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Abstract 
Vision is difficult because images are ambiguous.  For object color, the 

ambiguity arises because the same object reflects a different spectrum to 

the eye under different illuminations.  Human vision typically does a good 

job of resolving this ambiguity – an ability known as color constancy.  The 

past twenty years have seen an explosion of work on color constancy, with 

advances in both experimental methods and computational algorithms.  Here 

we connect these two lines of research by developing a quantitative model of 

human color constancy.  The model includes an explicit link between 

psychophysical data and illuminant estimates obtained via a Bayesian 

algorithm.  The model is fit to the data through a parameterization of the 

prior distribution of illuminant spectral properties.  The fit to the data is 

good, and the derived prior provides a succinct description of human 

performance. 
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Vision is useful because it informs an organism about the physical 

environment.  Vision is difficult because the retinal stimulus is ambiguous 

about the state of the world.  Such ambiguity is illustrated in Figure 1 for the 

case of object color: the same object reflects a different spectrum to the eye 

when it is viewed under different illuminations. The remarkable feature of 

human vision is that despite ambiguity in the sense data, our perceptions 

generally provide an accurate picture of what surrounds us.  The core of any 

general theory of perception must include an understanding of how the 

ambiguity is so effectively resolved. 

Figure 1 about here. 

An attractive general principle is that vision resolves ambiguity by taking 

advantage of the statistical structure of natural scenes: given several 

physical interpretations that are consistent with the sense data, the visual 

system chooses the one that is most likely a priori (Helmholtz, 1866; 

Adelson & Pentland, 1996; Purves & Lotto, 2003).  This principle can be 

instantiated quantitatively using Bayesian decision theory, and there is great 

interest in linking perceptual performance explicitly to Bayesian models (Knill 

& Richards, 1996; Rao, Olshausen, & Lewicki, 2002; Geisler & Kersten, 

2002; Kersten & Yuille, 2003).  This paper develops a quantitative Bayesian 

model of human color constancy.  The model is fit to the data by adjusting 
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parameters that describe the visual system’s prior knowledge (Mamassian, 

Landy, & Maloney, 2002; Weiss, Simoncelli, & Adelson, 2002). 

First, we review published measurements of human color constancy made 

by asking observers to adjust the appearance of test objects, embedded in 

images of three-dimensional scenes, until they appear achromatic (Delahunt 

& Brainard, 2004).  The degree of constancy exhibited by the visual system 

varies greatly with the structure of the scenes used to assess it.  Thus a 

general understanding requires a model that predicts both successes and 

failures of constancy (Gilchrist et al., 1999).  The core idea of our model is 

to use an explicit algorithm to estimate the scene illuminant from the image 

data, and to use this estimate to predict the color appearance data.  When 

the algorithm provides correct estimates of the illuminant, the model 

predicts good color constancy.  When the algorithm’s estimates are in error, 

the model predicts failures of constancy. 

We apply this modeling principle using a Bayesian illuminant estimation 

algorithm (Brainard & Freeman, 1997).  The algorithm resolves ambiguity in 

the image through explicit priors that represent the statistical structure of 

spectra in natural images.  These priors provide a parameterization that 

allows us to control the algorithm’s performance.  The model provides a 

good account of the extant data.  The illuminant prior that provides the best 

fit to the data may be compared to the statistics of natural illuminants. 
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Methods 

Measurements of Human Color Constancy 

The experimental methods used in the psychophysical experiments are 

described in detail by Delahunt and Brainard (2004).  The published report 

also describes a number of control experiments that verify the robustness of 

the main results. 

Bayesian Illuminant Estimation 

The principles underlying the Bayesian Illuminant Estimation algorithm 

are described by Brainard and Freeman (1997).  The published algorithm 

was modified to estimate illuminant chromaticity rather than illuminant 

spectrum, as described below. 

To predict the achromatic loci using the equivalent illuminant principle, 

we wish to estimate the CIE u’v’ chromaticity coordinates of the illuminant.  

We denote these by the two-dimensional column vector 

x =
u'

v'

!

"
#
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%
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Our goal is to estimate x  from the data available in the retinal image.  We 

denote this data by the vector y .  The entries of y  consist of the L-, M-, and 

S-cone quantal absorption rates at a series of Ny  image locations 
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The Bayesian approach (Berger, 1985; Lee, 1989) tells us that to 

estimate x  from y , we should calculate the posterior probability 
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p(x | y) = c p(y | x) p(x) ,                                                        (1) 

where c  is a normalizing constant that depends on y  but not on x , p(y | x)  is 

the likelihood that data y  will be observed when the illuminant is in fact x , 

and p(x)  is the prior probability of an illuminant with chromaticity x  

occurring. 

To choose an estimate  !x  of the illuminant chromaticity, we maximized 

the posterior probability 

 
!x = argmax[p(x | y)] . 

To find the maximum, we need to evaluate both the likelihood and the prior.  

Since the constant c  is independent of x , it may be ignored in the 

maximization. 

The likelihood of observing a data vector y  given an illuminant x  depends 

on the imaging model, the spectrum of the illuminant, and the surfaces that 

the illuminant reflects from.  We assume that a single diffuse illuminant 

reflects from Ny  distinct matte surfaces.  We represent the illuminant 

spectrum by a column vector e  whose entries denote the illuminant power 

for a set of wavelength bands that sample the visible spectrum (Brainard, 

1995).  We represent each individual surface by a column vector s
i
 

(1 ! i ! Ny ) whose entries represent the reflectance of the surface for the 

same set of wavelength bands.  The reflected light is absorbed by L-, M-, 

and S-cone photopigment to produce the mean isomerization rates 

corresponding to each surface.  These mean rates may be computed from e , 
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s
i
, and estimates of the photopigment spectral absorption curves using 

standard methods (Brainard, 1995).  We assume that the observed data 

specified by y  are the mean absorption rates corresponding to each surface 

and perturbed by independent zero mean Gaussian noise.  The standard 

deviation of this noise for each cone class was taken to be 1% of the mean 

value of y  for that cone class. These assumptions allow us to compute 

explicitly the likelihood of the data 
 
p (y | e,s

1
,!, s

Ny
)given e , and the vectors 

s
i
, 1 ! i ! Ny .  To find p(y | x)  we compute  

 

p(y | x) = ! p (y | e,s
1
,!, sNy
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We assume that the probability of any particular surface occurring in a scene 

is independent of the other surfaces in the scene, and that the probability of 

a surface occurring in a scene is independent of the illuminant.  This lets us 

simplify to 

 

p(y | x) = p (e | x) p (y
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where the notation y
i
 refers to the three entries of y  that depend on the 

light reflected from the ith  surface. 

We assume that the prior probability of a surface s  occurring in a scene is 

described by a multivariate Normal distribution over the weights of a linear 

model (Brainard & Freeman, 1997; Zhang & Brainard, 2004).  That is 
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s = B
s
w

s

w
s
= N(u

s
,K

s
)
 (3) 

where B
s
 is a matrix with N

s
 columns each of which describes a spectral 

basis function, w
s
 is an N

s
 dimensional column vector, u

s
 is mean of w

s
, and 

K
s
 is the covariance of w

s
.  We used N

s
= 3 and for the main calculations we 

chose B
s
, u

s
, and w

s
 as described by Brainard and Freeman (1997).  Given 

this surface prior, each of the integrals in brackets in (2) may be 

approximated analytically using the methods described by Freeman and 

Brainard (Freeman, 1993; Brainard & Freeman, 1994). 

We also assume that illuminant spectra are characterized by a linear 

model, so that 

e = B
e
w

e
 (4) 

where we chose B
e
 to specify that CIE three-dimensional linear model for 

daylight.  Given this linear model constraint, the chromatiticy of an 

illuminant determines the linear model weights up to a free multiplicative 

scale factor through a straightforward colorimetric calculation: we = a f (x) .  

We assumed that the distribution over the scale factor was uniform, so that  

p(e | x) =
ce , e = Bewe and we = a f (x) for some a

0, otherwise

!
"
#

. 

We also set p(e | x) = 0  for any illuminant that had negative power in any 

wavelength band.  Our assumption about illuminant spectra allows us to 

evaluate the outer integral in (2) numerically. 

Given that we can evaluate the likelihood, computation of the posterior 

then requires only that we define a prior probability over illuminant 

chromaticities.  We assumed that 
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x ~ N(u
x
,K

x
) . 

For the main calculations, we fixed u
x
 at the chromaticity of CIE 

illuminant D65.  Thus the illuminant prior has three free parameters, the 

independent entries of covariance matrix K
x
.   

To find  !x , we used numerical search and found the value of x  that 

maximized the posterior (Eq. 1). 

To run the algorithm on images, 24 points were selected at random from 

the image data.  In some conditions, points were selected uniformly from 

the image.  In other conditions, points were drawn using a Gaussian 

weighting function of specified standard deviation and centered on the test 

patch.  In the experiments, the test patch chromaticity was randomized at 

the start of every achromatic adjustment.  To simulate this, the same 

randomization rule was used when drawing points that fell within the test 

patch.  For each condition, the 24 points were drawn 10 separate times and 

the algorithm was run for each of the 10 sets.  The resulting illuminant 

estimates were then averaged to produce the final estimate. 

Calculation of Inferred Achromatic Surface 

To predict achromatic chromaticities from illuminant chromaticities, we 

find an achromatic surface such that the chromaticity of the light reflected 

from this surface under each illuminant best predicts the achromatic 

chromaticities. 
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Let x
i

a  represent the achromatic chromaticity for the ith  scene, and let 
 
!x
i
 

represent the illuminant chromaticity estimated for the ith  scene.  We 

assume that illuminant spectra are described by the CIE three-dimensional 

linear model for daylight, as in Eq. 4 above, and that the achromatic 

surface’s reflectance function is described by the three-dimensional linear 

model for surfaces as in Eq. 3.  Given the linear model constraint on 

illuminants, we can compute the spectrum of each scene’s estimated 

illuminant (
 
!e
i
) the from its chromaticity 

 
!x
i
, up to an undetermined scale 

factor. Given 
 
!e
i
 and any choice of the linear model weights for the 

achromatic surface (w
s

a ), we can compute the spectrum of the light reflected 

from the achromatic surface, again up to a undetermined factor.  This then 

yields the chromaticity of the reflected light 
 
!x
i

a  under the estimated 

illuminant.  Note that the computed chromaticity does not depend on the 

undetermined scale factor. 

The chromaticities 
 
!x
i

a  serve as our prediction of the achromatic 

chromaticities x
i

a .  We used numerical search over the achromatic surface 

weights w
s

a  to find the weights that minimized the fit error 

 

!
a
= x

i

a
" !x

i

a
2

i=1

N
scenes

# N
scenes

.  Because the predictions 
 
!x
i

a  depend only on the 

relative surface reflectance function, we fixed the first entry of w
s

a  to be 1 

and searched over the remaining two entries. 
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The same procedure was used to predict achromatic chromaticities from 

actual illuminant chromaticities.  In the example calculations involving a 

subset of images (chromaticity plots in Figures 2, 6, and 7), the weights w
s

a  

were chosen so that the prediction error for the standard context was zero, 

rather than to minimize the prediction error across all seventeen contexts. 

Results 

Measurements of Human Color Constancy 

The data consist of achromatic settings made in the context of rich, semi-

naturalistic images (Delahunt & Brainard, 2004).  The images at the top 

right of Figure 2 show four of the seventeen contextual images used in the 

experiments.  The first three images are graphics simulations of the same 

collection of objects rendered under three different illuminants.  The lefthand 

image was rendered under a typical daylight (CIE D65, chromaticity shown 

as open black circle), while the second image was rendered under a more 

yellowish daylight (spectrum constructed from CIE linear model for 

daylights, chromaticity shown as open blue circle).  The third image was also 

a rendering of the same set of surfaces, but the illuminant had a 

chromaticity atypical of daylight (chromaticity shown as open red circle.)  

The righthand image was rendered under essentially the same illuminant as 

the second image (open green circle), but a different background surface 

was simulated.  This background was chosen so that the light reflected from 

it matched that reflected from the background in the lefthand image. 
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Figure 2 about here. 

Stereo pairs corresponding to each image were displayed on a computer-

controlled haploscope.  Left- and right-eye images for each pair were 

obtained by rendering the scene from two viewpoints.  For each pair, 

observers adjusted a test patch (location shown as a black rectangle in each 

image in Figure 2) so that it appeared achromatic (i.e. gray). Achromatic 

adjustment has been used extensively to characterize color appearance 

(Helson & Michels, 1948; Brainard, 1998; Kraft & Brainard, 1999; 

Chichilnisky & Wandell, 1996; Bauml, 2001; Yang & Maloney, 2001).  It 

provides an excellent first order characterization of how the visual system 

has adapted to the context provided by the image.  Speigle and Brainard 

showed that achromatic adjustments made in two separate contexts may be 

used to predict asymmetric color matches (Speigle & Brainard, 1999). 

The results of the experiment may be summarized by the chromaticity of 

the stimulus that appeared achromatic in each contextual image.  The solid 

black, blue, red and green circles in the CIE u’v’ chromaticity diagram in 

Figure 2 indicate the achromatic chromaticities corresponding to each image.  

This representation characterizes the spectrum reaching the observer from 

the test patch (i.e. the proximal stimulus), not the reflectance properties of 

the simulated surface.  It is clear that the achromatic chromaticity varies 

with context. 
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To relate these data to constancy, first consider the context defined by 

the lefthand image in Figure 2.  We will call this the standard context.  

Constancy imposes no necessary relation between the chromaticity of the 

simulated illuminant (in this case D65) and the corresponding achromatic 

chromaticity.  We can, however, use the achromatic and illuminant 

chromaticities to determine the spectral reflectance function of an inferred 

achromatic surface (see METHODS).  Such a reflectance function is shown in 

Figure 2.  Here this function is chosen so that when the simulated illuminant 

reflects from it, the chromaticity of the reflected light matches the measured 

achromatic chromaticity.  This equality is indicated by the overlay of the 

solid black circle and the small open black circle. 

For a color constant observer, a surface that appears achromatic must 

continue to appear achromatic in any other context.  We can compute the 

chromaticity of the light that would be reflected from the inferred achromatic 

surface in the contexts defined by the other images (see METHODS).  These 

are shown as the small blue, red, and green open circles in Figure 2.  Given 

the data from the lefthand image, a perfectly color constant observer must 

judge these chromaticities to be achromatic in the context their respective 

images. 

The constancy predictions for the middle two contextual images (shown 

as small open blue and red circles) lie in the general vicinity of the 

corresponding achromatic data (close blue and red circles), but there are 



   

 13 

clear deviations in each case.  To evaluate the magnitude of the deviation, 

bear in mind that for an observer with no constancy the achromatic 

chromaticity would not vary with the illuminant and would thus overlay the 

data for the standard context (solid black circle.)  In each of these two 

cases, the data are closer to the constancy predictions than to the prediction 

for no constancy.  This result is typical for studies where only the illuminant 

is varied, and is the basis for assertions in the literature that the human 

visual system is approximately color constant (Brainard, 2004). 

The result for the righthand contextual image is different.  The simulated 

scene that produced this image has essentially the same illuminant as the 

second image, but a different background surface.  Here the achromatic 

chromaticity (solid green circle) falls closer to the no constancy prediction 

(solid black circle) than to the constancy prediction (small open green 

circle).  We have shown this basic result previously using stimuli that consist 

of real illuminated surfaces (Kraft & Brainard, 1999).  Intuitively, less 

constancy is shown because the change in background surface silences the 

cue provided by local contrast.  The fact that the achromatic chromaticity is 

not exactly the same as in the standard context (solid green and solid black 

circles differ) indicates that local contrast is not the only cue mediating 

constancy, again replicating our earlier results obtained with real surfaces 

(Kraft & Brainard, 1999). 
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We can generalize the logic of Figure 2 to make constancy predictions for 

the achromatic chromaticities measured in all seventeen contexts used by 

Delahunt and Brainard.  We used numerical parameter search to find a 

single inferred achromatic surface, common to all seventeen contexts (see 

METHODS).  This surface is chosen to minimize the sum-of-squared errors 

between the u’v’ chromaticities of the light reflected from it in each context 

and the corresponding achromatic chromaticities.  The best fit to the data is 

summarized in Figure 3.  As one might expect from the example data shown 

in Figure 2, the data set is poorly fit by a model that embodies the 

assumption that the visual system is perfectly color constant. 

Figure 3 about here. 

Figures 2 and 3 show that any theory of surface color appearance that 

simply characterizes the overall degree of constancy (e.g. “humans are 

approximately color constant”, “human color constancy is poor”, “humans 

are 83% color constant”) is doomed: the degree of constancy depends 

critically on how the context is manipulated. Since we cannot describe 

human performance as simply color constant, or as not color constant, our 

goal is to develop a method for predicting the achromatic setting given the 

contextual image.  Here we pursue a model based on an analysis of the 

computations required to achieve color constancy. 



   

 15 

Equivalent Illuminant Model 

Figure 4 illustrates the concept underlying our modeling approach.  The 

observer views an image formed when illumination reflects off objects.  The 

illuminant is characterized by its spectral power distribution E(!) , and each 

surface is characterized by its reflectance function S(!) .  The spectrum of 

the light reaching the eye is given by C(!) = E(!)S(!) .  If the visual system 

has access to an estimate of the illuminant, 
 
!E(!) , it is straightforward for it 

to produce a representation of object color based on an estimate of surface 

reflectance 
 
!S(!) = C(!) / !E(!) .*  As long as

 
!E(!) " E(!) , this representation will 

be stable across changes in context.  To put it another way, it is easy for a 

visual system with access to the physical illuminant E(!)  to be 

approximately color constant.•  If the visual system applies this strategy with 

illuminant estimates that deviate substantially from the actual illuminants, 

however, there will be commensurate deviations from constancy. 

Figure 4 about here. 

We assume in our modeling that the visual system tries to achieve color 

constancy, and that it does so through an inverse optics computation that is 

                                   
* The actual estimation is more complicated, as the visual system does not have direct 
access to C(!)  but instead must use the responses of the L-, M-, and S-cones to make the 

estimate.  There are well-established methods for doing so (Wandell, 1987; Brainard, 
1995). The tilde in the notation distinguishes perceptual from physical quantities. 
• Even for a visual system with access to the physical illuminant, errors in constancy may 
still occur because of metamerism: two surfaces that produce the same cone responses 



   

 16 

correct up to possible errors in its estimate of the illuminant 
 
!E(!) .  It should 

not be surprising that illuminant estimates are sometimes in error: the 

reason that constancy is intriguing rests on the fundamental difficulty of 

achieving it across all possible scenes.  We refer to 
 
!E(!)  as the equivalent 

illuminant, since in the model it replaces the physical illuminant in the visual 

system’s calculations.  More generally, we refer to the class of models 

developed here as equivalent illuminant models. 

Equivalent illuminant models have been proposed previously (Beck, 1959; 

Gilchrist & Jacobsen, 1984; Logvinenko & Menshikova, 1994; Maloney & 

Yang, 2001; Rutherford & Brainard, 2002).  One empirical approach to 

testing the equivalent illuminant idea in the context of lightness is to ask 

whether explicit judgments of illuminant intensity covary lawfully with 

explicit judgments of surface lightness  This approach has led to mixed 

results (Beck, 1959; Logvinenko & Menshikova, 1994; Rutherford & 

Brainard, 2002), but as a whole cast doubt on the idea that explicit 

illuminant judgments tap an equivalent illuminant that may be used to 

predict surface lightness. 

Another empirical approach is to ask whether the equivalent illuminant 

idea leads to a parametric model that predicts how surface appearance 

varies with some ancillary stimulus variable (e.g. chromaticity of reflected 

                                                                                                              
under one illuminant may produce different cone responses under a changed illuminant 
(Brainard, 1995). 
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light, surface slant).  This has proven quite successful in a variety of 

empirical contexts (Speigle & Brainard, 1996; Brainard, Brunt, & Speigle, 

1997; Boyaci, Maloney, & Hersh, 2003; Brainard, Kraft, & Longère, 2003; 

Bloj et al., 2004; Boyaci, Doerschner, & Maloney, 2004; Doerschner, Boyaci, 

& Maloney, 2004).  This approach, however, does not specify how the 

equivalent illuminant is determined by the image.  Rather, the surface 

appearance data themselves are fit to identify the parameters of an implicit 

equivalent illuminant. 

Here we develop the equivalent illuminant concept further by asking 

whether we can predict human performance from equivalent illuminants 

obtained directly through an illuminant-estimation algorithm.  We used a 

Bayesian algorithm that we have described previously (Brainard & Freeman, 

1997).  The algorithm’s performance depends on specifying a prior over 

illuminant spectral power distributions and surface reflectance functions.  

The output of the algorithim is an estimate of the chromaticity of scene 

illuminant. 

Figure 5 illustrates how we characterized the prior over illuminants.  The 

left panel (green dots) shows the u’v’ chromaticity coordinates of 10760 

daylights measured by DiCarlo and Wandell (2000).  Consistent with 

previous reports, these cluster along the CIE daylight locus (black line in 

both panels).  To capture this regularity in broad terms, we modeled the 

prior probability of illuminant chromaticities as a bivariate Normal 
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distribution (see METHODS.)  The blue ellipse in the right panel shows an iso-

probabililty contour of the Normal distribution we chose to capture the broad 

statistics of the daylight chromaticity distribution.  We choose the mean of 

this distribution as the chromaticity of CIE illuminant D65, and the 

covariance matrix as that of the DiCarlo and Wandell measurements.  We 

refer to this illuminant prior as the daylight prior. The prior over scene 

surfaces and other details of the algorithm are provided in METHODS. 

Figure 5 about here. 

We applied the Bayesian algorithm with the daylight prior to the 

seventeen images used by Delahunt and Brainard (2004) to obtain estimates 

of the illuminant chromaticities.  We then repeated the analysis used to 

make the constancy predictions shown in Figure 3 above, but with the 

algorithm’s estimates in place of the actual illuminant chromaticity for each 

context.*•  The resulting predictions are shown in Figure 6.  The top panel 

shows predictions for the same example contexts as in Figures 2.  The 

middle and bottom panels summarize the prediction quality in the same 

format as Figure 3.  The predictions are, on aggregate, improved slightly 

from those obtained using the actual chromaticities of the scene illuminants.  

The value of the error measure !
a
 is 0.0157 for the predictions based on the 

                                   
*• As described in METHODS, the calculation of equivalent surface and achromatic predictions 
depends on the illuminant spectrum only through its chromaticity.  This is possible because 
we assume that the CIE linear model for daylights describes the actual illuminant spectra. 
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actual illumiant chromaticities and 0.0114 for the predictions based on the 

Bayesian estimates obtained with the daylight prior. 

The reason for the net improvement is that for some scenes the algorithm 

fails to estimate the physical illuminant correctly, and these failures are 

generally consistent with human performance.  Two examples of this may be 

seen by comparing Figure 2 and the top panel of Figure 6: the predictions 

shown by the small open blue and green circles are better in the latter. The 

prediction improvement is largest for the case where the background surface 

in the image was varied to silence local contrast as a cue to the illuminant 

(green circles), although the prediction for this case still deviates from the 

data. 

On the other hand, not all of the predictions are improved: the small open 

red circle lies further from the point it predicts in the top panel of Figure 6 

than in Figure 2.  Here the Bayesian prediction lies much closer to the 

daylight locus than the corresponding datum.  Intuitively, this occurs 

because the illuminant prior we used places very little probability weight in 

the vicinity of the scene illuminant used in the experiment.  Overall, the 

model with the daylight prior does not adequately describe the data. 

Figure 6 about here. 

The poor prediction performance obtained with the daylight prior for some 

scenes is consistent with Delahunt and Brainard’s (2004) conclusion that 
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human color constancy is robust with respect to atypical illuminant changes.  

Within a Bayesian framework such robustness can be described through the 

use of a broader illuminant prior distribution, and we wondered whether 

allowing this possibility could improve the predictions of the equivalent 

illuminant model.  A second non-realistic aspect of the calculations described 

above is that the 24 sample points provided to the algorithm were drawn 

uniformly from the whole image.  It seems likely that observers spend more 

time looking in the vicinity of the test patch when making an achromatic 

adjustment, and we also explored the effect of drawing samples according to 

a spatial Gaussian weighting function centered on the test patch. 

We parameterized the illuminant prior through the three independent 

entries of its covariance matrix K
x
 and repeated the calculations for many 

choices of K
x
.  We identified the choice of K

x
 that led to the best prediction 

results (minimum !
a
).  We then varied the spatial sampling, choosing the 

standard deviation of the Gaussian weighting function that minimized !
a
.  

The isoprobability contour corresponding to the best K
x
 is shown as the red 

ellipse in Figure 5.  This distribution is considerably broader than the 

daylight prior.  The best standard deviation for the Gaussian weighting 

function was 4° of visual angle. Figure 7 shows that the quality of the 

resulting fit is very good. The predictions for the example conditions (top 

panel) all lie close to the measurements, while the points in the summary 

graphs (middle and bottom panels) are generally near the diagonal.  Most of 
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the improvement in !
a
 was due to the change in prior, not in spatial 

sampling.•• 

Figure 7 about here. 

Discussion 
Insight about perception is often available from consideration of the 

computational task faced by the perceptual system (Marr, 1982; Barrow & 

Tenenbaum, 1978).  The premise is that if we formulate explicit algorithms 

that can accomplish this task, then we can use these as the basis of models 

for human performance.  In the case of color constancy, McCann et al. 

(1976) took this general approach by adopting Land’s retinex algorithm 

(Land, 1964; Land, 1986; see Brainard & Wandell, 1986) as a candidate 

model.  The retinex algorithm does not explicitly estimate the illuminant, 

and focused tests of its core properties (e.g. Kraft & Brainard, 1999; 

Delahunt & Brainard, 2000) show clear deviations between its predictions 

and human performance. 

We also use the computational approach to develop a quantitative model 

of surface appearance.  Here the predictions are derived from a principled 

                                   
••  The value of !

a  with best illuminant prior and spatial weighting was 0.0044.  The value of 

!
a
obtained with the best illuminant prior when points were drawn from the entire image 

was 0.0057.  We also explored whether any choice of spatial sampling could produce a 
similar fit with the daylight prior, and whether varying the surface prior parameters allowed 
a good fit with the daylight prior.  Across all variations we explored, the minimum value of 
!
a
obtained with the daylight prior was 0.0110, over twice that obtained with the broadened 

prior. 
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analysis of how the illuminant can be estimated from image data, and this 

analysis is connected to the data through the equivalent illuminant principle. 

In contrast with earlier work with equivalent illuminant models, both from 

our lab (Brainard, Brunt, & Speigle, 1997; Speigle & Brainard, 1996; Bloj et 

al., 2004) and by others (Boyaci, Maloney, & Hersh, 2003; Boyaci, 

Doerschner, & Maloney, 2004; Doerschner, Boyaci, & Maloney, 2004), the 

equivalent illuminants here were not derived to fit individually to the 

experimental data from the corresponding condition but were instead 

obtained through the application of an independent algorithm.  We have 

previously argued that modeling of color appearance may be fruitfully 

pursued in two steps: first determine the appropriate parametric form to 

account for context effects, then determine how the parameters are 

determined by the image context (Brainard & Wandell, 1992; Brainard, 

2004).  Prior work on equivalent illuminant models address the first step.  

The present work tackles the question of how the parameters are 

determined.  

The model fitting was restricted to varying a few parameters that govern 

the overall behavior of the algorithm, and the same parameters were used 

for all the experimental conditions. The good quantitative fit obtained 

illustrates the promise of the approach.  The introduction of an explicit 

algorithm represents a novel stage of theoretical development and increases 

the force of the general modeling approach.  Parameterizing the prior 



   

 23 

distribution to allow fitting of a Bayesian model to human data has also 

proved effective for modeling of shape (Mamassian, Landy, & Maloney, 

2002) and motion (Weiss, Simoncelli, & Adelson, 2002) perception.  In that 

they provide a principled benchmark against which to compare human 

performance, these Bayesian models of appearance may be understood as 

close relatives of the ideal observer models that have been highly successful 

in clarifying how vision detects and discriminates signals (Green & Swets, 

1966; Geisler, 1989). 

In addition to providing a predictive quantitative model, the parametric fit 

allows a succinct summary of human performance across all the conditions, 

in the form of the illuminant prior and inferred achromatic surface.  The 

derived equivalent surfaces are close to spectrally flat, consistent with the 

properties of achromatic reference surfaces used in the photographic 

industry.  On the other hand, the derived illuminant prior is considerably 

broader than would be indicated by measurements of natural daylight. 

The discrepancy is interesting, and the reasons for it are unclear.  A 

different distributional form of the illuminant prior, perhaps one with heavier 

tails, might allow reconciliation of the daylight measurements and derived 

prior.  Or direct measurements of daylight spectra may not be the 

appropriate database from which to derive an illuminant prior: in natural 

scenes light often reaches surfaces after reflecting from other surfaces in the 

scene.  Extensive measurements of the spectra of light actually reaching 
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objects in typical scenes are not yet available.  A final possibility is that 

formulating the illuminant estimation problem with a different loss function 

(Brainard & Freeman, 1997; Mamassian, Landy, & Maloney, 2002) would 

lead to better performance with the daylight prior. 

Although the fits obtained here are good, the experimental conditions 

were not chosen to test the present model.  Future tests will be most 

forceful if they contain conditions designed to probe it sharply.  Kraft and 

Brainard (Kraft & Brainard, 1999) emphasized that a good way to do this is 

to choose contextual images where the scene illuminant differs while the 

model at hand predicts no difference in performance. 

The general analysis presented here is not specific to the 

Brainard/Freeman algorithm, in that the same logic may be used to link any 

such algorithm (Buchsbaum, 1980; Maloney & Wandell, 1986; Funt & Drew, 

1988; D'Zmura & Iverson, 1993a; D'Zmura & Iverson, 1993b; Finlayson, 

Hubel, & Hordley, 1997) to the data.  Within the general framework 

presented here, differentiating between candidate algorithms again requires 

careful choice of experimental conditions, so that the data set includes 

conditions where different algorithms make substantially different 

predictions. 

The algorithm we used does not take advantage of information carried by 

the geometric structure of the scene, and the experimental manipulations 

used were spectral rather than geometric.  Much current experimental work 
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on human color and lightness constancy focuses on such geometric 

manipulations (Bloj, Kersten, & Hurlbert, 1999; Ripamonti et al., 2004; 

Williams, McCoy, & Purves, 1998; Adelson, 1999; Gilchrist et al., 1999), and 

several authors have modeled this type of data with equivalent illuminant 

models where the illuminant parameters are fit directly to the data in each 

condition (Boyaci, Maloney, & Hersh, 2003; Boyaci, Doerschner, & Maloney, 

2004; Bloj et al., 2004; Doerschner, Boyaci, & Maloney, 2004).  As 

algorithms for achieving constancy with respect to geometric manipulations 

become available, the principles underlying our present work should allow 

these algorithms to be gracefully integrated into the modeling effort. 

The model reported here provides a functional description and does not 

speak directly to the neural mechanisms that mediate color constancy and 

color appearance.  A great deal is known, however, about the early stages of 

chromatic adaptation (Stiles, 1967; Jameson & Hurvich, 1972; Wyszecki, 

1986; Brainard, 2001).  An important challenge for the current work remains 

to understand how known neural mechanisms might implement the sort of 

calculations that we have performed using a digital computer.  We have 

begun to consider this question by examining how well parametric models of 

adaptation can adjust to changes in illumination and the composition of 

surfaces in a scene (Björnsdotter Abrams, Hillis, and Brainard, submitted for 

review). 
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Gilchrist and colleagues have argued (Gilchrist et al., 1999) that the key 

to understanding the perception of color and lightness is to model deviations 

from constancy (in their terms, to model ‘errors’ in perception).  They 

conclude that a computational approach is unlikely to provide a satisfactory 

account, because of the many such deviations observed in the literature.  

We close by noting that the model presented here, which is heavily 

motivated by computational considerations, successfully accounts for both 

conditions where the visual system is color constancy and where it is not.  

Our experimental conditions differ substantially from those considered by 

Gilchrist et al., but it is clear that there is no fundamental constraint that 

prevents a computationally motivated model from accounting for both 

successes and failures of constancy. 
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Figures 

Figure 1. Physical interaction of surfaces and illuminants.  The images 

show the same house at two different times.  The light reflected to the 

camera differs greatly because of changes in the illuminant.  The squares 

above each image show the same location in each image and emphasize the 

physical effect.  The images were taken by the first author.  Automatic color 

balancing usually performed by the camera was turned off.  Despite the 

physical change recorded by the camera, the house appeared approximately 

the same yellow at both times.  Figure reproduced from Figure 61.1/Plate 36 

of Brainard (2004). 

Figure 2.  Example achromatic adjustment results, and interpretation 

in terms of constancy.  Average achromatic chromaticities set by seven 

observers in four contexts are shown as solid black, blue, red, and green 

circles. Data are shown in the standard CIE u’v’ chromaticity diagram.  

Stimuli that plot to the same point in this diagram produce the same relative 

L-, M-, and S-cone isomerization rates but may have different intensities, 

while  stimuli that plot to different points produce different relative 

isomerization rates.  The chromaticities of the four scene illuminants are 

shown as large open circles.  The contextual images are shown above the 

plot, with the symbols under each identifying the corresponding datum and 

illuminant.  Error bars show +/- 1 standard deviation for data from the 

seven observers.  Predictions for a color constant observer are shown as 

small open circles, as explained in the text.  The spectral plot (x-axis: 

wavelength, y-axis: reflectance) shows the reflectance of the inferred 

achromatic surface used to make the constancy predictions. 
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Figure 3.  Constancy predictions.  Left panel shows predicted u’ 

chromaticity versus measured achromatic u’ chromaticity.  Right panel 

shows predicted v’ chromaticity versus measured v’ chromaticity.  Perfect 

prediction would be indicated if the data fell along the postive diagonals in 

both panels.  The inset shows the reflectance spectrum of the achromatic 

surface inferred from the data.  Error bars indicate standard deviations of 

the data across seven observers.  The value of the fit error !
a
 (see METHODS) 

is 0.0157.  

Figure 4. Equivalent illuminant concept.  See description in text. 

Figure 5.  Illuminant priors.  The left panel shows the CIE u’v’ 

chromaticity of 10760 daylight measurements made by DiCarlo and Wandell 

(2000).  The right panel shows an isoprobability contour of a bivariate 

Normal distribution chosen to capture the distribution of daylight 

chromaticities (blue ellipse).  This is the daylight prior described in the text.  

The red ellipse shows an isoprobability contour of a bivariate Normal 

distribution that in conjunction with our Bayesian algorithm led to equivalent 

illuminants that provided good predictions of human performance.  Both 

isoprobability contours are scaled so that they contain 90% of draws from 

their corresponding Normal distributions. For reference, the solid black line 

in both panels plots the CIE daylight locus for correlated color temperatures 

between 4000° K and 10000° K, and the filled black circle plots the 

chromaticity of CIE illuminant D65. 

Figure 6.  Model predictions with daylight prior.  The top panel shows 

results and predictions for the same four scenes as in Figure 2.  Same 

format as Figure 2.  The middle and bottom panels summarize performance 
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in the same format as Figure 3.  The value of the fit error !
a
 (see METHODS) 

is 0.0114. 

Figure 7.  Model predictions with best prior and spatial weighting.  

Same format as Figure 6.  The value of the fit error !
a
 is 0.0044. 
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