Meister, 

Lagnado & Baylor, 1995, Rodriguez, George, Lachaux, Martinerie, Renault & Varela, 1999, 

Samonds, Zhou, Bernard & Bonds, 2006), oscillations (Gray & Singer, 1989), or other patterns 

of activity (Abeles & Prut, 1996). 

Questions related to neural coding are intrinsically abstract, since, at a minimum, they 

seek a description of a mapping from events, percepts, and actions to something very different: 

patterns of neural activity.  Though it may be tempting to assume that a common set of principles 

governs neural coding, it is more reasonable to anticipate that there is a diversity of biological 

solutions to the coding problem.  That is, we anticipate that neural coding will differ greatly 
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according to the pressures under which a system has evolved.  Such “design” criteria likely 

include minimizing the number of neurons or their connections, minimizing energy utilization, 

minimizing response latency, maximizing robustness in the face of injury, or maximizing the 

capacity for learning.  We anticipate that coding strategies may differ across brain regions, even 

within a single “system”.  For example, cortical regions early in visual processing (V1, V2) are 

tightly topographically organized, while visual regions at the “top” of the inferotemporal stream, 

which interact extensively with polysensory areas and the hippocampus, have little topographic 

organization. Even within the early stages of visual processing, there is a qualitative change 

between coding in V1, and coding in V2 – with temporal multiplexing of multiple visual 

submodalities much more prominent in V2 (Victor & Purpura, 1996a).  Finally, strategies for 

representing information, even within a particular cell type, are likely task-dependent and subject 

to top-down influences. For example, attention modulates firing rate (Luck, Chelazzi, Hillyard & 

Desimone, 1997, Reynolds, Pasternak & Desimone, 2000) and synchrony (Roelfsema, Lamme & 

Spekreijse, 2004, van der Togt, Kalitzin, Spekreijse, Lamme & Super, 2006).  However, it is as 

yet unclear what is the primary neural correlate of attention. 

Need for joint experimental and theoretical/computational approach 

A purely experimental approach to these questions is not likely to succeed, in that 

manipulation of one feature of neural activity (e.g., increasing firing rate by electrical 

stimulation), is certain to change other aspects as well (e.g., interval structure, and degree of 

correlation).  Thus, while such experiments (Salzman & Newsome, 1994) are critical in 

demonstrating that a particular brain region is relevant to a particular function, they provide little 

insight into neural coding. 
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An appropriate theoretical infrastructure is needed to disentangle these confounds,  and 

also to compare results across a range of modalities, preparations, brain areas, and species.  

Shannon's groundbreaking work in information and communication theory (Shannon & Weaver, 

1949) is the natural starting point for this theoretical infrastructure (Rieke, Warland, de Ruyter 

van Steveninck & Bialek, 1997). But, while application of Shannon’s ideas to man-made 

communication channels is relatively straightforward, difficulties arise in attempting to apply 

information measures to biologic systems.  Fundamentally, the Shannon theory was designed for 

characterizing communication systems whose principles were understood, not for the “inverse 

problem” of determining the principles by which a system works from observations of its 

behavior. 

To make full use of information theory (and to avoid assuming answers to the above 

questions), one would want to begin with as few assumptions as possible about the nature of the 

neural code.  A minimal assumption is that each possible configuration of neural activity (i.e., 

each arrangement of spikes across time and a set of neurons) is a candidate for a code word.  

Ideally, the formalism of information theory would then determine the actual set of words (and 

hence, the structure of the neural code) from this starting point.  Unfortunately, this program 

rapidly runs into practical difficulties. Experimental estimates of information are biased by 

finiteness of datasets, and the extent of this bias is directly proportional to the size of the a priori 

set of words (Carlton, 1969).  Moreover, the Shannon theory does not attempt to describe the 

relationship between a sensory or motor domain and neural activity (i.e., the nature of the neural 

representation), but merely provides an index of how faithful this representation is.  As we will 

see below, these considerations motivate a variety of approaches to the analysis of neural coding.  

These approaches share the goal of quantification of information.  However, they differ 
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substantially in the scope of the assumptions concerning neural coding, in the extent to which 

they yield a description of the representation provided by the code, and the kinds of data to 

which they may be applied. 

Correlation and causation 

Correlation of a behavior or stimulus with a statistical feature of the neural response does 

not imply that this feature of the neural response is used by the nervous system.  Some of the 

approaches described below, coupled with appropriate experimental design, may be useful in 

determining causal relationships. For example, a multichannel recording of neural activity (e.g. 

field potential activity at different locations (Schiff, Kalik & Purpura, 2000) or multiple neurons 

within a cluster (Reich, Mechler & Victor, 2001b)) can be partitioned into two subsets of 

channels, one considered as the “input”, and one considered as the “output”. One can then 

determine whether statistical features in the “input” activity can predict later activity in the 

“output” channels.  A positive answer demonstrates that the statistical features of the input are 

indeed used at later times in neural processing, thus going a substantial step beyond merely 

demonstrating the presence of these features. 

Alternatively, because information cannot be created de novo within the nervous system, 

it may be possible to rule out a candidate neural code, by showing that it cannot support the 

sensory performance of the organism.  This strategy has demonstrated the importance of spike 

timing in retinal coding (Nirenberg, Jacobs, Fridman, Latham, Douglas, Alam & Prusky, 2006). 
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INFORMATION-THEORETIC TOOLS APPLICABLE TO NEURAL DATA 

General comments: a wide variety of approaches 

Many strategies for the application of information-theoretic tools to neural data have been 

proposed (Table 1).  As seen in the Table, these strategies have diverse, and to some extent 

complementary, domains of applicability, limitations, conceptual underpinnings, and questions 

that can be addressed. We precede our survey by some general comments on these inter-related 

axes. 

Experimental design 

A typical experiment in classical sensory neurophysiology consists of recording neural 

responses to a large number of presentations of a small set of sensory stimuli. The set of sensory 

stimuli is generally chosen to be “simple”, with elements that vary along some perceptually 

salient parameter, or set of parameters.  For example, in characterizing neurons in primary visual 

cortex, a typical stimulus set consists of gratings of varying contrast and/or orientation.  

Responses to such stimuli can be analyzed (without information-theoretic tools) to provide 

measures of neural “tuning” to these parameters.  The information-theoretic viewpoint considers 

the neuron to be a communication channel.  The “transmitted information” is a natural measure 

of to what extent an observer of the neural response can reduce uncertainty about which stimulus 

was presented. There is no pretense that this kind of experiment can fully characterize the 

response properties of the neuron.  Nor can it hope to determine its information-transmitting 

capacity, since the set of stimuli is intentionally restricted to a tiny subset of all possible stimuli.  

Rather, the goal of information-theoretic analysis of this kind of experiment is to determine 
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which aspects of the response are responsible for coding the some perceptual parameter of 

interest, and the extent to which this coding is reliable. 

An alternative experimental design, especially popular in vision, is based on the rapid 

presentation of a large set of stimuli (Wu, David & Gallant, 2006), repeated a small number of 

times if at all.  The stimuli might be chosen to test a particular kind of model (e.g., white noise, 

m-sequences), or in the hope that they represent ethologically important stimuli (e.g., real-world 

movies). The goal of this kind of experiment is to build a model for the functional relationship 

between a neuron’s input and its output.  Such a model can then be tested by its ability to predict 

responses to other stimuli. Information-theoretic tools can then be applied to determine the 

information rate for the neuron’s output under the conditions of the particular experiment.   

Moreover, if a believable model for the neuron’s behavior can be constructed, then, at least in 

principle, the maximal information-transmitting capacity of the neuron (across all possible 

stimuli) can be calculated. 

One might argue that the distinction between these two kinds of experiments is not very 

meaningful, since an information-theoretic analysis method that is intended to be applied to one 

kind of experiment can be forced to apply to the other.  However, such application is unlikely to 

be practical, or to achieve its intended goal, even though there is nothing in the formalism of 

these approaches that prevents such attempts. The basic issue is that, like any other application of 

mathematical concepts to laboratory data (see Slepian (Slepian, 1976) for a beautiful discussion), 

a rigorous implementation of information-theoretic analyses requires evaluation of limits that 

cannot be achieved in the laboratory.  Short of these limits, there is no guarantee that values 

estimated from laboratory data are close to their values at these limits.  This difficulty typically 
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persists even if one goes through the efforts of analyzing exactly how rapidly the limits are 

approached – since this analysis is also an asymptotic one. 

Thus, although the distinctions between the methods we discuss have clearcut and 

rigorous theoretical foundations, their practical domains of applicability are distinguished by 

qualitative terms and fuzzy borders (Table 1). But this should not be taken as an excuse to ignore 

the philosophical differences between these approaches.   At a concrete level, such differences 

can be recovered by an analysis of how two kinds of procedures differ in simple test cases, 

whose behavior can be determined analytically.  More fundamentally, ignoring the distinctions 

between these approaches would deny one of the important contributions of the mathematical 

biologist – namely, creation of formalisms that allow testing, refinement, and extensions of 

biological intuition. 

Response types 

All information-theoretic methods discussed here can be applied to experiments in which 

the responses are the sequences of stereotyped action potentials (“spike trains”) produced by a 

single neuron -- the substrate for information transmission over large distances.  Many of the 

methods are also applicable to neural signals other than action potentials. For example, 

subthreshold fluctuations of membrane voltage carry information within neurons.  Some small 

neurons, such as the interneurons of the retina, do not generate action potentials, and use these 

continuously varying voltage fluctuations for transmission of information between neurons. 

Another signal that is appropriate for information-theoretic analysis is the “local field potential,”  

an extracellularly-recorded voltage that represents a combination of synaptic activity, 

subthreshold fluctuations of membrane voltage, and, to a lesser extent, summed spiking activity, 

in a neighborhood of approximately1 mm or less. 
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A spike train is most naturally represented as a point process, while intracellular and 

extracellular voltages are most naturally represented as a continuous real-valued function of 

time.  As we will see below, some information-theoretic approaches are directly applicable to the 

point process itself. Other approaches have functions of time as their primary object of analysis.  

They can also be applied to spike trains, but only after the latter are converted into functions of 

time.  Methods for making this conversion include convolution with a standard template, such as 

a Gaussian, or simply considering the spike trains to be a train of delta-functions. The latter 

approach can only be used for methods that do not require that the signals be continuous.   

Finally, the methods that are the most directly tied to Shannon’s ideas (Shannon & Weaver, 

1949) have a discrete sequence of symbols drawn from a finite set, typically {0,1}, as their 

primary object of analysis.  These methods can be applied to spike trains by dividing the data 

record into narrow time bins, and keeping track of how many spikes occurred in each.  They can 

also be applied to continuous signals, by sampling them in time and discretizing them in 

amplitude.  The utility of these approaches depends critically on how information estimates vary 

with bin width, which in turn depends on the biological system and the amount of data available. 

Understanding neural coding requires not only a characterization of the behavior of 

individual neurons, but also of their joint activity.  Datasets in which many channels of 

simultaneously recorded neural activity (spikes, continuous signals, and combinations) are 

increasingly available.  All of the methods we will consider have immediate formal extensions 

from single channels to multiple channels, but these extensions differ widely in practicality.  The 

“multichannel” regime deserves to be broken into two regimes – that of “few” channels and 

“many” channels. Some methods effectively require estimation of a number of parameters that 

grows exponentially with the number of channels; these methods are likely to break down in the 
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“few” channel regime.  For other methods, the effective number of parameters to be estimated 

grows more slowly if at all, but these methods may have computational demands that limit 

application when many channels are present. 

A survey of methods for information estimation 

The direct method 

The “direct method” (Ruyter van Steveninck, Lewen, Strong, Koberle & Bialek, 1997, 

Strong, Koberle, Ruyter van Steveninck & Bialek, 1998) for the estimation of information in 

spike trains is closest to a literal implementation of Shannon’s ideas, and makes only minimal 

assumptions about the nature of the code.  Thus, it provides a rigorous estimate of information, 

provided that sufficient data are available.   

The primary data consist of records of a single neuron’s response.  These records are first 

partitioned into segments of length L.  Each segment is converted into a discrete sequence of 

symbols (0 or 1) by subdividing it into successive bins of width TΔ , and forming an integer 

sequence in which each entry indicates the number of spikes within one of these bins. TΔ  is 

typically taken to be sufficiently short so that each bin contains at most one spike.  For each 

integer sequence s, the probability of its occurrence, p(s), is estimated from experimental data. 

Two entropies are then calculated. The “total entropy”, ∑−= )(log)( 2 spspHtotal , expresses the 

entropy of the entire repertoire of the observed behavior of the neuron, for all stimuli. The noise 

entropy Hnoise is a corresponding sum but restricted to responses to a single stimulus. The 

estimated information is noisetotal HHI −= . 
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The estimated information I  depends on the binning parameters L and TΔ . Strong et al. 

(Strong et al., 1998) provide a procedure for extrapolating to the limits of 0=ΔT  and ∞=L , as 

is required for a rigorous true information estimate. 

The direct method has been used at several levels of the visual system, including 

mammalian retina (Nirenberg, Carcieri, Jacobs & Latham, 2001), lateral geniculate nucleus 

(Reinagel & Reid, 2000), primary visual cortex (Reich et al., 2001b), and extrastriate visual 

cortex (Buracas, Zador, DeWeese & Albright, 1998).  In each of these settings, the stimulus 

consisted of a rapidly-varying temporal sequence, often constructed from a pseudorandom 

sequence but occasionally derived from natural images (London, Schreibman, Hausser, Larkum 

& Segev, 2002, Nirenberg et al., 2001).  However, the method can also be applied to data 

derived from discrete presentation of a small set of stimuli (Reich, Mechler & Victor, 2001a). 

Limitations 

The main limitation of the direct method is that it is simply not possible to make a 

rigorous extrapolation to the limits of 0=ΔT  and ∞=L .  These limits of course cannot be 

attained experimentally, but biologic considerations can provide guidelines for values of TΔ  and 

L beyond which one can assume that an asymptotic regime is reached. Unfortunately, this regime 

may be in accessible in practice. 

For mammalian cortex, a reasonable choice of TΔ  is 1 ms (an upper limit for the 

intrinsic precision of a neuron), while a reasonable choice for L is 100 ms (a lower limit for the 

duration of a response).  Consequently, the number of possible sequences whose probabilities 

must be estimated is very large ( TL Δ/2 ), and the probability distribution is necessarily 

undersampled by laboratory data.  In this regime, entropy estimates are unreliable and highly 

biased -- the bias is proportional to the number of probabilities that must be estimated, and 
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inversely proportional to the total number of observations. As described below, debiasing 

techniques are available, but these procedures are ineffective when most bins are not even 

sampled at all. Consequently, the direct approach is limited to situations in which responses are 

highly reproducible, such as insect systems or the retina (so that only a very small number of the 

possible spike train configurations occur), or, to estimates of instantaneous information rate 

(artificially limiting L).  

The direct method may be extended (Johnson, Gruner, Baggerly & Seshagiri, 2001, 

Nirenberg et al., 2001, Reich et al., 2001b) to simultaneous recordings from multiple neurons. In 

an M-neuron experiment, the response within each bin of length TΔ  is described by an M-tuple 

of bits, in which each bit represents the firing of one neuron.  Otherwise, the estimation of 

information proceeds exactly as for single-neuron responses.  However, the undersampling of the 

space of all possible sequences is even more severe, since the number of possible sequences is 

given by TML Δ/2 . 

In sum, the philosophy that keeps the direct method closest to Shannon’s ideas is also its 

main limitation.  Since minimal assumptions are made about the nature of the code, the 

probability of each response (as represented by a discrete sequence) is an independent quantity to 

be estimated from data.  That is, the tradeoff for an approach that is free of a priori assumptions 

is one that, for rigorous implementation, requires an impracticably large amount of data in many 

circumstances. Moreover, the direct method provides little insight into how information is carried 

– since how information is carried is explicitly a statement about the relationships among the 

response sequences. 
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Estimators of entropy of a discrete distribution 

A key component of the “direct method”, as well as of many of the approaches described 

below, is that the entropy of a discrete distribution must be estimated from a finite set of 

observations.  This seemingly simple problem is surprisingly subtle.  The entropy of a discrete 

distribution with J bins and a probability pj in each bin is 2
1

log
=

= −∑
J

j j
j

H p p .  The naïve 

approach is to estimate this by setting /=j jp n N , where nj is the number of times that the jth 

outcome is observed, and N is the total number of observations. This “plug-in” estimator is well-

known to be biased – fundamentally, because of the curvature of the log function.  A standard fix 

is to add a bias correction(Carlton, 1969, Miller, 1955, Treves & Panzeri, 1995).  This bias 

correction is asymptotically exact for large N, but requires knowledge of the number of kinds of 

categories (or bins), J, that occur with nonzero probability. Moreover, typical datasets are not in 

the “asymptotic” regime, which requires that even the least likely outcome has been observed 

several times.  An alternative correction is the jackknife (Efron, 1982, Efron & Tibshirani, 1998), 

but this has similar asymptotic behavior.   More sophisticated estimators have recently been 

introduced, with clear advantages in regimes relevant to laboratory data.  These include 

Paninski’s estimator (Paninski, 2003), which is provably the least-biased of all polynomial 

estimators, the “KT” (Krichevsky & Trofimov, 1981) and “SG” (Schurmann & Grassberger, 

1996) estimators, which are based on single Dirichlet priors (Wolpert & Wolf, 1995), the “NSB” 

estimator (Nemenman, Bialek & de Ruyter van Steveninck, 2004), which considers a family of 

Dirichlet priors, and the Chao-Shen (Chao & Shen, 2003) estimator, recently introduced in 

ecology.  However, none of these estimates succeed in the severely undersampled regime 

characteristic of cortical datasets. 
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Metric space method 

The direct method, though virtually assumption-free, can have prohibitive data 

requirements, and does not attempt to characterize the manner in which information is 

represented.  The metric space method (Victor, 2005, Victor & Purpura, 1997) represents an 

alternative viewpoint.  By making assumptions as to the nature of a neural code, it can provide 

useful estimates of information in settings in which the direct method will fail (limited amounts 

of data, and especially high firing precision but low firing rate). 

The metric space method considers several generic families of neural codes, each of 

which is designed to test a particular hypothesis of how information is carried, such as via spike 

counts, or via the timing of spikes, or via the interval structure of the spike trains.  Each of these 

hypotheses is then formalized in terms of a family of metrics − notions of distance (i.e.., 

dissimilarity) between spike trains.  The metrics have a common structure, which allows 

comparison of the hypotheses on a level playing field.  Since the metrics explicitly recognize that 

neural responses are point processes and their structure respects the continuity of time, the 

binning process that limits the use of the direct method is avoided.  However, the metric-space 

method typically underestimates the total information that is present, since only a few 

stereotyped (but interpretable!) hypotheses for the code are considered.  Also, because of the way 

that information is calculated, the approach is limited to analysis of episodic responses to a 

discrete set of stimuli. 

Many neurons can be considered to behave like coincidence detectors (Bourne & Nicoll, 

1993, Cline, 1997, Markram, Lubke, Frotscher & Sakmann, 1997, Mel, 1993, Softky & Koch, 

1993, Usrey, Reppas & Reid, 1998).  This suggests that the meaning of a spike train is 

determined by the timing of the individual spikes, since it is those timings that determine how 
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the multiple inputs onto a dendritic tree interact to determine a postsynaptic neuron’s behavior.  

To assess the extent to which spike times carry information, the approach uses a family of 

metrics denoted ][qD spike , parameterized by a quantity q (see below) that describes the role of 

temporal pattern. According to the metric ][qD spike , the distance between two spike trains is the 

minimum total "cost" to transform one spike train into the other via any sequence of insertions, 

deletions, and time-shifts of spikes.  The cost of moving a spike by an amount of time t is set at 

qt, and the cost of inserting or deleting a spike is set at 1. Thus, in the sense of ][qD spike , spike 

trains are considered similar if they have approximately the same number of spikes, and these 

spikes occur at approximately the same times, i.e., within q/1  or less.   A neuron that behaves 

like a coincidence detector with temporal precision q/1 would see incoming spike trains as 

similar or different, according to the metric ][qD spike . 

A second family of metrics, denoted by ][qDinterval , is motivated by the notion that a 

synaptic response depends on its recent history, and thus, the intervals between successive spikes 

may also carry information (Abbott, Varela, Sen & Nelson, 1997, Bliss & Collingridge, 1993, 

Sen et al., 1996, Usrey et al., 1998).  In the metric ][qDinterval , the distance between two spike 

trains is defined as the minimum total cost to transform one spike train into the other via any 

sequence of insertions of spikes, deletions of spikes, and expansions or contractions of interspike 

intervals. The parameter q specifies the cost qt of changing an interspike interval by an amount t. 

In the limit that q approaches 0, both ][qD spike  and ][qDinterval  approach a metric countD , which is 

sensitive only to the number of spikes, and not to any aspect of their timing. 

Each metric is then evaluated by the extent to which it distinguishes the responses to each 

of the stimuli – namely, the transmitted information between stimulus and response clusters.  The 
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dependence of the transmitted information on q for ][qD spike , and ][qDinterval  characterizes the 

importance of spike timing and interspike intervals, across a range of temporal precisions. 

Applications of this approach to neural data, including visual cortex (Reich, Mechler & 

Victor, 2000, Samonds & Bonds, 2004, Victor & Purpura, 1996a), chemical senses (Di Lorenzo 

& Victor, 2003, Stopfer, Bhagavan, Smith & Laurent, 1997), and electric sense (Kreiman, Krahe, 

Metzner, Koch & Gabbiani, 2000), are reviewed in (Victor, 2005)). 

The metric-space approach is readily extended to the multineuronal context.  A multiunit 

recording is a sequence of labeled events, with the label representing the neuron of origin. To 

assess the importance of which neuron fires each spike, multineuronal metrics add an additional 

transformation between spike trains: changing the label associated with a neuron. The cost of this 

transformation is assigned the quantity k. The extreme 0=k  corresponds to a code in which the 

neuron of origin is irrelevant (since it is free to change the label associated with each spike).  The 

other extreme, 2=k , corresponds to a labeled-line code (since it costs as much to change the 

label on a spike as it does to remove it from one neuron, and insert it into another). The above 

analyses can then be carried out for the two-parameter family ],[ kqD spike . 

By introducing a single parameter to explore the continuum between codes in which 

neuron of origin is irrelevant and labeled-line codes, the explosion of parameters that might 

otherwise hobble attempts to analyze multineuronal data  is circumvented.  We have applied this 

approach to simultaneously-recorded neural pairs in V1 (Aronov, Reich, Mechler & Victor, 

2001), and have found that responses are best decoded by keeping track of which neuron fired 

which spike, but only a modest amount of information is lost by ignoring the neuron of origin. 

This is in keeping with our analysis of multineuronal recordings in V1 via the direct method 

(Reich et al., 2001b), but is complementary to it: the direct method can analyze recordings of up 
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to 6 neurons (the limits of our recording), but only looks at information rates over brief time 

intervals (e.g., 15 ms).  In contrast, the metric-space method can examine responses over 

extended periods. 

For multineuronal responses, algorithms for the calculation of distances via 

straightforward extension of the Sellers algorithm (Sellers, 1974) (see below) yield a calculation 

time proportional to Mc 2 , where M is the number of neurons and c is the typical number of 

spikes in a spike train.  An improved dynamic programming algorithm that drops the exponent 

from M2 to 1+M was recently found (Aronov, 2003).  This dramatic improvement makes 

calculations on triplets of neurons practical on a desktop, and enables analysis of 4 to 8 neurons 

(for firing rates typical of cortical neurons) with a parallel processor array. 

Limitations 

One important limitation of the metric-space approach is that there is no guarantee that 

the manner of information transmission is similar to either of these caricatures.   For example, 

the informative precision of a spike may be greater during the transient part of a response than 

during a later period in which firing occurs at a lower rate.  In the multineuronal situation, it may 

be appropriate to distinguish among some neurons within the population and not others, rather 

than to have a single omnibus cost for changing the label of a neuron.  One can augment the 

metric space method by including these (and other) variations. Consequently, the maximal value 

of the transmitted information obtained with any of the candidate metrics is at best an 

underestimate of the total amount of information. Since there are also coding strategies that do 

not readily fit into the metric structure, it is difficult to place rigorous bounds on the extent of 

this underestimate. 
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A second major limitation of the metric space method is a consequence of the clustering 

stage, in which distances between responses to the same stimulus, and distances between 

responses to different stimuli, are compared.  For the clustering stage to be effective, the number 

of samples collected in response to each stimulus must be somewhat larger than the number of 

stimuli.  This makes it impractical to apply the metric-space method to responses elicited to long, 

rich sequences of continuously presented stimuli. 

Relation to comparison of genetic sequences 

The above metrics for spike trains have a common structure: distance is defined as the 

minimum cost of a transformation of one sequence into another, via a sequence of prescribed 

elementary transformations.  This structure is formally identical to that of the distances used to 

compare genetic sequences (Sellers, 1974). For genetic sequences, the elementary 

transformations include insertion, deletion, and alteration of a discrete element. The spike train 

metrics operate on point processes in continuous time, while the distances for genetic sequences 

operate on discrete sequences.  Despite this topological difference, the highly efficient dynamic 

programming algorithms developed by Sellers (Sellers, 1974) for genetic sequences can be 

adapted to spike train metrics, so that the calculations described above can be carried out 

efficiently. 

Not just information 

The metric-space approach, and others to be described below, goes beyond traditional 

information-theoretic analysis in an important way.  One can determine whether the presumptive 

code provides for a representation of the stimulus domain, and not just for faithful 

discrimination of distinct stimuli.  One way to accomplish this is to use the pairwise distances as 
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the starting point for multidimensional scaling (Aronov et al., 2001, Victor & Purpura, 1997). 

For example, re-analysis of the auditory data of Middlebrooks et al. (Middlebrooks, Clock, Xu & 

Green, 1994) demonstrated that the temporal aspects of the spike trains not only identify the 

azimuth of origin of a sound, but also that these temporal aspects represent the azimuth: they 

map the responses into a circular locus in an abstract response space (Victor & Purpura, 1997).  

Moreover, the coordinates within the multidimensional scaling space are the temporal features 

that distinguish and represent the stimuli. Such an analysis of V1 recordings (Aronov et al., 

2001) demonstrated a consistent temporal representation of spatial phase for across neurons, with 

one coordinate consisting of the sustained portion of the response, and a second coordinate 

consisting of a transient component. 

Embedding method  

The “embedding method” is an approach that combines many of the advantages of the 

two approaches discussed above(Victor, 2002). Like the metric space method, it exploits the 

continuity of time and avoids binning. But in contrast to the metric space method, it makes no 

assumptions concerning the nature of the code, other than that it respects the continuity of time.  

Consequently, it is provably unbiased(Kozachenko & Leonenko, 1987) – at least when sufficient 

data are available. It can be extended to multichannel data, but its behavior is intermediate 

between that of the metric space method (a single parameter is added) and the direct method 

(exponential growth in number of parameters to be estimated).  While the approach cleanly 

separates information carried by spike counts from information carried by spike times, it does 

not provide as detailed a parsing of temporal information as does the metric space method.  In 

contrast to both the metric space method and the direct method, this approach is immediately 

applicable to continuous responses and spike trains. 
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The key idea behind this approach is a formalization of a basic attribute that a coding 

scheme must have in order to be biologically plausible.  A sufficiently small change in the time 

of occurrence of a spike cannot result in a change in the meaning of a spike train, and spike trains 

that differ by only an infinitesimal change in a spike time must have nearly identical 

probabilities.  Thus, like the metric space method, the continuity of time is used explicitly. But 

unlike the metric space method, there is no assumption made concerning the relationship of spike 

trains that differ by large displacements of a spike.  Also, in contrast to the metric space method, 

the approach does not assume a relationship between the two spike trains that differ by insertion 

or deletion of a spike.   These ideas are naturally formalized in terms of the topology of spike 

trains(McFadden, 1965).  That is, the space of spike trains of finite duration can be considered to 

consist of a discrete set of strata, one for each number of spikes.  Spike trains with n spikes form 

an n-dimensional manifold (parameterized by the time of each spike).   A neuron’s output is a 

probability distribution on this set of strata.  Within each stratum, the probability distribution is 

assumed to vary smoothly, but between strata no assumptions are made. 

Thus, to determine the amount of transmitted information in an experimental dataset, 

spike trains are stratified according to the number of spikes n in the response.  This partitioning 

generates one component of the information, Icount, reflecting the extent to which the total 

number of spikes in the response can distinguish between the stimuli.  Since Icount is determined 

from a relatively small number of response categories, a standard discrete calculation may be 

used, and standard bias corrections are effective.  Then, the nth stratum is analyzed to determine 

a contribution of spike timing Itiming(n).  The total information is ∑+
n

timingcount nII )( , where the 

second term is the total information due to spike timing. 
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The calculation within the nth stratum crucially exploits the assumption that the 

probability distribution is a continuous function of the spike times. To determine Itiming(n), the 

spike trains in the nth stratum are embedded into a Euclidean space of dimension nr ≤ .  The 

coordinates assigned to a response are determined by inner products with a set of functions f1, …, 

fr: a spike train x with spikes at times τ1, τ2, …,τn is mapped to coordintes ∑
=

=
n

k
khh fxc

1

)()( τ .  

For continuous signals, there is no discrete component corresponding to the number of spikes, 

and all responses are embedded into a space of the same dimension.  A reasonable choice for the 

embedding is the natural extension of the above linear map to continuous signals: a signal v(t) is 

mapped into the coordinates dttvtfvc hh )()()( ∫= . 

As in the direct method, transmitted information is calculated as a difference between a 

“total entropy” determined from all responses considered together, and a “noise entropy” 

determined within the responses to each stimulus.  However, in contrast to the direct method, 

these entropies are determined by examining the statistics of the nearest-neighbor distances 

(Kozachenko & Leonenko, 1987).  In particular, the contribution of spike timing to the 

information within the nth stratum is estimated by  
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where N(n) is the number of spike trains with n spikes, N(n,ak) is the number of spike trains with 

n spikes elicited by the kth stimulus, jλ is the distance between the jth spike train and its nearest 

neighbor, and *
jλ is the distance between the jth spike train and its nearest neighbor elicited by 

the same stimulus.  For quantities of data typically available in an experiment, this nearest-

neighbor estimator (of entropy or of information) is substantially more efficient than binned 
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methods.  Demonstration that this estimator is unbiased (Kozachenko & Leonenko, 1987) relies 

critically on the assumption of smoothness of the probability distribution. 

Limitations 

The limitations of the embedding approach relate chiefly to the discrete component of the 

entropy estimate.  When the range of the number of spikes in responses is large, there are many 

discrete partitions.  In this regime, the bias estimates for Icount may be ineffective.  Moreover, at 

the tails of the distributions of spike counts, there are only a few responses, so that the estimate 

of Itiming may be ineffective.  These difficulties may be mitigated by lumping together partitions 

with similar numbers of spikes, but this compromises the unbiased nature of the estimator.  The 

practical difficulties of the discrete component are exacerbated when the method is applied to 

multineuronal data, since a separate partition is required for each combination ( )Mnnn ,...,, 21  of 

spike counts on each of the M neurons.  This rate of growth of the number of partitions that must 

be separately analyzed, though high, is much lower than in the direct method, since it is 

independent of (rather than exponential in) temporal resolution.  

Relation to general dynamical systems approaches 

Estimation of entropy from the statistics of nearest neighbors is related to estimation of 

dimension of a dynamical system’s trajectory or attractor set.  Grassberger and Procaccia (1983) 

describe several versions of such procedures, wherein dimension is determined from the 

relationship between the number of points within a given radius, and the radius.  When plotted 

on log-log coordinates, the slope of this relationship is the sought-after dimension.  But in the 

present situation, the slope is known (the dimension of the space in which we have embedded 

spike trains), and the quantity of interest, the entropy, is essentially the intercept of this line. 
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Grassberger’s  (1988) finite-sample debiasing procedure applies specifically to the slope 

(dimension); the Kozachenko and Lenonenko (1987) estimator debiases the intercept (entropy). 

Grassberger and colleagues (Kraskov, Stogbauer & Grassberger, 2004) have recently 

described a related approach to estimating mutual information via a nearest-neighbor approach 

that avoids explicit estimates of dimension.  However, this approach requires that the response 

variable has a definite dimension.  Thus, for application to spike trains, a procedure such as 

stratification by spike count is required to obtain an unbiased estimator, as in (Victor, 2002).  

Context tree method 

The context tree method  is a promising new approach both for entropy estimation  

(Kennel, Shlens, Abarbanel & Chichilnisky, 2005, London et al., 2002) and for estimation of 

mutual information  applicable to the “many-presentation” experimental design (Shlens, Kennel, 

Abarbanel & Chichilnisky, 2006). Like the direct entropy estimator (Ruyter van Steveninck et 

al., 1997, Strong et al., 1998), it is based on a discrete representation of spike trains, but, it also 

makes crucial use of the dynamic nature of spike trains – namely, that they a spike train is a 

temporal sequence in which the recent past influences the probability of spiking. This dynamic 

process is modeled as a “context tree” (Rissanen, 1989), which differs from a Markov process in 

that the depth of the history dependence can be non-uniform.  This model form is intuitively 

appealing for neural data, and results in a substantial increase in efficiency compared with 

approaches (see “Compression method”, below) that make use of dynamics, but do not postulate 

a model form. 

In essence, the method has two components:  estimation of a context tree model from the 

spike train data, and then calculation of entropy from the context tree itself (e.g., by a Wolpert-

Wolf estimator (Wolpert & Wolf, 1995)).  However, rather than choose a single context tree 
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model (cf. (Hirata & Mees, 2003)), the approach considers many context tree models.  Each 

model’s contribution is discounted (Willems, Shtarkov & Tjalkens, 1995) by a factor that 

considers both the complexity of the model (its “codelength,” (Solomonoff, 1964)) and the 

extent to which the model is a poor fit to the data. An advantage of this approach is that 

confidence limits on the entropy estimates can be determined via a Monte Carlo method that 

explores the range of estimates that would result from alternative context tree models (Kennel et 

al., 2005).   

Other methods 

Below we describe several other approaches that may be usefully applied to estimation of 

information in neural data.  Our goal is to emphasize the variety of viewpoints that may be taken, 

rather than to present an exhaustive review. 

Principal components 

The procedures used by Richmond and Optican (Chee-Orts & Optican, 1993, Optican & 

Richmond, 1987, Richmond & Optican, 1987) are based on principal-components analysis of 

rate functions estimated from single-trial neural response. The hypothesis underlying this 

approach is that information is coded as a firing rate envelope, and that individual spike trains 

serve as estimators of this envelope.  This approach can also be viewed as a kind of the 

embedding method, in that the rate coding hypothesis leads to embedding of all responses in a 

space of the same dimension, regardless of the number of spikes. Within this space, information 

is estimated by parceling this space into multidimensional bins.  A regularization procedure 

based on an additive noise model and an assumed Gaussian shape of the response cluster were 

used to improve performance (Chee-Orts & Optican, 1993).  To the extent that neural codes 
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indeed conform to the rate envelope hypothesis, the principal-components approach will provide 

a good description of the code, with limited sample sets of the size achievable in typical 

experiments (McClurkin, Optican, Richmond & Gawne, 1991, Optican & Richmond, 1987, 

Richmond & Optican, 1987).  However, by design, it will overlook any other forms of coding.    

Additionally, the Gaussian regularization for estimation of entropy, rather than the nearest-

neighbor estimator used in the embedding method, is tantamount ot adding an assumption about 

the manner in which responses vary across trials. 

Reconstruction method 

The reconstruction method of Bialek and coworkers (Bialek, Rieke, Ruyter van 

Steveninck & Warland, 1991) was the first information-theoretic approach successfully applied 

to decoding dynamic neural activity.  It provides another way of avoiding the difficulties 

associated with estimating a large number of probabilities, as is required by the direct method.  

The basic strategy is to identify a transformation of the observed neural response that best 

reproduces the known stimulus sequence.  The transmitted information in the neural response is 

then known to be at least as high as the mutual information between the actual stimulus and the 

stimulus reproduced by this transformation rule.  In some settings, a priori calculations allow for 

an independently calculated upper bound on the amount of information in the neural response, 

based on the theoretical limits of a sensory system (Bialek et al., 1991).  When the upper bound 

provided by these considerations is close to the lower bound provided by a reconstruction, this 

approach is particularly powerful and elegant. 

To seek a transformation between the neural response and the stimulus, a functional form 

must be chosen.  This functional form is typically linear, though nonlinear extensions  via the 

Volterra formalism (Marmarelis & Marmarelis, 1978)  can be used.  The kernels that describe 
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the transformation can then be interpreted as a recipe for “reading” the neural code (Bialek et al., 

1991).  The approach is typically applied to the spiking activity of single neurons (Théunissen et 

al., 1996), but the concept readily extends to multiple channels and/or continuously varying data.  

One limitation of the approach is that that the stimulus must be represented as a time series, 

rather than as discrete elements of a space.  More fundamentally, the approach may be 

impractical for highly nonlinear transformations, such as are likely to be present within the 

mammalian central nervous system, since the fitting of second-order (or higher) terms in a 

Volterra series will not be robust. 

Power series method 

Panzeri and Schultz (Panzeri & Schultz, 2001, Schultz & Panzeri, 2001) introduced 

another strategy for overcoming many of the shortcomings of the direct method by exploiting the 

continuity of time.  Here, the basic assumption is that information is an analytic function of the 

length of the analysis interval L.  Under this assumption, information can be expanded as a 

power series in L. Very short intervals are likely to contain at most one spike.  The probability 

that a pair of spikes occurs within the analysis interval increases with the square of the length of 

the interval.  Thus, an advantage of this approach is that the terms of the Taylor series expansion 

separate the contributions of firing rate, pairwise correlation between spikes, and higher-order 

correlations. This parsing of temporal information, which is explicitly order-by-order, is 

intrinsically limited to spike trains.  However, it is distinct from (and more detailed than) the 

kind of parsing provided by the metric space method.  Additionally, this approach bypasses the 

construction of a response space, so there is no attempt to determine whether stimuli are 

“represented” by the temporal patterns of activity. 
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In contrast to the reconstruction method, it is not assumed that the relationship between a 

spike train and what it represents has a low-order power series expansion.  Rather, a power series 

is used to represent the information content of a spike train as a function of the duration of the 

interval (i.e., order-by-order in the number of spikes).  Thus, the power series method will have 

no trouble with highly nonlinear transformations such as thresholds and saturations that might 

lead to difficulties with the reconstruction method. 

The power series approach is readily extended to multiple spike trains, but at any fixed 

order of approximation, the number of cross-terms grows as a polynomial in the number of 

neurons. The second-order terms can be further separated into auto- and cross-correlation terms, 

providing insight into how information is coded across a population of neurons. On the other 

hand, when the spike trains have structure such as regularity or bursts, there is no guarantee that 

the power series converges rapidly, or even at all.  This may prevent successful application to 

such spike trains, or to large analysis intervals. 

This approach has been used successfully to study somatosensory encoding in rat barrel 

cortex.  Temporal analysis of single spike trains demonstrated an important role for timing of the 

first spike(Panzeri, Petersen, Schultz, Lebedev & Diamond, 2001), with a smaller role for 

subsequent multispike patterns.  Analysis of multichannel data demonstrated the practicality of 

the approach for studying coding by correlated activity across neurons, initially with a limited 

temporal analysis (Panzeri, Schultz, Treves & Rolls, 1999) and later with a full temporal analysis 

(Petersen, Panzeri & Diamond, 2001). 

Compression method 

The entropy of a spike train can be measured by how susceptible it is to lossless data 

compression, via the Lempel-Ziv algorithm (Farach, Noordewier, Savari, Shepp, Wyner & Ziv, 
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1995, Kontoyiannis, Algoet, Suhov & Wyner, 1998, Levy, 2000, Wyner & Ziv, 1989). As in the 

direct approach, spike trains are segmented and discretized into a sequence of symbols, and no 

assumptions are made as to the nature of the code, or the statistical structure of spike trains. 

In essence, the Lempel-Ziv algorithm seeks to compress a sequence of symbols by 

rewriting the sequence in terms of a hierarchy of repeating substrings.  The substrings that occur 

frequently thus provide a characterization of the statistical structure of the neural activity. 

Additionally, the behavior of the compression algorithm as a function of bin width could be used 

to characterize the temporal precision of the code.  One anticipates that this approach should be 

highly adept at dealing with high-order statistical patterns of spikes, such as bursts (or even runs 

of bursts), because the compression algorithm intrinsically seeks recursive layers of structure. 

Another consequence of the avoidance of an explicit estimate of spike train probabilities is that 

multineuronal data per se should not be an obstacle. 

While in principle this approach is exact, convergence of the entropy estimates is difficult 

to bound (Levy, 2000) and appears sensitive to the details of the compression algorithm, such as 

the choice of the initial dictionary of strings. Nevertheless, it can result in efficient, meaningful 

entropy estimates when applied to neural data (Amigo, Szczepanski, Wajnryb & Sanchez-Vives, 

2004). Determination of algorithmic complexity (Rapp, Zimmerman, Vining, Cohen, Albano & 

Jimenez-Montano, 1994) is a related approach, as are the context-tree methods described above. 

Spectrotemporal methods 

Spectrotemporal (or time-frequency) analysis is a general exploratory method that is 

particularly suitable for neural data, both spiking and continuous (Mitra & Pesaran, 1999). It is 

not typically considered an information-theoretic tool, but we mention it here because it also can 

be used to identify meaningful statistical structure in spike trains. 
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Spectrotemporal analysis is a natural extension of spectral analysis. Spectral analysis 

formally requires that the signals to be analyzed are “stationary” (i.e., have statistical properties 

that do not change in time).  Neural signals, especially those influenced by external stimuli, do 

not have this property; rather, this evolution in time may be specifically of interest. The 

straightforward way to deal with this problem is simply to segment the data into periods that are 

sufficiently brief so that within each period, the signals can be assumed stationary.  Standard 

spectral analysis applied to each segment can then reveal how the frequency characteristics of a 

signal evolve over time. As is well known, the length of the analysis segment and the achievable 

frequency resolution limit are reciprocally related.   Sophisticated spectrotemporal techniques 

based on multitaper estimates (Mitra & Pesaran, 1999, Thomson, 1982) and wavelets(Quiroga, 

Rosso, Basar & Schurmann, 2001, Schiff, Aldroubi, Unser & Sato, 1994), while of course unable 

to circumvent limits on simultaneous resolution in time and frequency, represent a principled 

way to approach them.  

Spectrotemporal analysis can identify stimulus-dependent changes in neural activity that 

would escape ordinary averaging techniques, such as event-related synchronization and 

desynchronization (Pfurtscheller & Andrew, 1999). Spectral analysis has a natural extension to 

the multichannel context: calculation of coherences (or cross-spectra) between channels that 

characterize their correlations within each frequency band.  Spectrotemporal analysis has a 

directly analogous extension, which provides a description of how the coherence between signals 

evolves over time. The phase relationships between activity in different channels (e.g., different 

neurons or field potentials in different brain regions) provide another way to identify the 

direction of information transfer.  The frequency bands at which coherence is present can suggest 

how information is transferred. For example (Schiff et al., 2000, Schiff, Kalik & Purpura, 2001), 
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coherence between activity in distant cortical areas and between cortex and thalamus is present at 

particular frequency bands at specific times during a behavioral task, and is correlated with 

behavioral performance. 

Another contact with information-theoretic approaches is that regions of the time-

frequency spectrum can be used as classifiers of the neural response (Jarvis & Mitra, 2001). 

Under fairly general assumptions, the log(power) in non-overlapping regions of a time-frequency 

spectrum are approximately independently-distributed Gaussian variables.  Thus, reduction of a 

set of responses into measures of power in multiple time-frequency regions can serve as a first 

step in calculation of transmitted information.  The amount of information, as well as the time-

frequency regions that are critical in transmitting it, can thus be readily determined. Note that 

this approach to estimating information not only exploits the continuity of time, but also the 

intuition that neural coding is smooth in the frequency domain. 

Wavelet methods (Quiroga et al., 2001, Schiff et al., 1994, Tallon, Bertrand, Bouchet & 

Pernier, 1995) and multitaper methods, in essence, are complementary strategies for parceling 

the spectrotemporal domain into rectangular tiles.  In multitaper methods, the tiles are uniform, 

and thus optimized for detecting features of a given temporal duration or frequency bandwidth.   

In contrast, wavelets tile the spectrotemporal domain with regions whose dimensions are 

reciprocally related, and thus optimized for detecting features whose durations and bandwidths 

have a given ratio. 

Surrogate datasets 

Since many hypotheses concerning neural coding can be phrased in terms of comparisons 

between the observed data and surrogate datasets, procedures for surrogate data generation are 

important adjuncts to the procedures described above. The use of surrogate data sets for testing 
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hypotheses concerning the dynamics of continuous neurophysiologic data are widely appreciated 

(Schiff, So, Chang, Burke & Sauer, 1996, Theiler, Galdrikian, Longtin & Farmer, 1991, Theiler 

& Rapp, 1996).  The approach is at least as relevant to testing and refining hypotheses 

concerning information transmission in spike trains. 

Shuffling 

Perhaps the simplest hypothesis that one might want to test is whether the amount of 

information in an experimental dataset is nonzero.  As mentioned above, analytic estimates of the 

bias in information estimates are available.  However,  these estimates may not be applicable for 

at least two reasons:  the asymptotic regime may not be reached because the dataset size is too 

small, or, the analysis method  (e.g., the metric space approach) does not treat each response 

independently.  But even in these circumstances, use of shuffled datasets can determine whether 

the estimated amount of information, viewed as a nonparametric measure of correlation between 

input and output, is greater than chance (Victor & Purpura, 1996b). 

For multichannel data sets, additional simple surrogate datasets are useful.  To determine 

whether correlations between responses can be explained on the basis of common driving by a 

stimulus, rather than neuronal interconnections, the “shift-predictor”, or more generally, the 

“shuffle-correction” (Perkel, Gerstein & Moore, 1967) can be used.  Here, the individual 

channels of the responses to a particular stimulus are re-grouped within that stimulus. 

Maximum-entropy methods: single neurons 

For continuous signals, it is often of interest to determine whether observed dynamical 

features of a neural signal are fully explained by its second-order correlation properties.  If so, 

then the signals are consistent with a (perhaps multichannel) Gaussian white noise that has been 
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linearly filtered.  If not, nonlinear dynamics must be present.  This kind of question can be 

addressed by re-analyzing surrogate data that is constrained to have the same second-order 

correlation structure as the original data, and has higher-order correlations determined by the 

maximizing the entropy under these constraints. Such surrogate data are conveniently created by 

randomizing phases but preserving amplitudes (Schiff et al., 1996, Theiler et al., 1991, Theiler & 

Rapp, 1996). 

The maximum-entropy idea is readily extended to spike trains, providing natural 

“coordinates” for response distributions in an elegant formal framework(Amari, 2001, Nakahara 

& Amari, 2002). 

This approach can be used to formalize questions related to the important notion of 

“temporal coding” (Théunissen & Miller, 1995). Informally, “temporal coding” means that the 

time course of neural activity, and not just the number of spikes, carries information. Here, the 

term “time course” includes not only the time-dependent firing rate, but also more subtle features 

of the firing pattern, such as interval structure, or highly reproducible “triplets” of spikes 

(Lestienne & Tuckwell, 1997).  These aspects of firing pattern can be distinguished by 

comparing the information-theoretic analysis of the original data with analysis of surrogate 

datasets that match the observed responses in terms of the time-dependent firing rate, but are 

otherwise unconstrained.  Such surrogates are inhomogeneous Poisson processes, whose firing 

rate is determined by the observed post-stimulus histogram, and are thus examples of constrained 

maximum entropy processes. 

Surrogate datasets can be further constrained to match the original data in terms of spike 

counts on each trial.  Such datasets can easily be created by “exchange resampling” (Victor & 

Purpura, 1996b). A further refinement constrains the interspike interval distribution as well 
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(Oram, Wiener, Lestienne & Richmond, 1999). These strategies have been used to show that 

precisely-timed triplets of spikes do not contribute to information transfer (Baker & Lemon, 

2000, Oram et al., 1999). 

Maximum-entropy methods: multiple neurons 

Application of maximum-entropy principles to analysis of multineuronal activity can lead 

to substantial insights.  It is impossible to determine the stimulus-response distribution 

empirically for an entire neuronal population, since the dimensionality of this distribution is very 

large.  However, a practical approach is to measure the individual stimulus-conditioned response 

probabilities of each neuron, and to assume that the full stimulus-conditioned population 

response distribution is its maximum-entropy extension. This approach is equivalent to 

approximating the stimulus-conditioned population response distribution as a product of 

individual stimulus-conditioned response distributions. In the retina, an important model system, 

the error incurred by this approximation appears to be quite small (Nirenberg et al., 2001, 

Nirenberg & Latham, 2003). 

Maximum-entropy methods can provide a compact and comprehensible representation of 

the correlation structure of the spontaneous activity of neuronal populations.  In two recent 

studies(Schneidman, Berry, Segev & Bialek, 2006, Shlens, Field, Gauthier, Grivich, Petrusca, 

Sher, Litke & Chichilnisky, 2006), maximum-entropy extension from measured pairwise 

correlations accounted for the bulk of high-order multineuronal correlations.  Combining these 

strategies (i.e., fashioning maximum-entropy distributions from a combination of stimulus-

conditioned single-neuron distributions and low-order response correlations) may provide a 

powerful way to analyze and understand population coding. 
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SUMMARY 

Understanding how neurons and neural populations represent information requires a 

combined experimental and theoretical approach.  Shannon’s information theory provides the 

appropriate theoretical framework.  In the Shannon approach, no assumptions are made 

concerning the relationships of the coding elements to each other, or to the objects being 

represented.  This generality is a fundamental aspect of the strength and elegance of the Shannon 

approach.  However, its generality also engenders challenges to its use in experimental 

neuroscience, for two reasons.  First, neural activity is characterized by a wide range of 

timescales, from the submillisecond range (e.g., the intrinsic precision of spike generation) to 

times on the order of a second (e.g., inhibitory synaptic potentials).  Thus, without the imposition 

of additional hypotheses as to the nature of the code, the number of codes that need to be 

explored are far too great for a direct experimental attack.  Second, the relationship of the neural 

activity to the objects being represented is of interest.  This relationship is important to 

understand the mechanism of coding, and because neural activity must not only convey 

information, but also manipulate it. 

These considerations provide both a (retrospective) rationale for, and a unified view of, 

many approaches that have recently been advanced for the analysis of neural coding.  The 

approaches described here vary in the assumptions made concerning the neural code, ranging 

from virtually no assumptions, to merely exploiting the continuity of time, to positing very 

specific forms for the relationship between coding elements. Making such assumptions allows 

analysis to be carried out on datasets that are typically available from experiments. By assuming 

that the codes have structure, these approaches also allow for identification of a systematic 

relationship between the objects and the code – i.e., a representation.  However, imposition of 
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assumptions necessarily increases the risk that the relevant neural codes are simply not being 

considered.  At present, neuroscientists can grapple with this problem by exploring a variety of 

approaches, each with its own set of assumptions, and hoping that the biological conclusions are 

relatively independent of the methodology chosen.  It remains to be seen whether a more 

systematic and fundamentally satisfying theoretical approach can be fashioned. 
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FIGURE AND TABLE LEGENDS 

Table 1. 

Characteristics of several methods for the information-theoretic analysis of neural data.  

 


