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Local Analysis of Visual Motion

Eero P. Simoncelli

We inhabit an ever-changing environment, in which sens-

ing, processing and acting upon these changes can be

essential for survival. When we move or when objects in

the world move, the visual images projected onto each

of our retinas change accordingly. The psychologist J.

J. Gibson noted that important environmental informa-

tion is embedded in this pattern of local retinal image

velocities (Gibson, 1950), and thus initiated a scientific

quest to understand the mechanisms that might serve

to estimate and represent these velocities. Since that

time, visual motion perception has been the subject of

extensive research in perceptual psychology, visual neu-

rophysiology, and computational theory.

There is an abundance of evidence that biological vi-

sual systems – even primitive ones – devote considerable

resources to the processing of motion. A substantial pro-

portion of the effort in the field of computer vision has

also been devoted to the problem of motion estimation.

Although the processing constraints in a biological sys-

tem are somewhat different from those in an artificial vi-

sion system, each must extract motion information from

the same type of brightness signal. This chapter adopts

the philosophy that in order to understand visual mo-

tion processing in the brain, one should understand the

nature of the motion information embedded in the visual

world, and the fundamental issues that arise when one

attempts to extract that information (Marr & Poggio,

1977). I’ll develop the most basic computational solu-

tion to the motion estimation problem, and examine the

qualitative relationship between aspects of this solution

and the properties of neurons in the motion pathway.
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Local motion

Images are formed as projections of the three-dimensional

world onto a two-dimensional light-sensing surface. This

surface could be, for example, a piece of photographic

film, an array of light sensors in a television camera, or

the photoreceptors in the back of a human eye. At each

point on the surface, the image brightness is a measure-

ment of how much light fell on the surface at that spatial

position at a particular time (or over some interval of

time). When an object in the world moves relative to

this projection surface, the two-dimensional projection

of that object moves within the image. The movement

of the projected position of each point in the world is

referred to as the motion field.

The estimation of the motion field is generally assumed

to be the first goal of motion processing in machine vi-

sion systems. There is also evidence that this sort of

computation is performed by biological systems. The

motion field must be estimated from the spatiotempo-

ral pattern of image brightness. This is usually done by

assuming that the brightness generated by points in the

world remain constant over time. In this case, the es-

timated motion of constant-brightness points (known as

the optical flow) is also an estimate of the motion field.

But as many authors have shown, the optical flow is not

always a good estimate of the motion field (e.g., Horn,

1986; Verri & Poggio, 1989). For example, when a shiny

object moves, specular highlights often move across the

surface of the object. In this situation, the optical flow

(corresponding to the highlight motion) does not corre-

spond to the motion of any point on the object. Never-

theless, estimates of optical flow are almost universally

used as approximations of the motion field.

In estimating optical flow, we cannot ask about the mo-

tion of an isolated point without considering the con-



text surrounding it. That is, we can only recognize the

motion of local patterns of brightness. But our ability

to estimate a unique velocity at a given image location

depends critically on the structure of the image in the

neighborhood of that location. Consider first the sim-

plest situation, in which an object is moving horizontally,

perpendicular to the line of sight. Figure 1 depicts three

prototypical situations that can arise. First, the local

brightness might be constant (over both spatial position

and time). In this case, the local measurements places

no constraint on the velocity. We will refer to this as the

blank wall problem.

Second, the local brightness might vary only in one di-

rection – that is, the spatial pattern could be striped. In

this case, only the velocity component that is perpendic-

ular to the stripes is constrained. Any component along

the stripes will not create a change in the image, and

thus cannot be estimated. This is typically known in the

literature as the aperture problem (Wallach, 1935; Fen-

nema & Thompson, 1979; Marr & Ullman, 1981). The

expression refers to the fact that the motion of a moving

one-dimensional pattern viewed through a circular aper-

ture is ambiguous. The problem is not really due to the

aperture, but arises from the one-dimensionality of the

signal.

Finally, the local brightness may vary two-dimensionally,

in which case the optic flow vector is uniquely constrained.

But because of the occurrence of underconstrained re-

gions (blank wall and aperture problems), a full solution

for the motion problem in which all image points are as-

signed a velocity vector seems to require the integration

of information across spatial neighborhoods of the im-

age (and perhaps over time as well). This concept has

been studied and developed for many years in computer

vision (e.g., Horn & Schunck, 1981; Lucas & Kanade,

1981; Hildreth, 1984).

In addition to the blank wall and aperture problems,

in which the velocity is underconstrained, there are of-

ten locations in an image at which multiple velocity sig-

nals interact. In particular, this can occur at occlusion

boundaries of objects, where any local spatial neighbor-

hood must necessarily include some portion of both ob-

ject and background which are typically moving differ-

ently. Another example occurs in the presence of trans-

parently combined surfaces or specular highlights. In

each of these cases, the local motion description requires
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Figure 1. Conceptual illustration of motion estima-
tion in three different regions of an image of a hor-
izontally translating cube. In a region of constant
brightness (top face of the cube), the local velocity
is completely unconstrained since the observed image
is not changing over time. We refer to this as the
blank wall problem. In a region where the brightness
varies only along a unique spatial direction (striped
side of the cube), the brightness changes are consis-
tent with a one-dimensional set of velocities: one can
determine the motion perpendicular to the stripes,
but not the motion along the stripes. This is known
as the aperture problem. Finally, in a region where the
brightness changes in all spatial directions (hatched
side of the cube), a unique velocity is consistent with
the observed brightness changes.
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more than one velocity, along with some sort of assign-

ment of which image content belongs to which velocity.

Solutions for the multiple-motion problem have been de-

veloped fairly recently. Specifically, a number of authors

have proposed that one should simultaneously decom-

pose the image into consistently moving layers of bright-

ness content, and estimate the motions within those lay-

ers (Wang & Adelson, 1994; Darrell & Pentland, 1995;

Ayer & Sawhney, 1995; Weiss & Adelson, 1996). Some

authors have suggested that this sort of solution might

be implemented biologically (Darrell & Simoncelli, 1994;

Nowlan & Sejnowski, 1995; Koechlin et al., 1999).

We’ll return to this point in the Discussion section, but

for most of the chapter, we’ll restrict our attention to the

simple case of translational motion over a local patch of

the image, ignoring the possibility of multiple motions.

As in much of the computational motion literature, we

view this as a building block, that could be combined

with further processing to provide a more complete so-

lution for the analysis of motion. The goal of this chapter

is to introduce a framework for thinking about motion,

and to interpret the components of that framework phys-

iologically.

Computational framework

The problem of motion estimation may be formalized

using well-developed tools of estimation theory. Specif-

ically, we adopt a Bayesian framework, one of the sim-

plest and most widely used in the engineering litera-

ture. Bayesian approaches have also been used to model

various aspects of visual perception (e.g., see Knill &

Richards, 1996).

Brightness constancy. In any estimation problem,

the most essential ingredient is the relationship between

the thing one is trying to estimate and the measurements

that one makes. In most motion estimation schemes,

this relationship comes from the brightness constancy

assumption (Horn & Schunck, 1981): changes in image

brightness are a result of translational motion in the im-

age plane. When expressed mathematically, this gives a

relationship between image values and the local velocity:

I(x + u∆t, y + w∆t, t + ∆t) = I(x, y, t),

where u and w are the horizontal and vertical compo-

nents of the image velocity, at position (x, y) and time t.

Assuming that the temporal interval ∆t is small enough

that the left side may be approximated by a Taylor series

expansion up to first order, we can replace this with a

differential version of the brightness constancy assump-

tion:

Ixu + Iyw + It = 0, (1)

where (Ix, Iy) are the spatial derivatives and It the tem-

poral derivative of the image brightness. Note that this

equation still corresponds to a particular position and

moment in time: we’ve only dropped the arguments

(x, y, t) to simplify the notation.

Although the signal I is usually considered to represent

the image brightness, the formulation may be general-

ized. In particular, one can use any function locally

derived from the image brightness. For example, one

could prefilter the image with a bandpass filter to en-

hance information at certain frequencies, one could use

a point nonlinearity (e.g., logarithm) to reduce the dy-

namic range of the input, or one could compute a mea-

sure of local contrast by dividing by the local mean.

Under such modifications, equation (1) should be inter-

preted as expressing the constancy of some other (non-

brightness) attribute. As such, the usual brightness-

based motion estimator may be easily converted into a

so-called second-order or non-Fourier motion estimator,

as has been proposed by a number of authors (e.g. Chubb

& Sperling, 1988; Wilson & Kim, 1994; Fleet & Langley,

1994).

Furthermore, the computation of derivatives of discretized

images requires one to first perform some local integra-

tion by prefiltering with a lowpass filter. The differenti-

ation and filtering operations may be combined, so that

derivatives are effectively computed by convolution with

the derivative of the prefilter (Simoncelli, 1993). In com-

puter vision, for example, derivatives are often computed

using the derivatives of a Gaussian function.

Local combination of constraints. Equation (1) can-

not be solved for the two components of velocity, since

it imposes only a single linear constraint. This is simply

a differential manifestation of the aperture problem: the

derivative measurements characterize the local bright-

ness values in terms of their variation along a single di-

rection (the gradient direction), and thus only the com-
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ponent of velocity in this direction can be estimated.

In order to completely estimate the velocity, we must

impose further constraints on the problem. A simple

solution is to assume that the velocity field is smooth

(Horn & Schunck, 1981), or that it is constant over a

small spatial neighborhood surrounding the location of

interest (Lucas & Kanade, 1981), and to combine the

constraints over that region. Alternatively, or in con-

junction with the spatial combination, one can combine

constraints arising from differently filtered versions of

the image (e.g. Nagel, 1983). Many authors have de-

scribed more sophisticated choices of combination rule

(e.g., Hildreth, 1984; Black, 1992), but we will stick with

this simplest form of spatial combination for this chap-

ter.

Measurement noise. Next, we assume that the deriva-

tive measurements are corrupted by a small amount of

noise, as must be true in any real system. For computa-

tional convenience, we assume the noise is added to the

temporal derivative, and that the values are distributed

according to a Gaussian probability density. Although

this simple noise model is unlikely to be correct in detail

(in particular, it is not a very accurate description of the

noise in neural responses), it is sufficient to illustrate the

fundamental issues of motion estimation.

Mathematically, we write:

Ixu + Iyw + It = n,

where n is a random variable representing the noise.

This enables us to write the probability of observing the

spatio-temporal image structure assuming a given veloc-

ity:

P (I|u,w) ∝ exp[−(Ixu + Iyw + It)
2/(2σ2

n)],

where σn indicates the standard deviation of the noise

variable n. Empirically, de Ruyter measured the rela-

tionship between gradient measurements and transla-

tional velocity in video footage gathered from a head-

mounted camera, and found that it is roughly consistent

with this formulation (de Ruyter, 2002).

Now, as described previously, we combine the constraints

over a small spatial region, over which we assume the

velocity vector is constant and the noise variables are

independent:

P (I|u,w) ∝ exp
(

−
∑

(Ixu + Iyw + It)
2/(2σ2

n)
)

, (2)

where the sum combines the measurements at all loca-

tions within the neighborhood.

Prior probability distribution on velocity Equa-

tion (2) describes the likelihood function: the probability

of observing a spatio-temporal image pattern given ve-

locity (u,w). In Bayesian estimation, one reverses this

conditionalization using Bayes’ Rule, in order to get the

posterior distribution:

P (u,w|I) =
P (I|u,w)P (u,w)

∫

du
∫

dwP (I|u,w)P (u,w)
(3)

The probability density P (u,w) is known as the prior:

it describes the probability of observing each velocity

(independent of any particular image measurements).

For the prior probability distribution, we again make

a choice of mathematical convenience: we assume that

P (u,w) is Gaussian with zero mean:

P (u,w) ∝ exp
[

−(u2 + w2)/2σ2

v

]

. (4)

As in the choice of the noise model, this may not be an

accurate characterization of the distribution of image ve-

locities that an organism would encounter in the world,

but it suffices to capture the main aspects of a reason-

able solution to the motion estimation problem. The

intuition is that in the absence of any specific image

information (e.g., in a dark room), one should assume

that things are not moving. More generally, the model

proposes that slow velocities occur more frequently than

fast ones. This hypothetical property of the environment

is mirrored by the long-standing hypothesis that the

perceived motion of stimuli corresponds to the slowest

motion consistent with the observed image information

(see references in Ullman, 1979). In particular, Wallach

(1935) proposed that humans tend to see line segments

as moving in a direction normal to their orientation be-

cause the velocity associated with that direction is the

slowest of all velocities consistent with the image infor-

mation.

Combining equations (2) and (4) as specified in equa-

tion (3) gives the posterior distribution:

P (u,w|I) (5)

∝ exp
[

−(u2 + w2)/2σ2

v −
∑

(Ixu + Iyw + It)
2/2σ2

n

]

.

This specifies a Gaussian distribution over (u,w) whose

behavior is illustrated in figure 2. Note that the distribu-

tion captures the uncertainties shown in the conceptual
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Figure 2. Illustration of posterior probability densi-
ties for the example shown in Figure 1.

illustrations of figure 1. In particular, the posterior den-

sity for the blank region is quite broad (it is identical to

the prior). In the striped region, the density is elongated

and lies along the line that defines the set of velocities

consistent with the the image constraints. The width

along this line is determined by the prior variance, σ2

v .

The width perpendicular to the line is determined by the

noise variance, σ2

n, as well as the image contrast. And in

the patterned region, the density is much more compact,

and centered on the correct horizontal velocity.

Physiological interpretation

A Bayesian model is appealing because of its generality,

and its construction from a relatively small number of

realistic assumptions. It can be implemented in a dis-

tributed analog network (Stocker, 2001), and has been

used in machine vision applications. In previous work,

we have shown that the mean (equivalently, the maxi-

mum) of the Gaussian posterior distribution described

by equation (5) provides a surprisingly good match to

human perception of velocity for a variety of translat-

ing stimuli (Simoncelli, 1993; Heeger & Simoncelli, 1993;

Weiss, 1998; Weiss et al., 2002). In this section, I’ll

describe the relationship between the elements of this

framework and the functional properties of neurons that

lie in the so-called motion pathway of mammals such as

cats or monkeys. This should not be thought of as a

quantitative physiological model of motion processing,

but as a more qualitative assignment of computational

function to neural populations along the motion path-

way.

We’ll work backward through the system, starting from

the posterior distribution of equation (5). If we hold the

velocity (u,w) fixed, then this function is tuned for the

velocity of the input image. That is, it is maximized

when the underlying image structure is consistent with

the velocity (u,w), and it decreases as the image motion

deviates from that velocity. We may identify this basic

property with those neurons in visual area MT that are

known as pattern selective (Movshon et al., 1986) (see

Britten, Chapter XX, this volume). These neurons are

tuned for retinal image velocity; they respond vigorously

to a visual stimulus moving with a particular speed and

direction, and are relatively indifferent to the stimulus’

spatial pattern (Maunsell & van Essen, 1983; Movshon

et al., 1986; Rodman & Albright, 1987).

A number of models posit that a population of such

neurons provides a distributed representation of veloc-

ity (Heeger, 1987; Koch et al., 1989; Grzywacz & Yuille,

1990). Here, we assume that the responses within this

population correspond directly to samples of the poste-

rior density. That is, the response of each neuron cor-

responds to equation (5) evaluated at a different pre-

ferred velocity (u,w). Note that in this interpretation,

no single neuron encodes the velocity of the stimulus,

and an actual estimate of the velocity can be obtained

only by combining information across the population.

For example, one could compute the mean velocity by

summing the preferred velocities of all of the neurons in

the population, each weighted by the response of that

neuron. Also note that in this interpretation, the prior

distribution, P (u,w), provides only a gain adjustment

(multiplicative scale factor) on each of the neural re-

sponses. The integral over (u,w) in the denominator of

equation (3) corresponds to a sum over the responses

of all neurons in the population. We have previously

shown that this kind of divisive normalization operation
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is consistent with the response properties of MT neurons

(Simoncelli & Heeger, 1998).

We can make a qualitative comparison of this model to

typical neural responses in area MT. The lower left panel

of figure 3 shows polar plots of the response of a model

MT neuron with preferred velocity u = 0.3, w = 0 pix-

els per frame, as a function of the normal direction of

a drifting sinusoidal grating. As with MT pattern cells

(Movshon et al., 1986), the response is tuned for the

direction of motion, and is largest when this direction

matches the preferred direction. The lower right panel

shows the response as a function of direction for a plaid

stimulus, constructed as the sum of two drifting grat-

ings 120 degrees apart. The response is largest when

this plaid stimulus is moving rightward, a configuration

in which the two constituent gratings are moving at ±60

degrees from rightward. This response to the direction

of pattern motion (rather than to the two component di-

rections) is a characteristic used to identify MT pattern

cells (Movshon et al., 1986).

Figure 4 shows the posterior function plotted as a func-

tion of stimulus speed (again for a drifting sinusoidal

grating). The maximum response occurs at the 0.3 pixels

per frame, the speed corresponding to the chosen u. At

half height, the curve spans a speed range of about two

octaves, which is roughly comparable to the responses of

some MT cells (Maunsell & van Essen, 1983).

Having identified the posterior distribution with MT pat-

tern responses, we now want to consider the components

(i.e., the afferents) from which those responses are gen-

erated. The exponent of equation (5) may be expanded

(dropping a factor of two) as follows:

f(I, u, w) =

−
∑

[u2I2

x + 2uwIxIy + w2I2

y + 2uIxIt + 2wIyIt + I2

t ]/σ2

n

−[u2 + w2]/σ2

v ,

where the sum is taken over a small spatial neighbor-

hood. Many of the terms contain squared image deriva-

tives, and those that contain products of image deriva-

tives may be written as a difference of two squared deriva-

tives. For example:

IxIy = [(Ix + Iy)2 − (Ix − Iy)2]/4 (6)

= [I2

d1
− I2

d2
]/4,

where Id1 and Id2 are derivatives at angles 45 degrees

and −45 degrees, respectively. In general, a derivative

Grating Plaid

Posterior

Deriv
2

Figure 3. Direction tuning curves for model compo-
nents. Upper left: Model V1 neuron (squared di-
rectional derivative) response to drifting sinusoidal
grating; Upper right: Model V1 neuron response to
drifting sinusoidal plaid; Lower left: Model MT neu-
ron (posterior probability) response to grating; Lower
right: Model MT neuron response to plaid.

log
2
(Speed)

R
es

po
ns

e

Figure 4. Speed tuning curve for posterior distribu-
tion (model MT neuron) to a drifting sinusoidal grat-
ing. The absolute scale of the horizontal axis is arbi-
trary, but the tick marks correspond to increments of
speed by multiples of 2.
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Figure 5. Illustration of two identities relating sep-
arable and oriented derivative operations. Top: a
spatial derivative operator at any orientation may be
computed as a linear combination of separable (axis-
aligned) derivative operators (equation (7)). Bottom:
A product of X and Y derivatives may be computed
as the difference of two squared obliquely oriented
derivatives (equation (6)). Operators in both cases
are Gaussian derivatives, but the identities hold for
derivatives of other functions as well.

at any orientation may be constructed via suitable com-

bination of axis-aligned (separable) derivative operators

(Freeman & Adelson, 1991):

Iθ = cos(θ)Ix + sin(θ)Iy, (7)

where Iθ is a derivative in direction θ. The mathematical

relationships of equations (6) and (7) are illustrated in

figure 5.

An analogous transformation allows us to write the term

containing IxIt as a difference of two derivatives. Since

one of the axes is now time, the result is a difference of

space-time oriented derivatives, {Ir, Il}, which are most

responsive to vertically oriented structures that are mov-

ing rightward/leftward. This construction, known as an

opponent motion computation, has been previously pro-

posed as an explanation for a number of psychophysical

phenomena (Adelson & Bergen, 1985). Similarly, the

product IyIt results in a difference of squared upward

and downward derivatives, {Iu, Id}. Combining all of

this allows us to write the exponent as:

f(I, u, w) = −
1

σ2
n

∑

[

u2(I2

x + σ2

n/σ2

v)+ (8)

uw(I2

d1
− I2

d2
)/2 + w2(I2

y + σ2

n/σ2

v) +

u(I2

r − I2

l )/2 + w(I2

u − I2

d)/2 + I2

t

]

.

The purpose of these transformations is to show that

the computation of the posterior is based on a sum of

terms that could arise in the responses of primary visual

cortical neurons. The receptive fields of so-called simple

cells in primary visual cortex (area V1) of cats and mon-

keys are selective for stimulus position and orientation

(Hubel & Wiesel, 1962) (see Ferster, Chapter XX, this

volume). Many simple cells are also direction-selective:

they give stronger responses for stimuli moving in one

direction than the opposite direction (see DeAngelis and

Anzai, Chapter XX, this volume). Many authors have

characterized simple cell responses as the halfwave recti-

fied (and sometimes squared) responses of linear recep-

tive fields (e.g. Campbell et al., 1968; Campbell et al.,

1969; Movshon et al., 1978; Daugman, 1985; Heeger,

1992). In these models, the neuronal response is derived

from a weighted sum (over local space and recently past

time) of the local stimulus contrast. This type of model

can explain the primary properties of these cells, includ-

ing selectivity for stimulus orientation, spatial frequency,

temporal frequency, and direction.

The linear derivative filters used in our Bayesian motion

estimator (as shown in figure 5) bear some similarity to

the response properties of simple cells: they are tuned

for spatial orientation, spatial frequency, temporal fre-

quency and direction. Example direction tuning curves

of squared derivative operators for both gratings and

plaids are shown in the top row of figure 3. Note that,

as in V1 neurons, the response to the plaid is bimodal:

unlike the posterior response shown on the bottom row,

the operator responds to each of the components of the

plaid rather than the pattern as a whole.

In general, tuning of first derivative operators for most

variables is significantly broader than that of most sim-

ple cells. We have shown in previous work that this in-

consistency is easily corrected through the use of higher-

order derivative operators (Simoncelli, 1993; Heeger &

Simoncelli, 1993; Simoncelli & Heeger, 1998). The Bayesian

solution given above may be re-derived using such oper-

ators, and the form of the result is essentially the same

despite the proliferation of terms in the equations.

Also prevalent in the primary visual cortex are complex

cells, which exhibit similar selectivity for orientation,

spatial frequency, temporal frequency and direction, but

which are more nonlinear in their response properties.

In particular, their responses are relatively insensitive

to the precise location of stimuli within their receptive

fields. Models of these these cells have been based on
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local oriented energy, computed as the sum of squared

responses of even- and odd-symmetric oriented linear fil-

ters (e.g. Adelson & Bergen, 1985). In the Bayesian

model of this paper, this type of construction could be

achieved by combining the constraints obtained from dif-

ferently filtered versions of the input image. Alterna-

tively, this translation-invariance of responses is approx-

imately achieved with a sum of squared linear responses

over a local spatial neighborhood, as in equation (8).

Summarizing, the posterior distribution of our Bayesian

model is constructed from building blocks that resem-

ble direction-selective complex cells. This parallels the

physiology, where it has been shown that the neurons

that project from area V1 to MT are direction-selective

complex cells (Movshon & Newsome, 1996).

Finally, we need to address the construction of the spatio-

temporally oriented V1 responses from the primary affer-

ents arriving from the lateral geniculate nucleus. These

responses are generally not orientation-tuned and they

are not directional (in cats and monkeys). Specifically,

the receptive fields are described by a product of a spa-

tial (center-surround) weighting function and a tempo-

ral weighting function (see Sherman, Chapter XX, this

volume). In the context of the Bayesian model, spatial

derivative computation (to produce orientation-selective

receptive fields) can be obtained by spatial combination

of lateral geniculate nucleus receptive fields, as has been

suggested physiologically (Hubel & Wiesel, 1962; Reid

& Alonso, 1995). A number of authors have suggested

that directional responses may be constructed physiolog-

ically by superimposing an appropriate set of space-time

separable responses (e.g., Fahle & Poggio, 1981; Watson

& Ahumada, 1983; Adelson & Bergen, 1985). In the

case of the directional derivatives used in this chapter,

one need only sum a spatial and temporal derivative op-

erator (with the correct weighting) to obtain a spatio-

temporally oriented derivative operator selective for any

desired orientation. This construction is made explicit in

equation (7), and illustrated in the top panel of figure 5.

Discussion

We have provided a Bayesian analysis for local motion

based on a minimal set of assumptions: (1) brightness

conservation, (2) a simple model of measurement noise,

and (3) a prior preference for slower speeds. Given these

assumptions, the components of the optimal solution can

be seen to have properties qualitatively matching those

of neurons in the mammalian motion pathway.

In previous work, we have shown that this model ac-

counts for a surprising number of psychophysical results

demonstrating non-veridical perception of motion stim-

uli (Weiss et al., 2002). We have also shown that an elab-

orated variant of this model can be fit more precisely to

neural response properties (Simoncelli & Heeger, 1998).

In that model, narrower V1 stage tuning curves are achieved

through use of higher-order derivatives, and nonlinear

properties of V1 responses are incorporated using divi-

sive normalization.

The particular Bayesian model described in this chapter

is the simplest of its kind. A more correct model should

include a more realistic model of uncertainty in pho-

toreceptors, as well as in subsequent neural responses.

It should also include a prior that more accurately re-

flects the velocity distribution in the visual environment

(although this is quite difficult to model, given that it

depends not just on the environment, but also on the

motion of the organism). Such modifications are un-

likely to lead to qualitatively different behaviors of the

solution, but they may produce a more accurate account

of the physiology.

Finally, the formulation of the motion estimation prob-

lem using brightness constancy is simplistic in assuming

that a single translational velocity accounts for the mo-

tion in each local region. As described earlier, this as-

sumption is violated in real scenes near occlusion bound-

aries and in the presence of transparent surfaces. Stud-

ies in computer vision have suggested that segmentation

or grouping of the scene must be tightly integrated with

the motion estimation solution, and a number of authors

have proposed joint solutions (e.g., Darrell & Pentland,

1995; Wang & Adelson, 1994; Ayer & Sawhney, 1995;

Weiss & Adelson, 1996). These solutions are invariably

recurrent, perhaps suggesting that physiological imple-

mentations will require recurrent lateral or feedback pro-

jections between two neural populations computing ve-

locity and grouping.
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