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Local luminance and contrast in natural images
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Abstract

Within natural images there is substantial spatial variation in both local contrast and local luminance. Understanding the statistics of
these variations is important for understanding the dynamics of receptive field stimulation that occur under natural viewing conditions
and for understanding the requirements for effective luminance and contrast gain control. Local luminance and contrast were measured
in a large set of calibrated 12-bit gray-scale natural images, for a number of analysis patch sizes. For each image and patch size we mea-
sured the range of contrast, the range of luminance, the correlation in contrast and luminance as a function of the distance between
patches, and the correlation between contrast and luminance within patches. The same analyses were also performed on hand segmented
regions containing only ‘‘sky’’, ‘‘ground’’, ‘‘foliage’’, or ‘‘backlit foliage’’. Within the typical image, the 95% range (2.5–97.5 percentile)
for both local luminance and local contrast is somewhat greater than a factor of 10. The correlation in contrast and the correlation in
luminance diminish rapidly with distance, and the typical correlation between luminance and contrast within patches is small (e.g., �0.2
compared to �0.8 for 1/f noise). We show that eye movements are frequently large enough that there will be little correlation in the
contrast or luminance on a receptive field from one fixation to the next, and thus rapid contrast and luminance gain control are essential.
The low correlation between local luminance and contrast implies that efficient contrast gain control mechanisms can operate largely
independently of luminance gain control mechanisms.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

When we explore a natural environment with our eyes,
the local contrast and the local luminance that fall within
the receptive field of a given visual neuron change from
one fixation to the next. Further, the eyes typically fixate
a given location for only 200–300 ms, and hence these
changes in contrast and luminance typically occur at a
rapid pace. For example, Fig. 1 illustrates the changes in
contrast and luminance that would be expected during
saccadic inspection of a natural scene. The ‘‘plus’’ signs
represent a sequence of fixation locations, and the ‘‘circles’’
represent the corresponding sequence of locations of an
arbitrary receptive field of 1 deg diameter. Enlargements
of the image patches falling within the receptive field are
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shown around the outside of the scene. Each of these image
patches is labeled with the point in time it fell within the
receptive field, with its luminance, and with its root-
mean-squared (RMS) contrast; time proceeds in clockwise
fashion around the figure beginning at the top. As can be
seen, the contrast and luminance change from fixation to
fixation.

Presumably the statistical characteristics of these varia-
tions in local contrast and luminance have had a substan-
tial influence, through natural selection, on the design of
the contrast and luminance gain control mechanisms in
the visual system. Therefore, appropriate analyses of the
statistical properties of natural images may be of consider-
able value for understanding and predicting the functional
behavior of contrast and luminance gain control.

There is much circumstantial evidence for a tight linkage
between the statistics of natural scenes and the design of
the visual system (Atick & Redlich, 1992; Bell & Sejnowski,
1997; Field, 1987; Geisler, Perry, Super, & Gallogly, 2001;
Laughlin, 1981; Olshausen & Field, 1997; Purves & Lotto,
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Fig. 1. Demonstration of the variation in contrast and luminance that might fall on a receptive field during a sequence of eye fixations. The plus signs
show a random sequence of fixations created by sampling from eye movement histograms measured by Najemnik and Geisler (2005). Specifically, the
successive eye positions were obtained by randomly sampling from the histogram of distances between fixations, and the length of time the eye stayed at a
given position was obtained by randomly sampling from the histogram of fixation durations. The circles show a receptive field (1 deg in diameter) at an
arbitrary location relative to the fixation point.
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2003; Ruderman, 1994; Tolhurst, Tadmor, & Chao, 1992;
van Hateren, 1992; van Hateren & van der Schaaf, 1998;
for reviews see Simoncelli & Olshausen, 2001; Geisler &
Diehl, 2002). Luminance and contrast are fundamental
stimulus dimensions, and hence their statistics have
received considerable attention. A number of studies have
been concerned with measuring the distribution of local
contrast in natural images and comparing it to the shape
of contrast response functions in the eye (Laughlin, 1981;
Ruderman, 1994), lateral geniculate nucleus (Tadmor &
Tolhurst, 2000), and primary visual cortex (Brady & Field,
2000; Clatworthy, Chirimuuta, Lauritzen, & Tolhurst,
2003). Other studies have been concerned with characteriz-
ing the distributions of contrast in different environments
(Balboa & Grzywacz, 2003) or the distribution of contrast
at the center of gaze (Reinagel & Zador, 1999).

Although the present study is of some relevance to these
issues (see Section 4) our primary aim was to obtain a bet-
ter understanding of the statistical properties of receptive
field stimulation during typical saccadic inspection, and
hence to obtain a better understanding of the functional
requirements for effective luminance and contrast gain con-
trol. Specifically, we measured the variation and covaria-
tion of local contrast and luminance in natural images as
a function of analysis patch size, distance between patches,
and general type of image region (‘‘foliage’’, ‘‘ground’’,
‘‘sky’’, etc.). A subset of the measurements reported here
are described in Mante, Bonin, Frazor, Geisler, and Caran-
dini (2005).

2. Methods

Local luminance and contrast were measured in a set of calibrated nat-
ural images. The image set consisted of 300 ‘‘rural’’ images (i.e., minimum
of manmade objects or animals) and 100 ‘‘urban’’ images (i.e., taken with-
in a city environment) from a publicly available image database (van Hat-
eren & van der Schaaf, 1998; the images may be obtained at http://
hlab.phys.rug.nl/archive.html). The images were obtained with a Kodak
DCS420 digital camera and were calibrated to result in approximately
12-bit values that are linear with respect to luminance. Complete details
of the calibration procedures are given elsewhere (van Hateren & van
der Schaaf, 1998). Scale factors, provided at the publicly available web
site, were then used to convert the images from linear pixel values to linear
luminance values (although, as noted by van Hateren and van der Schaaf,
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the spectral sensitivity of the camera is not identical to human photopic
spectral sensitivity). The 1536 by 1024 images were cropped to the center
1024 by 1024 pixels.

Images for this study were selected from the full set based upon a num-
ber of criteria. Images that were blurry or had a very narrow depth of field
were not considered. Rural images were required to not contain humans,
animals or manmade objects (including paved roads), unless they were
small or at a great distance so that they occupied a small percentage of
the whole image. Certain other images were removed from consideration
because of their uniqueness (e.g., images dominated by a single tree trunk,
or dominated by large bodies of water with specular reflections). Because
the majority of the remaining images in the database are dominated by foli-
age, and because we were interested in what contributions to local contrast
and luminance are made by various physical constituents of a scene, we
qualitatively divided the remaining images into subsets based upon what
kinds of physical constituents were in the image (i.e., foliage, ground,
sky, or their various combinations). Fixed numbers of images from each
of the subsets were then randomly selected.

The above method of selecting images was not perfectly objective, and
may not be representative of the frequency with which the various kinds of
image region are encountered in the environment. However, it did provide
a wide variety of natural images that allowed us to evaluate how the var-
ious kinds of physical constituents contribute to the distributions of local
luminance and contrast.

Local luminance and contrast were measured in image patches formed
by windowing with a circularly symmetric raised cosine weighting function:

wi ¼ 0:5 cos
p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xcð Þ2 þ yi � ycð Þ2

q� �
þ 1

� �
; ð1Þ

where p is the patch radius, (xi,yi) is the location of the ith pixel in the
patch, and (xc,yc) is the location of the center of the patch. Four different
analysis patch radii were used (8, 16, 32, and 64 pixels). van Hateren and
van der Schaaf (1998) report that each pixel corresponds to approximately
1 min of arc, thus the image patches have diameters of approximately 0.26,
0.54, 1.06, and 2.14 deg, respectively.

For each image and image patch size, image patch locations were
selected by random sampling from an image, with the restriction that
the center-to-center spacing between all selected patches exceeded the
patch radius. The process of image patch selection from a given image
continued until the restriction on the center-to-center spacing prohibited
the selection of any additional patches. We used random sampling because
it eliminates (statistically) many of the biases that can occur with system-
atic sampling schemes.

The local luminance and the root-mean-squared (RMS) contrast of
each patch (weighted by the raised cosine window) were measured. The
local luminance of a patch is defined by

L ¼ 1PN
i¼1wi

XN
i¼1

wiLi; ð2Þ

where N is the total number of pixels in the patch, Li is the luminance of
the ith pixel, and wi is the weight of the raised cosine windowing function
at the ith pixel. The RMS contrast of the patch is defined by

Crms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1PN
i¼1wi

XN
i¼1

wi
Li � Lð Þ2

L2

vuut . ð3Þ

We chose to measure RMS contrast (as opposed to some other definition
of contrast) for several reasons: (1) it is a standard measure, (2) it has
been used in contrast normalization models of cortical cell responses,
and (3) it predicts human contrast detection thresholds for both natural
scene patches and laboratory stimuli quite well and better than other
common measures of contrast (see, for example, Bex & Makous, 2002;
Watson, 2000).

In rare cases (e.g., when a relatively dark region had a small, but very
bright region), very high RMS contrasts were obtained.2 Although these
outlier cases are rare, they point to a potential weakness of the RMS con-
2 For example, the RMS contrast of a delta function is infinite.
trast measure as a plausible measure of the potential effectiveness of a
stimulus in driving contrast adaptation. To evaluate the effect of this
weakness in the standard RMS contrast measure, we also measured local
contrast with a slightly modified version

Crms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1PN
i¼1wi

XN
i¼1

wi
Li � Lð Þ2

Lþ L0ð Þ2

vuut ; ð4Þ

where L0 is a ‘‘dark light’’ parameter, chosen to be 7 td (1 cd/m2 assuming
a 3 mm pupil), based on human (photopic) intensity discrimination data
(e.g., Hood & Finkelstein, 1986). This dark light parameter takes into ac-
count the reduction in visual sensitivity at low luminance, which is due
(presumably) to spontaneous neural activity and other sources of internal
noise. As it turned out, using this modified measure had very little effect on
the results of the data analyses and had no impact on the global trends.

For comparison with the contrast response functions of neurons in
striate visual cortex, we also measured local contrast using a band-limited
measure. Although striate cortex neurons often reach their maximum
response (saturate) at low contrasts, their response tuning functions are
approximately invariant as a function of contrast, for the dimensions of
spatial frequency, orientation and phase (e.g., Albrecht & Hamilton,
1982; Geisler & Albrecht, 1997; Sclar & Freeman, 1982; see Section 4).
Further, there is much evidence that both the invariant tuning and the
half-saturation contrast of striate neurons are due to a fast acting contrast
gain control (‘‘normalization’’) mechanism (e.g., Albrecht & Geisler, 1991;
Heeger, 1991, 1992; see Section 4). In order to have invariant response tun-
ing, the spatial frequency, orientation and phase tuning of the contrast
normalization mechanism must be quite broad. If it were completely
broad (flat), then RMS contrast would be an appropriate contrast measure
of natural scenes to compare with the half-saturation contrast of cortical
neurons. On the other hand, if the normalization mechanism were less
broadly tuned, then a band-limited RMS contrast measure would presum-
ably be more appropriate, because a smaller band-limited contrast is what
the normalization mechanism would be encoding. The tuning functions of
contrast normalization are uncertain, but they must be broad enough to
allow invariant tuning, and thus they must (from computational consider-
ations) be at least twice the bandwidth of a neuron’s response tuning func-
tions. The average spatial frequency bandwidth of cortical neurons is
approximately 1.5 octaves (De Valois, Albrecht, & Thorell, 1982) and
the average orientation bandwidth is approximately 40 deg (De Valois,
Yund, & Hepler, 1982). Therefore, in computing band-limited RMS con-
trast, each rural and urban image was filtered in the Fourier domain with
log Gabor transfer functions (both even and odd phase) that had a 3
octave spatial frequency bandwidth and an 80 deg orientation bandwidth.
After inverse Fourier transformation, the mean luminance of the image
was restored, the local RMS contrast was measured as described above,
and then combined from the even and odd phase filters. The peak spatial
frequency of the log Gabor transfer function was set to two cycles per
analysis patch width, and for each analysis patch width the measurements
were made for peak orientations of 0, 45, 90, and 135 deg. The measure-
ments were averaged across the four peak orientations.

In some of the analyses, we measured the joint statistics of the local
contrast (or luminance) as a function of the distance between the centers
of pairs of patches. For example, we measured how the correlation
between the contrasts of two patches depends on the distance between
the patches. To do this the patch pairs were binned as a function of dis-
tance. The distance bins were spaced by the radius of the image patch.

All of the analyses were carried out on whole images (both rural and
urban). The analyses were also carried out for different kinds of physical
constituents of the natural images. To do this each rural image was hand
segmented into rectangular regions that contained only one kind of con-
stituent: sky, ground, foliage, or backlit foliage (i.e., foliage where the
background is primarily sky rather than foliage or ground). Fig. 2 shows
a typical image that has been hand segmented in this fashion. Some images
contained all kinds of physical constituents, but many contained only a
subset. The segmentation judgments were subjective, but we tried to be
as conservative as possible; that is, we minimized the contamination of
one variety of physical constituent (e.g., foliage) with others (e.g., sky).



Fig. 2. Example of hand segmentation of an image into regions containing
‘‘sky’’, ‘‘foliage’’, ‘‘ground’’, and ‘‘backlit foliage’’.
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Regions of an image that were ambiguous in terms of our categories were
not included in the analysis. For each kind of constituent, all of the rect-
angular regions obtained from all the rural images were analyzed in the
same way as the whole images.

3. Results

Fig. 3 shows the measurements of local luminance.
Fig. 3A plots the average log luminance as a function of
patch size. (Here, all log units are base 10.) As can be seen,
average local luminance is independent of patch size, and it
varies across the kind of physical constituent in the order
one might expect intuitively (e.g., sky has the highest lumi-
nance, foliage the lowest). Fig. 3B shows the average range
of local luminance within images, where the range repre-
sents a 95% range—the difference between the 97.5 percen-
tile log luminance and 2.5 percentile log luminance. These
ranges were computed separately for each image (or rectan-
gular region) and the ranges averaged. Only the range is
plotted because the distribution of log luminance was
Fig. 3. Summary plots of local luminance as a function of image patch size and
in the text. (A) Average local luminance in log10 units as function of patch size.
standard error computed across images. (B) Average range of local luminance
luminance at the 97.5 percentile and the log10 luminance at the 2.5 percentile
standard error computed across images.
found to be fairly symmetrical about the mean log lumi-
nance. Fig. 3B shows that the typical 95% range of local
luminance within both rural and urban images is approxi-
mately an order of magnitude. Within foliage regions that
are backlit with sky, the range is also nearly an order of
magnitude, but decreases sharply with image patch size.
Within foliage and ground regions the range is a factor
of approximately 3, and within sky regions the range is a
factor of approximately 2. These are substantial ranges
and hence a visual system could potentially benefit from
having rapid local luminance gain control mechanisms that
could operate within the time frame of a single fixation.

The full luminance ranges are larger, usually more than
2 log units (see Fig. 5). In addition, there are some full
luminance ranges that exceed the dynamic range of the
camera (e.g., scenes with deep shadows and specular high-
lights). However, the fraction of pixels where this occurs is
very small. Fig. 3B shows that in the typical image the vast
majority of local luminance values are within a log unit of
each other.

Fig. 4 shows the measurements of local contrast. Fig. 4A
plots the average RMS contrast as a function of patch size
and Fig. 4B plots the average band-limited RMS contrast.
For both the rural and urban images the average RMS
contrast is approximately 0.2 for small patch sizes and
increases monotonically. Essentially the same pattern is
observed for image regions containing only foliage or
ground. Not surprisingly, the RMS contrast is consider-
ably higher for image regions containing only backlit foli-
age, and considerably lower for image regions containing
only sky. A similar pattern of results was obtained for
band-limited contrast. Unlike RMS contrast, band-limited
contrast is relatively constant with patch size, especially for
rural images.

Figs. 4C and D show the average 95% range of local
RMS contrast within images. Because the distribution of
local contrasts is not symmetric about the mean, Fig. 4C
plots the lower end of the range (2.5 percentiles) and
Fig. 4D plots the upper end of the range (97.5 percentiles).
The 95% range of contrasts in the average rural or urban
type of image region. The definition of local luminance is given by Eq. (2)
Data points represent averages across all patches. Error bars represent ±1
within an image. The range is defined as the difference between the log10
. Data points represent averages across images. Error bars represent ±1



Fig. 4. Summary plots of local contrast as a function of image patch size and type of image region. (A) Average local RMS contrast. (B) Average band-
limited RMS contrast (see Section 2 for definition of band-limited contrast). (C) Lower bound of 95% confidence interval of relative RMS contrast in log10
units. (D) Upper bound of 95% confidence interval of relative RMS contrast in log10 units. Error bars represent ±1 standard error of the mean computed
across images.
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image is greater than an order of magnitude. As with local
luminance, these are substantial ranges and hence a visual
system could potentially benefit from having rapid local
contrast gain control mechanisms that could operate with-
in the time frame of a single fixation.

Figs. 3 and 4 show that there are substantial variations
in both local luminance and local contrast within natural
images. Thus, an important issue in evaluating potential
luminance and contrast gain control mechanisms is the
degree to which these variations in local luminance and
contrast are correlated. If they are uncorrelated, then local
contrast and luminance gain control mechanisms could
potentially operate (and evolve) independently. For exam-
ple, the contrast gain control mechanism would not need to
take into account the local luminance. On the other hand,
if they are highly correlated, then efficient luminance gain
control and efficient contrast gain control mechanisms
would need to share the same information, in order to
exploit the redundancy implicit in the correlation. In this
case, an efficient contrast gain control mechanism would
presumably need to take into account local luminance.

Fig. 5 plots the average joint distributions of luminance
and RMS contrast for a patch diameter of 0.54 deg. To
obtain these distributions, each patch luminance and con-
trast was normalized by the mean patch luminance and
mean patch contrast for that image. Then, the values were
pooled across all the images, and the result scaled to match
the mean patch luminance and the mean patch contrast
across all images. Thus, the results in Fig. 5 are representa-
tive of a given single image. The contours in the plots show
the regions corresponding to 40%, 65%, and 90% of the
volume under the distribution. There is relatively little sys-
tematic relationship between luminance and contrast for
either the full images or their constituents. The only obvi-
ous asymmetry is the clusters of high probability at high
luminance and low contrasts in the rural images, which
appear to be due to sky.

Fig. 6 plots measurements of the correlation between
luminance and contrast as a function of patch size. These
are average correlations that were obtained by computing
the correlation separately for each image and then averag-
ing across images. The correlations are relatively small,
but significant. For both rural and urban images, and
for backlit foliage, there is a slight negative correlation
of approximately �0.2; for ground there is an even small-
er negative correlation of approximately �0.1; for sky the
correlation is approximately 0; for foliage there is a slight
positive correlation of approximately 0.15. These results
suggest that local contrast gain control mechanisms could
be efficient without taking into account the local
luminance.

Interestingly, the low correlation between luminance
and contrast is a result of the phase structure of real imag-
es. To examine the effect of the phase structure we random-
ized the phase spectrum of each natural image and then
repeated the correlation measurements. The method of
phase randomization was as follows: (1) generate a Gauss-
ian white noise image and take its Fourier transform, (2)
take the Fourier transform of the natural image, and deter-
mine its amplitude spectrum, (3) replace the amplitude
spectrum of the white noise image with the amplitude spec-
trum of the natural image, and then take the inverse Fou-



Fig. 5. Joint probability distributions of contrast and luminance for a patch diameter of 1 deg, for each type of image region. These distributions represent
the variation of luminance and contrast within a typical image region; specifically, we first computed the overall average luminance and contrast across
image regions, and then rescaled each image so that its average luminance and contrast would match the overall average. The contours delineate the areas
containing 90% (red), 65% (blue), and 40% (green) of the observations.

Fig. 6. Correlation between local luminance and local RMS contrast as a
function of analysis patch size. The black and open squares show the
correlations for images where the spatial phases have been randomized; a
correlation of approximately �0.8 is also obtained for 1/f noise.
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rier transform, and (4) scale the resulting image about its
mean to eliminate any negative values. As can be seen in
Fig. 6, there is a strong negative correlation (�0.7 to
�0.8) between local luminance and RMS contrast in the
phase-randomized images. Given that the amplitude spec-
tra of natural images fall roughly as 1/f (Burton & Moore-
head, 1987; Field, 1987) it is not surprising that we also
obtained a correlation of approximately �0.8 for 1/f noise
images. These results suggest that 1/f noise is not a good
model of natural image statistics, at least for the purpose
of understanding the computational requirements of lumi-
nance and contrast gain control mechanisms. Later, we
describe several factors contributing to the low correlation
between local luminance and contrast.
The dynamic requirements of luminance and contrast
gain control mechanisms should depend upon the frequen-
cy and magnitude of changes in luminance and contrast
that fall within a neuron’s receptive field. If the changes
are frequent and large then the gain control needs to be
rapid and powerful. The frequency of saccadic eye move-
ments (3–5 per second) implies that there are frequent
changes, and we have seen that there are large variations
in local luminance and contrast within rural and urban
images. However, whether or not there are frequent large
changes in the luminance and contrast falling within a
receptive field depends on how rapidly local luminance
and contrast vary across space. If they vary gradually
across space, relative to the average distance between fixa-
tions, then the changes will be small and hence more slug-
gish gain control mechanisms might be adequate.

To evaluate how rapidly local luminance and contrast
vary across space we measured pair-wise correlations as a
function of distance. Fig. 7 plots the distance between
image patches where the correlation falls to a value of
0.25, which we call the decorrelation distance. (Note that
a correlation of 0.25 implies that the percentage of varia-
tion in one patch predicted by the other patch is about
6%.) For rural and urban images, the decorrelation dis-
tance for contrast is about 2 deg for small patch sizes and
increases slightly with patch size. Interestingly, for all of
the constituents of the rural images, the decorrelation dis-
tance for contrast is almost exactly the same—increasing
from about 1 deg for the smallest patch size to about
2 deg for largest patch size. The decorrelation distance



Fig. 7. Distance between image patches where the correlation drops on average to a value of 0.25, as a function of image patch size. (A) The correlations
between the luminances of the image patches. (B) The correlations between the RMS contrasts of the image patches.

3 One possible objection to this conclusion is that, during natural search
tasks, observers might select fixation locations on the basis of local
contrast. However, what evidence is available suggests that fixated
locations are only slightly higher in contrast (on average) than randomly
selected locations (Reinagel & Zador, 1999). More importantly, most
receptive fields are not centered at the fixation location and hence will
receive a random sample of local contrast.
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for luminance is 1.5–2 times larger than it is for contrast,
but it varies less with patch size. Also, the decorrelation
distance for luminance varies more across the constituents
of the images than it does for contrast. Finally, note that
the decorrelation distance is a little smaller for the phase-
randomized images than for the original images. Given
that the mean saccade length in complex search tasks is
greater than 3.0 deg (see Section 4), it seems safe to con-
clude that there will often be little correlation between
the contrasts (or, the luminances) within a given receptive
field before and after a saccade.

4. Discussion

To obtain a better understanding of the statistical prop-
erties of receptive-field stimulation during typical saccadic
inspection, and to obtain a better understanding of the
functional requirements for effective luminance and con-
trast gain control, we measured the variation and the
covariation of local contrast and local luminance in natural
images as a function of analysis patch size, distance
between patches, and type of image region (‘‘foliage’’,
‘‘ground’’, ‘‘sky’’, and ‘‘backlit foliage’’). We found that
(1) variations in local luminance and contrast within a giv-
en image are substantial (Figs. 3 and 4), (2) local luminance
and contrast at the same spatial location are relatively
uncorrelated within a image, which is not true for noise
with the same amplitude spectrum as the natural image
(Figs. 5 and 6), (3) the correlation between local contrasts
falls rapidly with spatial distance (Fig. 7A), (4) the correla-
tion between local luminances falls rapidly with spatial dis-
tance, but less rapidly than for contrast (Fig. 7B), and (5)
the above hold for the different types of image region
and for different patch sizes.

4.1. Eye movements and rapid contrast gain control

The average distance between eye fixations depends on
the particular task that is being performed. If an observer
is performing a task such as inspecting a small detail of
some object, then the eye movements will be quite small.
On the other hand, if an observer is performing a task such
as scanning a prairie for trees, then the eye movements will
be quite large. As a representative task between these two
extremes, consider a search task where the display size is
similar to the image size analyzed here, which had a width
of approximately 17 deg (see Section 2). Najemnik and
Geisler (2005) measured eye movements while observers
searched for Gabor targets that were randomly located in
backgrounds of 1/f noise with a diameter of 15 deg. They
varied the target and noise contrast parametrically and
found that the average distance between fixations was more
than 4 deg. We note that this estimate of the average dis-
tance between fixations in natural tasks is likely to be con-
servative; for example, under natural viewing conditions
Becker (1975) (as described in Rodieck, 1998) finds that
the average distance between successive fixations is greater
than 7 deg (see also Land & Hayhoe, 2001). These results,
in combination with the present study, strongly suggest
that during many natural tasks there will be little correla-
tion between the contrasts that fall within a given receptive
field on successive fixations; furthermore, the jumps in con-
trast that occur from one fixation to the next will often be
quite large (see, for example, Fig. 1).3

These facts have strong implications for the dynamics of
contrast gain control mechanisms. Consider, for example,
the contrast gain control mechanisms in the primary visual
cortex (V1). It is well known that the sensitivity of V1 neu-
rons decreases following the presentation of high contrast
stimuli (Albrecht, Farrar, & Hamilton, 1984; Bonds,
1991; Ohzawa, Sclar, & Freeman, 1985; for a review see
Albrecht, Geisler, Frazor, & Crane, 2002; Albrecht, Geis-
ler, & Crane, 2003). The time course for the build up and
decay of these sensitivity changes is on the order of sec-
onds, and thus the underlying adaptation mechanisms are
too sluggish to adjust for many of the rapid large changes
in contrast that occur due to eye movements.



Fig. 8. Evidence for rapid contrast gain control in primary visual cortex. (A and B) Typical contrast response functions for an optimal and a non-optimal
spatial phase during the first 20 ms of response to a 200 ms sine wave grating in monkey (A) and cat (B). (C and D) Typical contrast latency functions for
an optimal and a non-optimal spatial phase for the first 20 ms of response to a 200 ms sine wave grating in monkey (C) and cat (D). (E and F) Signal-to-
noise ratio (d 0) for pattern detection as a function of integration time starting at the onset of the response to a high contrast 200 ms sine wave grating of
optimal spatial frequency, orientation and phase, in monkey (E) and cat (F). (Taken from Albrecht et al., 2002 and Frazor et al., 2004.)

4 A d 0 of 1.0 corresponds to 75% correct in the two-interval two-
alternative forced choice detection task.
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There is, however, evidence for a much faster form of
contrast gain control in the primary visual cortex (Albrecht
&Geisler, 1991; Albrecht et al., 2002; Albrecht &Hamilton,
1982; Carandini & Heeger, 1994; Carandini, Heeger, &
Movshon, 1997; Frazor, Albrecht, Geisler, & Crane, 2004;
Geisler & Albrecht, 1992, 1997; Heeger, 1991, 1992; Sclar
& Freeman, 1982). This rapid form of gain control, which
is often referred to as ‘‘contrast normalization’’, appears
to play a fundamental role in cortical processing: (1) it cre-
ates invariant tuning characteristics of cortical neurons
along various stimulus dimensions including orientation,
spatial frequency, spatial phase, temporal frequency, and
direction of motion, even at contrasts producing response
saturation (see references above), (2) as a consequence, it
also creates invariant population responses as a function
of contrast, (3) it causes the relationship between the stimu-
lus and response to become more constrained (unique) at
high response rates (Albrecht & Geisler, 1991; Geisler &
Albrecht, 1995), and (4) it increases the statistical indepen-
dence of neural responses in a given local region thereby
increasing the efficiency of the neural representation (Wain-
wright, Schwartz, & Simoncelli, 2002).

Two recent studies (Albrecht et al., 2002; Frazor et al.,
2004) provide strong evidence that contrast normalization
has very rapid temporal dynamics. For example, Fig. 8A
shows the contrast response functions (response as a func-
tion of contrast) measured during the first 20 ms of the
response of a typical neuron in monkey V1, for sine wave
grating stimuli that have an optimal spatial phase (solid
symbols) and a non-optimal spatial phase (open symbols).
Fig. 8B shows the same measurements for a typical neuron
in cat area 17. As can be seen, response saturation is
reached at the same contrast for optimal and non-optimal
stimuli, thus preserving selectivity to phase even in the sat-
urated response range. The curves through the data have
exactly the same shape (they differ by a scale factor), imply-
ing that selectivity (the phase tuning) is approximately con-
stant (invariant) independent of contrast. Figs. 8C and D
show the contrast latency functions (the change in the
latency to the peak response as a function of contrast)
for the same cells shown in Figs. 8A and B. As can be seen,
response latency declines with contrast in the same way for
optimal and non-optimal stimuli. These two non-linear
effects, which hold for all cells measured in the study, must
be due to contrast-dependent mechanisms, because the
response saturation and the latency changes are determined
solely by the contrast of the stimuli, and not by the
response rate of the cell (for more details see Albrecht
et al., 2003, and the other references listed above). The fact
that this full-blown pattern of contrast gain control effects
occurs within tens of milliseconds of response onset implies
that contrast normalization is very rapid.

It appears then, that the temporal dynamics of at least
one component of contrast gain control are well matched
to the temporal dynamics of contrast on the retina implied
by the statistics of natural images and normal eye move-
ment patterns. Rapid contrast gain control may be the
result of feed-forward and/or feedback neural mechanisms
in the retina, LGN, and cortex (Albrecht & Geisler, 1991).
Regardless of the locus, our findings suggest that the rapid
dynamics of these mechanisms may be the consequence of
an evolutionary pressure created by the statistics of con-
trast in the natural environment, in conjunction with the
eye movement requirements of foveated visual systems.

Further evidence for a match between the temporal
dynamics of primary visual cortex neurons and the statis-
tics of eye movements is shown in Figs. 8E and F, which
illustrate how detection performance (d 0) grows as spikes
are integrated during a 200 ms presentation of an optimal
sine wave grating.4 As the integration interval increases,
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d 0 increases rapidly and then reaches a plateau well before
the end of the 200 ms presentation. Over the population of
neurons measured in Frazor et al. (2004), the average time
to reach 90% of the maximum d 0 is approximately 50 ms in
monkey and approximately 100 ms in cat. Thus, for sta-
tionary stimuli it appears that most of the spike rate infor-
mation is transmitted by primary visual cortex neurons
within a time interval that is well within the duration of a
typical fixation during visual search. This time course
would seem to be well matched to the eye movement sys-
tem, under the assumption that recognition processes and
eye movement planning/programming must occur before
the end of the fixation. It is important to note that this
rapid information saturation in the step response is not a
reflection of the time constant of contrast normalization
(which is considerably faster); rather, it is a reflection of
the transient shape of the step response, which may be
due to a combination of linear temporal filtering and rapid
highly local light adaptation.

This rapid information saturation observed in primary
visual cortex neurons is consistent with psychophysical
studies showing that search (character detection) perfor-
mance in sequences of random character displays is unaf-
fected by decreasing the inter stimulus interval to less
than half the duration of a single fixation (e.g., Sperling,
Budiansky, Spivak, & Johnson, 1970), and with psycho-
physical studies showing rapid dynamics in contrast mask-
ing (e.g., Wilson & Kim, 1998).

4.2. Eye movements and rapid luminance gain control

The present results also have implications for the
dynamics of luminance gain control/adaptation. Although
the decorrelation distance for local luminance is larger than
it is for local contrast (�4 deg vs. �2.5 deg), there are still
many fixation eye movements greater than 4 deg. For these
fixations there will be little correlation in the local lumi-
nance before and after fixation. Therefore, given that there
are substantial variations in local luminance within natural
Fig. 9. Distributions of local contrast and local luminance for each of the 30
standard deviation) for a particular rural image. (A) Scatter plot of the mean
Scatter plot of the mean local luminance and the standard deviation of local lum
analysis patch diameter was 0.54 deg.
images, it would presumably be useful for the visual system
to have local luminance adaptation mechanisms that build
up and decay rapidly enough to come to equilibrium in
parallel with contrast normalization. There is psychophys-
ical evidence for rapid multiplicative and subtractive gain
control at photopic light levels (Geisler, 1981, 1983; Hay-
hoe, Benimoff, & Hood, 1987; Hayhoe, Levin, & Koshel,
1992; for reviews see Hood, 1998; Makous, 1997). Howev-
er, there are few relevant neurophysiological studies in pri-
mates; Yeh, Lee, and Kremers (1996) report a rapid
component of light adaptation in M and P cells, but the
stimuli did not allow precise measurement of time
constants.

4.3. Slow contrast gain control

If local contrast tends to be relatively uncorrelated
across fixations within a scene, then how can we make
sense of slow contrast adaptation? One possible explana-
tion is that slow contrast adaptation adjusts for changes
in contrast statistics that occur when the organism moves
from one environment to another. However, the measure-
ments shown in Fig. 9A suggest that this is probably not
the case. This figure plots the mean local contrast and the
standard deviation of local contrast for each of the 300
rural images. The fact that all but a handful of images clus-
ter together implies that the distribution of contrast is sim-
ilar from one image to the next. Thus, there would seem to
be relatively little change in the distribution of contrast
from one environment to the next, and hence relatively lit-
tle need for slow contrast adaptation mechanisms.

Another possible explanation for slow contrast adapta-
tion is that it provides useful sensitivity adjustments under
fixation conditions that confine receptive fields to certain
image regions for several seconds. For example, the aver-
age contrast of sky is nearly a log unit lower than the aver-
age contrast in other kinds of image region (see Fig. 4) and
a receptive field may sometimes remain in a sky region for
many seconds. The plausibility of this explanation depends
0 rural images. Each data point represents a distribution (a mean and a
local rms contrast and the standard deviation of local rms contrast. (B)
inance. Note that all axes were set to be equal in numbers of log units. The
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upon the nature of the mechanisms underlying the slow
contrast adaptation. In primary visual cortex, prolonged
stimulation to high contrast patterns typically produces
two changes in the contrast response functions of single
neurons: an increase in the half-saturation contrast and a
reduction in the maximum response rate (Albrecht et al.,
1984). If these adaptation effects are primarily dependent
upon the response rate (depolarization) of the neuron, then
they are unlikely to be of much value in adjusting for dif-
ferent kinds of image regions. The high degree of selectivity
of V1 neurons to spatial frequency, orientation and phase
implies that the vast majority of fixations will produce little
or no response from any given neuron, even if the eye
movements are quite small and the receptive field is falling
within a high contrast region of the image (Geisler & Albr-
echt, 1997). In other words, the average maintained activity
of a cortical neuron will be quite small, even in a high con-
trast region.

On the other hand, if slow adaptation is primarily the
result of network mechanisms that are relatively broad in
their spatial frequency, orientation and phase tuning, then
slow adaptation could be of benefit in adjusting to statisti-
cal properties of particular regions of the visual scene
(Wainwright et al., 2002). There is some evidence that slow
contrast adaptation involves network mechanisms (Albr-
echt et al., 1984; Movshon & Lennie, 1979), but the relative
contribution of network and rate-dependent mechanisms is
unknown. In any event, this is a potentially important role
for slow adaptation.

Another possibility is that psychophysically measured
contrast adaptation is a bi-product of high-level spatial
pattern adaptation mechanisms that might serve various
roles in object perception and recognition (Webster, 2004).

Finally, we note that it is possible that sluggish contrast
adaptation is not an adjustment for statistical properties of
natural scenes, but instead is a special case of a general
mechanism whose purpose is to conserve metabolic energy
by keeping the maintained activity of cortical neurons near
zero. This is not implausible given that there appear to be
severe limits on the average spike rate that can be support-
ed by the metabolic systems in the brain (Attwell & Laugh-
lin, 2001; Lennie, 2003).

4.4. Slow luminance gain control

There is less uncertainty about the role of slow lumi-
nance gain control. There is a long history of research mea-
suring and characterizing the slow components of
luminance adaptation that build up and decay on the order
seconds or minutes (for reviews see Hood, 1998; Hood &
Finkelstein, 1986; Shapley & Enroth-Cugell, 1984; Walrav-
en, Enroth-Cugell, Hood, MacLeod, & Schnapf, 1990).
These slow adaptation mechanisms undoubtedly reflect
the environmental fact that changes in ambient illumina-
tion tend to occur slowly (dawn and dusk) or infrequently
(e.g., moving out from under a forest canopy). The differ-
ence between luminance and contrast in this regard is dem-
onstrated in Figs. 9A and B. Fig. 9B plots the mean local
luminance and the standard deviation of local luminance
for each of the 300 rural images. Here we see that the nat-
ural images do not cluster together, but are spread across a
wide range (note that the axes in Fig. 9A and B are equal in
numbers of log units), and hence there would seem to be
considerable value in having slow luminance adaptation
mechanisms. Based on Fig. 9, it would seem that the statis-
tics of natural images provide considerable evolutionary
pressure for slow luminance adaptation, but perhaps less
pressure for slow contrast adaptation.

4.5. Contrast response functions

Laughlin (1981) reported a close relationship between
the distribution of contrast values in natural images and
the shape of the contrast response function of the large
monopolar cells (LP cells) in the blowfly. He found that
the contrast response function effectively performs a form
of ‘‘histogram equalization’’—each possible response rate
of an LP cell occurs equally often (on average) in the nat-
ural environment. This is an efficient way to use the full
response range of a neuron, and is consistent with the
notion that a goal in the early visual system is to efficiently
encode visual information (e.g., Barlow, 1961). Tadmor
and Tolhurst (2000) reported a similar close relationship
between the distributions of equivalent Michelson contrast
in natural images and the shapes of the contrast response
functions of neurons in the lateral geniculate nucleus
(LGN) of cats, and in magnocellular layers of the LGN
in primates, although this simple relationship does not
appear to hold as well for parvocellular neurons in the
LGN or for neurons in primary visual cortex (Brady &
Field, 2000; Clatworthy et al., 2003; Tadmor & Tolhurst,
2000).

Comparisons of the contrast in natural scenes and the
contrast response function of neural populations depend
to some extent on the measure of contrast. Most previous
studies have used an equivalent contrast measure that is
designed to represent the contrast in natural images that
would activate (excite) a typical neuron; that is, they
attempt to measure the fraction of local contrast that is
matched to the typical receptive field. However, in the pri-
mary visual cortex (and perhaps in the retina as well) the
shape of the contrast response function appears to be deter-
mined by the inhibitory (normalization) effects of contrast
gain control mechanisms. For example, response satura-
tion occurs at the same contrast for optimal and non-opti-
mal stimuli, implying that a wide range of spatial
frequencies, orientations and phases controls the half-satu-
ration contrast of cortical neurons (see Fig. 8 and associat-
ed references). This suggests that RMS contrast, or some
other broad band measure of local contrast, might also
be an appropriate measure for comparison with neural
contrast response functions. Fig. 2A shows that the average
RMS contrast in rural images is in the range 0.2–0.34
(depending on analysis patch size). Fig. 2B shows that
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the band-limited RMS contrast is in the range of 0.15–0.18
for rural images. (Recall that this band-limited RMS con-
trast is probably at or below the lower limit of plausible
equivalent contrasts for the contrast normalization mecha-
nisms evident in primary visual cortex.) If the contrast
response functions (more specifically the contrast normali-
zation mechanism) of cortical neurons were well matched
to the contrasts in natural scenes we might expect the
half-saturation contrast (c50) to match the median contrast
(Brady & Field, 2000; Clatworthy et al., 2003). The median
half-saturation RMS contrast of neurons in the primary
visual cortex of monkey is in the range of 0.18–0.24 (Albr-
echt & Hamilton, 1982; Geisler & Albrecht, 1997; Sclar,
Maunsell, & Lennie, 1990), which would seem to be in rea-
sonable agreement with the contrasts in natural scenes.

The median half-saturation RMS contrast for neurons
in cat primary visual cortex is approximately half that in
the monkey (Albrecht & Hamilton, 1982; Clatworthy
et al., 2003; Geisler & Albrecht, 1997). However, optics
and retinal center mechanisms create an effective cutoff fre-
quency of 6–8 cpd (Blake, 1988), thereby reducing the effec-
tive RMS contrast of visual images. Blurring with a
Gaussian kernel that cuts off at 8 cpd (assuming a peak
contrast sensitivity of 100) reduces the effective RMS con-
trast by a factor of approximately 2. Thus, it is possible
that the lower half-saturation contrasts of cat cortical neu-
rons are matched to the effectively reduced image contrasts.

We note, however, that the rough match between the
median half-saturation contrasts of cortical neurons and
the contrast in natural images may have little to do with
histogram equalization (in the contrast normalization
mechanism). For example, the match could be the result
of evolutionary pressure to maximize the signal-to-noise
ratio of single neuron responses; that is, the match could
reflect a compromise between the competing sub-goals of
increasing gain to produce large responses to natural con-
trasts and decreasing the gain to avoid amplifying neural
noise.

4.6. Independence of local luminance and contrast

Fig. 6 shows that there is relatively little correlation
between local luminance and local contrast. Interestingly,
there is a large negative correlation (approximately �0.8)
in images that have the same amplitude spectra as natural
images, but randomized phase spectra. It has been suggest-
ed that the amplitude spectra of natural images may be suf-
ficient to understand retinal function: ‘‘The retina, being
the first major stage in visual processing, is not expected
to have knowledge beyond the simplest aspects of natural
scenes and hence for understanding the retina the power
spectrum (of the image) may be sufficient’’ (Atick & Red-
lich, 1992). The large difference in the luminance vs. con-
trast correlation between phase-scrambled and
unscrambled images suggests that this is not the case.

If there were a large negative correlation between local
luminance and contrast, then there would presumably have
been substantial evolutionary pressure to exploit the redun-
dancy inherent in the negative correlation. For example, it
would be possible to improve the contrast resolution of
neurons (i.e., neurons in the early visual system could have
steeper contrast response functions). Specifically, because
of the strong correlation, the local luminance could be used
to shift a very steep contrast response function to the prop-
er location on the contrast axis. However, the indepen-
dence of luminance and contrast eliminates this
possibility; neurons are required to have less steep contrast
response functions.

What is the reason for the large negative correlation
between local luminance and contrast in phase-scrambled
natural images? Consider the modulations in pixel lumi-
nance above and below the mean luminance of the whole
image. By the principle of symmetry, randomizing the
phase spectrum guarantees that the pixel luminance varia-
tions above and below the mean are on average statistically
identical (i.e., inverting the pixel contrasts about the mean
cannot change the statistics of a phase-scrambled image).
Thus, a local image patch with luminance below the image
mean will contain the same pixel luminance standard devi-
ation as one above the image mean. But, the local contrast
is by definition the pixel luminance standard deviation
divided by the local mean, and therefore the contrast of
the patch with luminance below the image mean will (on
average) have the greater contrast.

The above argument shows that the low correlation
between local luminance and contrast in unscrambled nat-
ural images is not a trivial result. What factors are respon-
sible for the low correlation? The most obvious factor is
based upon the classic view that the luminance distribution
at the eye is the product of a surface reflectance function
and a more-or-less statistically independent illumination
function. To explore this possibility, we modeled the retinal
luminance distribution as a product of a 1/f noise reflec-
tance function and a 1/fn illumination function. The func-
tions were independent random samples and we varied
the exponent of the illumination function from 1 to 3 (as
the exponent increases the random texture becomes
smoother). For all exponents there remains a large negative
correlation between local luminance and contrast. Howev-
er, the correlation is in the range of �0.5 to �0.7, less neg-
ative than for 1/f noise. Thus, although independence of
the reflectance and illumination function must be a contrib-
uting factor, it does not appear to be sufficient.

Another plausible factor is an effect due to shadows and
shading. Surfaces (e.g., the surfaces of leaves) that are in
direct sunlight will have greater luminance on average than
those in shaded regions of a scene. Further, because of the
directionality of sunlight, the shadows created by (and
hence next to) the intense surfaces will tend to form higher
contrasts than the shadows created by the less intense sur-
faces in the shaded regions. Similarly, because of the direc-
tionality of sunlight, the shading patterns on surfaces in
sunlight will tend to have higher contrast than those in
the shaded regions of the scene. This may even hold under



Fig. 10. Predicted effect of the first-order statistics (the pixel luminance
distributions) on the correlation between local luminance and contrast.
Natural images where the phase is randomized have a pixel luminance
distribution that is symmetric about the mean (i.e., approximately
Gaussian). In this case, the predicted correlation is highly negative (nearly
�0.8). The skewed pixel luminance distributions of natural images shift
the correlations near to or above zero. The parameters describing the pixel
luminance distributions are as follows (the last number is the percentage of
variance accounted for; see text for equations): ran phase (a = 74,
b = 1719, n = 0.66, 99.1%), rural (a = 1.28, b = 2.04, n = 0.41, 99.4%),
foliage (a = 0.91, b = 0.65, n = 0.86, 99.8%), ground (a = 1.0, b = 0.86,
n = 0.87, 99.7%), sky (a = 1.12, b = 1.16, n = 0.98, 98.2%), and backlit
(a = 1.05, b = 0.82, n = 0.5, 98.9%).

5 In general, point non-linearities do affect the Fourier amplitude
spectrum. For example, in the extreme case of a high threshold, all but a
few of the most intense pixels would be set to zero, and hence the spectrum
would become flat. However, for the smooth point non-linearities
estimated here there was no measurable change in the shape of the
amplitude spectrum.
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overcast conditions because the illumination is still (on
average) more diffuse in shaded regions. These effects will
tend to create a positive correlation between local lumi-
nance and contrast, counteracting the negative correlation
expected for pixel luminance distributions that are symmet-
ric about the mean. There is some circumstantial evidence
for this hypothesis in our statistics. The foliage regions
(which contain many shadows) should display this effect
more than other types of region, and indeed foliage is the
only type of region where we observed a positive correla-
tion (0.15).

Another possible factor is that reflectance functions of
natural environments are not well modeled as 1/f noise.
More work will be required to determine the relative
importance of these different factors.

In order for there to be a low correlation there must be
greater variation in pixel luminance for local image patches
with luminance above the image mean than for those with
luminance below the image mean (this must be due to fac-
tors such as those discussed above). It is well known that
the distribution of pixel luminance in natural images is
skewed toward higher luminance (e.g., see Brady & Field,
2000). This must create greater variation in pixel luminance
for local image patches with luminance above the image
mean than for those with luminance below the mean.
Could this first-order statistical property of natural images,
in conjunction with the 1/f second-order statistics, account
for the low correlation between local luminance and con-
trast or are higher-order statistics critical? To test this
hypothesis we measured the correlation between local lumi-
nance and contrast for noise that had only the first- and
second-order statistics of natural images. This ‘‘first-order
1/f noise’’ was created as follows:

1. Generate standard 1/f noise by filtering white noise in
the Fourier domain with the average amplitude spec-
trum of the natural images. This step gives the noise
the second-order statistics of natural images. The cumu-
lative pixel luminance distribution of this noise is a
cumulative normal distribution function with a mean
of u and a standard deviation of r, N (y;u,r). We set
u = 0.5 and r = 0.1.

2. Measure the normalized cumulative pixel-luminance dis-
tribution, H (x), of the natural images. This is done by
forming the cumulative histogram of pixel luminance
values from all images, after normalizing each pixel val-
ue by the average luminance of the image to which it
belonged.

3. Find the monotonic point non-linearity x = g (y) that
maps N (y;u,r) onto H (x). The function g (Æ) is given
by: g�1 (x) = N�1 (H(x);u,r). To obtain a smooth,
monotonic and invertible function, we fit the raw values
N�1 (H(x);u,r) with a Naka–Rushton equation,
g�1 (x) = axn/(xn + bn), where a, b, and n are free param-
eters. This function provided a good fit, with generally
better than 98% of variance accounted for (see caption
of Fig. 10).
4. Apply the point non-linearity gðyÞ ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y=ða� yÞn

p
to the

standard 1/f noise generated in step 1, where y is the pix-
el luminance. This point non-linearity gives the noise the
first-order statistics of natural images, but does not alter
the shape of the amplitude spectrum.5

Fig. 10 shows the predicted and observed correlations
between luminance and contrast. The predictions for the
random phase case are trivial, but provide a check on
the procedure for estimating the point non-linearity. The
key observation is that the predicted correlations for all
the image types are either near zero or greater than zero.
This implies that the first-order statistics of natural imag-
es reflect the lack of a negative correlation between local
luminance and contrast. Fig. 11A shows a sample of 1/f
noise with Gaussian first-order statistics (i.e., standard
1/f noise) and Fig. 11B shows the same sample of 1/f
noise with first-order statistics that match the average rur-
al image.

The low correlation between local contrast and lumi-
nance suggests that the mechanisms of luminance and con-
trast gain control could operate relatively independently, in
the sense that local contrast gain control mechanisms could



Fig. 11. Samples of 1/f noise. (A) Standard 1/f noise, which has a Gaussian pixel luminance distribution. In this noise there is a large negative correlation
between local luminance and contrast. (B) First-order 1/f noise, which has the average pixel luminance distribution of natural (rural) images. In this noise
there is a weak negative correlation between local luminance and contrast.
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be efficient without taking into account the local lumi-
nance. Thus, for example, initial processing could normal-
ize for the local mean luminance by forming a local relative
luminance (contrast) signal, cðx; yÞ ¼ ðjLðx; yÞ � �LjÞ=ð�Lþ L0Þ,
and subsequent mechanisms could normalize for local con-
trast by forming a local relative contrast signal,
rðx; yÞ ¼ ðcðx; yÞÞ=ð�cþ c0Þ, using only the local relative
luminance signal as input. This is a traditional view of
luminance and contrast processing in the visual system.
The statistical properties of natural images suggest that this
traditional view, which is simple and parsimonious, could
also be efficient. Recent measurements in the lateral
geniculate nucleus of the cat suggest that luminance and
contrast gain control indeed act independently in the retina
(Mante et al., 2005).

5. Conclusion

We find that there are substantial variations in local
luminance and contrast in natural images and that the
correlation of luminance and contrast as a function of dis-
tance falls fairly rapidly with respect to the average dis-
tance between fixations. This implies that the dynamics
of at least some components of luminance and contrast
gain control need to be very rapid, and thus the statistical
properties of natural images lend support to recent phys-
iological evidence for rapid contrast and luminance gain
control. In addition, we find that there is little correlation
between local luminance and contrast (even though one
would expect a large negative correlation for 1/f noise).
This suggests that the rapid contrast gain control mecha-
nisms should not depend on local luminance. Thus, the
statistical properties of natural images also lend support
to recent physiological evidence for independent lumi-
nance and contrast gain control mechanisms in the retina.
Finally, we found that the first-order statistics and the
amplitude spectra of natural images account for most of
the statistical regularities we observed in local contrast
and luminance.
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