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Do common mechanisms of adaptation mediate
color discrimination and appearance?
Uniform backgrounds
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Color vision is useful for detecting surface boundaries and identifying objects. Are the signals used to perform
these two functions processed by common mechanisms, or has the visual system optimized its processing sepa-
rately for each task? We measured the effect of mean chromaticity and luminance on color discriminability and
on color appearance under well-matched stimulus conditions. In the discrimination experiments, a pedestal
spot was presented in one interval and a pedestal + test in a second. Observers indicated which interval con-
tained the test. In the appearance experiments, observers matched the appearance of test spots across a
change in background. We analyzed the data using a variant of Fechner’s proposal, that the rate of apparent
stimulus change is proportional to visual sensitivity. We found that saturating visual response functions to-
gether with a model of adaptation that included multiplicative gain control and a subtractive term accounted
for data from both tasks. This result suggests that effects of the contexts we studied on color appearance and
discriminability are controlled by the same underlying mechanism. © 2005 Optical Society of America © 2005
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1. INTRODUCTION

Color signals support two important visual functions.
First, color is useful for discriminating objects from their
background (i.e., for segmenting the image into regions
that correspond to physically distinct surfaces). Second,
as the perceptual correlate of surface reflectance, color is
useful for identifying objects. These functions are concep-
tually distinct, and each function may place different de-
mands on visual processing. In this paper, we ask
whether color discrimination and color appearance are
mediated by the same mechanisms of adaptation. We re-
fer to this proposition as the common mechanism hypoth-
esis.

Both sensitivity to color differences and color appear-
ance depend on the context in which the stimulus is
placed. Color difference sensitivity is revealed by thresh-
old measurements. Thresholds for detecting a monochro-
matic spot presented against a spatially uniform mono-
chromatic background vary with the wavelength and
intensity of the background.’ The dependence of thresh-
old on context reveals a form of chromatic adaptation,
wherein the processing of a focal stimulus changes with
context. There is an extensive literature examining how
chromatic adaptation affects visual sensitivity (for re-
views see Refs. 2-6).

Chromatic adaptation is also revealed by experiments
that assess color appearance. For example, the judged ap-
pearance of a test spot varies with the spectral composi-
tion of the background against which it is seen.” The ef-
fect of adaptation on the appearance of stimuli is also the
subject of an extensive literature found under the rubrics
of both color appearances_lo and color constancy.u’12

1084-7529/05/102090-17/$15.00

Research examining effects of context on color discrimi-
nation and color appearance has often proceeded along
separate paths. It is relatively rare for a single empirical
paper to report results from both paradigms. Nonetheless
results from discrimination and appearance experiments
are typically accounted for within the same general model
of color processing and adaptation.m’14 In broad outline,
this model incorporates encoding of light by three classes
of cone photoreceptors, recombination of cone signals into
a luminance and two color-opponent channels, and sensi-
tivity regulation at sites both preceding (first-site) and
following (second-site) the signal recombination. 51

Numerous variants of the general model have been pro-
posed to account for specific features of both discrimina-
tion and appearance data.>1"22 It is not clear whether
the variations reflect fundamental differences between vi-
sual processing for discrimination and appearance, differ-
ences in stimulus conditions studied, or differences in the
way individual investigators have treated their data. We
have thus undertaken a systematic investigation of the
relation between mechanisms of visual processing re-
vealed by discrimination and appearance.

We are, of course, not the first to consider the relation-
ship between color discrimination and appearance. A few
studies have explicitly tested the idea that specific as-
pects of color discriminability and appearance are con-
trolled by a common set of mechanisms. 22 If we
broaden attention to intensity discrimination and
lightness/brightness perception, additional studies have
tested Fechner’s hypothesis26 that the rate of apparent
stimulus change is inversely proportional to discrimina-
tion thresholds. This hypothesis may be used to derive a
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visual response function from discrimination data;?"2

for review see Ref. 33. This response function relates an
inferred perceptual dimension to stimulus magnitude and
can be used to predict appearance. We adopted this gen-
eral approach. Our formulation is very close to that devel-
oped by Heineman,> but subsequent advances in models
of early visual processing and numerical data fitting pro-
cedures allow us additional leverage.

This paper describes the experimental paradigms we
used and develops our formal analysis. Here we report
the results of investigations for adaptation to changes in
the luminance and chromaticity of uniform backgrounds.

A. Methods Overview and Formal Model

1. Experimental Paradigms

We conducted two types of experiments: color discrimina-
tion and asymmetric matching. In the color discrimina-
tion experiments, test stimuli were excursions from the
background color that isolated either the L and M cones
or the S cones. The test stimuli may be represented by the
expression [Lp, Myg Spgl+I[Liest Miest Stest] Where the
vectors indicate LMS cone coordinates.”” More specifically
[Lpg Mpg S indicates the cone coordinates of the back-
ground and [Lie; Miest Stest] represents the color direction
of the excursion. For example, [Liest Miest Stest]=[0 0 1]
represents and S-cone isolating test. The value of I speci-
fies the intensity of the stimulus excursion in units yoked
t0 [Liest Miest Stest], and we refer to it as the test intensity.

We used a two-interval-forced-choice (2IFC) task to
measure the probability that observers could discriminate
two stimuli with intensity parameters I and I+A. These
data provide the probability that two stimuli can be dis-
criminated as a function of the value of the pedestal I and
intensity difference A. Measurements were made for tests
presented against a number of backgrounds, and observ-
ers’ performance as a function of the test direction, pedes-
tal intensity, and intensity difference were used to char-
acterize the effect of chromatic adaptation on color
discrimination.

In the asymmetric matching experiments, observers
adjusted a matching spot against one background to ap-
pear the same as a test presented against another. Differ-
ences between the LMS coordinates of observers’ matches
and those of the corresponding tests were used to charac-
terize the effect of chromatic adaptation on color appear-
ance.

2. Model

The core idea underlying the model of mechanisms con-
trolling appearance and discrimination judgments is il-
lustrated in Fig. 1 and described more completely with
Fig. 2. The two curves in Fig. 1 are stimulus-response
functions of the same mechanism in two different con-
texts. Each curve defines the relationship between stimu-
lus intensity and response magnitude for one state of ad-
aptation. Given these response functions, we can predict
appearance matches across the context change and dis-
crimination thresholds measured within each context.
Equality of appearance across the context change is pre-
dicted by equality of mechanism response. In Fig. 1, the
stimuli indicated by the downward arrows are predicted
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Fig. 1. Two hypothetical response functions. Each function cor-
responds to a different context (e.g., different chromaticity of
background) and plots a mechanism’s response as a function of
stimulus strength (e.g., test spot contrast). Equality of appear-
ance across the context change is predicted by equality of mecha-
nism response, so that the stimuli indicated by the downward ar-
rows would be predicted to match in appearance. Discrimination
thresholds (i.e., test increment required to discriminate between
a pedestal presented alone and a pedestal plus the test) are pre-
dicted to be inversely proportional to response function slope.

to match in appearance across the change in context. Dis-
crimination thresholds are predicted to be inversely pro-
portional to response function slope. For example, given
the two stimuli indicated by the downward arrows, dis-
crimination thresholds would be higher for the response
function on the right (black curve) because equal changes
in the stimulus intensity yield smaller expected response
changes (i.e., the slope of the white line segment superim-
posed on the black response function is lower than the
slope of the white line segment superimposed on the gray
response function). As will be detailed below, smaller ex-
pected response changes translate into a diminished abil-
ity to discriminate I/ and I+A. In our work, we make both
types of measurement and ask whether they may be ac-
counted for by the same pair of response functions.

To link data from the 2IFC discrimination and asym-
metric matching tasks, we relied on Fechner’s
assump‘cion26 that sensitivity to changes in stimulus in-
tensity is proportional to the rate of apparent stimulus
change. Figure 2D shows two hypothetical psychometric
curves from the discrimination task for a single choice of
background. To stage ideas tangibly, imagine that this
background appears green and that the test spots are an
excursion along a color direction that modulates the L and
M cones together. The two curves show performance for
two different pedestals I; and Iy (indicated above the
panel). Consider the left curve, which corresponds to the
less intense pedestal I;. The x axis on the graph shows
test intensities, while the y axis is probability of correct
discrimination. Each point on the curve represents the
probability that the observer correctly discriminates a
pair of tests, one with intensity I; and the other with in-
tensity I1+A. The value of I1+A is specified by the posi-
tion on the x axis. Similarly, the right curve is for pedestal
I,. This curve has a shallower slope, indicating that dis-
crimination performance declines with the increase of
pedestal intensity.
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Conventionally, one point from the psychometric curves
shown in Fig. 2D is selected and identified as a just-
noticeable difference (JND). The 75% JNDs from the two
psychometric curves in Fig. 2D are plotted as open circles
in Fig. 2E. In this plot, it is clear that discrimination per-
formance is worse at pedestal I, than at pedestal I;. More
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Fig. 2. Intensity response model with expected
asymmetric matches and discrimination perfor-
mance. The x axes in panels A,C,D, and E test
stimulus intensity. Panel C shows the response
model [Eq. (2)]. The y axis is the magnitude of
the response. The two curves in Panel C are the
response functions for one mechanism in two
adapted states. The gray curve represents ex-
pected response in a gray context and the black
curve represents expected response in a green
context. The difference between the two curves is
a difference in the gain-and-subtractive param-
eters [g and s in Eq. (2)]. Panel B shows the
Gaussian response distributions for four test in-
tensities (11,11 + Al 75,015,195+ Al 75 where Al 75 is
the incremental intensity that yields 75% correct
performance) presented in the green context.
The x and y axes are probability and response
magnitude, respectively. Panel D shows two psy-
chometric curves for pedestals I; and I,. These
curves are the expected discrimination perfor-
mance derived from the model characterized in
panels B and C for the response function
adapted to the green context. Panel E shows the
increments expected to yield 75% correct (JNDs)
as a function of pedestal intensity derived from
the response model in B and C. Finally, Panel A
shows the expected performance in an asymmet-
ric matching task with the tests presented in the
green context and the matches set in the gray
context. The height of the shaded rectangle run-
ning the width of the x axis represents absolute
threshold for a spot presented against a gray
background (JND which is equivalent to the
point where the J%\I]ngy curve in Panel E inter-
sects the y axis). The width of the shaded rect-
angle running the height of the y axis represents
absolute threshold for a spot presented against
the green background JNDgTeen. Any test-match
pairs in this gray shaded region would be ex-
tremely difficult to obtain.

generally the black line in Fig. 2E shows JNDs as a func-
tion of pedestal intensity, measured against the green
background. Such curves are typically called tvi (thresh-
old versus intensity) curves. The tvi curve shown has the
“dipper” shape often found in this type of
experiment.?*31%637 The gray curve in Fig. 2E shows a
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hypothetical tvi curve for tests presented against a second
background, one that appears gray. The change in back-
ground induces a change in the tvi curves.

What do such data reveal about the mechanisms that
underlie performance? We followed earlier authors?32
and adopted a functional equation solution? to Fechner’s
proposal that JNDs along a single stimulus dimension
represent equal changes in response. Equivalently, in sig-
nal detection theoretic terms, we assumed that perfor-
mance at all intensity levels is limited by additive Gauss-
ian noise of fixed variance. Along with the assumption
that a single mechanism mediates performance for all
pedestals, differences in JNDs at I; and I, reflect differ-
ences in the slope of the response function at these two
intensities. Thus if we know the response function and
noise standard deviation, we can predict JNDs for any
pedestal. More generally, we can predict the probability
that any pair of tests I and I+ A will be discriminated.

Figures 2B and 2C show this logic graphically. The y
axis of both panels represents inferred response magni-
tude. The x axis in Fig. 2C is stimulus intensity and the x
axis in Fig. 2B is probability (of obtaining a particular re-
sponse magnitude). The distribution of responses to ped-
estal I; is represented by the lowest Gaussian distribu-
tion (thick black line) in Fig. 2B. For this noise
distribution, we can calculate the probability that any A
added to I; will give a higher response. These probabili-
ties correspond directly to the y axis of Fig. 2D: the prob-
ability that an increment will be detected. The probability
that I; yields a smaller response than I1+A is

p(Rgreen(Il) < Rgreen(Il + A))
=p(Rg'reen(Il) - Rgreen(ll +A)<0)
=p(n(Fg'reen1, 0-2) - n(Fg'reen1+A; 02) < 0)

=p(n(Fgreen1 - Fg.g:reenl+A:20’2) <0)

0
= f n(Fg'reenl - 7green1+A720'2)7 (1

where Ry, represents the response function when tests
are presented against a green background, n represents
the normal distribution function, 7g.e,; is the mean re-
sponse to increment i, and o2 is response variance. The
last line of this equation is a cumulative Gaussian with
Mean 7green1 —greeni+a and variance 202. When integrated
to 0, this yields the probability that I; yields a smaller re-
sponse than I;+A.

The above logic tells how to predict discrimination data
given a response function. Our interest is in going the
other way: using discrimination data to infer the response
function.?®?432 In Fig. 2C, JND; and JND, represent test
intensities (A) that yield, on average, a fixed probability
(0.75 in this example) that the observer discriminates I;
from I;+JND; and Is+JND,y. These JNDs correspond to
equal average changes in the neural response and there-
fore reflect the local slope of the response function (white
line segments through the intersections of the lines rep-
resenting AR;5 and JND, ¢, in Fig. 2C show the slopes of
the response curves that would be inferred at pedestals I;
and I,). Thus using discrimination performance, we can
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piece together local estimates of response function slopes
to infer the shape of the stimulus-response function.
Since in practice discrimination data sample the inten-
sity dimension fairly coarsely, inferring the response func-
tion is done most effectively using a parametric descrip-
tion. We chose a parametric form previously shown to

account for both psychophysical and physiological
data:29-31,38:39

(gl +s)?
R=M———. (2)
(gl+s)7+1

Here M controls the height of the curve, p and ¢ deter-
mine the rate of expansion at low intensities and the rate
of saturation at high intensities, g is a gain parameter,
and s is a subtractive term. Given this form, numerical
search can be employed to find parameter values that
best account for observed discrimination performance.
The parameter M trades off perfectly with noise standard
deviation, so we fixed noise standard deviation at unity
throughout.

The response curve labeled Rgyee, in Fig. 2C represents
the response function [Eq. (2)] that would be inferred
from the green background tvi curve in Fig. 2E. Similarly,
the response curve labeled R,y in Fig. 2C represents the
response function [Eq. (2)] that would be inferred from
the gray background tvi curve.

Inferred response functions allow us to predict asym-
metric matching data. We use the linking hypothesis that
two tests will appear the same when they produce the
same mechanism response. Consider again Fig. 2C. When
a test stimulus, TEST., (indicated on the top axis of
Fig. 2C; note that the subscript refers to the color of the
background), is presented against the green background
it yields an expected response of 7,; (shown on the right
axis of Fig. 2C). Under the linking hypothesis stated
above, observers will set the intensity of a spot against a
gray background to yield the same response. This ex-
pected intensity may be found from Fig. 2C by finding the
appropriate point on the response curve Ry, and is indi-
cated by MATCHy,,y.

Figure 2A plots the intensities of spots that match
across a change in background. The gray circle represents
the expected TESTyeen: MATCHy,,y pair as determined
by the response functions in Fig. 2C. The thick black line
represents the locus of TEST : MATCH pairs obtained by
repeating this procedure for different response levels. The
key point is that the inferred response functions provide a
quantitative link between discrimination data (Figs. 2D
and 2E) and asymmetric matching data (Fig. 2A). We
used this link to determine whether the mechanisms con-
trolling adaptation to background chromaticity are com-
mon to both discrimination and appearance judgments.
This analysis assumes that all tests are processed by the
same mechanism. Our stimuli were chosen to make this
assumption reasonable.

2. METHODS

A. Observers
Two observers participated. Observer JMH was an author
and observer QRS was a paid volunteer. Observer QRS
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was unaware of the experimental hypotheses and had
little previous experience in psychophysical experiments.
Both observers had normal color vision as assessed by an
Ishihara test for color blindness.

B. Apparatus

Stimuli were presented on a calibrated RGB monitor (HP
p1110) with 14-bit intensity resolution for each channel
(provided by a Cambridge Research System BITS++ de-
vice) operating at a 75 Hz refresh rate. Gamma functions
and phosphor spectral power distribution were measured
for each CRT phosphor with a Photo Research 650

Spatial Profile: Target

Intensity

024 .

1.5
1

Yy - 0.5
(c dﬁg ) 0 o % \deg\

Temporal Profile: Trial

Intensity

A’I’EDESTAL

0 200 400 600 800 1000
Time (msec)

Fig. 3. Spatial and temporal profiles of test spots. The top panel
shows the spatial profile of test spots in the discrimination and
matching experiments. The bottom panel shows the temporal pa-
rameters of a trial in the discrimination experiment. The small
white spots indicate frame timing (vertical blanking). The tem-
poral profile in the matching experiment was the same except
that only one interval was used.
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spectra-radiometer. At the 40 cm viewing distance, the
monitor subtended 45 deg X 37 deg (each pixel subtended
~0.041 deg). The observer’s head position was stabilized
with a chin rest.

C. Stimuli

Test stimuli were spots (1.5 deg diameter) convolved with
a 2D Gaussian to produce a smooth intensity ramp at the
edge (as shown in the top panel of Fig. 3). They were lo-
cated 3 deg, on average, horizontally from a central fixa-
tion point. One test spot was located to the left of fixation
and the other to the right. To avoid adaptation to the
tests, their locations were perturbed from trial to trial.
Perturbations were selected from a uniform square distri-
bution, and the same perturbations were used for left and
right tests on each trial, so that the the locations were al-
ways symmetric with respect to a vertical axis. The xy po-
sition of the left and right tests were thus [-3 0]+[e, €]
and [3 0]+[-¢, €], respectively, where ¢, and ¢, were ran-
dom draws from a uniform distribution:

0 fore<-1.5
Ple={; for —15<e<L5:
0 fore>1.5

On every trial, test locations were indicated by square
frames composed of sparse black points. The frame had 8
points per side, including the corner points. Each point
was 0.041 deg in diameter and the points were separated
by 0.23 deg. The frames appeared 13 ms before each trial
and were extinguished 13 ms after the test appeared. In-
tensity of the test spots was ramped on and off gradually.
The ramp was a cumulative Gaussian with standard de-
viation =40 ms (3 frames) such that the total duration of
the ramp was 133 ms (11 frames). The test intensity was
fixed for 200 ms (15 frames) between the on and off
ramps. The bottom panel of Fig. 3 shows spatial and tem-
poral profiles of the test spots.

The test spots were modulations relative to the back-
ground. That is, test modulations were defined as
[Lbg Myg Spel+I[Liest Miest Stest): We used the Smith—
Pokorny estimates™ of cone spectral sensitivities and
standard methods*! to convert between cone coordinate
specifications and video DAC settings.

Test spots were presented in various contexts defined
by a uniform background. We used five backgrounds in
the experiments reported here. Table 1 provides the CIE
chromaticity and LMS cone coordinates of the back-
grounds, along with a descriptive color name for each.
The gray background served as a reference with respect
to which the other backgrounds were defined. These differ

Table 1. Properties of Test Backgrounds

CIE Coordinates Cone Isomerizations (X 10°)
Condition Name Color Name x y Y L M S
GRAY Gray 0.310 0.310 225 2.72 1.01 0.03
Gray+LM Pale green 0.313 0.368 31.1 4.03 1.59 0.03
Gray-LM Pale red 0.306 0.225 13.3 1.42 0.44 0.03
Gray+S Blue-purple 0.280 0.240 22,5 2.72 1.01 0.01
Gray-S Brownish-yellow  0.365 0.437 22,5 2.72 1.01 0.05
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from the gray background by steps that modulate the LM
or S cones as specified in the table. LMS units in the table
are the expected number of isomerizations from the back-
ground light for the area and duration of test stimuli. Test
intensities will be reported as the expected number of
isomerizations independent of the background. Thus the
background LMS coordinates in Table 1 can be used to
compute a contrast for the test intensities reported in the
results:

test isomerizations

background isomerizations

Test spots were increments or decrements modulated in
two color directions. One direction modulated the L and M
cones together and in equal amounts, with S cone stimu-
lation held constant. That is, [Liest Miest Stest]=1[1 1 0]
such that L and M isomerization rates for individual
cones varied by the same amount. The total number of L
and M cone isomerizations will differ when there are dif-
ferent numbers of each cone type in the stimulus area. To
compute isomerization totals, we used an L:M cone ratio
of 2:1, which means that for this test direction there
would be twice as many L-cone isomerizations as M-cone.
L- and M-cone contrasts for this test direction are

2 1
CL=§Itest/Ibg,L7 CM=gltest/Ibg,M,

where Iy, 1, and I, 3 are listed in Table 1 and I are test
isomerization totals. The other direction modulated the S
cones while the L- and M-cone stimulation was constant.
That is, [Ltest Mgt Stest]=1[0 01].

D. Procedure: Discrimination
We used a pedestal + test paradigm to measure threshold
versus pedestal intensity (tvi) curves for spots modulated
in different color directions against different back-
grounds. The definition of the pedestal and test is shown
graphically in the lower panel of Fig. 3. On the trial rep-
resented, the pedestal alone was shown in the first inter-
val and the pedestal + test was shown in the second inter-
val. The test and pedestal were always in the same color
direction. Observers were instructed to select the interval
in which they saw the more “intense color.” Before experi-
mental trials began, observers were given practice trials
with auditory feedback (used throughout the experiment)
where the test was clearly visible. Observers were in-
structed to run practice trials until they were certain of
the apparent color change that corresponded to the ped-
estal + test. Once they were certain, they pressed a button
on a game pad that initiated a 90 s adaptation period.
There was a minimum of 2 s between each trial. One ped-
estal direction and intensity were selected for each ex-
perimental session. The number of pedestals tested for
each background and test/pedestal color direction de-
pended on limits imposed by the gamut of the monitor.
Of particular concern was matching the stimulus con-
ditions to those used in the asymmetric matching task
(described below) as closely as possible. This introduces
one uncommon aspect of the procedure: there were two
spots presented on each stimulus interval. In one interval
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Fig. 4. JMH’s results from discrimination and matching experi-
ments for LM tests and backgrounds that varied in their LM in-
put. The top six panels are discrimination thresholds (JNDs)
plotted as a function of pedestal intensity. The three left panels
are JNDs for decrements and the three right panels are JNDs for
increments presented on, from top to bottom, the Gray+LM,
Gray and Gray—LM backgrounds. Error bars are 95% confidence
intervals. The bottom panel shows asymmetric matching data for
the same set of conditions. The x axis is the test excursion (i.e.,
the number of isomerizations expected from the test independent
of the background) against the Gray+LM (circles) and the Gray
—LM (triangles) backgrounds. The y axis is the match excursion
from the gray background against which the matches were set.
Error bars are standard error of the mean. Dashed and solid
lines are results of model fits with parameters selected on the ba-
sis of both discrimination and matching data. These are fits for
the gain-and-subtractive model of adaptation. Increments and
decrements were fit independently but the p,q, and M param-
eters in Eq. (2) were yoked across adapting conditions. The raw
psychometric and matching data underlying the points and
model fits shown in this figure and Figs. 4-7 can be obtained at
http://color.psych.upenn.edw/supplements/com_uniform/.

the pedestal was presented alone in the left and right tar-
get locations. In the other interval, the pedestal was pre-
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Fig. 5. QRS’s results from discrimination and matching experi-
ments for LM tests and adapting fields that varied in their LM
input. Results are plotted in the same format as Fig. 4.

sented alone at one target location and the pedestal + test
was presented in the other interval. Observers indicated
with a key press which interval they believed contained
the test, independent of which side it appeared on. A feed-
back tone indicated when observers selected the incorrect
interval. The intensity of the test was controlled by stair-
case procedures. Four randomly interleaved staircases
were used in each experimental session: two for tests
shown on the right and two for tests on the left. We used
2-down—1-up and 3-down-1-up staircase rules to ensure
comprehensive sampling of psychometric functions for
each pedestal. Typically, one session was run for each ped-
estal intensity. In cases where the data were particularly
noisy, an additional session was run.

To reduce the number of sessions, we put the same con-
text on both the left and right halves of the display. To
keep the same split-field conditions as in the matching ex-
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periment would require that each observer run in twice
the number of sessions per context (because half of the
data would always be against the neutral context). A con-
trol experiment, presented below, compared discrimina-
tion performance for split-field and uniform-field contexts
for a subset of conditions. The results indicate no differ-
ences that would affect the analyses presented in this pa-
per.

E. Procedure: Appearance

We used an asymmetric matching task to measure the ef-
fect of context on color appearance. Observers adjusted
the color of one of two simultaneously displayed test spots
until they appeared identical. We gave observers full con-
trol over the three-dimensional LMS coordinates of the
adjustable match spot. One spot appeared on the left and
the other on the right of fixation. One half (either left or
right; 22.5 deg X 37 deg) of the monitor was filled with the

o ~STEST _ +STEST
GRAY +S IMH
1
10
5
*
'& 1
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Fig. 6. JMH’s results from discrimination and matching experi-
ments for S-cone tests and adapting fields that varied in their
S-cone input. Results are plotted in the same format as Fig. 4 ex-
cept that values correspond to expected S-cone isomerizations.
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gray background. The other half had the adapting back-
ground. Observers were instructed to fixate a small black
point at the border of the two backgrounds throughout
the experiment. There was an initial 90 s adaptation pe-
riod prior to the first time the test spots were displayed.

Each time the test spots were displayed, the fixed test
spot, called the standard, appeared against the adapting
background and the adjustable spot, called the match, ap-
peared against the gray background. The spatial and tem-
poral profiles of the test spots were the same as in the dis-
crimination experiment, with the exception that the spots
were flashed once per exposure rather than twice. Observ-
ers used a game controller to adjust the match in the
CIELAB L*a"h" coordinates. Approximately red—green
(a") and blue-yellow (b") adjustments were made by
pressing correspondingly colored buttons on the game
controller. Luminance (L") adjustments were made with a
joystick. The standard and match were displayed after
each adjustment with a minimum interstimulus interval
of 2 s. The standard and match could also be displayed
without making an adjustment by pressing an appropri-
ate key on the game pad. Observers could, at any time,
choose any one of four step sizes for the adjustments. Af-
ter completing a match, observers rated the quality of the
match with a value between 0 (couldn’t make the match)
and 3 (perfect match).

Four matches were completed in a single experimental
session (typically lasting 20 min). Each match was made
to a different standard, but the standards used within
session were always selected from the same color direc-
tion. For each direction in LMS color space, we measured
match settings for eight standard tests. Two to four total
matches were made for each standard color for each of the
five contexts. To the extent possible, stimuli were left—
right counterbalanced across sessions.

3. RESULTS

Figure 4 shows one of JMH’s discrimination and match-
ing results for LM tests presented on the Gray, Gray
+LM, and Gray—-LM backgrounds. The top six panels plot
discrimination thresholds as a function of pedestal inten-
sity. The left column shows thresholds for decrements
(-LM) and the right column shows thresholds for incre-
ments (+LM). Note, therefore, that points intersecting the
y axis are detection thresholds for decrements (left col-
umn) and increments (right column). The three rows,
from top to bottom, correspond to three adapting condi-
tions: Gray+LM, Gray, and Gray—LM. Units on abscissa
and ordinate are the expected number of isomerizations
for the pedestal and test, respectively (i.e., the x axes rep-
resent the expected number of isomerizations attribut-
able to the pedestal independent of the background, and
the y axis represents the expected number of isomeriza-
tions attributable to the test independent of the back-
ground and pedestal). The quantities and calculations
used to estimate isomerizations are detailed in Appendix
A. Contrast units can be computed using the background
isomerizations in Table 1 as specified in the methods.
Data points (circles, squares, and triangles for the
Gray+LM, Gray, and Gray—-LM backgrounds, respec-
tively) are JNDs determined by fitting the raw psycho-
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Fig. 7. QRS’s results from discrimination and matching experi-
ments for S-cone tests and adapting fields that varied in their
S-cone input. Results are plotted in the same format as Figs. 4-6.

metric data with separate cumulative normal functions.
Parameters were selected by a maximum-likelihood crite-
rion. Data points shown in the top six panels are test in-
tensities that yield 75% correct on the fitted curves (i.e.,
JNDs). Error bars are 95% confidence intervals deter-
mined by a bootstrapping of the maximum-likelihood pa-
rameters with trial number and test intensities set by the
psychometric data.*? The increase in the size of the error
bars with pedestal intensity may result from suboptimal
sampling of points on the psychometric function by our
staircase algorithm.

The curves shown in Fig. 4 are a result of selecting the
parameters for the response function [Eq. (2)] that led to
the best account of the data. The exact optimization crite-
ria are described in Subsection 3.A below. The curves in
these six panels are the 75% correct points (JNDs) in-
ferred from the fitted response model (see Fig. 2). In Fig.
4, the dashed black curve, solid black curve, and solid



2098 J. Opt. Soc. Am. A/Vol. 22, No. 10/October 2005

gray curves are JNDs against the Gray+LM, Gray, and
Gray—-LM backgrounds, respectively. Response model
JND curves for each adapting condition are repeated in
each panel to provide a common reference; the curves that
correspond to the adapting condition represented by each
panel are thickened.

There are three notable trends in the discrimination
data. First, consistent with many studies of contrast
discrimination,?>37*3 there is a dip in JNDs at low (sub-
threshold) pedestal values and a subsequent increase in
JNDs as pedestal intensity increases. Under the assump-
tion that fixed-variance additive Gaussian noise limits
discriminability, the dip reflects an accelerating nonlin-
earity at low contrasts®3"*3 while JND increases at high
pedestals reflect response saturation (Fig. 2C). Second,
there is a clear effect of background color on JNDs, par-
ticularly at low pedestals. JNDs for the LM tests increase
as the intensity of the LM background is increased. Third,
there is good agreement between JNDs determined by the
conventional method of fitting cumulative normals to the
psychometric data and the JNDs determined by the re-
sponse model fit.

The response model parameters that determine the
JND curves in the top six panels of Fig. 4 were also used
to derive performance for the corresponding asymmetric
matching data. The bottom panel of Fig. 4 shows the re-
sults of the asymmetric matching task for the same
adapting conditions represented by the top six panels of
discrimination data. The x axis represents intensity of the
standard presented against either the Gray+LM or
Gray—-LM background. The y axis represents intensity of
the match set against the gray background (circles,
Gray+LM background; triangles, Gray-LM
background).** Error bars are 1 standard error of the
mean. Observers’ ratings of the quality of the match (be-
tween zero and four) were used to reject trials where the
observer could not find an adequate setting. Any setting
rated 0 or 1 was rejected from the data set (no trials were
rejected for observer JMH and 6 out of 120 trials were re-
jected for QRS). The dashed black curve and solid gray
curve are predictions derived from the response model.
The correspondence between predictions and data is ex-
cellent.

Figure 5 shows data for QRS for the same conditions
shown in Fig. 4. Figures 6 and 7 show, respectively, JMH’s
and QRS’s discrimination and matching data for S-cone
tests presented against adapting backgrounds that varied
only in their S-cone input. Each figure shows data from
one observer in the same format as Figs. 4 and 5. The bot-
tom panel again shows results from the asymmetric
matching task for S-cone tests. The agreement between
the model and data in Figs. 47 is good: Almost all sys-
tematic trends are well predicted by the inferred response
functions. The raw psychometric and matching data used
to obtain points shown in Figs. 4-7 can be downloaded at
http://color.psych.upenn.edu/supplements/com_uniform/.

A. Error Trade-Off Analysis

Our broad goal is to determine whether both discrimina-
tion and appearance are mediated by the same mecha-
nisms of adaptation. The fits in Figs. 4-7 suggest an af-
firmative answer for the conditions studied here. These
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fits were obtained by leveraging both discrimination and
appearance data simultaneously to determine the re-
sponse function parameters. It remains possible, there-
fore, that considerably better fits to each data set could
have been obtained had we fitted the two separately. Here
we investigate this by fitting the response function with
varying emphasis on discrimination and matching data.

Figure 8 illustrates the analysis for JMH’s —-LM test
data presented against Gray and Gray+LM backgrounds
for observer JMH. The center panel shows model fit error
for discrimination and matching data. The x axis is the
normalized negative log-likelihood of the model param-
eters given the discrimination data. The y axis is the nor-
malized sum-of-squared error between the model and the
asymmetric matching data.

The normalizing term for the negative log-likelihood of
the discrimination data was the likelihood of observing
the data if the probability p of every binomial variable in
the psychometric data was equal to the proportion of tri-
als the observer got correct for that test intensity, or

trials orrect
(1-p)N N

>

N{XN, i
1 ped N;E rials N?orrect
e 12
L= H Nqorrect p i
i
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where N1 i the number of trials for a given test inten-
sity, N{°™*" is the number of 2 IFC trials the observer got
correct, N is the number of test intensities for each ped-
estal, N,,q is the number of pedestals, and p;
=Nf°rre°t/anals. To calculate likelihoods for models of the
discrimination data, p is replaced by the probability de-
termined from the model.

The normalizing term for the squared error of the
asymmetric matching data was the sum-of-squared differ-
ence between the mean of the observer’s settings and
their actual settings: Err:Ef\illEjIZt{ials(matchj,i— w2,
where match, ; is the observer’s setting on the jth trial for
test intensity I, u; is the mean of settings for test inten-
sity I,Niq1s 1S the number of trials completed for test in-
tensity I, and Nj is the number of test intensities. To cal-
culate the sum of squared errors for the model fits, y; is
replaced by the value of the match determined by the
model for test intensity I.

For these error metrics, no model could do better than
the values of the normalizing terms. Thus the normalized
likelihoods and normalized sum of squared errors for any
model will be greater than or equal to 1.

Consider the normalized likelihoods for different model
fits to the discrimination data only. The data points
(JNDs) in Figs. 4-7 were determined from cumulative
normal fits to the discrimination data. Characterizing
psychometric data with cumulative normal parameters is
common and assumes, as our model does, that perfor-
mance is limited by additive Gaussian noise. Such char-
acterization of psychometric data makes no assumptions
about the relationship between data across pedestals and
adapting conditions. We therefore consider it a baseline
against which we can compare the quality of other model
fits.
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The thick vertical gray line in the center panel of Fig. 8
is the normalized negative log-likelihood for the cumula-
tive normal fits to the psychometric data (i.e., a 40-
parameter model given the two parameters for each of the
20 -LM test psychometric functions from the Gray and
Gray+LM backgrounds). The shaded (lighter) gray region
bordering this line is the 95% confidence interval of the
negative log-likelihood for these cumulative normal fits.
We determined these confidence intervals by a bootstrap-
ping procedure using the maximum-likelihood param-
eters (i.e., binomial probabilities for data resampling were
determined by model fits, not the data trial numbers, and
test intensities from the original data set. We performed
maximum-likelihood fits to each of 1000 resampled data
sets to determine the range of likelihoods indicated by the
shaded regions. This region therefore gives us an idea of
what range of likelihoods we could reasonably expect for
this baseline fitting method.

The thick, vertical, black, dashed line is the normalized
negative log-likelihood for the response model where all
five parameters in Eq. (2) were allowed to vary to fit the
discrimination data for the —LM tests in the Gray and
Gray+LM backgrounds (i.e., a 10-parameter model with
five for the Gray and five for the Gray+LM). Finally, the
gray star with the black outline is the normalized nega-

PARAMETERS FIT TO
DISCRIMINATION DATA
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tive log-likelihood for the response model fits with param-
eters M,p, and q yoked across Gray and with Gray+LM
adapting conditions and parameters g and s chosen sepa-
rately for each adapting condition (i.e., a 7-parameter
model that we refer to as the gain-and-subtractive model
of adaptation).

There is little cost in fitting the data with the response
model rather than independent cumulative normals; like-
lihood of the data given the response model parameters
for both unyoked and yoked fits falls within the confi-
dence range of likelihoods for unconstrained cumulative
normal fits. There is also little cost in yoking the M ,p,
and g parameters across adapting conditions (as indi-
cated by the negligible horizontal shift in the star relative
to the vertical dashed line).

The two panels on the left show the results of the yoked
gain-and-subtractive model fits when the parameters
were fitted to the discrimination data. The fit to the dis-
crimination data is good, but here the model does not do
well in predicting the matching data. This is reflected in
the relatively high, normalized sum-of-squared error that
results from these model parameters (star in the center
panel).

Now consider the fits to the matching data only. Model
predictions for the asymmetric matching data require pa-
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Fig. 8. Error trade-off analysis for JMH’s —-LM test data in the Gray and Gray+LM adapting condtions. Central panel are results of the
error trade-off analysis described in the text for the gain-and-subtractive model of adaptation. The x axis is the normalized negative log
likelihood (-LL) of model parameters given the full complement of discrimination data from the Gray and Gray+ LM adapting conditions
(we plot the negative log likelihood so small values correspond to better fits, consistent with the sum-of-squared error metric used as a
criterion for the matching data). The y axis is the normalized least-squared error (LSE) of model fits for the matching data in the same
adapting conditions. The two left panels show the data that underlie the analysis presented in the central panel and are replotted from
Fig. 4. The two right panels show the same data. The model fits in the two left panels are fits where model parameters were determined
exclusively by the discrimination data. The gray star in the central error trade-off panel is the —LL, LSE combination corresponding to
these fits. The model fits in the two right panels are fits where model parameters were determined exclusively by the matching data. The
gray diamond in the central error trade-off panel is the —LL, LSE combination corresponding to these fits. The filled gray circles in the
central panel are —-LL, LSE combinations where both data sets were used to determine the model parameters. Each gray circle repre-
sents a —LL, LSE combination for a specific combination of weights to the matching and discrimination error. Higher points in the graph
are from fits where more weight was given to maximize the likelihood of the parameters given the discrimination data than to minimize
the sum-of-squared error for the model parameters given the matching data. Similarly, the more rightward points are from fits where
more weight was given to minimize the sum-of-squared error for the model parameters given the matching data than to maximizing the
likelihood of the parameters given the discrimination data.



2100 J. Opt. Soc. Am. A/Vol. 22, No. 10/October 2005

Adapt: -LM, Test: +LM

J. M. Hillis and D. H. Brainard

Adapt: +LM, Test: -LM

100 JMH J4 L JMH
O gain only
@ gain & subt
10} 4k 4
o~ I = = = = . -‘---------
® ¢
S 1
N
W
k]
o (]
.2100 1 QRS 4 | QRS 4
© 1
£ '
A= 1
]
=
1
1
10F 1 4 k
1
1
p = = = = = = - ‘-----------
- .-*---------
1
1 1
1
L

10

1 10

Normalized -log(likelihood)

Fig. 9. Error trade-off analysis for LM tests and adapting fields that varied only in their LM component. The top two panels are, from
left to right, JMH’s results from +LM tests on Gray and Gray—-LM adapting fields and —-LM tests on Gray and Gray+LM adapting fields.
The bottom two panels are from the same conditions for QRS. Plotting conventions are the same as those for the central panel in Fig. 8.
We have included results of the error trade-off analysis for the gain-only (open white symbols) model as well as the gain-and-subtractive

(gray symbols) model.

rameters for both backgrounds. When no parameters are
yoked, there are 10 model parameters for every adapting
condition (five for Gray, five for Gray+X). These param-
eters are vastly underconstrained by the matching data
(bottom panels of Figs. 4-7). However, the error for fits
obtained using this many parameters provides a good
baseline. The horizontal black dashed line in the center
panel of Fig. 8 is the normalized sum of squared error for
this 10-parameter fit to the matching data. We generated
simulated data from these model parameters to deter-
mine the range of sum-of-squared errors we could expect
if those model parameters accurately characterized the
underlying response function. The gray shaded region
around the horizontal dashed line is the 95% confidence
interval for the sum-of-squared error derived from these
simulations. The gray diamond with black outline repre-
sents errors from fits of the gain-and-subtractive adapta-
tion model to the matching data (when M,p, and g are
yoked across adapting conditions). Again there is little
cost to yoking parameters M,p, and g across adapting

conditions. The two panels on the right show the results
of these yoked gain-and-subtractive model fits. With the
parameters selected on the basis of the matching data,
the model provides a good fit to the matching data and a
poor fit to the discrimination data.

Finally consider the error trade-offs possible when data
from both tasks are used to constrain the model fits. The
black-outlined gray star in Fig. 8 represents the lower
bound for the negative likelihoods and the upper bound
for the squared error for the gain-and-subtractive adapta-
tion model. Similarly, the black-outlined gray diamond
represents the lower bound for the matching squared-
error and the upper bound for the negative likelihoods for
the gain-and-subtractive adaptation model. If perfor-
mance in matching and discrimination tasks is controlled
by common mechanisms of adaptation then there should
be little cost in terms of the likelihoods of the discrimina-
tion data and squared errors for the matching data when
both data sets are used to constrain the model param-
eters. That is, the likelihoods and squared errors for the
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weighted fits should follow the contour of the horizontal
and vertical dashed black lines with some points close
tothe intersection of these two lines. The black-outlined
gray circles are likelihoods and squared errors for
weighted fits with the gain-and-subtractive adaptation
model. Using both data sets, we found model parameters
that gave errors close to both lower bounds. Further the
likelihood and squared error for these fits fell within the
intersection of the confidence intervals established for
each error metric. These results establish, for this data
set, that both matching and discrimination data can be
accounted for by common mechanisms of adaptation.

We also examined the quality of the fits by eye, compar-
ing fits when both data sets were factored into the param-
eter selection and fits where only one or the other data set
was employed. Differences between the fits with errors in
the lower left corner of the error trade-off plots and those
determined by each data set in isolation were vanishingly
small (i.e., the fits determined by appearance and dis-
crimination data independently essentially looked the
same as the yoked fits shown in Figs. 4-7).

Figures 9 and 10 show the results for all the data sets
that could be subjected to this error trade-off analysis.

Adapt: -S, Test: +S
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The conventions in Figs. 9 and 10 are the same as those
established in Fig. 8 with two exceptions. First, we added
results of the analysis for a simpler model of adaptation
that allows only the gain [g in Eq. (2)] to vary across con-
texts. For this gain-only model (shown as open symbols),
the subtractive term [s in Eq. (2)] was set to zero. Second,
we plot only the extremes of the fits (fits to either the dis-
crimination or matching data) and the one result of the
weighted fits that came closest to the lower bounds estab-
lished by the fits to each data set in isolation. The top two
panels in Fig. 9 are results of this error-trade-off analysis
for JMH for -LM tests presented against the Gray+LM
background (left panel) and +LM tests presented on the
Gray-LM background (right panel, same as Fig. 8). The
bottom two panels are results from QRS for the same con-
ditions. The white stars are from fits to the discrimination
data of the gain-only adaptation and the gray stars are
from the gain-and-subtractive model of adaptation. The
white diamonds are from fits to the matching data of the
gain-only adaptation, and the gray diamonds are from the
gain-and-subtractive model of adaptation. The white
square and gray circle are the best weighed fits for the
gain-only and gain-and-subtractive adaptation models,
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Fig. 10. Same as Fig. 8 except for S-cone tests and adapting fields that varied only in their S-cone component.
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respectively. Figure 10 shows results for the S-cone tests
and adapting conditions using the same conventions as
Fig. 9. The parameters that determined the error values
for the gray circles (gain-and-subtractive adaptation
model) in Figs. 9 and 10 are the parameters used in the
model fits shown in Figs. 4-7.

Three important trends are revealed through the
analysis depicted in Figs. 8 and 9: (1) in all cases, the
weighted fits come very close to the lower bounds of the
error established by considering each data set in isola-
tion; (2) there is essentially no cost in terms of the model
error to yoking parameters M ,p, and ¢ across the rel-
evant adapting conditions for either the discrimination or
the matching data; and (3) there are several cases where
the gain-and subtractive model provides a clear reduction
in the model error relative to the gain-only model (though
this error reduction is observed primarily in the matching
data).

Our error tradeoff analysis confirms the impression
conveyed by Figs. 3-6: Effects of adaptation on both dis-
crimination and appearance can be explained by a change
in response function common to both. Before discussing
the results and their implications further, we briefly
present two control experiments.

4. CONTROL EXPERIMENT 1:
DISCRIMINATION PERFORMANCE ON
SPLIT FIELDS

In the asymmetric matching experiment, test spots were
presented against a split field, one on either side of the
color discontimuity. To obtain the discrimination data, on
the other hand, tests were presented against a field that
had the same color across the entire display. We used a
completely uniform field in the discrimination task be-
cause, with this arrangement, each experimental session
yielded twice as much data for the given adapting condi-
tion. The control data presented here indicate that there
were no unexpected interactions between the two sides of
the split-field context.

Methods were identical to the main discrimination ex-
periment except that tests and pedestals were presented
on a split field. One half of the field was Gray and the
other half was Gray—-LM. Pedestals and tests were +LM.
One pedestal intensity was tested in each experimental
session. One observer was tested with four staircases for
each background-pedestal combination.

For our purposes, it is sufficient to show that the ratio
of JNDs between the split versus uniform field adapting
conditions is constant. In Appendix B we show that such a
uniform shift would not have affected any fitting param-
eters in Eq. (2) except for M, and that a change in M does
not affect the predictions for the asymmetric matches.

The ratio of JNDs from the first experiment and this
control experiment are shown in Fig. 11. The x axis is the
expected number of isomerizations for the +LM pedestal.
The y axis is the ratio JND pifoym/JNDgp;¢. Different sym-
bols denote different adapting conditions: Open circles are
from the Gray background and filled circles are data from
the Gray—-LM background. Error bars are 95% confidence
intervals determined by a bootstrapping procedure. There
is no systematic difference in the JND ratios for these
adapting conditions.
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Fig. 11. JMH’s JND ratios for the split field versus uniform field
conditions for LM increments presented against Gray and Gray
—LM backgrounds. The x axis is isomerizations of the pedestal
(same as lower right and middle right panels in Fig. 4). The y
axis is the JND ratio for discrimination data collected on a uni-
form and split field. Open circles are JND ratios from the Gray
adapting field and filled gray circles are ratios from the Gray
—LM adapting field. Error bars are 95% confidence intervals de-
termined by a bootstrap analysis.

5. CONTROL EXPERIMENT 2: TESTING THE
VON KRIES HYPOTHESIS

In the main experiment, tests and adapting field shifts
were in the same color direction. We also examined effects
of LM background shifts on the discriminability and ap-
pearance of S tests, and vice versa. This tests the von
Kries hypothesis that each cone type adapts indepen-
dently for both appearance and discrimination.

Methods were identical to those of experiment 1. We
measured detection thresholds and asymmetric matches
for S and LM tests against Gray+LM and Gray+S adapt-
ing fields, respectively. That is, S tests were presented on
backgrounds that varied in their L- and M-cone coordi-
nates and LM tests were presented on backgrounds that
varied only in the S-cone coordinates. The same two ob-
servers who participated in the first experiment, along
with one other observer, participated in this experiment.

Detection thresholds and asymmetric matches for one
observer are shown in Fig. 12. The top left panel shows
detection thresholds for +LM tests as a function of S back-
ground intensity. The filled black circles are test intensi-
ties that gave 75% correct for a cumulative normal fit to
the data by a maximume-likelihood criterion. The solid
gray lines provide a reference for no changes in thresh-
olds as a function of background intensity. Similarly, the
filled black circles in the top right panel are absolute
thresholds for +S tests as a function of LM background
intensity.

The bottom two panels of Fig. 12 are results from the
asymmetric matching experiment: In the left panel are
data for LM tests when the S-cone component of the back-
ground was varied, and in the right panel are data for
S-cone tests when the LM component of the background
was varied. The filled black squares are a symmetric
matching condition (both the fixed test and adjustable
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Fig. 12. JMH’s detection and matching results for LM-cone
tests presented on adapting fields that varied only in their S com-
ponent and S-cone tests presented on adapting fields that varied
only in their LM component. The top two panels are detection
thresholds plotted as a function of background intensity. The bot-
tom two panels are results of the asymmetric matching task. The
two left panels are results from LM-cone tests presented on back-
grounds that varied only in the S-cone components. The two
right panels are results from S-cone tests presented on back-
grounds that varied only in their LM-cone component. The x axis
in the top left panel is the expected number of S-cone isomeriza-
tions from the background light for the same area and temporal
interval as the test stimuli, and the y axis is the expected num-
ber of isomerizations for an LM-cone test. Similarly, the x axis in
the top right panel represents background LM-cone isomeriza-
tions and the y axis S-cone test isomerizations. Data points in
these top two panels are the 75% thresholds determined by fit-
ting the detection data with a cumulative normal. The x axis in
the bottom left panel is the expected number of isomerizations
for fixed LM-cone tests presented on either the Gray+S, Gray, or
Gray-S adapting fields. The y axis is S-cone isomerizations for
JMH’s match settings against the gray background. Filled
squares are from the symmetric matching conditions (where both
the fixed test and adjustable match were presented on the Gray
background). Open circles and filled diamonds are conditions
where the fixed tests were presented against the Gray+LM and
Gray-LM conditions, respectively. Error bars are standard er-
rors of the mean. The convention for the bottom right panel is the
same as for the bottom left panel except that the axes correspond
to the expected isomerizations of S-cone tests.

match were presented against the Gray background) and
provide an indication of any bias in the observer’s set-
tings. The slight systematic trend for the +LM matches
and +S matches to be lower than the baseline settings in
the Gray-S and Gray—LM conditions, respectively, was
not evident for two other observers.

Results from both the asymmetric matching and detec-
tion task are generally consistent with the hypothesis
that, for uniform fields, cones adapt independently. Re-
sults from two other observers (not presented) were simi-
lar. The lack of interaction between cones observed in
both discrimination and appearance judgments is consis-
tent with the results of several previous studies. ™8
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6. DISCUSSION

We have tested the assumption that effects of background
chromaticity and luminance on color discriminability and
appearance are mediated by mechanisms common to both
judgments. This common mechanism hypothesis holds for
the conditions we examined. Our general conclusion
agrees with that of earlier authors who have studied ad-
aptation of discrimination and appearance with respect to
changes in uniform backgrounds.2#***%52 Qur work ex-
tends previous studies in several ways.

First, we measured full tvi curves and used these to
learn how adaptation affects discriminability across a
wide range of stimulus intensities. In this regard, we
share much with Heinemann.?* Most earlier work, how-
ever, characterized adaptation with changes in detection
threshold and relied on gain-control models of adaptation
to extrapolate predictions to the intensity range where
appearance was studied. Use of detection thresholds is
adequate only for stimulus conditions where the gain-
control model is valid. Some of our conditions required in-
clusion of a subtractive term in the adaptation model.
Had we relied only on detection thresholds, we would
have drawn erroneous conclusions about the common
mechanism hypothesis. We expect this consideration to
become increasingly important as we extend our work to
other adapting contexts that include contrast and more
complex spatial structure. There is good evidence that
richer models of adaptation are required to account for
adaptation effects for such contexts.?%36:53

A second novel feature of our work is the error tradeoff
analysis presented in Figs. 8-10. This analysis shows
that fitting a model to discrimination data alone leads to
poor predictions of appearance and vice versa. Such a re-
sult could arise either because the common mechanism
hypothesis is false, or because measurement variability
propagates to the model fits in a manner that leads to
poor extrapolation across tasks. These two possibilities
are distinguished by the error tradeoff analysis. For ad-
aptation to uniform fields, the case studied here, the com-
mon mechanism hypothesis holds. Under other conditions
we might expect the common mechanism hypothesis to
fail. For example, Nerger et al.’* found that “filling-in” of
retinally stabilized images affected appearance judg-
ments but not detectability. While this result suggests dif-
ferent mechanisms mediating detection and appearance,
such a conclusion would be premature for two reasons.
First, our results show the importance of measuring the
tvi function and not just detection thresholds when com-
paring threshold and suprathreshold performance. Sec-
ond, the common mechanism hypothesis should be sub-
jected to the kind of statistical test provided by the error
tradeoff analysis presented here. Further, error tradeoff
is important to bear in mind when evaluating conclusions
drawn from comparisons of data that were collected and
analyzed in different laboratories.

A third important feature of our work was the attempt
to match as carefully as possible the stimulus conditions
used in the discrimination and appearance experiments.
Thus the same observers viewed spots flashed with the
same temporal and spatial profiles. Careful matching of
stimulus conditions rules out the possibility that differ-
ences between discrimination and appearance occur sim-
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ply because the visual system is in a different state of ad-
aptation across the two paradigms. The one major
difference that persisted in our experiments was the use
of split backgrounds in the appearance experiments and
uniform backgrounds in the discrimination experiments.
Control measurements, however, indicated that this dif-
ference was not of consequence for our comparisons.

At the core of our modeling is an inferred response
function common to both discrimination and
appearance.34’49 This function explains discrimination
(tvi) data through the linking hypothesis that sensitivity
is proportional to its slope.’® The same function explains
appearance through the linking hypothesis that two
stimuli appear the same when they lead to the same re-
sponse. We chose a particular parametric form for the re-
sponse function [Eq. (2)]. This function is consistent with
previous studies of both discrimination®®3? and
appearance.51’57 A parametric response function sets the
form of the common mechanism hypothesis and provides
a way to aggregate data collected at discrete intensity lev-
els. For the conditions studied here, Eq. (2) allowed an ex-
cellent description of both tvi and matching data. Under
the assumption that the common mechanism hypothesis
holds, the parameters of the response function are better
determined using both discrimination and appearance
data than by using either data set alone.

In addition to testing the common mechanism hypoth-
esis, our data also speak to models of adaptation. The
most general model we considered was one in which all of
the parameters of the response function [Eq. (2)] were al-
lowed to vary across adapting conditions. More restrictive
models yoke some of the model parameters across condi-
tions and thus account for adaptation through changes of
a subset of the parameters. We considered two specific
subset models, one in which only the gain (parameter g)
was allowed to change and one in which subtraction was
also allowed (both parameters g and s allowed to vary).
We found cases where the gain-only model failed to ac-
count for the data while the gain-and-subtractive model
worked well. Previous authors?3%325859 have also ar-
gued that models of adaptation must include a subtrac-
tive term®! (but see Ref. 60).

There are obvious practical reasons why testing the
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common mechanism hypothesis is important: (1) Model-
ing adaptation is simplified for conditions where data of
both discrimination and appearance experiments reveal
the same mechanisms, and (2) predictions about the be-
havior of the neural substrate from the psychophysics are
more straightforward under these conditions. More
broadly, however, the status of this hypothesis is of inter-
est as we consider the utility of color vision. Cases where
the hypothesis fails are cases where separate mechanisms
mediate the role of color in scene segmentation and object
identification. Such cases would provide important clues
to differences in the information processing requirements
of these two tasks.

The data presented in this paper do not reveal failures
of the common mechanism hypothesis, but represent only
a limited set of stimulus conditions: We consider contexts
consisting only of uniform backgrounds. In addition, we
choose the color directions of the tests to maximize the
probability that they would isolate individual mecha-
nisms, as indicated by a large literature on how the visual
system processes color.>11:16:22 Clearly it will be of inter-
est to determine how the common mechanism hypothesis
generalizes. Of particular interest to us are conditions
that include contrast adaptation,17’19’62’63 intermediate
test color directions, and spatial structure in the
contexts.5* We believe that the basic methods and analy-
sis presented here will allow sharp tests of the hypothesis
for this wider range of conditions.

APPENDIX A: ESTIMATING CONE
PHOTOPIGMENT ISOMERIZATIONS

Table 2 lists the conventions we used to estimate the
isomerizations for the data presented in this paper. The
software used to perform isomerization rate calculations
is available at www.psychtoolbox.org. Test intensities
were presented in terms of the total expected number of
isomerizations independent of the background. To calcu-
late the total expected number of isomerizations, isomer-
ization rates were integrated for the spatial and temporal
profiles of the test (Fig. 3). Specifically, R:Otal
=ExEyEtR:atEf(x ,¥,t), where f is the function defining the

Table 2. Conventions Used to Estimate Isomerizations

Property Value Source
Posterior nodal point distance 16.1 mm Ref. 65
Pupil diameter 3.52 mm “ Ref. 66
Lens density — Ref. 67

Macular pigment optical density

Photoreceptor density

L cone: M-cone ratio

(L+M) cone: S-cone ratio

Inner segment length

Outer segment diameter
Photopigment axial density
Photopigment spectral sensitivity
Quantal efficiency

— Ref. 68; scaled by estimates of relative
density at 3 deg eccentricity from Ref. 69

1.6 X 10* per mm? Ref. 70
2:1 —
20:1 —

2.9 mm Ref. 65

33 um Ref. 65

0.5 Ref. 65

— Ref. 40

2/3 Ref. 65

“For the purposes of calculating isomerizations,

pupil diameter was fixed to its expected value for the Gray background.
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stimulus, and x and y correspond to the assumed cone
spacing. As we noted in Section 2 the conversion from
isomerization rates (per cone per second) to isomerization
totals incorporates differences in the cone ratios. Thus if
there are more L than M cones, there will be proportion-
ally more total L-cone isomerizations when the isomeriza-
tion rates are the same. The cone densities and ratios
used to calculate these totals are included in Table 2.

APPENDIX B: EFFECTS OF UNIFORM
SHIFTS IN JNDS ON MODEL PARAMETERS

Here we show that effects on JNDs we observed in the
split field versus uniform field conditions will not sub-
stantively affect model parameter estimation. Recall that
JNDs are inversely proportional to the slope of the re-
sponse function (i.e., JND«x1/R’). How would a shift in
JNDs by a factor common to all pedestals and adapting
conditions, as we observed, affect parameter estimation?
First we note that

11 [l+8)7+1]
R Mg{I+SP Y gl+S)p-q) +p]}

Thus any multiplicative shift in JNDs common across all
conditions would be reflected by a common change in M.
What is important is, such a change does not affect the
match predictions. Recall that we assume matches are
made when the responses of the relevant mechanisms are
equated, that is, when

JND o

R}=R?
(gal +54)° (gl +sp)°
A(gAI+sA)q+1_ B(gBI+sB)‘1+1

Because both sides of this equation can be divided by a
common change in M, and Mp without affecting the
equality, the magnitude of this change does not influence
match predictions.
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