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Do common mechanisms of adaptation mediate
color discrimination and appearance?

Uniform backgrounds
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Color vision is useful for detecting surface boundaries and identifying objects. Are the signals used to perform
these two functions processed by common mechanisms, or has the visual system optimized its processing sepa-
rately for each task? We measured the effect of mean chromaticity and luminance on color discriminability and
on color appearance under well-matched stimulus conditions. In the discrimination experiments, a pedestal
spot was presented in one interval and a pedestal + test in a second. Observers indicated which interval con-
tained the test. In the appearance experiments, observers matched the appearance of test spots across a
change in background. We analyzed the data using a variant of Fechner’s proposal, that the rate of apparent
stimulus change is proportional to visual sensitivity. We found that saturating visual response functions to-
gether with a model of adaptation that included multiplicative gain control and a subtractive term accounted
for data from both tasks. This result suggests that effects of the contexts we studied on color appearance and
discriminability are controlled by the same underlying mechanism. © 2005 Optical Society of America © 2005
Optical Society of America

OCIS codes: 330.1690, 330.4060, 330.7720.
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. INTRODUCTION
olor signals support two important visual functions.
irst, color is useful for discriminating objects from their
ackground (i.e., for segmenting the image into regions
hat correspond to physically distinct surfaces). Second,
s the perceptual correlate of surface reflectance, color is
seful for identifying objects. These functions are concep-
ually distinct, and each function may place different de-
ands on visual processing. In this paper, we ask
hether color discrimination and color appearance are
ediated by the same mechanisms of adaptation. We re-

er to this proposition as the common mechanism hypoth-
sis.

Both sensitivity to color differences and color appear-
nce depend on the context in which the stimulus is
laced. Color difference sensitivity is revealed by thresh-
ld measurements. Thresholds for detecting a monochro-
atic spot presented against a spatially uniform mono-

hromatic background vary with the wavelength and
ntensity of the background.1 The dependence of thresh-
ld on context reveals a form of chromatic adaptation,
herein the processing of a focal stimulus changes with

ontext. There is an extensive literature examining how
hromatic adaptation affects visual sensitivity (for re-
iews see Refs. 2–6).

Chromatic adaptation is also revealed by experiments
hat assess color appearance. For example, the judged ap-
earance of a test spot varies with the spectral composi-
ion of the background against which it is seen.7 The ef-
ect of adaptation on the appearance of stimuli is also the
ubject of an extensive literature found under the rubrics
f both color appearance8–10 and color constancy.11,12
1084-7529/05/102090-17/$15.00 © 2
Research examining effects of context on color discrimi-
ation and color appearance has often proceeded along
eparate paths. It is relatively rare for a single empirical
aper to report results from both paradigms. Nonetheless
esults from discrimination and appearance experiments
re typically accounted for within the same general model
f color processing and adaptation.13,14 In broad outline,
his model incorporates encoding of light by three classes
f cone photoreceptors, recombination of cone signals into
luminance and two color-opponent channels, and sensi-

ivity regulation at sites both preceding (first-site) and
ollowing (second-site) the signal recombination.15,16

Numerous variants of the general model have been pro-
osed to account for specific features of both discrimina-
ion and appearance data.3,17–22 It is not clear whether
he variations reflect fundamental differences between vi-
ual processing for discrimination and appearance, differ-
nces in stimulus conditions studied, or differences in the
ay individual investigators have treated their data. We
ave thus undertaken a systematic investigation of the
elation between mechanisms of visual processing re-
ealed by discrimination and appearance.

We are, of course, not the first to consider the relation-
hip between color discrimination and appearance. A few
tudies have explicitly tested the idea that specific as-
ects of color discriminability and appearance are con-
rolled by a common set of mechanisms.23–25 If we
roaden attention to intensity discrimination and
ightness/brightness perception, additional studies have
ested Fechner’s hypothesis26 that the rate of apparent
timulus change is inversely proportional to discrimina-
ion thresholds. This hypothesis may be used to derive a
005 Optical Society of America
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isual response function from discrimination data;27–32

or review see Ref. 33. This response function relates an
nferred perceptual dimension to stimulus magnitude and
an be used to predict appearance. We adopted this gen-
ral approach. Our formulation is very close to that devel-
ped by Heineman,34 but subsequent advances in models
f early visual processing and numerical data fitting pro-
edures allow us additional leverage.

This paper describes the experimental paradigms we
sed and develops our formal analysis. Here we report
he results of investigations for adaptation to changes in
he luminance and chromaticity of uniform backgrounds.

. Methods Overview and Formal Model

. Experimental Paradigms
e conducted two types of experiments: color discrimina-

ion and asymmetric matching. In the color discrimina-
ion experiments, test stimuli were excursions from the
ackground color that isolated either the L and M cones
r the S cones. The test stimuli may be represented by the
xpression �Lbg Mbg Sbg�+I�Ltest Mtest Stest� where the
ectors indicate LMS cone coordinates.35 More specifically
Lbg Mbg Sbg� indicates the cone coordinates of the back-
round and �Ltest Mtest Stest� represents the color direction
f the excursion. For example, �Ltest Mtest Stest�= �0 0 1�
epresents and S-cone isolating test. The value of I speci-
es the intensity of the stimulus excursion in units yoked
o �Ltest Mtest Stest�, and we refer to it as the test intensity.

We used a two-interval-forced-choice (2IFC) task to
easure the probability that observers could discriminate

wo stimuli with intensity parameters I and I+�. These
ata provide the probability that two stimuli can be dis-
riminated as a function of the value of the pedestal I and
ntensity difference �. Measurements were made for tests
resented against a number of backgrounds, and observ-
rs’ performance as a function of the test direction, pedes-
al intensity, and intensity difference were used to char-
cterize the effect of chromatic adaptation on color
iscrimination.
In the asymmetric matching experiments, observers

djusted a matching spot against one background to ap-
ear the same as a test presented against another. Differ-
nces between the LMS coordinates of observers’ matches
nd those of the corresponding tests were used to charac-
erize the effect of chromatic adaptation on color appear-
nce.

. Model
he core idea underlying the model of mechanisms con-
rolling appearance and discrimination judgments is il-
ustrated in Fig. 1 and described more completely with
ig. 2. The two curves in Fig. 1 are stimulus-response

unctions of the same mechanism in two different con-
exts. Each curve defines the relationship between stimu-
us intensity and response magnitude for one state of ad-
ptation. Given these response functions, we can predict
ppearance matches across the context change and dis-
rimination thresholds measured within each context.
quality of appearance across the context change is pre-
icted by equality of mechanism response. In Fig. 1, the
timuli indicated by the downward arrows are predicted
o match in appearance across the change in context. Dis-
rimination thresholds are predicted to be inversely pro-
ortional to response function slope. For example, given
he two stimuli indicated by the downward arrows, dis-
rimination thresholds would be higher for the response
unction on the right (black curve) because equal changes
n the stimulus intensity yield smaller expected response
hanges (i.e., the slope of the white line segment superim-
osed on the black response function is lower than the
lope of the white line segment superimposed on the gray
esponse function). As will be detailed below, smaller ex-
ected response changes translate into a diminished abil-
ty to discriminate I and I+�. In our work, we make both
ypes of measurement and ask whether they may be ac-
ounted for by the same pair of response functions.

To link data from the 2IFC discrimination and asym-
etric matching tasks, we relied on Fechner’s

ssumption26 that sensitivity to changes in stimulus in-
ensity is proportional to the rate of apparent stimulus
hange. Figure 2D shows two hypothetical psychometric
urves from the discrimination task for a single choice of
ackground. To stage ideas tangibly, imagine that this
ackground appears green and that the test spots are an
xcursion along a color direction that modulates the L and

cones together. The two curves show performance for
wo different pedestals I1 and I2 (indicated above the
anel). Consider the left curve, which corresponds to the
ess intense pedestal I1. The x axis on the graph shows
est intensities, while the y axis is probability of correct
iscrimination. Each point on the curve represents the
robability that the observer correctly discriminates a
air of tests, one with intensity I1 and the other with in-
ensity I1+�. The value of I1+� is specified by the posi-
ion on the x axis. Similarly, the right curve is for pedestal
2. This curve has a shallower slope, indicating that dis-
rimination performance declines with the increase of
edestal intensity.

ig. 1. Two hypothetical response functions. Each function cor-
esponds to a different context (e.g., different chromaticity of
ackground) and plots a mechanism’s response as a function of
timulus strength (e.g., test spot contrast). Equality of appear-
nce across the context change is predicted by equality of mecha-
ism response, so that the stimuli indicated by the downward ar-
ows would be predicted to match in appearance. Discrimination
hresholds (i.e., test increment required to discriminate between
pedestal presented alone and a pedestal plus the test) are pre-

icted to be inversely proportional to response function slope.



s
n
p
i
f

g
t
b
o
“

2092 J. Opt. Soc. Am. A/Vol. 22, No. 10 /October 2005 J. M. Hillis and D. H. Brainard
Conventionally, one point from the psychometric curves
hown in Fig. 2D is selected and identified as a just-
oticeable difference (JND). The 75% JNDs from the two
sychometric curves in Fig. 2D are plotted as open circles
n Fig. 2E. In this plot, it is clear that discrimination per-

ormance is worse at pedestal I2 than at pedestal I1. More e
enerally the black line in Fig. 2E shows JNDs as a func-
ion of pedestal intensity, measured against the green
ackground. Such curves are typically called tvi (thresh-
ld versus intensity) curves. The tvi curve shown has the
dipper” shape often found in this type of

29,31,36,37

Fig. 2. Intensity response model with expected
asymmetric matches and discrimination perfor-
mance. The x axes in panels A,C,D, and E test
stimulus intensity. Panel C shows the response
model [Eq. (2)]. The y axis is the magnitude of
the response. The two curves in Panel C are the
response functions for one mechanism in two
adapted states. The gray curve represents ex-
pected response in a gray context and the black
curve represents expected response in a green
context. The difference between the two curves is
a difference in the gain-and-subtractive param-
eters [g and s in Eq. (2)]. Panel B shows the
Gaussian response distributions for four test in-
tensities (I1 ,I1+�I1,75,I2 ,I2+�I2,75 where �Ii,75 is
the incremental intensity that yields 75% correct
performance) presented in the green context.
The x and y axes are probability and response
magnitude, respectively. Panel D shows two psy-
chometric curves for pedestals I1 and I2. These
curves are the expected discrimination perfor-
mance derived from the model characterized in
panels B and C for the response function
adapted to the green context. Panel E shows the
increments expected to yield 75% correct (JNDs)
as a function of pedestal intensity derived from
the response model in B and C. Finally, Panel A
shows the expected performance in an asymmet-
ric matching task with the tests presented in the
green context and the matches set in the gray
context. The height of the shaded rectangle run-
ning the width of the x axis represents absolute
threshold for a spot presented against a gray
background (JNDgray

0 , which is equivalent to the
point where the JNDgray curve in Panel E inter-
sects the y axis). The width of the shaded rect-
angle running the height of the y axis represents
absolute threshold for a spot presented against
the green background JNDgreen

0 . Any test-match
pairs in this gray shaded region would be ex-
tremely difficult to obtain.
xperiment. The gray curve in Fig. 2E shows a
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ypothetical tvi curve for tests presented against a second
ackground, one that appears gray. The change in back-
round induces a change in the tvi curves.

What do such data reveal about the mechanisms that
nderlie performance? We followed earlier authors28–32

nd adopted a functional equation solution28 to Fechner’s
roposal that JNDs along a single stimulus dimension
epresent equal changes in response. Equivalently, in sig-
al detection theoretic terms, we assumed that perfor-
ance at all intensity levels is limited by additive Gauss-

an noise of fixed variance. Along with the assumption
hat a single mechanism mediates performance for all
edestals, differences in JNDs at I1 and I2 reflect differ-
nces in the slope of the response function at these two
ntensities. Thus if we know the response function and
oise standard deviation, we can predict JNDs for any
edestal. More generally, we can predict the probability
hat any pair of tests I and I+� will be discriminated.

Figures 2B and 2C show this logic graphically. The y
xis of both panels represents inferred response magni-
ude. The x axis in Fig. 2C is stimulus intensity and the x
xis in Fig. 2B is probability (of obtaining a particular re-
ponse magnitude). The distribution of responses to ped-
stal I1 is represented by the lowest Gaussian distribu-
ion (thick black line) in Fig. 2B. For this noise
istribution, we can calculate the probability that any �
dded to I1 will give a higher response. These probabili-
ies correspond directly to the y axis of Fig. 2D: the prob-
bility that an increment will be detected. The probability
hat I1 yields a smaller response than I1+� is

�Rgreen�I1� � Rgreen�I1 + ���

= p�Rgreen�I1� − Rgreen�I1 + �� � 0�

= p�n�r̄green1,�2� − n�r̄green1+�,�2� � 0�

= p�n�r̄green1 − r̄green1+�,2�2� � 0�

=�
−�

0

n„r̄green1 − r̄green1+�,2�2
…, �1�

here Rgreen represents the response function when tests
re presented against a green background, n represents
he normal distribution function, r̄greeni is the mean re-
ponse to increment i, and �2 is response variance. The
ast line of this equation is a cumulative Gaussian with

ean r̄green1− r̄green1+� and variance 2�2. When integrated
o 0, this yields the probability that I1 yields a smaller re-
ponse than I1+�.

The above logic tells how to predict discrimination data
iven a response function. Our interest is in going the
ther way: using discrimination data to infer the response
unction.26,28–32 In Fig. 2C, JND1 and JND2 represent test
ntensities ��� that yield, on average, a fixed probability
0.75 in this example) that the observer discriminates I1
rom I1+JND1 and I2+JND2. These JNDs correspond to
qual average changes in the neural response and there-
ore reflect the local slope of the response function (white
ine segments through the intersections of the lines rep-
esenting �R75 and JND1&2 in Fig. 2C show the slopes of
he response curves that would be inferred at pedestals I1
nd I ). Thus using discrimination performance, we can
2
iece together local estimates of response function slopes
o infer the shape of the stimulus-response function.

Since in practice discrimination data sample the inten-
ity dimension fairly coarsely, inferring the response func-
ion is done most effectively using a parametric descrip-
ion. We chose a parametric form previously shown to
ccount for both psychophysical and physiological
ata:29,31,38,39

R = M
�gI + s�p

�gI + s�q + 1
. �2�

ere M controls the height of the curve, p and q deter-
ine the rate of expansion at low intensities and the rate

f saturation at high intensities, g is a gain parameter,
nd s is a subtractive term. Given this form, numerical
earch can be employed to find parameter values that
est account for observed discrimination performance.
he parameter M trades off perfectly with noise standard
eviation, so we fixed noise standard deviation at unity
hroughout.

The response curve labeled Rgreen in Fig. 2C represents
he response function [Eq. (2)] that would be inferred
rom the green background tvi curve in Fig. 2E. Similarly,
he response curve labeled Rgray in Fig. 2C represents the
esponse function [Eq. (2)] that would be inferred from
he gray background tvi curve.

Inferred response functions allow us to predict asym-
etric matching data. We use the linking hypothesis that

wo tests will appear the same when they produce the
ame mechanism response. Consider again Fig. 2C. When
test stimulus, TESTgreen (indicated on the top axis of

ig. 2C; note that the subscript refers to the color of the
ackground), is presented against the green background
t yields an expected response of r̄eq (shown on the right
xis of Fig. 2C). Under the linking hypothesis stated
bove, observers will set the intensity of a spot against a
ray background to yield the same response. This ex-
ected intensity may be found from Fig. 2C by finding the
ppropriate point on the response curve Rgray and is indi-
ated by MATCHgray.

Figure 2A plots the intensities of spots that match
cross a change in background. The gray circle represents
he expected TESTgreen:MATCHgray pair as determined
y the response functions in Fig. 2C. The thick black line
epresents the locus of TEST : MATCH pairs obtained by
epeating this procedure for different response levels. The
ey point is that the inferred response functions provide a
uantitative link between discrimination data (Figs. 2D
nd 2E) and asymmetric matching data (Fig. 2A). We
sed this link to determine whether the mechanisms con-
rolling adaptation to background chromaticity are com-
on to both discrimination and appearance judgments.
his analysis assumes that all tests are processed by the
ame mechanism. Our stimuli were chosen to make this
ssumption reasonable.

. METHODS
. Observers
wo observers participated. Observer JMH was an author
nd observer QRS was a paid volunteer. Observer QRS
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as unaware of the experimental hypotheses and had
ittle previous experience in psychophysical experiments.
oth observers had normal color vision as assessed by an

shihara test for color blindness.

. Apparatus
timuli were presented on a calibrated RGB monitor (HP
1110) with 14-bit intensity resolution for each channel
provided by a Cambridge Research System BITS�� de-
ice) operating at a 75 Hz refresh rate. Gamma functions
nd phosphor spectral power distribution were measured
or each CRT phosphor with a Photo Research 650

Table 1. Properti

CIE
Condition Name Color Name x

GRAY Gray 0.310
Gray+LM Pale green 0.313
Gray−LM Pale red 0.306
Gray+S Blue-purple 0.280
Gray−S Brownish-yellow 0.365

ig. 3. Spatial and temporal profiles of test spots. The top panel
hows the spatial profile of test spots in the discrimination and
atching experiments. The bottom panel shows the temporal pa-

ameters of a trial in the discrimination experiment. The small
hite spots indicate frame timing (vertical blanking). The tem-
oral profile in the matching experiment was the same except
hat only one interval was used.
pectra-radiometer. At the 40 cm viewing distance, the
onitor subtended 45 deg�37 deg (each pixel subtended
0.041 deg). The observer’s head position was stabilized
ith a chin rest.

. Stimuli
est stimuli were spots (1.5 deg diameter) convolved with
2D Gaussian to produce a smooth intensity ramp at the

dge (as shown in the top panel of Fig. 3). They were lo-
ated 3 deg, on average, horizontally from a central fixa-
ion point. One test spot was located to the left of fixation
nd the other to the right. To avoid adaptation to the
ests, their locations were perturbed from trial to trial.
erturbations were selected from a uniform square distri-
ution, and the same perturbations were used for left and
ight tests on each trial, so that the the locations were al-
ays symmetric with respect to a vertical axis. The xy po-

ition of the left and right tests were thus �−3 0�+ ��x �y�
nd �3 0�+ �−�x �y�, respectively, where �x and �y were ran-
om draws from a uniform distribution:

P��� = �0 for � � − 1.5
1
3

for − 1.5 � � � 1.5·

0 for � � 1.5
�

On every trial, test locations were indicated by square
rames composed of sparse black points. The frame had 8
oints per side, including the corner points. Each point
as 0.041 deg in diameter and the points were separated
y 0.23 deg. The frames appeared 13 ms before each trial
nd were extinguished 13 ms after the test appeared. In-
ensity of the test spots was ramped on and off gradually.
he ramp was a cumulative Gaussian with standard de-
iation =40 ms (3 frames) such that the total duration of
he ramp was 133 ms (11 frames). The test intensity was
xed for 200 ms (15 frames) between the on and off
amps. The bottom panel of Fig. 3 shows spatial and tem-
oral profiles of the test spots.
The test spots were modulations relative to the back-

round. That is, test modulations were defined as
Lbg Mbg Sbg�+I�Ltest Mtest Stest�. We used the Smith–
okorny estimates40 of cone spectral sensitivities and
tandard methods41 to convert between cone coordinate
pecifications and video DAC settings.

Test spots were presented in various contexts defined
y a uniform background. We used five backgrounds in
he experiments reported here. Table 1 provides the CIE
hromaticity and LMS cone coordinates of the back-
rounds, along with a descriptive color name for each.
he gray background served as a reference with respect

o which the other backgrounds were defined. These differ

Test Backgrounds

dinates Cone Isomerizations ��106�
Y L M S

10 22.5 2.72 1.01 0.03
68 31.1 4.03 1.59 0.03
25 13.3 1.42 0.44 0.03
40 22.5 2.72 1.01 0.01
37 22.5 2.72 1.01 0.05
es of

Coor
y

0.3
0.3
0.2
0.2
0.4
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rom the gray background by steps that modulate the LM
r S cones as specified in the table. LMS units in the table
re the expected number of isomerizations from the back-
round light for the area and duration of test stimuli. Test
ntensities will be reported as the expected number of
somerizations independent of the background. Thus the
ackground LMS coordinates in Table 1 can be used to
ompute a contrast for the test intensities reported in the
esults:

C =
test isomerizations

background isomerizations
.

Test spots were increments or decrements modulated in
wo color directions. One direction modulated the L and M
ones together and in equal amounts, with S cone stimu-
ation held constant. That is, �Ltest Mtest Stest�=I�1 1 0�
uch that L and M isomerization rates for individual
ones varied by the same amount. The total number of L
nd M cone isomerizations will differ when there are dif-
erent numbers of each cone type in the stimulus area. To
ompute isomerization totals, we used an L:M cone ratio
f 2:1, which means that for this test direction there
ould be twice as many L-cone isomerizations as M-cone.
- and M-cone contrasts for this test direction are

CL =
2

3
Itest	 Ibg,L, CM =

1

3
Itest	 Ibg,M,

here Ibg,L and Ibg,M are listed in Table 1 and Itest are test
somerization totals. The other direction modulated the S
ones while the L- and M-cone stimulation was constant.
hat is, �Ltest Mtest Stest�=I�0 0 1�.

. Procedure: Discrimination
e used a pedestal + test paradigm to measure threshold

ersus pedestal intensity (tvi) curves for spots modulated
n different color directions against different back-
rounds. The definition of the pedestal and test is shown
raphically in the lower panel of Fig. 3. On the trial rep-
esented, the pedestal alone was shown in the first inter-
al and the pedestal + test was shown in the second inter-
al. The test and pedestal were always in the same color
irection. Observers were instructed to select the interval
n which they saw the more “intense color.” Before experi-

ental trials began, observers were given practice trials
ith auditory feedback (used throughout the experiment)
here the test was clearly visible. Observers were in-

tructed to run practice trials until they were certain of
he apparent color change that corresponded to the ped-
stal + test. Once they were certain, they pressed a button
n a game pad that initiated a 90 s adaptation period.
here was a minimum of 2 s between each trial. One ped-
stal direction and intensity were selected for each ex-
erimental session. The number of pedestals tested for
ach background and test/pedestal color direction de-
ended on limits imposed by the gamut of the monitor.
Of particular concern was matching the stimulus con-

itions to those used in the asymmetric matching task
described below) as closely as possible. This introduces
ne uncommon aspect of the procedure: there were two
pots presented on each stimulus interval. In one interval
he pedestal was presented alone in the left and right tar-
et locations. In the other interval, the pedestal was pre-

ig. 4. JMH’s results from discrimination and matching experi-
ents for LM tests and backgrounds that varied in their LM in-

ut. The top six panels are discrimination thresholds (JNDs)
lotted as a function of pedestal intensity. The three left panels
re JNDs for decrements and the three right panels are JNDs for
ncrements presented on, from top to bottom, the Gray+LM,
ray and Gray−LM backgrounds. Error bars are 95% confidence

ntervals. The bottom panel shows asymmetric matching data for
he same set of conditions. The x axis is the test excursion (i.e.,
he number of isomerizations expected from the test independent
f the background) against the Gray+LM (circles) and the Gray
LM (triangles) backgrounds. The y axis is the match excursion

rom the gray background against which the matches were set.
rror bars are standard error of the mean. Dashed and solid

ines are results of model fits with parameters selected on the ba-
is of both discrimination and matching data. These are fits for
he gain-and-subtractive model of adaptation. Increments and
ecrements were fit independently but the p ,q, and M param-
ters in Eq. (2) were yoked across adapting conditions. The raw
sychometric and matching data underlying the points and
odel fits shown in this figure and Figs. 4–7 can be obtained at
ttp://color.psych.upenn.edu/supplements/com_uniform/.
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ented alone at one target location and the pedestal + test
as presented in the other interval. Observers indicated
ith a key press which interval they believed contained

he test, independent of which side it appeared on. A feed-
ack tone indicated when observers selected the incorrect
nterval. The intensity of the test was controlled by stair-
ase procedures. Four randomly interleaved staircases
ere used in each experimental session: two for tests

hown on the right and two for tests on the left. We used
-down–1-up and 3-down–1-up staircase rules to ensure
omprehensive sampling of psychometric functions for
ach pedestal. Typically, one session was run for each ped-
stal intensity. In cases where the data were particularly
oisy, an additional session was run.
To reduce the number of sessions, we put the same con-

ext on both the left and right halves of the display. To
eep the same split-field conditions as in the matching ex-

ig. 5. QRS’s results from discrimination and matching experi-
ents for LM tests and adapting fields that varied in their LM

nput. Results are plotted in the same format as Fig. 4.
eriment would require that each observer run in twice
he number of sessions per context (because half of the
ata would always be against the neutral context). A con-
rol experiment, presented below, compared discrimina-
ion performance for split-field and uniform-field contexts
or a subset of conditions. The results indicate no differ-
nces that would affect the analyses presented in this pa-
er.

. Procedure: Appearance
e used an asymmetric matching task to measure the ef-

ect of context on color appearance. Observers adjusted
he color of one of two simultaneously displayed test spots
ntil they appeared identical. We gave observers full con-
rol over the three-dimensional LMS coordinates of the
djustable match spot. One spot appeared on the left and
he other on the right of fixation. One half (either left or
ight; 22.5 deg�37 deg) of the monitor was filled with the

ig. 6. JMH’s results from discrimination and matching experi-
ents for S-cone tests and adapting fields that varied in their
-cone input. Results are plotted in the same format as Fig. 4 ex-
ept that values correspond to expected S-cone isomerizations.
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ray background. The other half had the adapting back-
round. Observers were instructed to fixate a small black
oint at the border of the two backgrounds throughout
he experiment. There was an initial 90 s adaptation pe-
iod prior to the first time the test spots were displayed.

Each time the test spots were displayed, the fixed test
pot, called the standard, appeared against the adapting
ackground and the adjustable spot, called the match, ap-
eared against the gray background. The spatial and tem-
oral profiles of the test spots were the same as in the dis-
rimination experiment, with the exception that the spots
ere flashed once per exposure rather than twice. Observ-
rs used a game controller to adjust the match in the
IELAB L*a*b* coordinates. Approximately red–green

a*� and blue–yellow �b*� adjustments were made by
ressing correspondingly colored buttons on the game
ontroller. Luminance �L*� adjustments were made with a
oystick. The standard and match were displayed after
ach adjustment with a minimum interstimulus interval
f 2 s. The standard and match could also be displayed
ithout making an adjustment by pressing an appropri-
te key on the game pad. Observers could, at any time,
hoose any one of four step sizes for the adjustments. Af-
er completing a match, observers rated the quality of the
atch with a value between 0 (couldn’t make the match)

nd 3 (perfect match).
Four matches were completed in a single experimental

ession (typically lasting 20 min). Each match was made
o a different standard, but the standards used within
ession were always selected from the same color direc-
ion. For each direction in LMS color space, we measured
atch settings for eight standard tests. Two to four total
atches were made for each standard color for each of the

ve contexts. To the extent possible, stimuli were left–
ight counterbalanced across sessions.

. RESULTS
igure 4 shows one of JMH’s discrimination and match-

ng results for LM tests presented on the Gray, Gray
LM, and Gray−LM backgrounds. The top six panels plot
iscrimination thresholds as a function of pedestal inten-
ity. The left column shows thresholds for decrements
−LM� and the right column shows thresholds for incre-
ents �+LM�. Note, therefore, that points intersecting the
axis are detection thresholds for decrements (left col-

mn) and increments (right column). The three rows,
rom top to bottom, correspond to three adapting condi-
ions: Gray+LM, Gray, and Gray−LM. Units on abscissa
nd ordinate are the expected number of isomerizations
or the pedestal and test, respectively (i.e., the x axes rep-
esent the expected number of isomerizations attribut-
ble to the pedestal independent of the background, and
he y axis represents the expected number of isomeriza-
ions attributable to the test independent of the back-
round and pedestal). The quantities and calculations
sed to estimate isomerizations are detailed in Appendix
. Contrast units can be computed using the background

somerizations in Table 1 as specified in the methods.
Data points (circles, squares, and triangles for the

ray+LM, Gray, and Gray−LM backgrounds, respec-
ively) are JNDs determined by fitting the raw psycho-
etric data with separate cumulative normal functions.
arameters were selected by a maximum-likelihood crite-
ion. Data points shown in the top six panels are test in-
ensities that yield 75% correct on the fitted curves (i.e.,
NDs). Error bars are 95% confidence intervals deter-
ined by a bootstrapping of the maximum-likelihood pa-

ameters with trial number and test intensities set by the
sychometric data.42 The increase in the size of the error
ars with pedestal intensity may result from suboptimal
ampling of points on the psychometric function by our
taircase algorithm.

The curves shown in Fig. 4 are a result of selecting the
arameters for the response function [Eq. (2)] that led to
he best account of the data. The exact optimization crite-
ia are described in Subsection 3.A below. The curves in
hese six panels are the 75% correct points (JNDs) in-
erred from the fitted response model (see Fig. 2). In Fig.
, the dashed black curve, solid black curve, and solid

ig. 7. QRS’s results from discrimination and matching experi-
ents for S-cone tests and adapting fields that varied in their
-cone input. Results are plotted in the same format as Figs. 4–6.
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ray curves are JNDs against the Gray+LM, Gray, and
ray−LM backgrounds, respectively. Response model
ND curves for each adapting condition are repeated in
ach panel to provide a common reference; the curves that
orrespond to the adapting condition represented by each
anel are thickened.
There are three notable trends in the discrimination

ata. First, consistent with many studies of contrast
iscrimination,29,37,43 there is a dip in JNDs at low (sub-
hreshold) pedestal values and a subsequent increase in
NDs as pedestal intensity increases. Under the assump-
ion that fixed-variance additive Gaussian noise limits
iscriminability, the dip reflects an accelerating nonlin-
arity at low contrasts29,37,43 while JND increases at high
edestals reflect response saturation (Fig. 2C). Second,
here is a clear effect of background color on JNDs, par-
icularly at low pedestals. JNDs for the LM tests increase
s the intensity of the LM background is increased. Third,
here is good agreement between JNDs determined by the
onventional method of fitting cumulative normals to the
sychometric data and the JNDs determined by the re-
ponse model fit.

The response model parameters that determine the
ND curves in the top six panels of Fig. 4 were also used
o derive performance for the corresponding asymmetric
atching data. The bottom panel of Fig. 4 shows the re-

ults of the asymmetric matching task for the same
dapting conditions represented by the top six panels of
iscrimination data. The x axis represents intensity of the
tandard presented against either the Gray+LM or
ray−LM background. The y axis represents intensity of

he match set against the gray background (circles,
ray+LM background; triangles, Gray−LM
ackground).44 Error bars are 1 standard error of the
ean. Observers’ ratings of the quality of the match (be-

ween zero and four) were used to reject trials where the
bserver could not find an adequate setting. Any setting
ated 0 or 1 was rejected from the data set (no trials were
ejected for observer JMH and 6 out of 120 trials were re-
ected for QRS). The dashed black curve and solid gray
urve are predictions derived from the response model.
he correspondence between predictions and data is ex-
ellent.

Figure 5 shows data for QRS for the same conditions
hown in Fig. 4. Figures 6 and 7 show, respectively, JMH’s
nd QRS’s discrimination and matching data for S-cone
ests presented against adapting backgrounds that varied
nly in their S-cone input. Each figure shows data from
ne observer in the same format as Figs. 4 and 5. The bot-
om panel again shows results from the asymmetric
atching task for S-cone tests. The agreement between

he model and data in Figs. 4–7 is good: Almost all sys-
ematic trends are well predicted by the inferred response
unctions. The raw psychometric and matching data used
o obtain points shown in Figs. 4–7 can be downloaded at
ttp://color.psych.upenn.edu/supplements/com_uniform/.

. Error Trade-Off Analysis
ur broad goal is to determine whether both discrimina-

ion and appearance are mediated by the same mecha-
isms of adaptation. The fits in Figs. 4–7 suggest an af-
rmative answer for the conditions studied here. These
ts were obtained by leveraging both discrimination and
ppearance data simultaneously to determine the re-
ponse function parameters. It remains possible, there-
ore, that considerably better fits to each data set could
ave been obtained had we fitted the two separately. Here
e investigate this by fitting the response function with
arying emphasis on discrimination and matching data.

Figure 8 illustrates the analysis for JMH’s −LM test
ata presented against Gray and Gray+LM backgrounds
or observer JMH. The center panel shows model fit error
or discrimination and matching data. The x axis is the
ormalized negative log-likelihood of the model param-
ters given the discrimination data. The y axis is the nor-
alized sum-of-squared error between the model and the

symmetric matching data.
The normalizing term for the negative log-likelihood of

he discrimination data was the likelihood of observing
he data if the probability p of every binomial variable in
he psychometric data was equal to the proportion of tri-
ls the observer got correct for that test intensity, or

L = 

i=1

N1�Nped � Ni
trials

Ni
correct�pi

Ni
correct

�1 − pi�Ni
trials−Ni

correct
,

here Ni
trials is the number of trials for a given test inten-

ity, Ni
correct is the number of 2 IFC trials the observer got

orrect, NI is the number of test intensities for each ped-
stal, Nped is the number of pedestals, and pi
Ni

correct /Ni
trials. To calculate likelihoods for models of the

iscrimination data, p is replaced by the probability de-
ermined from the model.

The normalizing term for the squared error of the
symmetric matching data was the sum-of-squared differ-
nce between the mean of the observer’s settings and
heir actual settings: Err=i=1

N1 j=1
Ntrials�matchj,i−	i�2,

here matchi,j is the observer’s setting on the jth trial for
est intensity I ,	i is the mean of settings for test inten-
ity I ,Ntrials is the number of trials completed for test in-
ensity I, and NI is the number of test intensities. To cal-
ulate the sum of squared errors for the model fits, 	i is
eplaced by the value of the match determined by the
odel for test intensity I.
For these error metrics, no model could do better than

he values of the normalizing terms. Thus the normalized
ikelihoods and normalized sum of squared errors for any

odel will be greater than or equal to 1.
Consider the normalized likelihoods for different model

ts to the discrimination data only. The data points
JNDs) in Figs. 4–7 were determined from cumulative
ormal fits to the discrimination data. Characterizing
sychometric data with cumulative normal parameters is
ommon and assumes, as our model does, that perfor-
ance is limited by additive Gaussian noise. Such char-

cterization of psychometric data makes no assumptions
bout the relationship between data across pedestals and
dapting conditions. We therefore consider it a baseline
gainst which we can compare the quality of other model
ts.
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The thick vertical gray line in the center panel of Fig. 8
s the normalized negative log-likelihood for the cumula-
ive normal fits to the psychometric data (i.e., a 40-
arameter model given the two parameters for each of the
0 −LM test psychometric functions from the Gray and
ray+LM backgrounds). The shaded (lighter) gray region
ordering this line is the 95% confidence interval of the
egative log-likelihood for these cumulative normal fits.
e determined these confidence intervals by a bootstrap-

ing procedure using the maximum-likelihood param-
ters (i.e., binomial probabilities for data resampling were
etermined by model fits, not the data trial numbers, and
est intensities from the original data set. We performed
aximum-likelihood fits to each of 1000 resampled data

ets to determine the range of likelihoods indicated by the
haded regions. This region therefore gives us an idea of
hat range of likelihoods we could reasonably expect for

his baseline fitting method.
The thick, vertical, black, dashed line is the normalized

egative log-likelihood for the response model where all
ve parameters in Eq. (2) were allowed to vary to fit the
iscrimination data for the −LM tests in the Gray and
ray+LM backgrounds (i.e., a 10-parameter model with
ve for the Gray and five for the Gray+LM). Finally, the
ray star with the black outline is the normalized nega-

ig. 8. Error trade-off analysis for JMH’s −LM test data in the G
rror trade-off analysis described in the text for the gain-and-sub
ikelihood �−LL� of model parameters given the full complement o
we plot the negative log likelihood so small values correspond to
riterion for the matching data). The y axis is the normalized lea
dapting conditions. The two left panels show the data that unde
ig. 4. The two right panels show the same data. The model fits i
xclusively by the discrimination data. The gray star in the cent
hese fits. The model fits in the two right panels are fits where mo
ray diamond in the central error trade-off panel is the −LL, LSE
entral panel are −LL, LSE combinations where both data sets
ents a −LL, LSE combination for a specific combination of weigh
re from fits where more weight was given to maximize the likeli
he sum-of-squared error for the model parameters given the ma
ore weight was given to minimize the sum-of-squared error for

ikelihood of the parameters given the discrimination data.
ive log-likelihood for the response model fits with param-
ters M ,p, and q yoked across Gray and with Gray+LM
dapting conditions and parameters g and s chosen sepa-
ately for each adapting condition (i.e., a 7-parameter
odel that we refer to as the gain-and-subtractive model

f adaptation).
There is little cost in fitting the data with the response
odel rather than independent cumulative normals; like-

ihood of the data given the response model parameters
or both unyoked and yoked fits falls within the confi-
ence range of likelihoods for unconstrained cumulative
ormal fits. There is also little cost in yoking the M ,p,
nd q parameters across adapting conditions (as indi-
ated by the negligible horizontal shift in the star relative
o the vertical dashed line).

The two panels on the left show the results of the yoked
ain-and-subtractive model fits when the parameters
ere fitted to the discrimination data. The fit to the dis-

rimination data is good, but here the model does not do
ell in predicting the matching data. This is reflected in

he relatively high, normalized sum-of-squared error that
esults from these model parameters (star in the center
anel).
Now consider the fits to the matching data only. Model

redictions for the asymmetric matching data require pa-

d Gray+LM adapting condtions. Central panel are results of the
e model of adaptation. The x axis is the normalized negative log

imination data from the Gray and Gray+LM adapting conditions
r fits, consistent with the sum-of-squared error metric used as a
ared error (LSE) of model fits for the matching data in the same
e analysis presented in the central panel and are replotted from
wo left panels are fits where model parameters were determined
or trade-off panel is the −LL, LSE combination corresponding to
rameters were determined exclusively by the matching data. The
ination corresponding to these fits. The filled gray circles in the
sed to determine the model parameters. Each gray circle repre-
e matching and discrimination error. Higher points in the graph

f the parameters given the discrimination data than to minimize
data. Similarly, the more rightward points are from fits where

del parameters given the matching data than to maximizing the
ray an
tractiv
f discr
bette

st-squ
rlie th
n the t
ral err
del pa

comb
were u
ts to th
hood o
tching

the mo
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ameters for both backgrounds. When no parameters are
oked, there are 10 model parameters for every adapting
ondition (five for Gray, five for Gray±X). These param-
ters are vastly underconstrained by the matching data
bottom panels of Figs. 4–7). However, the error for fits
btained using this many parameters provides a good
aseline. The horizontal black dashed line in the center
anel of Fig. 8 is the normalized sum of squared error for
his 10-parameter fit to the matching data. We generated
imulated data from these model parameters to deter-
ine the range of sum-of-squared errors we could expect

f those model parameters accurately characterized the
nderlying response function. The gray shaded region
round the horizontal dashed line is the 95% confidence
nterval for the sum-of-squared error derived from these
imulations. The gray diamond with black outline repre-
ents errors from fits of the gain-and-subtractive adapta-
ion model to the matching data (when M ,p, and q are
oked across adapting conditions). Again there is little

ig. 9. Error trade-off analysis for LM tests and adapting fields
eft to right, JMH’s results from +LM tests on Gray and Gray−LM
he bottom two panels are from the same conditions for QRS. Plo
e have included results of the error trade-off analysis for the ga

gray symbols) model.
ost to yoking parameters M ,p, and q across adapting e
onditions. The two panels on the right show the results
f these yoked gain-and-subtractive model fits. With the
arameters selected on the basis of the matching data,
he model provides a good fit to the matching data and a
oor fit to the discrimination data.
Finally consider the error trade-offs possible when data

rom both tasks are used to constrain the model fits. The
lack-outlined gray star in Fig. 8 represents the lower
ound for the negative likelihoods and the upper bound
or the squared error for the gain-and-subtractive adapta-
ion model. Similarly, the black-outlined gray diamond
epresents the lower bound for the matching squared-
rror and the upper bound for the negative likelihoods for
he gain-and-subtractive adaptation model. If perfor-
ance in matching and discrimination tasks is controlled

y common mechanisms of adaptation then there should
e little cost in terms of the likelihoods of the discrimina-
ion data and squared errors for the matching data when
oth data sets are used to constrain the model param-

aried only in their LM component. The top two panels are, from
ting fields and −LM tests on Gray and Gray+LM adapting fields.
onventions are the same as those for the central panel in Fig. 8.
(open white symbols) model as well as the gain-and-subtractive
that v
adap

tting c
in-only
ters. That is, the likelihoods and squared errors for the
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eighted fits should follow the contour of the horizontal
nd vertical dashed black lines with some points close
othe intersection of these two lines. The black-outlined
ray circles are likelihoods and squared errors for
eighted fits with the gain-and-subtractive adaptation
odel. Using both data sets, we found model parameters

hat gave errors close to both lower bounds. Further the
ikelihood and squared error for these fits fell within the
ntersection of the confidence intervals established for
ach error metric. These results establish, for this data
et, that both matching and discrimination data can be
ccounted for by common mechanisms of adaptation.
We also examined the quality of the fits by eye, compar-

ng fits when both data sets were factored into the param-
ter selection and fits where only one or the other data set
as employed. Differences between the fits with errors in

he lower left corner of the error trade-off plots and those
etermined by each data set in isolation were vanishingly
mall (i.e., the fits determined by appearance and dis-
rimination data independently essentially looked the
ame as the yoked fits shown in Figs. 4–7).

Figures 9 and 10 show the results for all the data sets
hat could be subjected to this error trade-off analysis.

Fig. 10. Same as Fig. 8 except for S-cone tests and
he conventions in Figs. 9 and 10 are the same as those
stablished in Fig. 8 with two exceptions. First, we added
esults of the analysis for a simpler model of adaptation
hat allows only the gain [g in Eq. (2)] to vary across con-
exts. For this gain-only model (shown as open symbols),
he subtractive term [s in Eq. (2)] was set to zero. Second,
e plot only the extremes of the fits (fits to either the dis-

rimination or matching data) and the one result of the
eighted fits that came closest to the lower bounds estab-

ished by the fits to each data set in isolation. The top two
anels in Fig. 9 are results of this error-trade-off analysis
or JMH for −LM tests presented against the Gray+LM
ackground (left panel) and +LM tests presented on the
ray−LM background (right panel, same as Fig. 8). The
ottom two panels are results from QRS for the same con-
itions. The white stars are from fits to the discrimination
ata of the gain-only adaptation and the gray stars are
rom the gain-and-subtractive model of adaptation. The
hite diamonds are from fits to the matching data of the
ain-only adaptation, and the gray diamonds are from the
ain-and-subtractive model of adaptation. The white
quare and gray circle are the best weighed fits for the
ain-only and gain-and-subtractive adaptation models,

ng fields that varied only in their S-cone component.
adapti
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espectively. Figure 10 shows results for the S-cone tests
nd adapting conditions using the same conventions as
ig. 9. The parameters that determined the error values

or the gray circles (gain-and-subtractive adaptation
odel) in Figs. 9 and 10 are the parameters used in the
odel fits shown in Figs. 4–7.
Three important trends are revealed through the

nalysis depicted in Figs. 8 and 9: (1) in all cases, the
eighted fits come very close to the lower bounds of the
rror established by considering each data set in isola-
ion; (2) there is essentially no cost in terms of the model
rror to yoking parameters M ,p, and q across the rel-
vant adapting conditions for either the discrimination or
he matching data; and (3) there are several cases where
he gain-and subtractive model provides a clear reduction
n the model error relative to the gain-only model (though
his error reduction is observed primarily in the matching
ata).
Our error tradeoff analysis confirms the impression

onveyed by Figs. 3–6: Effects of adaptation on both dis-
rimination and appearance can be explained by a change
n response function common to both. Before discussing
he results and their implications further, we briefly
resent two control experiments.

. CONTROL EXPERIMENT 1:
ISCRIMINATION PERFORMANCE ON
PLIT FIELDS

n the asymmetric matching experiment, test spots were
resented against a split field, one on either side of the
olor discontimuity. To obtain the discrimination data, on
he other hand, tests were presented against a field that
ad the same color across the entire display. We used a
ompletely uniform field in the discrimination task be-
ause, with this arrangement, each experimental session
ielded twice as much data for the given adapting condi-
ion. The control data presented here indicate that there
ere no unexpected interactions between the two sides of

he split-field context.
Methods were identical to the main discrimination ex-

eriment except that tests and pedestals were presented
n a split field. One half of the field was Gray and the
ther half was Gray−LM. Pedestals and tests were +LM.
ne pedestal intensity was tested in each experimental

ession. One observer was tested with four staircases for
ach background–pedestal combination.

For our purposes, it is sufficient to show that the ratio
f JNDs between the split versus uniform field adapting
onditions is constant. In Appendix B we show that such a
niform shift would not have affected any fitting param-
ters in Eq. (2) except for M, and that a change in M does
ot affect the predictions for the asymmetric matches.
The ratio of JNDs from the first experiment and this

ontrol experiment are shown in Fig. 11. The x axis is the
xpected number of isomerizations for the +LM pedestal.
he y axis is the ratio JNDuniform/JNDsplit. Different sym-
ols denote different adapting conditions: Open circles are
rom the Gray background and filled circles are data from
he Gray−LM background. Error bars are 95% confidence
ntervals determined by a bootstrapping procedure. There
s no systematic difference in the JND ratios for these
dapting conditions.
. CONTROL EXPERIMENT 2: TESTING THE
ON KRIES HYPOTHESIS

n the main experiment, tests and adapting field shifts
ere in the same color direction. We also examined effects
f LM background shifts on the discriminability and ap-
earance of S tests, and vice versa. This tests the von
ries hypothesis that each cone type adapts indepen-
ently for both appearance and discrimination.
Methods were identical to those of experiment 1. We
easured detection thresholds and asymmetric matches

or S and LM tests against Gray±LM and Gray±S adapt-
ng fields, respectively. That is, S tests were presented on
ackgrounds that varied in their L- and M-cone coordi-
ates and LM tests were presented on backgrounds that
aried only in the S-cone coordinates. The same two ob-
ervers who participated in the first experiment, along
ith one other observer, participated in this experiment.
Detection thresholds and asymmetric matches for one

bserver are shown in Fig. 12. The top left panel shows
etection thresholds for ±LM tests as a function of S back-
round intensity. The filled black circles are test intensi-
ies that gave 75% correct for a cumulative normal fit to
he data by a maximum-likelihood criterion. The solid
ray lines provide a reference for no changes in thresh-
lds as a function of background intensity. Similarly, the
lled black circles in the top right panel are absolute
hresholds for ±S tests as a function of LM background
ntensity.

The bottom two panels of Fig. 12 are results from the
symmetric matching experiment: In the left panel are
ata for LM tests when the S-cone component of the back-
round was varied, and in the right panel are data for
-cone tests when the LM component of the background
as varied. The filled black squares are a symmetric
atching condition (both the fixed test and adjustable

ig. 11. JMH’s JND ratios for the split field versus uniform field
onditions for LM increments presented against Gray and Gray
LM backgrounds. The x axis is isomerizations of the pedestal

same as lower right and middle right panels in Fig. 4). The y
xis is the JND ratio for discrimination data collected on a uni-
orm and split field. Open circles are JND ratios from the Gray
dapting field and filled gray circles are ratios from the Gray
LM adapting field. Error bars are 95% confidence intervals de-

ermined by a bootstrap analysis.
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atch were presented against the Gray background) and
rovide an indication of any bias in the observer’s set-
ings. The slight systematic trend for the +LM matches
nd +S matches to be lower than the baseline settings in
he Gray−S and Gray−LM conditions, respectively, was
ot evident for two other observers.
Results from both the asymmetric matching and detec-

ion task are generally consistent with the hypothesis
hat, for uniform fields, cones adapt independently. Re-
ults from two other observers (not presented) were simi-
ar. The lack of interaction between cones observed in
oth discrimination and appearance judgments is consis-
ent with the results of several previous studies.45–48

ig. 12. JMH’s detection and matching results for LM-cone
ests presented on adapting fields that varied only in their S com-
onent and S-cone tests presented on adapting fields that varied
nly in their LM component. The top two panels are detection
hresholds plotted as a function of background intensity. The bot-
om two panels are results of the asymmetric matching task. The
wo left panels are results from LM-cone tests presented on back-
rounds that varied only in the S-cone components. The two
ight panels are results from S-cone tests presented on back-
rounds that varied only in their LM-cone component. The x axis
n the top left panel is the expected number of S-cone isomeriza-
ions from the background light for the same area and temporal
nterval as the test stimuli, and the y axis is the expected num-
er of isomerizations for an LM-cone test. Similarly, the x axis in
he top right panel represents background LM-cone isomeriza-
ions and the y axis S-cone test isomerizations. Data points in
hese top two panels are the 75% thresholds determined by fit-
ing the detection data with a cumulative normal. The x axis in
he bottom left panel is the expected number of isomerizations
or fixed LM-cone tests presented on either the Gray+S, Gray, or
ray−S adapting fields. The y axis is S-cone isomerizations for
MH’s match settings against the gray background. Filled
quares are from the symmetric matching conditions (where both
he fixed test and adjustable match were presented on the Gray
ackground). Open circles and filled diamonds are conditions
here the fixed tests were presented against the Gray+LM and
ray−LM conditions, respectively. Error bars are standard er-

ors of the mean. The convention for the bottom right panel is the
ame as for the bottom left panel except that the axes correspond
o the expected isomerizations of S-cone tests.
. DISCUSSION
e have tested the assumption that effects of background

hromaticity and luminance on color discriminability and
ppearance are mediated by mechanisms common to both
udgments. This common mechanism hypothesis holds for
he conditions we examined. Our general conclusion
grees with that of earlier authors who have studied ad-
ptation of discrimination and appearance with respect to
hanges in uniform backgrounds.24,34,49–52 Our work ex-
ends previous studies in several ways.

First, we measured full tvi curves and used these to
earn how adaptation affects discriminability across a
ide range of stimulus intensities. In this regard, we

hare much with Heinemann.34 Most earlier work, how-
ver, characterized adaptation with changes in detection
hreshold and relied on gain-control models of adaptation
o extrapolate predictions to the intensity range where
ppearance was studied. Use of detection thresholds is
dequate only for stimulus conditions where the gain-
ontrol model is valid. Some of our conditions required in-
lusion of a subtractive term in the adaptation model.
ad we relied only on detection thresholds, we would
ave drawn erroneous conclusions about the common
echanism hypothesis. We expect this consideration to

ecome increasingly important as we extend our work to
ther adapting contexts that include contrast and more
omplex spatial structure. There is good evidence that
icher models of adaptation are required to account for
daptation effects for such contexts.22,36,53

A second novel feature of our work is the error tradeoff
nalysis presented in Figs. 8–10. This analysis shows
hat fitting a model to discrimination data alone leads to
oor predictions of appearance and vice versa. Such a re-
ult could arise either because the common mechanism
ypothesis is false, or because measurement variability
ropagates to the model fits in a manner that leads to
oor extrapolation across tasks. These two possibilities
re distinguished by the error tradeoff analysis. For ad-
ptation to uniform fields, the case studied here, the com-
on mechanism hypothesis holds. Under other conditions
e might expect the common mechanism hypothesis to

ail. For example, Nerger et al.54 found that “filling-in” of
etinally stabilized images affected appearance judg-
ents but not detectability. While this result suggests dif-

erent mechanisms mediating detection and appearance,
uch a conclusion would be premature for two reasons.
irst, our results show the importance of measuring the

vi function and not just detection thresholds when com-
aring threshold and suprathreshold performance. Sec-
nd, the common mechanism hypothesis should be sub-
ected to the kind of statistical test provided by the error
radeoff analysis presented here. Further, error tradeoff
s important to bear in mind when evaluating conclusions
rawn from comparisons of data that were collected and
nalyzed in different laboratories.
A third important feature of our work was the attempt

o match as carefully as possible the stimulus conditions
sed in the discrimination and appearance experiments.
hus the same observers viewed spots flashed with the
ame temporal and spatial profiles. Careful matching of
timulus conditions rules out the possibility that differ-
nces between discrimination and appearance occur sim-
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ly because the visual system is in a different state of ad-
ptation across the two paradigms. The one major
ifference that persisted in our experiments was the use
f split backgrounds in the appearance experiments and
niform backgrounds in the discrimination experiments.
ontrol measurements, however, indicated that this dif-

erence was not of consequence for our comparisons.
At the core of our modeling is an inferred response

unction common to both discrimination and
ppearance.34,49 This function explains discrimination
tvi) data through the linking hypothesis that sensitivity
s proportional to its slope.55 The same function explains
ppearance through the linking hypothesis that two
timuli appear the same when they lead to the same re-
ponse. We chose a particular parametric form for the re-
ponse function [Eq. (2)]. This function is consistent with
revious studies of both discrimination29–32 and
ppearance.51,57 A parametric response function sets the
orm of the common mechanism hypothesis and provides
way to aggregate data collected at discrete intensity lev-

ls. For the conditions studied here, Eq. (2) allowed an ex-
ellent description of both tvi and matching data. Under
he assumption that the common mechanism hypothesis
olds, the parameters of the response function are better
etermined using both discrimination and appearance
ata than by using either data set alone.
In addition to testing the common mechanism hypoth-

sis, our data also speak to models of adaptation. The
ost general model we considered was one in which all of

he parameters of the response function [Eq. (2)] were al-
owed to vary across adapting conditions. More restrictive

odels yoke some of the model parameters across condi-
ions and thus account for adaptation through changes of

subset of the parameters. We considered two specific
ubset models, one in which only the gain (parameter g)
as allowed to change and one in which subtraction was
lso allowed (both parameters g and s allowed to vary).
e found cases where the gain-only model failed to ac-

ount for the data while the gain-and-subtractive model
orked well. Previous authors25,30,32,58,59 have also ar-
ued that models of adaptation must include a subtrac-
ive term61 (but see Ref. 60).

There are obvious practical reasons why testing the

Table 2. Conventions Us

roperty

osterior nodal point distance 1
upil diameter 3.5
ens density
acular pigment optical density

hotoreceptor density 1.6�1
cone: M-cone ratio

L+M� cone: S-cone ratio
nner segment length 2
uter segment diameter
hotopigment axial density
hotopigment spectral sensitivity
uantal efficiency

aFor the purposes of calculating isomerizations, pupil diameter was fixed to its e
ommon mechanism hypothesis is important: (1) Model-
ng adaptation is simplified for conditions where data of
oth discrimination and appearance experiments reveal
he same mechanisms, and (2) predictions about the be-
avior of the neural substrate from the psychophysics are
ore straightforward under these conditions. More

roadly, however, the status of this hypothesis is of inter-
st as we consider the utility of color vision. Cases where
he hypothesis fails are cases where separate mechanisms
ediate the role of color in scene segmentation and object

dentification. Such cases would provide important clues
o differences in the information processing requirements
f these two tasks.

The data presented in this paper do not reveal failures
f the common mechanism hypothesis, but represent only
limited set of stimulus conditions: We consider contexts

onsisting only of uniform backgrounds. In addition, we
hoose the color directions of the tests to maximize the
robability that they would isolate individual mecha-
isms, as indicated by a large literature on how the visual
ystem processes color.3,11,16,22 Clearly it will be of inter-
st to determine how the common mechanism hypothesis
eneralizes. Of particular interest to us are conditions
hat include contrast adaptation,17,19,62,63 intermediate
est color directions, and spatial structure in the
ontexts.64 We believe that the basic methods and analy-
is presented here will allow sharp tests of the hypothesis
or this wider range of conditions.

PPENDIX A: ESTIMATING CONE
HOTOPIGMENT ISOMERIZATIONS
able 2 lists the conventions we used to estimate the

somerizations for the data presented in this paper. The
oftware used to perform isomerization rate calculations
s available at www.psychtoolbox.org. Test intensities
ere presented in terms of the total expected number of

somerizations independent of the background. To calcu-
ate the total expected number of isomerizations, isomer-
zation rates were integrated for the spatial and temporal
rofiles of the test (Fig. 3). Specifically, Rtotal

*

xytRrate
* f�x ,y , t�, where f is the function defining the

Estimate Isomerizations

Source

Ref. 65
a Ref. 66

Ref. 67
Ref. 68; scaled by estimates of relative

density at 3 deg eccentricity from Ref. 69
mm2 Ref. 70

—
—

Ref. 65
Ref. 65
Ref. 65
Ref. 40
Ref. 65

value for the Gray background.
ed to

Value

6.1 mm
2 mm
—
—

04 per
2:1

20:1
.9 mm

33 	m
0.5
—

2/3

xpected
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timulus, and x and y correspond to the assumed cone
pacing. As we noted in Section 2 the conversion from
somerization rates (per cone per second) to isomerization
otals incorporates differences in the cone ratios. Thus if
here are more L than M cones, there will be proportion-
lly more total L-cone isomerizations when the isomeriza-
ion rates are the same. The cone densities and ratios
sed to calculate these totals are included in Table 2.

PPENDIX B: EFFECTS OF UNIFORM
HIFTS IN JNDS ON MODEL PARAMETERS
ere we show that effects on JNDs we observed in the

plit field versus uniform field conditions will not sub-
tantively affect model parameter estimation. Recall that
NDs are inversely proportional to the slope of the re-
ponse function (i.e., JND
1/R�). How would a shift in
NDs by a factor common to all pedestals and adapting
onditions, as we observed, affect parameter estimation?
irst we note that

JND 

1

R�
=

1

M

��gI + S�q + 1�2

g��gI + S�p−1��gI + S�q�p − q� + p��
.

hus any multiplicative shift in JNDs common across all
onditions would be reflected by a common change in M.
hat is important is, such a change does not affect the
atch predictions. Recall that we assume matches are
ade when the responses of the relevant mechanisms are

quated, that is, when

Ri
A = Ri

B

MA

�gAI + sA�p

�gAI + sA�q + 1
= MB

�gBI + sB�p

�gBI + sB�q + 1

.

Because both sides of this equation can be divided by a
ommon change in MA and MB without affecting the
quality, the magnitude of this change does not influence
atch predictions.
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