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ABSTRACT 

Color vision supports two distinct visual functions - discrimination and constancy. 

Discrimination requires that the visual response to distinct objects with a scene be 

different.  Constancy requires that the visual response to any object be the same across 

scenes.  Across changes in scene illumination, adaptation can improve discrimination by 

optimizing the use of the available response range.  Similarly, adaptation can improve 

constancy by stabilizing the visual response to any fixed object across changes in 

illumination.  Can common mechanisms of adaptation achieve these two goals 

simultaneously?  This paper develops a theoretical framework for answering this question 

and presents several example calculations.  For changes in illuminant spectral power 

distribution typical of variation in daylight and natural surface spectra, the answer is yes.  

For changes in the statistical ensemble of surfaces in scenes, the answer is no. 
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INTRODUCTION 

Color vision supports two distinct visual functions - discrimination and constancy 

(e.g. Jacobs, 1981; Mollon, 1982).  Color discrimination, the ability to determine that two 

spectra differ, is useful for segmenting an image into regions corresponding to distinct 

objects.  Effective discrimination requires that the visual response to distinct objects 

within a scene be different.  Across changes in scene, adaptation can improve 

discrimination by optimizing the use of the available response range for objects in the 

scene (e.g. Walraven et al., 1990). 

Color constancy is the ability to identify objects on the basis of their color appearance 

(Brainard, 2004).  Because the light reflected from an object to the eye depends both on 

the object’s surface reflectance and on the illumination, constancy requires that some 

process stabilize the visual representation of surfaces across changes in illumination.  

Early visual adaptation can mediate constancy if it compensates for the physical changes 

in reflected light caused by illumination changes (e.g. Wandell, 1995). 

Although there are large theoretical and empirical literatures concerned both with 

how adaptation affects color appearance and constancy on the one hand (e.g. Wyszecki, 

1986; Zaidi, 1999; Foster, 2003; Shevell, 2003; Brainard, 2004) or discrimination on the 

other (e.g. Wyszecki & Stiles, 1982; Walraven et al., 1990; Hood & Finkelstein, 1986; 

Lennie & D'Zmura, 1988; Kaiser & Boynton, 1996; Eskew et al., 1999), it is rare that the 

two functions are considered simultaneously .  Still, it is clear that they are intimately 

linked since they rely on the same initial representation of spectral information.  In 

addition, constancy is only useful if color vision also supports some amount of 

discrimination performance;  in the absence of any requirement for discrimination, 
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constancy can be achieved trivially by a visual system that assigns the same single color 

to every object in every scene.1  The recognition that constancy (or its close cousin 

appearance) and discrimination are profitably considered jointly has been exploited in a 

few recent papers (Robilotto & Zaidi, 2004; Hillis & Brainard, in press). 

Here we ask whether applying the same adaptive transformations to visual responses 

can simultaneously optimize performance for both constancy and discrimination.  If the 

visual system adapts to each of two environments so as to produce optimal color 

discrimination within each, what degree of constancy is achieved?  How does this 

compare with what is possible if adaptation is instead tailored to optimize constancy, and 

what cost would such an alternative adaptation strategy impose on discrimination 

performance? 

To address these questions we adopt the basic theoretical framework introduced by 

Grzywacz and colleagues (Grzywacz & Balboa, 2002; Grzywacz & Juan, 2003; also von 

der Twer & MacLeod, 2001; Foster et al., 2004) by analyzing task performance using 

explicit models of the visual environment and early visual processing. Parameters in the 

model visual system specify the system’s state of adaptation, and we study how these 

parameters should be set to maximize performance, where the expectation is taken across 

scenes drawn from a statistical model of the visual environment (see Grzywacz & 

Balboa, 2002; Grzywacz & Juan, 2003).  Within this framework, we investigate the 

tradeoffs between optimizing performance for discrimination and for constancy.  We 

begin with consideration of a simple one-dimensional example that illustrates the basic 

                                                
1 This is sometimes referred to as the Ford algorithm, after a quip attributed to Henry 
Ford: “People can have the Model T in any color - so long as it’s black.” 
(http://en.wikiquote.org/wiki/Henry_Ford). 
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ideas (UNIVARIATE EXAMPLE), and then generalize to color (CONTRAST ADAPTATION, 

CHROMATIC ADAPTATION.)  The work presented here complements our recent 

experimental efforts directed towards understanding the degree to which measured 

adaptation of the visual pathways mediates judgments of both color discrimination and 

color appearance (Hillis & Brainard, in press). 

UNIVARIATE EXAMPLE 
We begin with the specification of a model visual system, a visual environment, and 

performance measures.  The basic structure of our problem is well-illustrated for the case 

of lightness/brightness constancy and discrimination, and we begin with a treatment of 

this case. 

VISUAL ENVIRONMENT 
The model visual environment consists of achromatic matte surfaces lit by a diffuse 

illuminant.  Each surface j  is characterized by its reflectance rj , which specifies the 

fraction of incident illumination that is reflected.  Each illuminant is specified by its 

intensity e
i
.  The intensity of light ci , j  reflected from surface j  under illuminant i  is 

thus given by 

c
i , j

= e
i
r
j .  (1)  

At any given moment, we assume that the illuminant e
i
 is known and that the 

particular surfaces in the scene have been drawn from an ensemble of surfaces.  The 

ensemble statistics characterize the regularities of the visual environment.  In particular, 

we suppose that  

r
j
~ N(µ

r
,!

r

2
)   (2) 
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where ~  indicates “distributed as” and N(µ
r
,!

r

2
)  represents a truncated Normal 

distribution with mean parameterµ
r
and variance parameter !

r

2 .  The overbar in the 

notation indicates the truncation, which means that probability of obtaining a reflectance 

in the range 0 !  rj ! 1  is proportional to the standard Normal density function while the 

probability of obtaining a reflectance outside of this range is zero.  The truncated 

distribution is normalized so that the total probability across all possible values of rj  is 

unity. 

We are interested in a) how well a simple model visual system can discriminate and 

identify randomly chosen surfaces viewed within a single scene and b) how well the same 

visual system can discriminate and identify randomly chosen surfaces viewed across 

different scenes where the illumination, surface ensemble, and/or state of adaptation have 

changed. 

MODEL VISUAL SYSTEM 
The model visual system has a single class of photoreceptor.  At each location, the 

information transmitted by this photoreceptor is limited in two ways.  First, the receptor 

has a limited response range.  We capture this by supposing that the deterministic 

component of the response to surface j  under illuminant i  is given by 

ui , j =
gci , j( )

n

gci , j( )
n

+1
 (3) 

where ui , j  represents the visual response, ci , j  represents the intensity of incident light 

obtained through Eq. (1), g  is a gain parameter, and n  is a steepness parameter that 

controls the slope of the visual response function.  For this model visual system, the 
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adaptation parameters g  and n  characterize the system’s state of adaptation.  For each 

scene, the visual system may set g  and n  to optimize its performance, but we require 

that the same parameters be applied for the incident intensities reflected from every 

surface in the scene.2 

The second limit on the transmitted information is that the responses are noisy.  We 

can capture this by supposing that the deterministic component of the visual responses 

are perturbed by zero mean additive noise that is Normally distributed with variance !
n

2 . 

DISCRIMINATION TASK AND PERFORMANCE MEASURE 
To characterize discrimination performance, we need to specify a discrimination task.  

We consider a same-different task.  On each trial, the observer either sees two views of 

the same surface (same trials) or one view each of different surfaces (different trials), all 

viewed under the same light e
i
.  The observer’s task is to respond “same” on the same 

trials and “different” on the different trials.  On same trials, a single surface is drawn at 

random from the surface ensemble and viewed twice.  On different trials, two surfaces 

are drawn independently from the surface ensemble.  Independently drawn noise is added 

to the response for each view of each surface.  This task is referred to in the signal 

detection literature as a roving same-different design (Macmillan & Creelman, 2005).  

                                                
2 Treatments of adaptation are clarified by distinguishing two separate issues (Stiles, 
1967; Krantz, 1968; Brainard & Wandell, 1992; Brainard, 2004).  First, what are the 
adaptation parameters?  Second, what aspects of the visual input determine the state of 
adaptation?  Here our interest lies in understanding performance tradeoffs across various 
choices of adaptation parameters.  We use parameter search to optimize adaptation 
parameters in a manner that provides access to information not available to actual visual 
systems.  Previous authors have investigated how the visual input may be used to set 
adaptive parameters to optimize discrimination (Grzywacz & Juan, 2003) or achieve 
constancy (see e.g. Brainard & Freeman, 1997; Hurlbert, 1998; Maloney, 1999). 
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The observer’s performance is characterized by a hit rate (fraction of “same” responses 

on same trials) and a false alarm rate (fraction of “same” responses on different trials). 

It is well-known that the hit and false alarm rates obtained by an observer in a same-

different task depend both on the quality of the information supplied by the visual 

responses (i.e. signal-to-noise ratio) and on how the observer chooses to trade off hits and 

false alarms (Green & Swets, 1966; Macmillan & Creelman, 2005).  By tolerating more 

false alarms an observer can increase his or her hit rate.  Indeed, by varying the response 

criterion used in the hit/false-alarm tradeoff, an observer can obtain performance denoted 

by a locus of points in what is referred to as an ROC diagram (see Figure 1 and its 

caption).  A standard criterion-free measure of the quality of information available in the 

visual responses is A' , the area under the ROC curve (Green & Swets, 1966; Macmillan 

& Creelman, 2005).  In this paper, we use A'  as our measure of performance, both for 

discrimination (as is standard) and for constancy (see below). 

Figure 1.  ROC diagram.  The ROC (receiver operating characteristic) diagram plots hit 
rate versus the false rate.  An observer can maximize hit rate by responding “same” on 
evary trial.  This will lead to a high false alarm rate and performance will plot at (1,1) in 
the diagram.  An observer can minimize false alarms by responding “different” on every 
trial can and achieve performance at (0,0).  Varying criteria between these two extremes 
produces a trade-off between hits and false alarms.  The exact locus traced out by this 
tradeoff depends on the information used at the decision stage.  Better information leads 
to performance curves that tend more towards the upper left of the plot (solid curve 
indicates better information than the dashed curve.)  The area under the ROC curve, 
referred to as A ' , is a task-specific measure of information that does not depend on 
criterion.  The hatched area is A '  for the dashed ROC curve.  The ROC curves shown 
were computed for two surfaces with reflectances r

1
= 0.15 and r

2
= 0.29 presented in a 

roving same-different design.  The illuminant had intensity e = 100 and the 
deterministic component of the visual responses was computed from Equation (3) with 
g = 0.02 and n = 2 . The solid line corresponds to !

n
= 0.05 and A ' = 0.85  while the 

dashed line corresponds to !
n
= 0.065  and A ' = 0.76 .  Hit and false alarm rates were 

computed using the decision rule described in the next section. 
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EFFECT OF ADAPTATION ON DISCRIMINATION 
To understand the effect of adaptation, we ask how the average A'  depends on the 

adaptation parameters, given the surface ensemble, illuminant, and noise.  For a roving 

design, a near-optimal strategy is to compute the difference between the visual responses 

for two surfaces and compare this difference to a criterion C  (Macmillan & Creelman, 

2005).  Let ui , j  be the visual response to one surface under the given illuminant e
i
, u

i ,k to 

the other surface.  The observer responds “same” if the squared response difference 

!u
i , jk

2
= ui , j " ui ,k

2

is less than C  and “different” if !ui , jk
2

" C . 

For any pair of surfaces rj  and r
k
, we can compute the values of the deterministic 

component of the corresponding visual responses (ui , j  and u
i ,k ), once we know the 

illuminant e
i
 and the adaptation parameters g  and n .  Because of noise, the observed 

response difference !ui , jk
2  varies from trial-to-trial.  If the variance of the noise is !

n

2 , the 

distribution of the quantity !ui , jk
'( )

2

= !ui , jk / 2" n( )
2

 is non-central chi-squared with 1 

degree of freedom and non-centrality parameter !ui , jk / 2" n( )
2

.3  Because scaling the 

visual response for both same and different trials by a common factor 1 / 2!
n
does not 

affect the information contained in these responses, a decision rule based on comparing 

!ui , jk
'( )

2

 criterion C ' = C / 2! 2  leads to the same performance as one that compares 

!ui , jk
2  to C .  Thus the known non-central chi-square distributions on same and different 

trials may be used, along with standard signal detection methods, to compute hit and false 

                                                
3 On same trials the difference !u

i , jk

'( )
2

 is 0 and the distribution reduces to ordinary chi-
squared. 
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alarm rates for a set of criteria.  The resultant ROC curve may then be numerically 

integrated to find the value of Ai , jk
' . 

To evaluate overall discrimination performance, we compute Ai , jk
'  for many pairs of 

surfaces drawn according to the surface ensemble.  We sort the resulting Ai , jk
'  and 

average the lower 50th percentile of values in the ordered list to obtain an aggregate 

measure of discrimination performance, A
50

' .4 

Figure 2 illustrates how the gain parameter g  affects discrimination performance for 

a single illuminant and surface ensemble, when the steepness parameter is held fixed at 

n = 2 .  The top panel shows a plot of A
50

'  for two noise levels.  There is an optimal 

choice of gain for each noise level.  The solid line plotted in the middle right panel shows 

the response function obtained for the optimal choice of gain when !
n
= 0.05 .  The 

histogram below the x-axis shows the distribution of reflected light intensities, while that 

to the left of the y-axis shows the distribution of visual responses.  The histogram of 

responses appears more uniform than the histogram of light intensities.  This general 

effect is expected from standard results in information theory, where maximizing the 

information transmitted by a channel occurs when the distribution of channel responses is 

uniform (Cover & Thomas, 1991). The response histogram is not perfectly uniform 

because varying the gain alone cannot produce this result, and because our performance 

                                                
4 The decision to average only the lower 50th percentile of the Ai , jk

'  is somewhat arbitrary.  
Doing so increases the sensitivity of the aggregate measure to changes in the adaptation 
parameters, as the larger of the Ai , jk

'  tend to cluster near their ceiling value of 1.0.  We 

have not systematically explored the effect of varying the range of Ai , jk
'  averaged. 
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measure is A
50

'  rather than bits transmitted.  Figure 5 below shows response histograms 

when both gain and steepness parameters are allowed to vary. 

Figure 2.  Effect of gain on discrimination performance.  The top panel plots the 
discrimination measure A

50

'  as a function of the gain parameter, for two noise levels 
(solid line, !

n
= 0.05 ; dashed line !

n
= 0.065 ).  In the calculations, we set n = 2 , 

µ
r
= 0.5 , !

r
= 0.3 , and e = 100 .  The bottom panel shows the response function for the 

optimal choice of gain when the noise is !
n
= 0.05  ( g = 0.0205, A

50

'
= 0.73 ).  Below 

the response function is a histogram of the light intensities cij  reaching the eye, while to 
the left is a histogram of the resultant visual responses.  Calculations were performed for 
500  draws from the surface ensemble, and A

i , jk

' was evaluated for all possible 124750  
surface pairs formed from these draws.  Choices of gain less than or greater than the 
optimum shift would shift the response function right or left.  For these non-optimal 
choices, visual responses would tend to cluster near the floor or ceiling of the response 
range, resulting in poorer discrimination performance. 

EFFECT OF ILLUMINANT CHANGE ON DISCRIMINATION 
We can also investigate the effect of illumination changes on performance, and how 

adaptation can compensate for such changes.  First consider the case where the adaptation 

parameters are held fixed and the illuminant is varied.  The solid curve shown in Figure 3 

plots A
50

'  as a function of the illuminant intensity.  Not surprisingly, performance falls off 

with the change of illuminant: Increasing the illuminant intensity pushes the intensity of 

the reflected light towards the saturating region of the visual response function and 

compresses the response range used.  The effect of increasing the illuminant intensity is 

multiplicative, so this effect can clearly be compensated for by decreasing the gain 

(which also acts multiplicatively) so as to keep the distribution of responses constant.  

Perfect compensation is possible in this example because of the match between the 

physical effect of an illuminant change (multiplication of all reflected light intensities by 

the same factor) and the effect of a gain change (also multiplication of the same 

intensities by a common factor).  In general such perfect compensation is not possible. 
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CONSTANCY 
Suppose that instead of discriminating between surfaces seen under a common 

illuminant, we ask the question of constancy: how well can the visual responses be used 

to judge whether two surfaces are the same, when one surface is viewed under a 

reference illuminant and the other is viewed under a test illuminant?  Imagine that on 

same trials of an experiment, the observer sees a surface, drawn at random from the 

surface ensemble, under the reference illuminant and the same surface under the test 

illuminant.  On different trials, two surfaces are drawn from the surface ensemble and one 

is seen under the reference illuminant and the other under the test illuminant.  As in the 

one illuminant discrimination task, the observer must respond “same” or “different”.  We 

assume that the observer continues to employ the same basic distance decision rule 

introduced previously, with the decision variable evaluated across the change of 

illuminant: 
 

!
!u

jk

2
= uref , j " utest ,k

2

.  On same trials, the expression is evaluated for a single 

surface across the change ( rk = rj ), and on different trials the expression is evaluated for 

two draws from the surface ensemble.  In the notation, the arrow indicates the change of 

illuminant.5  This decision rule models the case where the observer has no explicit 

knowledge of the illuminant or state of adaptation.6 

The quantity A'  remains an appropriate measure of performance for the illuminant 

change case, as it continues to characterize how well hits and false alarms trade off as a 
                                                
5 More generally, we will use the notation 

 

!
!u

jk

2  to denote the squared difference in 
response for two surfaces across a change in illuminant or in adaptation parameters. 
6 This choice may be contrasted with work where the measure of performance is bits of 
information transmitted (e.g. Foster et al., 2004).  Measurements of information 
transmitted are silent about what subsequent processing is required to extract the 
information.  Here we are explicitly interested in the performance supported directly by 
the visual response representation.   
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function of a decision criterion.   As previously, we can compute an aggregate measure of 

A'  across many pairs of surfaces drawn from the ensemble, with the only change being 

that the distribution of the response difference on same trials is no longer guaranteed to 

have a mean of zero (because of the illuminant change).  We will denote the expected 

performance value here as 
 

!
A
50

' , where the arrow indicates that A'  has been computed 

across the illuminant change.7  The dashed curve in Figure 3 shows how 
 

!
A
50

'  falls off with 

a change in illuminant, when there is no compensatory change in gain.  The reference 

illuminant had intensity 100 , and the test illuminant intensity is plotted along the x-axis.8 

As with the effect of the illuminant change on within-illuminant discrimination 

performance, the deleterious effect of the illuminant change on constancy may be 

eliminated by an appropriate gain change.  This is because changing the gain with the 

illumination can restore the responses under the test light back to their values under the 

reference light. 

Figure 3.  Effect of illuminant change on discrimination and constancy 
performance.  The plot shows how discrimination performance ( A

50

' , solid line) and 

constancy performance (
 

!
A

50

' , dashed line) decrease when the illumination is changed and 
the state of adaptation is held constant.  All calculations performed with adaptation 
parameters held fixed ( g = 0.0205 , n = 2 ) and for !

n
= 0.05 .  These values maximize 

A
50

'  for an illuminant intensity of 100.  The surface distribution had parameters 

µ
r
= 0.5 and !

r
= 0.3 .  For the computation of 

 

!
A

50

' , a reference illuminant intensity of 
100 was used. 

                                                
7 More generally we can evaluate 

 

!
A
50

'  across changes in illuminant, changes in adaptation 
parameters, or both. 
8 Those familiar with standard signal detection analyses may initially find it odd that 

 

!
A
50

'  
can drop below 0.5.  Here this indicates that in some cases the effect of the illuminant 
change is to make the response difference smaller on different trials than on same trials.  
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TRADEOFFS BETWEEN DISCRIMINATION AND CONSTANCY 
When the adaptation parameters include a gain change, adaptation can compensate 

perfectly for changes in illumination so that discrimination performance A
50

' remains 

unchanged and constancy performance is at ceiling given discrimination (
 

!
A
50

'
= A

50

' .)  

More generally there will be cases where the adaptation parameters available within a 

given model are not able to compensate completely for environmental changes.  This 

raises the possibility that the adaptation parameters that optimize discrimination 

performance may differ from those that optimize constancy performance. 

Consider the case of an illuminant change where the gain parameter is held fixed and 

the steepness parameter n  is allowed to vary.  Figure 4 plots 
 

!
A
50

'  against A
50

'  for various 

choices of the steepness parameter.  The closed circle plots performance when the 

steepness parameter was chosen to maximize A
50

' , while the open circle plots 

performance when the steepness parameter was chosen to maximize 
 

!
A
50

' .  The curve 

connecting the closed and open circle represents performance obtained when various 

weighted averages of the two measures were optimized.  The figure shows that in this 

case, there is a tradeoff between the two performance measures – optimizing for 

constancy results in decreased discrimination performance and vice-versa.  If there were 

no tradeoff between the two measures, performance at the point in the plot indicated by 

the star would be possible. 

Figure 4.  Tradeoff between discrimination and constancy.  The plot shows 
 

!
A

50

'  versus 

A
50

'  for different choices of steepness parameter n .  Discrimination performance A
50

'  was 
evaluated for µ

r
= 0.5 , µ

r
= 0.5 , e

i
= 150 ,!

n
= 0.05 , and g = 0.0203 .  Constancy 

performance 
 

!
A

50

' was evaluated for the same surface ensemble, noise level, and gain, with 
the reference illuminant e

ref
= 100  and test illuminant e

test
= 150 .  The steepness 
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parameter under the reference illuminant was n = 4.272 .  Points on the plotted curve 
were obtained by optimizing n  to maximize A

50

'  (closed circle), 
 

!
A

50

'  (open circle), or 
various weighted averages of the two measures.  The star indicates the joint performance 
that could be achieved if the same state of adaptation could simultaneously optimize both 
discrimination and constancy. 

INTERMEDIATE DISCUSSION 
The example above illustrates our basic approach to understanding how adaptation 

affects both discrimination and constancy.  The example illustrates a number of key 

points.  First, as is well known, adaptation is required to maintain optimal discrimination 

performance across changes in the state of the visual environment (e.g. Walraven et al., 

1990). Second, adaptation is necessary to optimize performance on a constancy task as 

well as for discrimination, when we require that surface identity is judged directly in 

terms of the visual responses.  The link between adaptation and constancy has also been 

explored previously (e.g. Burnham et al., 1957; D'Zmura & Lennie, 1986; Wandell, 

1995).  What is new about our approach is that we have set our evaluations of both 

discrimination and constancy in a common framework by using an A'  measure for both.  

This allows us to ask questions about how any given adaptation strategy affects both 

tasks, and whether common mechanisms of adaptation can simultaneously optimize 

performance for both.  The theory we develop is closely related to measurements of 

lightness constancy made by Robilotto and Zaidi (2004), who used a forced choice 

method to measure both discrimination within and identification across changes in 

illuminant. 

Below we employ our basic approach to analyze two more interesting examples of 

adaptation: a) a generalization of contrast adaptation for a univariate visual system and b) 

adaptation for a trichromatic visual system. 
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CONTRAST ADAPTATION 

Changing the illuminant is not the only way to change the properties of the 

environment.  Within the context of the univariate case introduced above, we can also 

vary both the mean and variance of the surface ensemble.  Such variation might occur as 

a person travels from, say, the city to the suburbs during an afternoon commute.  We can 

use the framework developed above to investigate the effect of adaptation to such 

changes in the visual environment.  There is good evidence that the visual system adapts 

not only to changes in the overall intensity of the reflected light (as considered above in 

the context of illumination intensity changes) but also to changes in the variance of the 

reflected light.  This is called contrast adaptation (Krauskopf et al., 1982; Webster & 

Mollon, 1991; Chubb et al., 1989; Zaidi & Shapiro, 1993; Jenness & Shevell, 1995; 

Schirillo & Shevell, 1996; Brown & MacLeod, 1997; Bindman & Chubb, 2004; Chander 

& Chichilnisky, 2001; Solomon et al., 2004).  Here we generalize by considering changes 

to the mean and variance of the surface ensemble, and explore the effect of adapatation to 

such changes on both discrimination and constancy, using the approach developed above. 

We consider the same visual environment as previously, but now ask what happens 

when the properties of the surface ensemble vary.  Given a particular illuminant, we used 

numerical search to find the values of g and n that optimized A
50

'  for two fixed surface 

ensembles (Surface Ensemble 1 and Surface Ensemble 2) under a single illuminant.  This 

calculation tells us how adaptation should be chosen under a discrimination criterion.  

Figure 5 shows the results. We see (central panel) that the visual response function under 

Surface Ensemble 2 has shifted to the right and become steeper.  The effect of this 
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adaptation is to distribute the visual responses fairly evenly across the available response 

range for each ensemble. 

Figure 5.  Adaptation to surface ensemble change for discrimination.  Numerical search 
was used to optimize A

50

' for two surface ensembles and an illuminant intensity of 100.  In 
surface Ensemble 1, µ

r
= 0.5 and !

r
= 0.3 .  In surface Ensemble 2, µ

r
= 0.7  and 

!
r
= 0.1 .  The histogram under the graph shows the distributions of reflected light 

intensities for the two ensembles.  The graph shows the resultant visual response function 
for each case.  The solid line corresponds to Surface Ensemble 1 ( g = 0.0203 , 

n = 4.272 , A
50

'

= 0.79 ) and the dashed line to Surface Ensemble 2 ( g = 0.0144 , 

n = 16.214 , A
50

'

= 0.80 ).  The histogram to the left of the graph shows the response 
distribution for Surface Ensemble 1 under the Surface Ensemble 1 response function, 
while the histogram to the right shows the response distribution for Surface Ensemble 2 
under the Surface Ensemble 2 response function.  All calculations done for 
!

n
= 0.05 and e = 100 . The gray long-dashed lines show how the visual response to the 

light intensity reflected from a fixed surface varies with the change in adaptation 
parameters.  (Since the illuminant is held constant, a fixed surface corresponds to a fixed 
light intensity.) 

What is the cost for constancy of adaptation to the changed surface ensemble for 

discrimination?  The gain and steepness parameters that optimize discrimination for 

Surface Ensemble 1 and Surface Ensemble 2 are different.  Suppose we draw surfaces 

from Surface Ensemble 2, and evaluate 
 

!
A
50

'  across the change in adaptation parameters 

required to optimize discrimination.  The resultant value is very low: 
 

!
A
50

'
= 0.1377  (see 

Figure 6, solid circle.)  This low value occurs because the change in adaptation 

parameters remaps the relation between surface reflectance and visual response (see 

Figure 5.) 

Figure 6.  Tradeoff between discrimination and constancy.  The plot shows 
 

!
A

50

'  

versus A
50

' , evaluated for Surface Ensemble 2, for different optimization criteria.  When 

the adaptation parameters are chosen to optimize discrimination ( A
50

' ), discrimination 
performance is maximized and constancy performance is poor (sold circle).  When the 
adaptation parameters are chosen to optimize constancy (

 

!
A

50

' ), constancy performance is 
maximized and discrimination performance is poor (open circle).  The solid line shows 
how performance on the two tasks trades off as varying weight is placed on the two 
performance criteria during optimization.  In evaluating 

 

!
A

50

' , the adaptation parameters 



17 

were those that optimize discrimination performance for Surface Ensemble 1.  Surface 
ensemble, illuminant, and noise parameters are given in the caption for Figure 5.  

Rather than choosing adaptation parameters for Surface Ensemble 2 to optimize 

discrimination performance, one can instead choose them to optimize constancy 

performance.  This choice leads to quite different adaptation parameters, and to different 

values of A
50

'  and 
 

!
A
50

'  as shown by the open circle in Figure 6.  Here the best adaptation 

parameters for Surface Ensemble 2 are very similar (but not identical) to their values for 

Surface Ensemble 1, and constancy performance is better. 9  Discrimination performance 

suffers, however.  It is also worth noting that maximized constancy performance is not 

particularly good, with the value of 
 

!
A
50

' less than 0.6.  For this example, it is not possible 

to simultaneously make good use of the response range for Surface Ensemble 2 and 

preserve constant responses across the change from Surface Ensemble 1 to 2. 

More generally, the visual system can choose adaptation parameters that trade A
50

'  off 

against 
 

!
A
50

' .  The performance boundary that may be obtained as the relative weight on 

these two criteria is varied is shown as the solid curve in Figure 6.  If there were no 

tradeoff between A
50

'  and 
 

!
A
50

' , the curve would follow the dashed lines in the plot, and 

performance at the point indicated by the star would be possible.  The calculation shows 

that, for the model visual system considered, adapting to optimize discrimination in the 

                                                
9 One might initially intuit that that the best adaptation parameters for constancy would 
be identical to the reference parameters in this case, since the illuminant does not change.  
The reason that a small change in parameters helps is that the cost of variation in visual 
response to a fixed surface caused by the shift in parameters is offset by an improved use 
of the available response range.  The fact that constancy can sometimes be improved by 
changing responses to fixed surfaces is an insight that we obtain by assessing constancy 
with a signal detection theoretic measure.  
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face of changes in the distribution of surfaces in the environment is not always 

compatible with adapting to maximize constancy.   

CHROMATIC ADAPTATION 

The same approach we used above may be applied to study chromatic adaptation, 

both for discrimination and constancy.  We begin with a standard description (e.g. 

Wandell, 1987; Brainard, 1995) of the color stimulus and its initial encoding by the visual 

system.  Each illuminant is specified by its spectral power distribution, which we 

represent by a column vector e .  The entries of e  provide the power of the illuminant in 

a set of N
!

 discretely sampled wavelength bands.  Each surface is specified by its 

spectral reflectance function, which we represent by a column vector s .  The entries of 

s provide the fraction of incident light power reflected in each wavelength band.  The 

light reflected to the eye has a spectrum described by the column vector  

c = diag(e) s , (4) 

where diag()  is a function that returns a square diagonal matrix with the elements of its 

argument along the diagonal.  The initial encoding of the reflected light is the quantal 

absorption rate of the L-, M-, and S-cones.  We represent the spectral sensitivity of the 

three cone types by a 3! N
"

 matrix T .  Each row of T  provides the sensitivity of the 

corresponding cone type (L, M, or S) to the incident light.  The quantal absorption rates 

may then by computed as  

q = Tc = Tdiag(e)s  (5) 

where q  is a 3-dimensional column vector whose three entries represent the L-, M-, and 

S-cone quantal absorption rates. 
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As with the univariate example, we model visual processing as transformation 

between cone quantal absorptions (q ) to visual responses.  Here we model the 

deterministic component of this transformation as 

u = f(MDq ! q
0
)  (6) 

where u  is a3-dimensional column vector representing trivariate visual responses, D  is 

a 3! 3  diagonal matrix whose entries specify multiplicative gain control applied to the 

cone quantal absorbtion rates, M is a fixed 3! 3  matrix that describes a post-receptoral 

recombination of cone signals, q
0

 is a 3-dimensinal column vector that describes 

subtractive adaptation, and the vector-valued function f()  applies the function fi ()  to the 

i
th  entry of its vector argument.  Because incorporation of subtractive adaptation allows 

the argument to the non-linearity to be negative, we used a modified form of the non-

linearity used in the univariate example: 

fi (x) =

(x +1)
ni

(x +1)
ni +1

x > 0

0.5 x = 0

1!
(1! x)ni

(1! x)ni +1
x < 0

"

#

$
$
$

%

$
$
$

. (7) 

This non-linearity maps input x  in the range [!","]  from the real line into the range 

[0,1] .  We allow the exponent n
i
 to vary across entries.  The matrix M  was chosen to 

model, in broad outline, the post-receptoral processing of color information (Wandell, 

1995; Kaiser & Boynton, 1996; Eskew et al., 1999; Brainard, 2001): 
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M =

0.33 0.33 0.33

0.5 !0.5 0

!0.25 !0.25 0.5

"

#

$
$
$

%

&

'
'
'

. (8) 

This choice of M  improves discrimination performance by approximately decorrelating 

the three entries of the visual response vector prior to application of the non-linearity and 

the injection of noise (Buchsbaum & Gottschalk, 1983; Wandell, 1995). 

As with the univariate example, we assume that each entry of the deterministic 

component of the visual response vector is perturbed by independent zero-mean additive 

noise that is Normally distributed with variance !
n

2 . 

We characterized the surface ensemble using the approach developed by Brainard and 

Freeman (Brainard & Freeman, 1997; Zhang & Brainard, 2004).  We assumed that the 

spectral reflectance of each surface could be written as a linear combination of N
s
 basis 

functions via 

s = B
s
w

s
. (9) 

Here B
s
is an N

!
" N

s
 matrix whose columns provide the basis functions and w

s
 is a N

s
 

dimensional vector whose entries provide the weights that describe any particular surface 

as a linear combination of the columns of B
s
.  We then assume that surfaces are drawn 

from an ensemble where w
s
 is drawn from a truncated multivariate Normal distribution 

with mean vector w  and covariance matrix K
w

.  The truncation is chosen so that the 

reflectance in each wavelength band lies within the range [0,1] .  We computed B
s
 by 

computing the first 8  principal components of the reflectance spectra measured by Vrhel 
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et al. (1994).  We computed w  and K
w

 by taking the mean and covariance of the set of 

w
s
 required to best approximate each of the measured spectra with respect to B

s
. 

Given the visual system model and surface ensemble defined above, we can proceed 

as with the univariate case and ask how the adaptation parameters affect A
50

'  and 
 

!
A
50

' , the 

discrimination and constancy performance measures respectively.  The only modification 

required is that the decision rule now operates on the difference variable 

!u
i , jk

2
= ui , j " ui ,k

2

, and this variable is distributed as a non-central chi-squared 

distribution with 3 degrees of freedom rather than 1.  The adaptation parameters are the 

three diagonal entries of D , the three entries of q
0

, and the three exponents n
i
.  Figure 7 

shows how A
50

'  and 
 

!
A
50

'  trade off when the illuminant is changed from CIE illuminant 

D65 to a CIE daylight with correlated color temperature of 20000° K.  The figure shows 

that here discrimination and constancy are highly compatible. 

Figure 7.  Tradeoff between discrimination and constancy, color case for illuminant 
change.  The plot shows 

 

!
A

50

'  versus A
50

' , evaluated for the surface ensemble described in 
the text under a CIE daylight with correlated color temperature of 20000° K, for different 
optimization criteria. In evaluating 

 

!
A

50

' , the reference illuminant was CIE D65 and the 
adaptation parameters for this illuminant were those that optimize discrimination 
performance under it.  Note the scale of the plot. 

We also investigated discrimination constancy tradeoffs for the color case when the 

surface ensemble is changed.  Here we find that, as with the univariate case, there is not a 

single set of parameters that simultaneously optimize constancy and discrimination for 

the two tasks (Figure 8).10 

                                                
10 The numerical optimization for this case proved difficult because the searches tended 
to converge on local rather than global minima.  This in turn made it difficult to identify 
many distinct points on the tradeoff curve.  The data shown represent essentially three 
distinct “islands” of performance, one at the open circle, one at the closed circle, and one 
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Figure 8.  Tradeoff between discrimination and constancy, color case for surface 
ensemble change.  The plot shows 

 

!
A

50

'  versus A
50

'  under D65 across a surface ensemble 
change.  The reference surface ensemble was that used above and described in the text.  
The changed surface ensemble was obtained from the reference ensemble by shifting the 
mean of the weights of the first two basis functions, decreasing the standard deviation of 
the weights of the first basis function, increasing the standard deviation of the weights for 
the second basis function, and forcing the covariance matrix for the basis function 
weights to be diagonal.  The reference adaptation parameters were those that optimize 
discrimination for the reference surface ensemble under D65.  Note the scale of the plot. 

SUMMARY AND DISCUSSION 
The theory and calculations presented here lead to several broad conclusions.  First, 

we note that constancy cannot be evaluated meaningfully without considering 

discrimination.  By using a signal detection theoretic measure (A' ) to quantify constancy, 

we explicitly incorporate discrimination into our treatment of constancy. 

When the environmental change is a change in illuminant, then the dual goals of 

discrimination and constancy are compatible: a common change in adaptation parameters 

optimizes performance for both our discrimination and constancy performance measures.  

This is trivially true for our univariate example, where a change in gain can compensate 

perfectly for a change in illuminant intensity.  It is true to good approximation for our 

chromatic example, where the adaptation parameters allow approximate compensation 

for the effect of a change in illuminant spectrum on the cone quantal absorption rates of 

reflected light (Figure 7).  Our conclusion here is consistent with previous analyses that 

have suggested that independent gain changes in the L-, M-, and S-cone pathways can 

stabilize responses to a fixed set of surfaces across many changes in illuminant (West & 

Brill, 1982; Brainard & Wandell, 1986; Foster & Nascimento, 1994; Foster et al., 2004; 

also Finlayson et al., 1994; Finlayson & Funt, 1996). 

                                                                                                                                            
at the “knee” of the plot.  We were unable to find adaptation parameters that produced 
performance intermediate between the “islands” shown.  This latter effect also occurred 
(to a lesser extent) for the tradeoff curve shown in Figure 6. 
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When the environmental change is a change in the surface ensemble, discrimination 

and constancy are not always compatible: Figures 6 and 8 show that optimizing the 

adaptation parameters of the models we have studied for discrimination comes at a 

substantial cost for constancy and vice-versa.  Thus the analysis suggests that stimulus 

conditions where the surface ensemble changes may provide data that are diagnostic of 

whether the early visual system optimizes for discrimination, for constancy, or whether it 

has evolved separate sites that mediate performance on the two tasks.  For example, if we 

imagine the limit on discrimination to occur at the level of retinal ganglion cells, whose 

performance is very roughly described by the models we consider here, then one might 

also imagine that cortical processing could act on the retinal output to produce an 

appearance representation that is stable across adaptation to changes in surface ensemble.  

For this to be possible, the cortical processing would need access to the values of the 

adaptation parameters as well as to the retinal output.  We have started to develop an 

experimental framework for approaching this question (see Hillis & Brainard, in press; 

also Robilotto & Zaidi, 2004). 

As noted in the introduction, our approach is similar to that of Grzywacz and 

colleagues (Grzywacz & Balboa, 2002; Grzywacz & Juan, 2003; also Foster et al., 2004).  

Previous authors have considered the nature and adaptation of the visual response 

function required to optimize discrimination performance (e.g. Laughlin; Buchsbaum & 

Gottschalk, 1983; Twer & MacLeod, 2001) as well as nature of adaptive transformations 

that can mediate constancy (e.g. von Kries, 1902; Buchsbaum, 1980; West & Brill, 1982; 

Brainard & Wandell, 1986; D'Zmura & Lennie, 1986; Maloney & Wandell, 1986; Foster 

& Nascimento, 1994; Foster et al., 2004; Finlayson et al., 1994; Finlayson & Funt, 1996).  
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Here we bring analysis of the two tasks together in a common signal detection theoretic 

framework, and treat the compatibility of adaptation for discrimination and constancy. 
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