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Ringach, Dario L. Spatial structure and symmetry of simple-cell
receptive fields in macaque primary visual cortex. J Neurophysiol 88:
455–463, 2002; 10.1152/jn.00881.2001. I present measurements of
the spatial structure of simple-cell receptive fields in macaque primary
visual cortex (area V1). Similar to previous findings in cat area 17, the
spatial profile of simple-cell receptive fields in the macaque is well
described by two-dimensional Gabor functions. A population analysis
reveals that the distribution of spatial profiles in primary visual cortex
lies approximately on a one-parameter family of filter shapes. Sur-
prisingly, the receptive fields cluster into even- and odd-symmetry
classes with a tendency for neurons that are well tuned in orientation
and spatial frequency to have odd-symmetric receptive fields. The
filter shapes predicted by two recent theories of simple-cell receptive
field function, independent component analysis and sparse coding, are
compared with the data. Both theories predict receptive fields with a
larger number of subfields than observed in the experimental data. In
addition, these theories do not generate receptive fields that are
broadly tuned in orientation and low-pass in spatial frequency, which
are commonly seen in monkey V1. The implications of these results
for our understanding of image coding and representation in primary
visual cortex are discussed.

I N T R O D U C T I O N

Simple cells in V1 behave to a large extent as linear spatio-
temporal filters (Carandini et al. 1997; De Valois et al. 1979;
Jones and Palmer 1987b; Movshon et al. 1978). A better
understanding of simple-cell function may be gained if we had
a summary of the distribution of filter shapes in primary visual
cortex. In this study, the two-dimensional spatial structure of
simple-cell receptive fields (RFs) in primate V1 was measured
and analyzed. Available data on the two-dimensional structure
of RFs in the monkey have been obtained via indirect methods
(Parker and Hawken 1988) or limited to the study of the
line-weighting function (De Valois et al. 2000; Hawken and
Parker 1987). In the present study, direct measurements of the
two-dimensional spatial structure of RFs in macaque V1 were
obtained with a subspace reverse-correlation method (Ringach
et al. 1997b). The results are compared with those obtained in
cat area 17 (DeAngelis et al. 1993a,b; Jones and Palmer
1987a). In agreement with these studies, the profiles of simple-
cell RFs in the macaque are well described by a Gabor func-
tion: a product of a Gaussian envelope and a sinusoid (Jones
and Palmer 1987a; Kulikowski and Bishop 1981; Marcelja

1980). In addition, it was found that the spatial RF profiles
cluster into even- and odd-symmetric classes, as conjectured
by Movshon et al. (1978). This was a somewhat surprising
result because all previous studies in cat area 17 report a
uniform distribution of spatial phases (DeAngelis et al. 1993a;
Field and Tolhurst 1986; Hamilton et al. 1989; Jones and
Palmer 1987b).

In the second part of this study, the measured distribution of
RFs in V1 is compared with the predictions of two recent
theories of simple-cell function: independent component anal-
ysis (ICA) and sparse coding (SC) (Bell and Sejnowski 1997;
Olshausen and Field 1996, 1997; van Hateren and Ruderman
1998; van Hateren and van der Schaaf 1998). The basic prin-
ciple underlying these theories is that shapes of simple-cell RFs
are designed to provide an efficient representation of natural
scenes (for review, see Simoncelli and Olshausen 2001). These
theories have received significant attention as they suggest that
a few simple theoretical principles explain the distribution of
RFs in V1. However, detailed comparisons between the pre-
dictions of such theories to the experimental data have been
scarce and limited to one-dimensional measurements (based on
the line-weighting function) of the RF (van Hateren and van
der Schaaf 1998). Here, I compare the two-dimensional shape
of the filters in the theoretical predictions and the experimental
data.

M E T H O D S

Preparation and recording

Acute experiments were performed on adult Old World monkeys
(Macaca fascicularis) weighing between 2.5 and 5.1 kg. The methods
of preparation and single-cell recording are essentially the same as
those described in Ringach et al. (1997a). Animals were tranquilized
with acepromazine (50 �/kg im), then anesthetized with ketamine (30
mg/kg im), and maintained on opioid anesthetic (sufentanil citrate, 6
�g � kg�1 � h�1 iv) for the surgery. For recording, anesthesia was
continued with sufentanil (6 �g � kg�1 � h�1), and paralysis was
induced with pancuronium bromide (0.1–0.2 mg � kg�1 � h�1). Elec-
trocardiogram (EKG), electroenchephalogram (EEG), and end-tidal
CO2 were continuously monitored. Blood pressure was measured
noninvasively at 5-min intervals. Body temperature was maintained at
37°C. Extracellular action potentials were recorded with glass-coated
tungsten microelectrodes, exposed tips 5–15 �m (Merrill and Ains-
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worth 1972). Electrical signals were amplified in the conventional
manner, and spikes were discriminated using a two-channel window
sorter, which generated transistor-transistor logic (TTL) pulses that were
accumulated as event times by the computer (with 1-ms accuracy). Strict
criteria for single-unit recording included: fixed nerve impulse height and
waveform and absence of impulse intervals shorter than an absolute
refractory period. In most of the experiments described here, data were
collected by a CED 1401� laboratory interface connected to a PC.
Stimuli were generated on a Silicon Graphics O2 and displayed on
monitor at refresh rate of 100 Hz. For all displays, the mean lumi-
nance was between 55 and 65 cd/m2. The displays were calibrated and
linearized by lookup tables. A Photo Research Model 703-PC spectro-
radiometer was used to calibrate the display screens.

RF measurement

Each cell was stimulated monocularly via the dominant eye and
characterized by measuring its steady-state response to conventional
drifting sinusoidal gratings (the nondominant eye was occluded). With
this method, we measured basic attributes of the cell, including spatial
and temporal frequency tuning, orientation tuning, contrast response
function, and color sensitivity, as well as area, length, and width
tuning curves. To classify neurons as simple or complex, we deter-
mined the ratio between the modulated response (1st harmonic or F1)
and the mean response (DC component or F0) for a drifting sine grating
of optimal spatial frequency, temporal frequency, and orientation. A cell
was classified as simple if F1/F0 � 1 for the optimal stimulus condition;
otherwise it was classified as complex (Skottun et al. 1991).

The spatiotemporal RF of simple cells was measured using sub-
space reverse correlation (Ringach et al. 1997b). The measurement
technique is a variant of the standard reverse-correlation method
where, instead of white noise or sparse dots, the input is a sequence
composed of a finite number of orthonormal sinusoidal gratings at
various spatial frequencies, orientations, and spatial phases. In the
standard reverse-correlation paradigm, one correlates the response of
the neurons with the luminance values at each pixel on a grid. This
provides the coefficients with which each pixel should be summed to
generate a RF estimate. When the input is a sequence of random
gratings at various spatial frequencies, orientations, and phases, the
correlations between the response and the appearance of the gratings
give the coefficients with which such grating (or basis function)
should be summed to generate the RF estimate. In essence, the basic
idea of the technique is to estimate the RF by estimating Fourier
coefficients of the RF rather than estimating the RF in the space
domain. A detailed account of the method can be found in Ringach et
al. (1997b). As with the standard method, the technique provides an
estimate of the RF up to a scaling factor.

It is important during the reverse correlation mapping experiments
to have no eye movements. Even in the paralyzed animal (Pancuro-
nium bromide), eye movements are sometimes observed. Eye move-
ments are revealed by changes in the modulation of simple-cell
responses stimulated with drifting sinusoidal gratings. Specifically,
repeats of the same stimulation trial can yield responses that appear to
be translations of one another in time. Eye movements are responsible
for such changes in temporal phase of the response. Relatively small
eye movements can have important consequences for the measure-
ment of the spatial profile of the RF. In the macaque parafovea, for
example, it is typical for cells to respond optimally to sinusoidal
gratings of �4 cycles/° (De Valois et al. 1982). The distance between
excitatory and inhibitory subfields in such a cell would be �7.5 min
of arc. Thus movements as small as 2 min of arc would be enough to
seriously corrupt the measurements as such a shift represents a change
of 48° in spatial phase. To minimize the effect of eye movements,
only data for which the eyes appeared stable when stimulated with
drifting sinusoidal gratings, before and after the reverse correlation
experiment, were considered. This was done by calculating the vari-
ance of the phase of the first-harmonic response on a cycle-by-cycle

basis. Furthermore, in cases where sufficient data were collected, the
RF of the neurons was estimated from the first and second halves of
the reverse correlation data. If the center of the fitted Gabor envelope or
the phase of the fit was significantly different, the data were discarded. A
total of 37 neurons of 107 measurements (34%) were discarded based on
these considerations, resulting in a data set of n � 70.

Typical measurements of spatiotemporal RFs using subspace re-
verse correlation are shown in Fig. 1. Because the method recovers the
linear kernel of the system up to multiplication by a scalar, one can
normalize the kernels so that their maximum absolute value over
space and time is one. Figure 1A illustrates the RF of an orientation-
tuned cell. Each panel in Fig. 1A is a slice of the impulse response of
the filter at different delay times, which are indicated at the inset. Red
areas are those where light increments induce the cell to fire more than its
mean rate. Areas in blue are those where light increments induce the cell
to fire less than its mean rate. The RF in Fig. 1A has two elongated
subfields, one excitatory and one inhibitory. The delay time at which the

FIG. 1. Spatiotemporal receptive fields of simple cells in primate V1 esti-
mated via subspace reverse correlation. A: example of an oriented receptive
field with 2 subfields. B: example of a cell that is broadly tuned in orientation
and low-pass in spatial frequency. The value of � (in milliseconds) at which
each frame has been computed is shown at the inset.
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spatial filter achieves maximal energy (or variance) is defined as the
optimal delay time. In this case, the optimal delay time is 74 ms. A
second example of a cell that is broadly tuned for orientation and has a
biphasic temporal response is shown in Fig. 1B. At the optimal delay time
of 56 ms, the spatial profile of this cell resemble a circularly symmetric
blob. In this study, the spatial profile of V1 RFs were analyzed at their
optimal delay time (DeAngelis et al. 1993b).

To analyze the spatial profile of RFs, a two-dimensional Gabor
function was fit to the data (Jones and Palmer 1987a)

h�x�, y�	 � A exp���x�/�2�x�	
2 � �y�/�2�y�	

2	 cos �2�fx� � �	 (1)

where (x�, y�) is obtained by translating the original coordinate system
by (x0, y0) and rotating it by 	

x� � �x � x0	 cos 	 � �y � y0	 sin 	

y� � ��x � x0	 sin 	 � �y � y0	 cos 	 (2)

In this coordinate system, the cosine function in the Gabor varies
only along the x� axis. Notice that one of the axes of the Gaussian
envelope aligns with the x� axis and the other with the y� axis. The
parameter A is the amplitude, �x� and �y� represent the width of the
Gaussian envelope along the x� and y� axes, respectively, f is the
spatial frequency of the sinusoidal grating in cycles/degree, and � is
the spatial phase of the grating. A spatial phase of � � 0 results in an
even symmetric kernel, while a spatial phase of � � �/2 gives an
odd-symmetric kernel. I did not find it necessary to add a parameter
to vary the relative orientation of the envelope with respect to the
orientation of the grating as done by Jones and Palmer (1987a). Such
a parameter helped only in a small number of cases.

Figure 2 illustrates examples of the spatial profiles measured at
their optimal delay time together with the best fitting Gabor function
(in the least squares sense) and the corresponding residual images. It
can be seen that, similar to previous reports in cat area 17 (Jones and
Palmer 1987a), the two-dimensional Gabor function provides a rea-
sonable summary of the shape of spatial RFs profiles in macaque
primary visual cortex. This is also evidenced in the distribution of the
fraction of unaccounted variance over the population (Fig. 3). Assum-
ing independent and additive noise, the fraction of unaccounted vari-
ance is defined as �err

2 /(�data
2 � �noise

2 ). Here, �err
2 represents the variance

of the residual image, �data
2 is the variance of the estimated RF at the

optimal delay time, and �noise
2 is the variance of the noise estimated as

the variance of the RF map at a delay of 0 ms.
To compare the experimental data to the predictions of existing

theories, the shape of RFs predicted by ICA and SC were analyzed in
a similar fashion. The ICA data have been provided by Dr. Hans van
Hateren and colleagues and are available on the web from http://
hlab.phys.rug.nl/demos/ica/comp_filt.html. I report results for the data
set with log intensity transformation and dimension reduction. Similar
results were obtained for the linear intensity data set. Dr. Bruno
Olshausen provided the RF predictions of SC. These data correspond
to the implementation reported in Olshausen (2001).

R E S U L T S

To analyze the structure of RFs in V1 over the population, a
scatter-plot of nx � �x f versus ny � �y f based on the fitted
parameters (Fig. 4) was first constructed. One can think of
these values as the number of sinusoidal cycles of the Gabor
carrier fitting in a segment of length �x and �y, respectively. In
other words, the size of the Gaussian envelope is measured in
units of the period of the sinusoidal grating, T � 1/f. This
visualization is invariant to translations, rotations, isotropic
scaling, and the symmetry (or spatial phase) of the RF. Invari-
ance to isotropic scaling of the RF results because, for any 
,
we have nx � (
�x)( f/
) � �x f (and the same holds for ny).

FIG. 2. Two-dimensional Gabor fits to the data. Left: examples of the
measured receptive fields. Middle: the best Gabor fit in the least squares sense.
Right: the residual images. In general, 2-dimensional Gabor functions provide
a good representation of the shapes of receptive fields in V1.

FIG. 3. Distribution of the amount of variance unaccounted for in the Gabor
fits.
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Invariance with respect to translation, rotation, and spatial
phase is obtained simply because (nx , ny) do not depend on the
values of x0, y0, 	, and �. The distribution of the spatial phase
variable is analyzed separately in the following text.

Figure 4 shows that the distribution of (nx , ny) in macaque
V1. The shape of some RFs at different locations along the
distribution are also shown. Blob-like RFs are mapped to
points near the origin. RFs with a number of elongated sub-
fields are mapped to points away from the origin. Interestingly,
the distribution of (nx , ny) appears to lie, approximately, on a
one-dimensional curve. This implies a constraint between the
variables: (nx , ny) are correlated. a smoothed version (estimat-
ed by local robust linear regression) of the scatter plot (Cleve-
land and Devlin 1988) is provided (- - -). For comparison with
previously published results in cat, the data in Table 1 of Jones
and Palmer (1987a) are re-plotted here using the same analysis
(Fig. 5, 
). Overall, the data in cat area 17 and macaque V1 are
comparable. The cat data appear to be shifted slightly to the left
of the monkey data, suggesting a smaller number of subfields.
However, I discuss in the following text a methodological
difference between these studies that might explain this dis-
crepancy.

To analyze the distribution of the spatial phase variable the
following should be noted. A consequence of Eq. 1 is that if
two RFs are the same except for their spatial phase, a number
of simple relationships hold. First, if �2 � �1 � �, the RFs are
identical up to a change in sign, h2(x�, y�) � �h1(x�, y�).
Second, if �2 � k(�/2) � � and �1 � k(�/2) � �, where k is
even, and � an arbitrary angle, the RFs are mirror symmetric
around the x axis and h2(x�, y�) � h1(�x�, y�). Third, if �2 �
k(�/2) � � and �1 � k(�/2) � �, where k is odd, the RFs are
related by mirror symmetry and a change in sign, h2(x�, y�) �
�h1(�x�, y�). As mirror symmetry and flips in sign do not
change the basic shape of the filter, we discard these transfor-

mations and define the effective range of the spatial phase
parameter to be 0 � � � �/2. Mapping an arbitrary spatial
phase angle to this range can be achieved by defining �̂ �
arg(�cos �� � i�sin ��). Even symmetry is obtained when �̂ �
0 and odd symmetry when �̂ � �/2. These relationships are
summarized graphically in Fig. 6A (see also, Fig. 1 in Field and
Tolhurst 1986 and the accompanying discussion).

FIG. 4. Distribution of receptive field shapes in the (nx , ny) plane. A
number of receptive fields are shown along the distribution. - - -, a smooth
version of the scatterplot. Blob-like receptive fields are mapped to points near
the origin. Neurons with several subfields are mapped to points away from the
origin.

FIG. 5. Comparison between monkey and cat simple-cell receptive fields.
E, data obtained in macaque (present study); 
, the data in Table 1 of Jones
and Palmer (1982) re-plotted in the (nx, ny) plane.

FIG. 6. A: summary of symmetry relationships and the spatial phase of a
Gabor function. B: distribution of �̂ in macaque V1.
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In a minority of neurons, usually selective for the direction
of motion of the stimulus, the spatial phase of the Gabor fit was
observed to change in an approximate linear fashion over the
time course of the response (DeAngelis et al. 1993a; Reid et al.
1987). To avoid the complication of defining the spatial phase
of the RFs in these neurons, such data were not included in our
data set. Only RFs where the spatial phase of the Gabor fits
remained stable within 20° during the central 15 ms of the
response were included in the analysis. This criterion was
preferred over previous methods such as estimating the degree
of inseparability via SVD or a by fitting a quadrature model
(DeAngelis et al. 1999) and discarding cells with high direction
selectivity indices (DeAngelis et al. 1993a). The former
method was not employed because in a number of cases the
kernels had a well-defined symmetry but were inseparable in
space and time. The RF of an LGN neuron, where the surround
is delayed in time with respect to the center, is an example of
a spatiotemporal inseparable RF that is even symmetric at any
point in time. The direction selectivity index was not used
because, in the primate, we have observed simple cells that
appear to be spatiotemporal separable but are selective to the
direction of motion (M. Hawken, unpublished observations).

Figure 6B shows the distribution of the spatial phase vari-
able, �̂, in our population. In contrast to previous findings
(DeAngelis et al. 1993a; Field and Tolhurst 1986; Hamilton et
al. 1989; Jones and Palmer 1987a), the macaque data are
significantly bimodal [P � 0.02, Hartigan’s dip test, (Hartigan
and Hartigan 1985)], with cells clustering near 0 (even sym-
metry) and �/2 (odd symmetry). In addition, there is a ten-
dency for cells that are well tuned for orientation and spatial
frequency [located away from the origin of the (nx , ny) plane]
to be odd symmetric, and a tendency for blob-like cells (lo-
cated near the origin) to be even symmetric. This can be seen
by first calculating the distance of each point in Fig. 4 from the
origin, d. Figure 7, shows the histograms of �̂ for two groups
of cells: a group of neurons with distances less than the median
d (broadly tuned) and the group of neurons with distances
larger than the median of d (well tuned). The tendency for even
symmetry in cells near the origin is explained by the fact that

many of these RFs are blob-like, which necessarily implies
even symmetry (Jones and Palmer 1987a).

The estimates of �̂ were reasonably accurate. For each cell,
we calculated the confidence interval of the estimated value �̂.
The size of the confidence interval represents a measure of how
well the spatial phase can be determined given the noise in the
data. With the amount of data collected, the first-quartile,
median, and third-quartile of the distribution for the size of the
confidence interval in our data set were 0.08 rad (4.58°), 0.16
rad (9.17°), and 0.28 rad (16.04°), respectively.

A natural question is why the cortex evolved one particular
family of spatial filters (Fig. 4) as well as observed distribution
of spatial phases in V1 (Figs. 6 and 7). Recently, a number of
related theories have been put forward to explain the shape of
simple cell RFs in V1 (Bell and Sejnowski 1997; Olshausen
and Field 1996, 1997; van Hateren and Ruderman 1998; van
Hateren and van der Schaaf 1998); for a review, see Simoncelli
and Olshausen 2001). I refer the reader to this literature for a
detailed discussion of the concepts, mathematics, and imple-
mentation issues. Briefly, the basic idea behind these theories
is that the cortex evolved RFs needed to “represent” natural
images in an “efficient” manner. To make a theory explicit, one
has to define what is meant by “representation” and in what
way the representations are meant to be efficient. Most theories
assume a linear representation of the image. If I(x, y) is a
two-dimensional image, one seeks a linear representation (or
linear additive model) in terms of basis functions �1(x, y)

I�x, y	 � �
i


i�i�x, y	 � 
�x, y	 (3)

Here, 
i are the coefficients corresponding to each basis
function, and �(x, y) is the error in the representation. The
theories state that during evolution or development the basis set
{�(x, y)} is optimized so that the coefficients 
i have some
specific properties when the classes of images represented are
drawn from the natural environment. Independent component
analysis defines an efficient representation as one in which the
coefficients are statistically independent one from the other.
Normally the number of basis functions equals the dimension
of the input and the error in the representation is zero. Sparse
coding defines an efficient representation as one in which the
coefficients are statistically independent and sparse. Sparse-
ness is defined as a statistic on the distribution of a coefficient.
There are various ways of defining sparseness (Olshausen and
Field 1996, 1997; Willmore et al. 2000), but the basic principle
is that the measure should give large values when the distri-
bution of the coefficient has long tails and a large mass con-
centration around zero. The number of basis functions in sparse
coding is normally (but not necessarily) larger than the dimen-
sion of the input. In this case, the representation is called
overcomplete as there are many different ways (different sets
of coefficients) of representing the image with some error. SC
posits that from all these alternatives the brain computes the set
of coefficients that is maximally sparse. Algorithms were de-
veloped that, when presented with natural images, will calcu-
late an optimal set of basis functions according to the preceding
criteria.

It should be emphasized that RFs predicted by these theories
are not the basis functions (�i) themselves. Both ICA and SC
postulate that the goal of V1 is to compute the coefficients 
i.

FIG. 7. A: distribution of �̂ for neurons near the origin, d � median (d).
B: distribution of �̂ for neurons away from the origin, d � median (d). The
median value of d was 0.43. There is a tendency for cells near the origin to
have even-symmetric receptive fields and for cells away from the origin to be
odd symmetric.
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Because the basis functions are not necessarily orthogonal one
to the other, the RFs (or the filters) required to compute the
coefficients are not equal to the basis functions. In ICA, the set
of filters required to calculate the coefficients is obtained
simply by inverting the basis function matrix � �
[�1�2. . .�n] (Bell and Sejnowski 1997; van Hateren and van
der Schaaf 1998). Thus the shapes of ICA filters and the V1
receptive fields can be compared directly. For convenience,
Fig. 8A shows a few examples of the resulting ICA filter
shapes. The shape of receptive fields predicted by SC can be
obtained by simulating an “reverse correlation” mapping ex-
periment (Olshausen 2001; Olshausen and Field 1997). In the
APPENDIX, a fast method for estimating these receptive fields
without the need of lengthy mapping simulations is suggested.
However, as the data are already available in this case, the
original receptive field maps as reported in Olshausen (2001)
were analyzed. Figure 8B provides a few examples of the
receptive fields resulting from reverse-correlation mapping of
the SC nonlinear network.

As with the experimental data, both ICA and SC RFs can be
approximately described by two-dimensional Gabor functions.
The distribution of (nx, ny) obtained from these theories are
shown in Fig. 9. Only RFs that were well within the boundaries
of the image patch were included in this analysis. To facilitate
a comparison, the experimental data are re-plotted here as well.

It can be seen that ICA generates filters that tend to be quite similar one to the other up to translation, rotation and scaling
(Fig. 9, ▫). This is inferred from the fact that all RFs appear to
map to a very similar location in the (nx , ny) plane. The ICA
data points are shifted to the right the experimental data. This
means that ICA filters have more subfields than actually ob-
served. The distributions of filter shapes predicted by SC are
similar and depicted by ‚. While these data exhibit a larger
scatter, the vast majority of the points are clearly to the right of
the experimental data as well. In addition, note that neither
theory generates a significant population of units with RFs that
are broadly tuned for orientation. The experimental data, on the
other hand, show plenty of such RFs in all layers of macaque
V1 (Hawken et al. 2000). These differences between the pre-
dictions of ICA/SC and the data might also be apparent by
visual inspection of the kernels in Fig. 8 with those in Figs. 2B
and 4. Finally, Fig. 10 shows the distributions of spatial phases
predicted by SC. Interestingly, there is a tendency for RFs to be
odd symmetric, similar to what is observed in the group of
well-tuned cells in Fig. 6B.

FIG. 8. A: examples of independent component analysis (ICA) filters ob-
tained with dimensionality reduction and log intensity transformation (van
Hateren and Ruderman 1998; van Hateren and van der Schaaf 1998) These
data are available from: http://hlab.phys.rug.nl/demos/ica/comp_filt.html. B:
examples of sparse coding (SC) receptive fields obtained by simulating a
reverse-correlation mapping experiment (Olshausen 2001).

FIG. 9. Comparison between the receptive field shapes predicted by ICA
(�), SC (‚), and the experimental data (E). Both ICA and SC generate RFs that
have larger number of subfields than the experimental data. Neither theory
predicts a significant number of receptive fields near the origin.

FIG. 10. Distribution of spatial phases of SC. There is a tendency toward
odd-symmetric receptive field profiles.
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D I S C U S S I O N

The two-dimensional shape of simple-cell RFs at their op-
timal delay time was measured using subspace reverse corre-
lation. The estimated filters are well approximated by two-
dimensional Gabor functions as has been previously reported
in cat area 17 (Jones and Palmer 1987a). Furthermore, the
distribution of the filter shapes in monkey and cat are compa-
rable (Fig. 5). One difference is that the cat data appear to be
shifted slightly to the left with respect to the macaque data,
which would suggest smaller number of effective subfields. It
should be noted, however, the study of Jones and Palmer
(1987a) used small spots of light as stimuli, while the present
study employed extended grating stimuli. It is could possible
for these data to be reconciled if one assumes that localized
stimuli tend to underestimate the size of the envelope due to
thresholding effects. A more detailed comparison between
simple-cell RFs in cat and monkey will require the use of
identical methods in both species.

The distribution of spatial phases in macaque V1 is bi-
modal: RFs cluster into even-and odd-symmetric classes.
There is also a tendency for RFs that are well tuned in
orientation and spatial frequency to be odd symmetric. This
finding was unexpected as all previous studies in cat area 17
report a uniform distribution of spatial phases (DeAngelis et
al. 1993a; Field and Tolhurst 1986; Hamilton et al. 1989;
Jones and Palmer 1987b). I verified that neither the mea-
surement technique nor the Gabor fitting procedure exhibit
a bias toward even/odd symmetry. This was done by simu-
lating RFs as a with random spatial phases followed by
rectification with various threshold levels, estimating the RF
via reverse-correlation (Ringach et al. 1997b), fitting them
with two-dimensional Gabor functions, and generating a
scatter-plot of the simulated versus estimated spatial phase.
No biases were observed (data not shown). There could be
other reasons for the discrepancy between cat and monkey
data. First, earlier studies in cat, except for the work of
DeAngelis and co-workers, did not take into account the
existence of spatiotemporal inseparable RFs. This might
have added noise to the data and wash away possible effects.
Second, all previous reports, except for the work of Jones
and Palmer, studied the phase of a 1D projection of the RF
(or the line-weighting function). It can be checked via
numerical simulations that fitting a two-dimensional Gabor
function to a two-dimensional estimate of the RF provides
more precise estimates of the spatial phase than projecting
the RF on one axis and then fitting a one-dimensional Gabor
function, as done by DeAngelis et al. (1993a). This is
particularly true if one also allows for some error in the
projection axis of the RF. Thus estimates of the spatial phase
from line-weighting functions (or a 1D analysis) are inher-
ently noisier than those from a two-dimensional analysis.
Third, it should be clear that in measuring the receptive-field
spatial phase, it is very important to have the eyes steady in
their orbit as changes in eye position may contaminate the
measurements. Obviously, this is more important in monkey
than in cat as the RFs in the macaque are much smaller.
Nevertheless, it is unclear to what extent previous studies
were concerned about eye movements and how they verified
that the eye was stable during the measurements. Fourth, we

must also consider the possibility that cat and monkey are
different in this respect.

An important step in understanding the function of simple
cortical cells will be to explain the observed distribution of
filter shapes (Fig. 4) and spatial phases (Figs. 6B and 7). The
predictions of two recent theories, independent component
analysis and sparse coding, do not match the data (Fig. 9).
One similarity is that the SC RFs tend to be odd symmetric
as seen in the population of well-tuned neurons (Fig. 7 and
10). The odd symmetry of the SC RFs might not be surpris-
ing as taking differences of nearby locations in space is
clearly one way of generating a sparse distribution of re-
sponses (Ruderman 1994).

There are many possible reasons behind the failure of ICA
and SC in explaining the distribution of filter shapes in V1.
One possibility is that the function of simple cells is not to
generate a full representation of the image, as suggested by
these theories. It could also be that mean square error is not
the measure being optimized. It is well known that the mean
square error is not an appropriate psychophysical measure of
image similarity or fidelity (see Heeger and Teo 1995 and
references therein). One wonders if minimization of other
measures (such as the L1 norm of the error) would produce
RFs that match the experimental data better. Another caveat
about these comparisons is that the RF predictions of these
theories are dependent on the preprocessing of the images
used to train the algorithms, the statistics of the images
selected for training, the actual algorithm used to optimize
the basis set (van Hateren and Ruderman 1998), and whether
the analysis is done on static images or on image sequences
(van Hateren and van der Schaaf 1998). The dependence
of the shapes of the predicted RFs on these implementa-
tion details has not been explored thoroughly yet. Thus it
appears premature to argue based on the present com-
parisons that the basic principles put forward by these
theories are unsuitable for explaining simple-cell function in
V1. It might be possible that future realizations of these
ideas will be able to account for the experimental data. Our
dataset provides an appropriate benchmark against which
theories of simple-cell RF could be tested. To make this
possible, the data in Figs. 4, 6, and 7 are made available at
http://manuelita.psych.ucla.edu/�dario.

A P P E N D I X

Here, I show that the RF maps of the sparse coding network
obtained via reverse correlation can be approximated by the expres-
sion � � (�T � � �1)�1 �T. The reason for this simplification is
that the type of stimulus used in reverse-correlation experiments
effectively “linearizes” the network around its operating point. A
perturbation analysis around the operating point results in the preced-
ing relationship.

In what follows, the following notation is used. The column vector
I (of size M 
 1) represents the image, where M � n2 is the size of
the image. The matrix � (M 
 N) encodes in each column one of the
N basis functions elements. The column vector � (of size N 
 1)
represents the coefficients of the representation. Given the image, the
sparse coding network finds the optimal coefficients by relaxation of
the nonlinear evolution equation (Olshausen and Field 1997)

�̇ � �T�I � ��	 � �S���	 (A1)

Let us assume that the stimulus consists of a small perturbation
around a mean, I � I� � �I, and that in response to this stimulus the
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coefficients are perturbed around a mean, � � �� � ��. The coordi-
nate (I�, �� ) is the “operating point” of the network. Linearization of the
evolution equation around the operating point yields

d��

dt
� �T��I � ���	 � � diag �S
��� 		�� (A2)

Here, I used S�(�� � ��) � S�(�� ) � diag[S
(�� )]��. In steady state,
we have d��/dt � 0 and one gets

�� � ��T� � � diag �S
��� 		��1�T�I (A3)

If the stimulus is symmetric and centered around zero (such as
Gaussian white noise), it is easy to see that the coefficients will also
be centered around zero; i.e., �� � 0. In this case

�� � ��T� � �1��1�T�I (A4)

where � � �S
(0) and the matrix 1 represents the identity matrix.
For any reasonable definition of sparseness, we have S
(0) � 0, as
S(x) is convex at the origin. Thus there is no change of sign, and
we can define � as a positive number. Because Eq. A4 is a linear
system (�� and �I are linearly related), cross-correlation between
the input and the output will recover the constant of proportional-
ity, which equals

� � ��T� � �1��1�T (A5)

To verify this approximation, the set of RFs obtained via reverse-
correlation with small spots reported by Olshausen (2001) (Fig. 11A)
and the set of RFs obtained by Eq. A5 (Fig. 11B) were compared. The
approximation is quite reasonable: the overall correlation between the
data sets is 0.89 for a value of � � 0.1.
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