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The retina adapts to the temporal contrast of the light inputs. One component of contrast adaptation is intrinsic to retinal ganglion cells:
temporal contrast affects the variance of the synaptic inputs to ganglion cells, which alters the gain of spike generation. Here we show that
slow Na � inactivation is sufficient to produce the observed variance adaptation. Slow inactivation caused the Na� current available for
spike generation to depend on the past history of activity, both action potentials and subthreshold voltage variations. Recovery from slow
inactivation required several hundred milliseconds. Increased current variance caused the threshold for spike generation to increase,
presumably because of the decrease in available Na� current. Simulations indicated that slow Na� inactivation could account for the
observed decrease in excitability. This suggests a simple picture of how ganglion cells contribute to contrast adaptation: (1) increasing
contrast causes an increase in input current variance that raises the spike rate, and (2) the increased spike rate reduces the available Na�

current through slow inactivation, which feeds back to reduce excitability. Cells throughout the nervous system face similar problems of
accommodating a large range of input signals; furthermore, the Na� currents of many cells exhibit slow inactivation. Thus, adaptation
mediated by feedback modulation of the Na � current through slow inactivation could serve as a general mechanism to control excitabil-
ity in spiking neurons.
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Introduction
Sensory signals are highly variable, and these variations occur on
a wide range of time scales. To encode these signals efficiently,
sensory systems adapt, trading sensitivity to slowly changing as-
pects of the input for increased sensitivity to rapid changes. Ad-
aptation permits sensory neurons to use their limited dynamic
range effectively. Visual neurons adapt to the mean light intensity
(for review, see Walraven et al., 1990) and to the amplitude of the
variations about the mean (i.e., the spatial and temporal contrast)
(for review, see Shapley, 1997; Meister and Berry, 1999). Al-
though the properties of mean and contrast adaptation have been
studied in detail, we have an incomplete understanding of the
mechanisms responsible. Here we investigate the contribution of
Na� currents in retinal ganglion cells to temporal contrast
adaptation.

Changes in temporal contrast cause adaptation in cells
throughout early visual pathways, including those in retina
(Shapley and Victor, 1978; Sakai et al., 1995; Smirnakis et al.,
1997; Chander and Chichilnisky, 2001) and cortex (Albrecht et
al., 1984; Ohzawa et al., 1985; Sanchez-Vives et al., 2000a). Con-
trast adaptation in the retina includes contributions from the

retinal circuitry (Sakai et al., 1995; Rieke, 2001) and intrinsic
properties of ganglion cells (Kim and Rieke, 2001b). Retinal cells
have a high gain for light increments and decrements about a
steady mean, causing saturation at the onset of a high contrast
stimulus (Burkhardt et al., 1998). Contrast adaptation permits
recovery from such saturation by reducing gain in the maintained
presence of time-varying lights.

Changes in temporal contrast alter the variance and in some
cases the mean of synaptic inputs to visual neurons. The increase
in variance reduces the gain of spike generation in retinal gan-
glion cells (Kim and Rieke, 2001b). Thus, a component of con-
trast adaptation is produced by a variance-induced change in the
input– output relationship of a ganglion cell. Ca 2�-activated K�

currents shape the input– output relationship of many cells
through effects such as spike-frequency adaptation (for review,
see Sah and Davies, 2000). However, neither K� nor Ca 2� cur-
rents contribute substantially to variance adaptation in ganglion
cells; instead, variance adaptation is generated by properties of
the Na� currents (Kim and Rieke, 2001b).

We investigated the mechanisms permitting ganglion cells to
adapt to the input current variance. These experiments led to
three main conclusions: (1) slow inactivation reduced the Na�

current available for spike generation after both subthreshold
depolarizations and spikes; recovery from slow inactivation re-
quired several hundred milliseconds; (2) slow inactivation
caused the fraction of the Na� current available for spike gener-
ation to depend on the variance of the input currents to the cell;
and (3) simulations showed that action potentials rather than
subthreshold voltages dominated the extent of slow Na� inacti-
vation. These simulations reproduced the experimentally ob-
served variance adaptation. Thus, the mechanism for variance
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adaptation was simple: increased current variance caused a
higher firing rate, which in turn reduced the available Na� cur-
rent and increased spike threshold.

Some of this work has been published previously in abstract
form (Kim and Rieke, 2001a).

Materials and Methods
Experimental procedures
Dissection. All experiments used retinas from larval tiger salamanders
(Ambystoma tigrinum) from Charles Sullivan (Nashville, TN). Animal
procedures followed protocols approved by the Administrative Panel on
Laboratory Animal Care at the University of Washington (Seattle, WA).
Procedures for preparing and dissociating the retina to obtain isolated
cells have been described previously (Kim and Rieke, 2001b). Cells were
continuously superfused during recording with a HEPES Ringer’s solu-
tion containing (in mM): 136 NaCl, 2 KCl, 1.5 CaCl2, 10 glucose, 2
NaHCO3, 1.6 MgCl2, and 3 HEPES; pH was adjusted to 7.4 with NaOH,
and osmolarity was 270 –275 mOsm. Experiments were performed at
20 –22°C.

Ganglion and amacrine cells were distinguished from other cell types
by their ability to generate Na � spikes. Data were collected only from
cells that were able to generate repetitive action potentials with a width
of � 2 msec and a minimum amplitude of �60 mV above the resting
voltage. In two experiments we labeled the ganglion cells by retrograde
transport of rhodamine dextran through the optic nerve (Lukasiewicz
and Werblin, 1988). After dissociation, �95% (178 of 185) of the cells
with morphology similar to that of the recorded cells were ganglion cells.
We did not attempt to distinguish between ganglion cell types.

Patch recording procedure. Voltage and current responses of ganglion
cells were measured using perforated-patch or whole-cell recordings.
Similar results were obtained in each case. Patch pipettes were filled with
a solution containing (in mM): 115 Cs-aspartate, 20 CsCl, 10 HEPES, 1
N-methylglucamine (NMG) EGTA, and 0.2 CaCl2; pH was adjusted to
7.2 with NMG-OH, and osmolarity was 260 –265 mOsm. For whole-cell
recordings, 1 mM ATP and 0.2 mM GTP were added to the internal
solution. For perforated-patch recordings, the pipette tip was filled with
an amphotericin-free solution, and the pipettes were back-filled with
internal solution with an additional 1 mg/ml solubilized amphotericin-B
(Sigma, St. Louis, MO). Filled pipettes had resistances of 3–5 M�, and
the series resistance during recording was 10 –20 M�. Ganglion cells had
resistances between 1 and 4 G� and capacitances between 10 and 20 pF.

Na � current inactivation and recovery were measured in voltage-
clamp recordings. To isolate Na � currents, K � and Ca 2� currents were
suppressed by replacing K � with Cs � in both internal and external so-
lutions and adding 0.1 mM Cd 2� to the external solution. Block of the
Ca 2� current was confirmed in some cells by adding 100 nM TTX to the
external solution; this eliminated all inward current in response to depo-
larizing voltage steps. To improve the voltage clamp, the Na � current
was reduced by replacing up to 100 mM of external Na� with NMG�.
Voltages have been corrected for junction potentials, which were �10 mV.

Adaptation of the spike response of a cell to changes in the variance of
the injected current was measured in current-clamp recordings. Random
noise with a Gaussian distribution (bandwidth, 0 –50 Hz) was injected
into the cell, and the variance of the distribution was changed periodi-
cally without changing the bandwidth. The mean holding current was
between 0 and 10 pA, resulting in a firing rate of 2– 6 Hz. Under these
conditions, the mean voltage was between �60 and �55 mV.

Data analysis
We quantified adaptation of spike generation to the variance of the in-
jected current using a static nonlinearity model (Brenner et al., 2000;
Chichilnisky, 2001; Kim and Rieke, 2001b). This model separates a time-
independent (or static) nonlinearity in the response of the cell from true
adaptive changes in sensitivity. The model describes the transformation
of injected current into the probability of spiking of the cell. Adaptation
caused the current-to-spikes transformation to change with the variance
of the injected current. The model does not attempt to account for the

dynamics of adaptation, but instead describes the steady-state effect of
adaptation on the current-to-spikes transformation.

The static nonlinearity model predicts the spike probability as a func-
tion of time by passing the injected current through a linear filter and
applying a static nonlinearity to the filter output. The linear filter esti-
mates the time dependence of the relationship between injected current
and spike probability. The static nonlinearity captures the abrupt in-
crease in firing probability associated with the membrane voltage cross-
ing threshold for spike generation. The linear filter was estimated by
calculating the average current waveform preceding a spike. The static
nonlinearity was estimated by comparing the output of this filter (the
filter convolved with the injected current) with the measured spiking
probability.

Variance adaptation in experiments and simulations (see below) was
analyzed using this model. The linear filter and static nonlinearity were
calculated from several minutes of measured or simulated responses to
random injected currents. This procedure was repeated for currents of
several variances. The first 2 sec of data after a change in variance were
discarded to allow variance adaptation to reach a steady state. As reported
previously (Kim and Rieke, 2001b), adaptation to changes in the variance
of the injected current could be captured by a change in the linear filter.
Thus, the response of the cell was described as a variance-dependent
linear filter followed by a variance-independent static nonlinearity.
Changes in the amplitude of the linear filter were used to quantify the
extent of adaptation.

Computer simulation of ganglion cells
As described in Results, Na � currents in ganglion cells underwent both
fast (Hodgkin and Huxley, 1952) and slow (Crill, 1996; Fleidervish et al.,
1996; Mickus et al., 1999) inactivation. We used a computer simulation
to test whether the measured properties of the Na � current contributed
to variance adaptation. The simulation provided a relatively simple de-
scription of the cell while capturing activation and inactivation of the
Na � current in detail. Other conductances, particularly K � and Ca 2�

conductances, are known to shape the spike response of a cell (Hodgkin
and Huxley, 1952; Fohlmeister and Miller, 1997). However, adaptation
of ganglion cells to changes in current variance was not altered by K �-,
Ca 2�-, or Ca 2�-activated currents (Kim and Rieke, 2001b); to minimize
the number of parameters in the model, these currents were not simu-
lated separately. We begin by describing the simulated Na � current and
then describe how this current was incorporated in a spiking model for
the ganglion cell.

Na� current simulation. The Na � current was simulated using the
Hodgkin–Huxley formalism with the addition of two slow inactivation
variables: s1 and s2. The s1 variable had both slow onset and recovery.
Because of its slow kinetics, changes in s1 were dominated by subthresh-
old voltages. We refer to this form of inactivation as spike independent.
The s2 variable describes slow inactivation that was entered after a spike
and recovered slowly. We refer to this form of inactivation as spike
dependent.

In the Hodgkin–Huxley formalism, the activation variable m and in-
activation variable h are independent. We assume the same is true for s1

and s2. Although the assumption of independent inactivation gates is not
likely to hold (Hille, 2001), this simulation captured the measured prop-
erties of the Na � current and thus allowed us to explore the role of slow
inactivation in variance adaptation. Furthermore, the relative simplicity
afforded by this assumption permitted us to eliminate all free parameters
in the simulation.

The m, h, s1, and s2 variables describe the fraction of gating particles in
the Na � channel that are in the permissive state. The Na � current is
given by the probability that all gating particles are in the permissive state
(i.e., that the channel is open and not inactive):

INa � GNam
3hs1s2�V � ENa�, (1)

where V is the membrane voltage, ENa is the Na � equilibrium potential,
and GNa is the maximal Na � conductance.
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The activation and inactivation variables
were described by first-order kinetics (Fig. 1)
(e.g., the spike-independent slow inactivation
particle s1 obeyed):

ds1/dt � �s1
�1 � s1� � �s1

s1 , (2)

where �s1 and �s1 are rate constants describing
the entry into and recovery from slow inactiva-
tion. With first-order kinetics, the s1 variable
exponentially approaches its steady-state value
at a given voltage. The rate constants, �s1 and
�s1, were calculated from measurements of the
steady-state value, s1

ss, and the exponential time
constant �s1:

�s1
� s1

ss/�s1
(3)

and

�s1
� �1 � s1

ss�/�s1
. (4)

Spike-dependent slow inactivation, described
by s2, was entered only after a spike. Thus at
voltages below spike threshold, the recovery rate constant �s2 was simply
the inverse of the recovery time constant:

�s2
� 1/�s2

. (5)

The rate constants for the h and m variables were from Hodgkin and
Huxley (1952). The activation variable, m, was described by the rate
constants:

�m � �0.1�V � 30�/�exp���V � 30�/10� � 1� (6)

and

�m�4 exp���V � 55�/18�, (7)

where V is in millivolts and �m and �m are in msec �1. The fast-
inactivation variable h was described by:

�h�0.07 exp���V � 50�/20� (8)

and

�h�1/(1�exp���V � 20�/10�). (9)

The spike-independent slow inactivation variable s1 was described by:

�s1
� 0.00034 exp��V/63� (10)

and

�s1
� 0.0014/�1 � exp���V � 47�/4.7��. (11)

The spike-dependent slow inactivation variable s2 was described by:

�s2
� 0.0008 exp��V/36�. (12)

Onset of spike-dependent slow inactivation was simulated by multiply-
ing s2 by a factor of 0.77 after each Na � spike (see Results).

Note that the rate constants controlling the slow inactivation variables
s1 and s2 are several orders of magnitude smaller than those for the fast
inactivation variable h.

Model for spike generation. The Na � current described above formed
the basis of the simulation describing how input currents were converted
to membrane voltage (Fig. 1). The input to the simulation was the in-
jected current Istim, and the output was the membrane voltage V, includ-
ing action potentials. In addition to the Na � current, the simulation
included leak and capacitive currents and a Gaussian current noise
Inoise (bandwidth, 0 –50 Hz) to simulate cellular noise. These currents

were summed to obtain an equation describing the dynamics of the
membrane voltage:

Istim � Inoise � CmdV/dt � INa � Gleak�V � Eleak�. (13)

Here Cm is the membrane capacitance, Gleak is the leak conductance, and
Eleak is the reversal potential for the leak conductance. The Na � current
was calculated from Equation 1. The ganglion cell was simulated as a
single isopotential compartment, because ganglion cells are believed to
be electrotonically compact (Taylor et al., 1996), and our isolation pro-
cedure removed all but one or two short (� 40 �m) processes.

Equation 13 determines how the voltage in the simulated cell depends
on injected current and is able to generate the rising phase of an action
potential. It cannot, however, produce action potentials with a reason-
able shape, because it lacks the voltage-dependent K � conductance that
rapidly repolarizes the cell. Thus, to reproduce the voltage changes pro-
duced by action potentials, we forced the voltage in the simulation to
follow the trajectory of an experimentally measured action potential
when the membrane voltage indicated that an action potential was being
generated (i.e., whenever a trigger voltage 	 was reached). During the
action potential, the activation and inactivation variables of the Na �

current were updated continuously in response to the voltage. This al-
lowed spikes to alter the state of the Na � current without simulating all
conductances shaping the action potential. After return to rest, the sim-
ulation was switched back to current clamp, and the currents were again
free to perturb the membrane voltage.

Computer simulations were performed in Igor Pro (Wavemetrics,
Lake Oswego, OR) using a temporal integration scheme described by
MacGregor (1987). This integration scheme allows for relatively large
step sizes without instability in the integration. Step size for integration
was 
0.1 msec; smaller step sizes gave no noticeable increase in accuracy.
The measured action potential used during the voltage-clamp periods
was interpolated to the temporal resolution of the integration step size.
Values of the parameters in the simulation are given in Table 1. 	 was
chosen to be �15 mV so that only Na � spikes could cause the switch to
voltage clamp. The simulation had no free parameters: the rate constants
describing the m and h gates were taken from Hodgkin and Huxley
(1952), and all other parameters are the average value from experimental
cells (n � 4) (Table 1). In Results we discuss how alterations in the
simulation parameters affected adaptation.

Results
Spike generation in retinal ganglion cells adapts to the variance of
the current injected into the cell (Kim and Rieke, 2001b). The
experiments and simulations described below indicate that slow
inactivation of the Na� current can account for most of this
adaptation. First, we show that increasing the injected current

Figure 1. Schematic of ganglion cell simulation. The simulation describes the transformation between the input current and
membrane voltage of a cell. The cell was simulated as a single compartment with leak, capacitive, cellular noise, and Na � currents
(see Eq. 13). If an Na � spike was generated, the simulation was switched to voltage clamp and forced to repolarize along the
voltage trajectory of an experimentally measured action potential. The Na � current parameters were updated continuously
during this voltage trajectory. After the voltage returned to rest, the simulation was switched back into current clamp, and the
voltage was controlled again by the currents.
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variance lowered the gain and increased the threshold of spike
generation. Second, we show that increasing the current variance
reduced the magnitude of the Na� current through slow Na�

inactivation. Third, we simulate the measured properties of the
Na� current and show that slow Na� inactivation can account
for much of the change in gain associated with variance adapta-
tion. Together these results provide a simple mechanistic descrip-
tion for variance adaptation: increased variance decreases excit-
ability by decreasing the available Na� current.

Effects of variance on spike generation and Na � current

Variance changes gain and threshold of spike generation
Variance adaptation was measured by injecting Gaussian current
fluctuations of two variances into a current-clamped ganglion
cell and recording the spike responses. We used the static nonlin-
earity model (see Materials and Methods) to determine how the
current variance affected the gain and kinetics of spike genera-
tion. The model characterizes spike generation at a single current
variance by passing the injected current through a linear filter
(Fig. 2A) and applying a static nonlinearity (Fig. 2B). The linear
filter estimates the time dependence of the relationship between
injected current and spike probability. The static nonlinearity
captures the thresholding and rectification of spike generation.
Linear filters and static nonlinearities were compared for several
variances.

The linear filter and static nonlinearity at each variance are
unique up to a single scale factor (Brenner et al., 2000; Chichilni-
sky, 2001; Kim and Rieke, 2001b). Thus, scaling the y-axis of the
filter in Figure 2A and the x-axis of the static nonlinearity in
Figure 2B by the same factor does not change the prediction of
the model, because the effect of changing the filter amplitude is
offset by the change in the static nonlinearity. Although adapta-
tion could affect the shape of both the filter and static nonlinear-
ity, we found that the static nonlinearities could be made to over-
lap with an appropriate choice of scale factor (Fig. 2B). This
allowed spike generation to be described as a variance-dependent
linear filter followed by a variance-independent static nonlinear-
ity. As a consequence, changes in excitability (e.g., because of
changes in threshold for spike generation) were captured by a
change in the filter amplitude.

Changes in variance altered both the amplitude and the time-
to-peak of the linear filter, as shown in Figure 2A. The decrease in
time-to-peak of the linear filter with increasing variance ap-
peared to be a general property of refractoriness (see Fig. 8). The
reduction in the filter amplitude meant that the change in spike
probability for a given current change was smaller at high vari-
ance than low variance. Similar changes in the linear filter were

seen in all 10 cells tested; on average, a ninefold change in vari-
ance decreased the filter amplitude by 35 	 4% (mean 	 SEM).

The decrease in filter amplitude could be produced by an
increased threshold for spike generation. With an increased
threshold, a larger current would be required to generate a spike,
thereby lowering the sensitivity of spike generation to the injected
current. To test for such an effect, we measured spike threshold
during periods of high and low current variance.

The change in threshold with variance was estimated from the
largest depolarizations that failed to lead to a spike. Figure 2C
shows a histogram of the local voltage maxima, identified as 1
msec time windows in which the measured voltage exceeded that
in the adjacent 1 msec windows (adjacent sampling points). Sub-
threshold voltage fluctuations form the large, broad peak in the
histogram centered near �50 mV. Action potentials create
the small peak centered near �5 mV. The histogram is 0 in the
voltage range from �30 to �10 mV, because the voltage of
the cell reaches these values only during an action potential, and
action potentials have local maxima only at their peak.

Subthreshold voltage maxima extended to larger depolariza-
tions when the current variance was increased. We quantified this
shift using the cumulative distributions of subthreshold maxima
(Fig. 2C, inset). In principle, threshold could be determined from
the largest subthreshold maxima, the point at which the cumula-
tive distribution reaches 1.0. This definition is impractical with

Figure 2. Effects of variance on current-to-spikes transformation. The static nonlinearity
model was used to characterize the transformation between injected current and the firing rate.
Gaussian current fluctuations (bandwidth, 0 –50 Hz) with variances of 16 and 144 pA 2 were
injected into a ganglion cell. The model parameters were calculated from 100 sec of recording.
A, Linear filters for the two injected current variances. B, Static nonlinearities for the two current
variances. The nonlinearity describes the relationship between the output of the filters ( A) and
the measured firing rate. C, Histograms of local voltage maxima for each current variance.
Maxima were defined as data points with amplitudes larger than those of surrounding points,
including both action potential peaks (� 0 mV) and subthreshold maxima (less than �20 mV).
Bin size was 0.76 and 1.19 mV for low and high variance. The inset plots the cumulative distri-
bution of subthreshold maxima. The change in threshold was estimated from the voltages at
which the cumulative distributions reached 0.99.

Table 1. Parameters in computer simulation

Description Symbol Value Range

Maximal Na� conductance GNa 100 nS 50 to 130 nS
Membrane capacitance Cm 15 pF 10 to 20 pF
Leak conductance Gleak 0.5 nS 0.2 to 0.9 nS
Leak reversal potential Eleak �56 mV �60 to �55 mV
Duration of action potential TAP 1.5 msec 1.3 to 2.5 msec
Fractional decrease in s2 after spike s2

factor 0.23 0.13 to 0.34
Variance of Inoise �noise 4 pA2 3 to 8 pA2

Equilibrium potential for Na� ENa 35 mV N/A
Trigger voltage for voltage-clamp switch 	 �15 mV N/A

GNa was determined from the maximum amplitude of the Na� current. Cm was the average measured capacitance.
Gleak was measured from the conductance during white noise current injection of 16 pA2 variance. TAP was the
average time between the spike waveform exceeding the voltage 	 and returning to rest. Inoise was determined
from the current fluctuations during voltage clamp at �60 mV.
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finite data because it relies on a single measurement, the single
largest subthreshold point observed. Instead, we estimated rela-
tive thresholds for the two variances from the voltages that ex-
ceeded 99% of the local maxima. This provided a reliable estimate
of shifts in the largest subthreshold voltages. In this cell, threshold
was 1.8 mV higher during high variance than during low vari-
ance. The mean increase in threshold was 1.6 	 0.3 mV (mean 	
SEM; nine cells) for a ninefold increase in injected current vari-
ance. Ignoring local maxima for 100 msec after each action po-
tential had little effect on the apparent threshold change, indicat-
ing that it was not caused by the absolute refractory period. The
subthreshold voltage changes produced by moderate contrast
light inputs are 
 10 mV in amplitude. Hence a change in thresh-
old of 1–2 mV represents a substantial change in sensitivity.

Increased variance reduces the available Na� current
We found previously that the Na� current was necessary for
variance adaptation in ganglion cells, whereas K� or Ca 2� cur-
rents were not (Kim and Rieke, 2001b). The central role of the
Na� current in adaptation and its impact on the threshold for
spike generation suggested that adaptation might be caused by
changes in the amount of available (i.e., not inactive) Na� cur-
rent and a resulting increase in threshold. Consistent with this
idea, we found that the Na� current was influenced by the mag-
nitude of previous voltage fluctuations.

Ganglion cells were voltage-clamped at �60 mV and sub-
jected to voltage fluctuations of two variances under conditions
that isolated Na� currents (see Materials and Methods). After the
voltage fluctuations, the Na� current was allowed to recover
from fast inactivation by holding at �60 mV for 20 msec. The
Na� current was then measured by stepping the voltage to 0 mV
(Fig. 3A). Figure 3B shows that the Na� current depended on the
voltage variance. In this cell, the smaller voltage fluctuations re-
duced the peak Na� current by 4% and the larger fluctuations by
17%. A similar dependence of the Na� current on previous volt-
age variance was seen in each of 17 cells studied.

We studied the recovery kinetics of the Na� current by vary-
ing the time between an inactivating stimulus and the test pulse
used to measure the peak Na� current. The Na� current recov-
ered slowly after inactivation by a voltage step or voltage noise.
Figure 4B shows Na� currents measured at different times after
inactivation caused by voltage noise (Fig. 4A). In all 12 ganglion
cells studied, the Na� current continued to recover from inacti-
vation for times well beyond the 10 msec expected from
Hodgkin–Huxley kinetics. The time course of recovery of the
Na� current is shown in Figure 4C, which plots the ratio of the
Na� currents with and without inactivation against the recovery
time. Full recovery required 1– 4 sec.

Recovery of the Na� current from inactivation was similar
when inactivation was produced by voltage steps rather than a
fluctuating voltage (Fig. 4D). Figure 4E shows the Na� currents
measured at different times after inactivation caused by a voltage
step. Figure 4F shows the time course of recovery. Again the Na�

current recovered much more slowly than expected from
Hodgkin–Huxley kinetics. Thus, both noise and step stimuli
caused Na� channels to enter an inactive state from which they
recovered slowly.

Properties of slow Na � inactivation
Recovery of the Na� current from fast inactivation after an ac-
tion potential typically requires a few milliseconds (Hodgkin and
Huxley, 1952; Hille, 2001). As shown above, the ganglion cell
Na� current exhibited slow inactivation with a recovery time

constant several orders of magnitude longer. There are two dis-
tinct functional components of this slow inactivation. The first
decreased the Na� current after depolarizations above spike
threshold; recovery from this spike-dependent inactivation had a
time constant of a few hundred milliseconds. The second com-
ponent of slow inactivation had a slower onset and recovery; this
spike-independent component was controlled by subthreshold
voltage fluctuations.

Spike-dependent slow Na� inactivation
The Na� current recovered slowly after brief voltage-clamp
pulses exceeding spike threshold (Fig. 5A). We refer to the large
Na� currents in response to these voltage pulses as Na� spikes.
The Na� current declined exponentially in amplitude in re-
sponse to a series of pulses (Fig. 5B). This form of slow inactiva-
tion reflected the all-or-none properties of spike generation; no
slow inactivation occurred when the pulses were too small to
produce an Na� spike, and increasing the length or amplitude of
the depolarizing pulse did not produce additional inactivation.
We therefore refer to this component of slow inactivation as spike
dependent.

Spike-dependent slow inactivation was characterized by a
first-order kinetic model. Some fraction of the s2-gating variable
is permissive, while the remainder, 1 � s2, is slowly inactivated
and nonpermissive. A fraction of the non-inactive Na� current
enters the slow-inactive state after a spike; recovery from slow
inactivation occurs with a voltage-dependent rate constant, �s2.
We varied the duration and holding voltage between pulses to

Figure 3. Na � current is sensitive to preceding voltage fluctuations. A, Voltage-clamp stim-
ulus. The Na � current was measured in response to a brief test pulse to 0 mV after 2 sec of
Gaussian voltage fluctuations (bandwidth, 0 –50 Hz). A 20 msec recovery period at a holding
voltage of �60 mV was imposed between the noise and test pulse. B, Average Na � currents
after noise with variances of 0, 25, and 100 mV 2 are shown. Responses from four pulses after
uncorrelated noise stimuli were averaged together to prevent the specific immediate history of
the noise from affecting the Na � current.
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determine the recovery rate constant, �s2, and the change in s2

after a pulse.
The time course of recovery from spike-dependent slow Na�

inactivation was measured from the steady-state Na� current for
pulse series like that in Figure 5A. The steady-state amplitude was
reached when recovery from inactivation between pulses bal-
anced inactivation produced by each pulse. Lengthening the in-
terval between pulses increased the steady-state amplitude of the
Na� current. Figure 5C plots the steady-state amplitude against
the interpulse interval for two holding voltages. The recovery rate
constant, �s2, was estimated from the time constant of the expo-
nential fits in Figure 5C. This rate constant is plotted against the
recovery voltage in Figure 5E. All four cells studied showed a
decrease in the rate of recovery from spike-dependent slow Na�

inactivation with increasing voltage.
The amount of inactivation produced by each pulse was de-

termined by correcting the reduction in Na� current between
successive pulses for recovery during the intervening interval.
Figure 5D shows the fractional reduction in peak Na� current for
different interpulse intervals. Fitting these data with exponentials
and extrapolating to an interpulse interval of 0 (i.e., no recovery)
estimated the fractional reduction in available Na� current im-
mediately after a pulse, s2

factor. The average fractional reduction in
Na� current produced by each pulse was s2

factor � 0.23 	 0.05
(mean 	 SEM; four cells). Thus, after each pulse the Na� current
was reduced to 77% of its initial value.

Spike-independent slow Na� inactivation
The spike-dependent slow Na� inactivation described above did
not fully explain the behavior of the Na� current. Subthreshold
changes in voltage also caused slow inactivation; this spike-
independent component of inactivation had both slow onset and
recovery.

Spike-independent slow inactivation was described as a first-
order process analogous to Hodgkin–Huxley fast inactivation. In
this case, a single voltage-dependent time constant describes the
approach to steady state after a change in voltage. The onset and
recovery rate constants �s1 and �s1 were determined from the

time constant and steady-state values of
slow inactivation (see Eq. 2, Materials and
Methods). To reduce errors in measure-
ment, we used voltage-clamp stimuli that
produced large changes in steady-state in-
activation. For depolarized voltages at
which steady-state inactivation was large,
we measured the rate of onset of inactiva-
tion following a step from a hyperpolar-
ized voltage (Fig. 6A). For hyperpolarized
voltages at which steady-state inactivation
was small, we measured the time constant
for recovery from a step producing strong
inactivation (Fig. 6D). Combining these
measurements provided estimates of the
voltage-dependent rate constants �s1

and �s1.
Figure 6A shows the procedure used to

measure the time constant and steady-
state value of inactivation at depolarized
voltages (greater than or equal to �60
mV). A test pulse was delivered to mea-
sure the Na� current in the absence of
slow inactivation. This was followed by 1
sec at �80 mV to allow recovery from
spike-dependent slow inactivation pro-

duced by the test pulse. An inactivating pulse of variable duration
was then delivered at one of several voltages, followed by a second
test pulse to measure the available Na� current. Figure 6, B and C,
shows the Na� currents for several inactivation periods at �55
and �35 mV. Dashed lines show the Na� currents before inacti-
vation. The step to �55 mV, well below spike threshold, pro-
duced substantial inactivation, provided the inactivation period
was �100 msec.

The effect of slow inactivation on the available Na� current
was measured from the ratio of the Na� currents in response to
the first and second test pulses. Figure 6A, bottom, plots this ratio
against the inactivation period for inactivation voltages of �55
and �35 mV. The ratio measured at �35 mV does not extrapo-
late back to 1 for an inactivation duration of 0 msec, because the
voltage step exceeded spike threshold and thus produced a large
Na� current and spike-dependent slow inactivation; this re-
duced the available Na� current 
20% (see above). The time
constant with which spike-independent slow inactivation ap-
proached a steady-state value was estimated from single expo-
nential fits to the Na� current ratio at each inactivation voltage
(Fig. 6A, smooth curves). The steady-state value of spike-
independent slow inactivation was estimated by extrapolating the
fit to infinite time and subtracting the contribution of spike-
dependent slow inactivation.

Figure 6D shows the procedure used to measure the time
constant and steady-state value of inactivation at hyperpolarized
(less than or equal to �60 mV) voltages. After a brief voltage step
to measure the initial Na� current, a 500 msec period was im-
posed to allow recovery from spike-dependent slow inactivation.
The voltage was then increased to �20 mV for 500 msec, causing
both spike-dependent and spike-independent slow inactivation.
The cell was allowed to recover at one of several voltages for a
variable time. Finally, the Na� current was remeasured. Figure 6,
E and F, shows Na� currents for several recovery times. The ratio
of the Na� currents before and after inactivation is plotted as a
function of the recovery time (Fig. 6D, bottom). A double expo-
nential was fit to the Na� current ratio at each inactivation volt-

Figure 4. Time course of recovery from noise and voltage steps. A, Voltage-clamp stimulus used to measure slow inactivation
produced by noise. The Na � current was measured by stepping the voltage to 0 mV at various times (trec ) after a period of voltage
noise (100 mV 2 variance; bandwidth, 0 –50 Hz). B, Na � currents in response to the test pulse. From smallest to largest, traces
correspond to trec of 10, 100, and 900 msec. C, Time course of recovery of peak Na � current after inactivation by noise. The Na �

current at each trec was normalized to that for a trec of 900 msec. This ratio is plotted against the recovery time. D, Voltage-clamp
stimulus used to measure slow inactivation produced by voltage steps. The Na � current was measured at various times after a 500
msec depolarization from �80 to �20 mV. E, Na � currents produced by the test pulse in D. From smallest to largest, traces
correspond to trec of 20, 110, and 1100 msec. F, Time course of recovery of peak Na � current after inactivation by voltage step. Na �

currents were normalized to that for a trec of 3 sec.
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age. The faster time constant (100 – 400 msec) was similar to that
measured for recovery from spike-dependent slow inactivation.
The slower time constant, 500 –1500 msec, described recovery
from spike-independent slow inactivation. The extrapolated
value of the fit at infinite recovery time gave the steady-state
value.

Experiments such as that in Figure 6 characterized the first-
order kinetic model of spike-independent slow inactivation. The
onset and recovery rate constants, �s1 and �s1, were calculated
from the time constant and steady-state value of the spike-
independent inactivation using Equations 3 and 4. Values for �s1

and �s1 are plotted against voltage in Figure 7A,B. These mea-
surements were fit (smooth curves) using Equations 10 and 11
describing the s1 variable to estimate the voltage dependence of
each rate constant. Fits were forced to go to zero at large positive
voltages for �s1 and large negative voltages for �s1.

Recovery from spike-independent slow inactivation was ap-
proximately three times slower than recovery from spike-
dependent slow inactivation. For example, at �50 mV, �s1 �
0.6 � 1 sec�1, whereas �s2 � 2 � 4 sec�1. This substantial dif-

ference in recovery kinetics suggests that the Na� current may
have two distinct mechanistic components of slow inactivation
(see Discussion).

Slow Na � inactivation can account for variance adaptation
The experiments described above indicate that slow inactivation
causes the amount of available Na� current to depend on the past
history of voltage changes. The simulations described below show
that slow Na� inactivation can account for the ability of ganglion
cells to adapt to the variance of their input current. Spike-
dependent slow inactivation made the dominant contribution to
variance adaptation in the simulation. Thus increasing variance

Figure 5. Spike-dependent slow inactivation. A, Decline in Na � current in response to a
series of voltage pulses. The cell was repeatedly stepped from �50 to 0 mV for 5 msec to
generate Na � spikes. The interval between pulses was 20 msec. B, Peak Na � current ampli-
tude as a function of pulse number. Peak Na � currents were normalized by that produced by
the first pulse. Normalized Na � currents are shown for interpulse intervals of 20 and 125 msec.
Solid lines are single exponential fits to the data. C, Steady-state peak Na � current as a function
of interpulse interval measured from fits in B. Solid lines are single exponential fits to the data
used to estimate the recovery rate constant. D, Fractional reduction in peak Na � current pro-
duced by each pulse calculated from the fits in B. E, Rate constant �s2 for recovery from inacti-
vation. The rate constant was calculated from the inverse of the time constant of the fits in C.
Different symbols plot measurements from four cells. The solid line is an exponential fit to �s2

for all four cells.

Figure 6. Spike-independent slow inactivation. A, Inactivation at depolarized voltages. Top,
Test pulses were delivered to measure the Na � current before and after an inactivating step of
variable duration and voltage. A 20 msec recovery period at �80 mV between the inactivating
pulse and the second test pulse allowed recovery from fast inactivation. Bottom, The ratio of the
Na � currents produced by the two test pulses is plotted against tinact for two voltages. Mea-
sured points were fit with single exponentials (smooth curves) with time constants of 1160 msec
for a Vinact of �55 mV and 620 msec for a Vinact of �35 mV. B, C, Na � currents in response to
test pulses at a Vinact of �55 mV ( B) and a Vinact of �35 mV (C ). From smallest to largest, solid
lines correspond to trec of 1600, 250, and 40 msec. The dotted line is Na � current produced by V1.
D, Inactivation at hyperpolarized voltages. Top, Two test pulses were delivered to measure the
Na � current before and after inactivation produced by a 500 msec step to �20 mV followed by
a variable duration and voltage recovery period. Bottom, The ratio of the peak Na � currents
produced by the two test pulses is plotted against trec at two voltages. The measured points
were fit by a product of two exponentials (smooth curves) with time constants of 130 and 770
msec for a Vrec of �95 mV and time constants of 100 and 890 msec for a Vrec of �75 mV. E, F,
Na � currents in response to test pulses at a Vrec of �95 mV (E ) and at a Vrec of �75 mV (F ).
From smallest to largest, solid lines correspond to trec of 20, 170, and 1380 msec. The dotted line
is the Na � current produced by V1.
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caused a higher spike rate in the simulation, which in turn re-
duced the available Na� current and decreased excitability.

Motivation for simulation
We found previously that Na� currents but not K� or Ca 2�

currents were required for variance adaptation (Kim and Rieke,
2001b). Thus to simplify the simulation, we incorporated the
Na� current properties described above without explicit simula-
tion of K� and Ca 2� currents (see Materials and Methods). By
itself, such a simulation will not generate action potentials, be-
cause K� and other currents are required to shape the action
potential and repolarize the cell after an Na� spike. Instead,
spikes were generated by forcing the voltage of the simulated
ganglion cell through the trajectory of an experimentally mea-
sured action potential once the Na� current had generated the
rising phase. Once the voltage returned to rest, the simulated
cellular currents were free to influence the voltage. The criterion
level at which the simulation switched modes was �15 mV, well
beyond the experimental threshold for action potential
generation.

Table 1 gives the parameters of the simulation, and Equations
6 –12 give the rate constants describing the Na� current. As a test
of the Na� current description, we compared the measured and
predicted reduction in Na� current produced by the voltage fluc-
tuations of Figure 3A. The simulation predicted a reduction in
Na� current by a factor of 0.22, within the range observed exper-
imentally. The simulation showed no change in Na� current
without slow Na� inactivation. From this we conclude that the
simulation captured the key features of slow Na� inactivation
during voltage fluctuations.

Slow inactivation is necessary for variance adaptation
in simulation
The contribution of slow inactivation to adaptation in the simu-
lation was determined using the static nonlinearity model (Fig. 2)
(see Materials and Methods). Experimentally, increasing the cur-
rent variance decreased the amplitude and time-to-peak of the
linear filter (Fig. 2A). Slow inactivation of the Na� current could
explain the changes in filter amplitude.

Figure 8 compares variance adaptation in real and simulated
ganglion cells. Figure 8A shows the linear filters and static non-
linearities for a real ganglion cell. Figure 8, B and C, shows linear
filters and static nonlinearities for the simulated ganglion cell
with (Fig. 8C) and without (Fig. 8B) slow Na� inactivation. In all

cases the static nonlinearities overlapped (insets), and hence the
effects of variance on the simulated responses were restricted to
changes in the linear filter.

A change in the time-to-peak of the filter occurred both in the
simulations based on models of the Na� current and in simple
threshold-crossing models with a refractory period (data not
shown). This change was absent when the refractory period was
removed from the threshold-crossing model. Similar changes in
time-to-peak of the filter have been seen in other threshold-
crossing models (Pillow and Simoncelli, 2003). Thus, the change
in time-to-peak was attributable to a time-dependent nonlinear-
ity (refractoriness) rather than a variance-dependent change in
the behavior of the cell. Refractoriness in the simulation, result-
ing from the membrane time constant and the repolarization
after the action potential, reproduced the change in time-to-peak
seen experimentally (Fig. 8B,C). We did not study this effect
further because it was an inherent property of any cell with a
refractory period.

The change in amplitude of the filter reflected a change in
excitability mediated by slow Na� inactivation. To separate
changes in amplitude from those in kinetics, the time axes of the
linear filters were normalized by the time-to-peak. Figure 8A–C

Figure 7. Rate constants describing spike-independent slow inactivation. A, The recovery
rate constant, �s1 , plotted versus voltage. The solid line is an exponential fit calculated from
Equation 10. B, The entry rate constant, �s1 , plotted versus voltage. The solid line is a saturating
exponential fit calculated from Equation 1. �s1 and �s1 were determined from the steady-state
value and the slow time constant from the fits in Figure 6 using Equations 3 and 4. Different
symbols correspond to measurements from different cells.

Figure 8. Comparison of variance adaptation in real and simulated ganglion cells. Several
minutes of Gaussian current fluctuations (bandwidth, 0 –50 Hz) of 16 and 144 pA 2 variance
were injected into experimental and simulated cells. Adaptation in the computer simulated
spike train was analyzed using the static nonlinear model and treated identically to that of an
experimental cell. A, Adaptation in an experimental cell. Left, Linear filters. Right, Filters with
the time axes normalized to the time-to-peak of each filter. B, Simulation lacking slow Na �

inactivation. C, Simulation with slow Na � inactivation. Insets show that the static nonlineari-
ties overlapped in all cases. Simulation parameters are given in Table 1 and Equations 6 –12.
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shows these rescaled filters (right). Increasing the variance de-
creased the filter amplitude in the real cell (Fig. 8A) and in the
simulation with slow Na� inactivation (Fig. 8C) but did not pro-
duce a change in amplitude without slow Na� inactivation (Fig.
8B). With slow Na� inactivation, the filter amplitude was re-
duced by 20 –25% for a ninefold change in variance, close to that
seen experimentally.

Slow inactivation contributed to adaptation in the simulation
by reducing the available Na� current when the current variance
increased. This effect was dominated by spike-dependent slow
inactivation. Figure 9B shows the simulated voltage responses to
injected currents of low and high variance. Spike-independent
and spike-dependent slow inactivation are shown in Figure 9C,D.
All panels in Figure 9 show behavior of the simulated cell several
seconds after a change in variance. After a variance change, inac-
tivation approached its steady-state value with time constants of
0.15 and 1 sec for spike-dependent and spike-independent slow
inactivation. Both components of slow inactivation increased
with increasing variance.

Spike-dependent slow inactivation increased substantially

with variance, as shown in Figure 9D. The greater firing rate at
high variance combined with the slow recovery from inactivation
caused s2 to depend strongly on variance. However, spike-
independent slow inactivation changed little (3–5%) when the
variance increased, as shown in Figure 9C. When spike-
dependent slow inactivation was removed from the simulation,

90% of the variance-induced change in available Na� current
disappeared, whereas removal of spike-independent slow inacti-
vation had little effect. Thus, spike-dependent slow inactivation
accounted for the majority of the variance adaptation.

Variance adaptation is robust to changes in simulation parameters
The simulations described above indicate that slow Na� inacti-
vation can account for variance adaptation. Next we investigated
the robustness of adaptation to the parameters of the simulation.
As described above, adaptation was measured by the variance-
dependent change in amplitude of the linear filters in the static
nonlinearity model. We explored parameters that led to spike
rates near the physiological range of 2– 6 Hz.

Not surprisingly, changes in the parameters controlling the
extent of slow-dependent Na� inactivation affected the extent of
adaptation. Varying the rate constant of recovery from spike-
dependent slow inactivation, �s2, or the fractional decrease in s2

following a spike, s2
factor, between the experimental extremes

changed the extent of adaptation by up to 40%. The spike-
dependent inactivation produced much larger changes than us-
ing the extreme measured values of the rate constants and voltage
dependence of spike-independent slow inactivation, �s1 and �s1,
which changed the extent of adaptation by �10%. Adaptation
was also sensitive to the membrane capacitance and leak conduc-
tance, which varied substantially between cells (Table 1). Varia-
tions in these parameters likely represent differences between
different ganglion cell types as well as variability introduced by
the isolation procedure. The resulting cell-to-cell variability in
membrane time constant and in spike shape caused up to 50%
changes in the extent of adaptation.

Changes in other parameters of the model produced only
small effects on the extent of adaptation. The rate constants for
the h and m variables of the Na� current are of particular interest.
Using � and � from a recent ganglion cell model (Fohlmeister
and Miller, 1997) rather than the Hodgkin–Huxley values had
little effect (� 10%) on variance adaptation. Adaptation was also
changed minimally by shifts of up to 10 mV in the voltage depen-
dence of the Na� current.

The above results show that the specific values of the param-
eters in the simulation influence the extent of variance adaptation
but not its presence. Much of the cell-to-cell variability in adap-
tation can be explained by the measured variability in parameters
controlling adaptation. The robustness of variance adaptation to
changes in the parameters of the simulation comes about because
adaptation is dominated by spike-dependent slow inactivation.
After an action potential, slow inactivation reduces the available
Na� current and decreases excitability for several hundred
milliseconds.

Discussion
The experiments described above lead to three conclusions about
how retinal ganglion cells adapt to the variance of their input
currents: (1) the Na� currents of retinal ganglion cells exhibit
spike-dependent and spike-independent slow inactivation; (2)
slow inactivation reduces the available Na� current when the
variance of the input current of the cell increases, leading to a
decrease in excitability; and (3) the role of slow inactivation in

Figure 9. Increase in slow Na � inactivation with variance. Gaussian current fluctuations
(0 –50 Hz) of 16 and 144 pA 2 were injected into a simulated ganglion cell. A, The 16 pA 2

variance current fluctuations. The 144 pA 2 current fluctuations were identical to that shown
except for a scaling factor. B, Voltage output of a simulated ganglion cell. C, Value of the
spike-independent slow inactivation variable s1. D, Value of the spike-dependent slow inacti-
vation variable s2. Several seconds of current injection at each variance were delivered before
time 0, so variables had time to reach steady state.
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variance adaptation holds for a wide range of cellular and Na�

current parameters. Below we discuss the role of slow Na� inac-
tivation in contrast adaptation and more generally in controlling
neural excitability.

Contrast adaptation, variance adaptation, and slow
Na � inactivation
Slow Na� inactivation influences neural excitability directly by
controlling the available transient Na� current (Fleidervish et al.,
1996; Colbert et al., 1997; Jung et al., 1997) and indirectly through
modulation of persistent Na� currents (Schwindt and Crill,
1995; Crill, 1996; Taddese and Bean, 2002). Slow inactivation is
usually studied by measuring the influence of current or voltage
steps on the Na� current. Increased inactivation decreases the
Na� current and decreases excitability.

Retinal ganglion cells also show alterations in excitability
caused by slow inactivation. We studied slow Na� inactivation
induced by Gaussian current fluctuations because they mimic
physiological inputs to ganglion cells more closely than current
steps. The variances of fluctuating currents used here approxi-
mate those of the synaptic inputs to a ganglion cell for high and
low contrast light inputs. Recovery from slow inactivation re-
quired several hundred milliseconds. Thus, after a change in the
variance of the input currents, the available Na� current will
reach a steady-state level relatively slowly. This gradual approach
to steady state will cause the excitability of the cell to reflect the
voltage changes occurring in the previous 0.2– 0.5 sec.

Slow inactivation caused the available Na� current to depend
on the past history of subthreshold and superthreshold voltage
changes. Other neurons also exhibit spike-dependent and spike-
independent slow Na� inactivation (Colbert et al., 1997; Mickus
et al., 1999). If the Na� channels enter the slow inactive state only
from the open state, one inactivation mechanism could give rise
to both spike-dependent and spike-independent slow inactiva-
tion (Mickus et al., 1999). However, the substantial difference in
the recovery kinetics of slow inactivation in ganglion cells sug-
gests either distinct mechanisms or that recovery from inactiva-
tion depends on the past history of voltage changes.

Slow Na� inactivation can explain the component of contrast
adaptation intrinsic to spike generation in ganglion cells (Kim
and Rieke, 2001b): increases in temporal contrast increase the
variance of the input currents to a ganglion cell, causing a de-
crease in available Na� current because of slow inactivation and
hence decreasing excitability. The decrease in excitability in-
creases the dynamic range of the cell, permitting a ganglion cell to
encode a wider range of input currents.

Slow inactivation reduced the available Na� current during
high variance by 30 – 40%. This slow inactivation contributes to a
fast kinetic component (time constant of � 1 sec) of temporal
contrast adaptation; other mechanisms operating in the retinal
circuitry operate 
10 times more slowly (Smirnakis et al., 1997;
Chander and Chichilnisky, 2001; Kim and Rieke, 2001b; Rieke,
2001).

Slow Na � inactivation and sustained Na � currents
The persistent current is a sustained Na� current that inactivates
exclusively through slow inactivation (Crill, 1996). This current
typically activates at voltages 10 –15 mV below the transient Na�

current and is smaller by 2–3 orders of magnitude. The persistent
current can alter cell excitability by providing an inward current
that helps depolarize a cell to spike threshold (Schwindt and Crill,
1995; Colbert et al., 1997; Koizumi et al., 2001). Changes in the

availability of the persistent current through slow inactivation
can modulate excitability.

Persistent currents have been found in retinal neurons (Koi-
zumi et al., 2001). However, the effects of slow inactivation
(described in Results) appear distinct from those produced by
modulation of a persistent current. Our simulation had a non-
inactivating Na� current in a narrow voltage range because of the
overlap of the activation and fast inactivation gating variables
(the window current) (French et al., 1990), and modulation of
this current to more closely match the persistent current did not
affect the extent of adaptation.

Slow inactivation as a general modulator of excitability
A variety of cellular and network mechanisms allows cells
throughout the nervous system to accommodate a wide range of
input signals. These mechanisms operate on time scales ranging
from tens of milliseconds to minutes. They also are controlled by
a variety of statistical properties of the input signals, including the
mean and variations about the mean. In several cases these adap-
tation mechanisms have been linked to functional properties of
adaptation (Sanchez-Vives et al., 2000b; Kawai, 2002; Smith et al.,
2002).

In motion-sensitive neurons on the fly visual system, the time
scale of adaptation itself adapts (Fairhall et al., 2001). Thus the
rate of onset of adaptation after an increase in motion variance
depends on the duration of the previous period of low motion
variance. This provides an interesting challenge for understand-
ing the underlying mechanisms, because scaling of the adaptation
time scale is not expected from a simple mechanism character-
ized by a single time constant. However, scaling of the recovery
kinetics of slow Na� inactivation has been observed (Toib et al.,
1998) and could contribute to a rescaling of the adaptation time
course. It will be interesting to determine whether this observa-
tion applies more generally.

Two observations suggest that adaptation mediated by con-
trol of the available Na� current through slow inactivation may
be a general mechanism. First, slow Na� inactivation is a com-
mon, although not universal, property of voltage-activated Na�

currents. In pyramidal cells, for example, Na� currents in the
dendrites show substantially greater slow inactivation than those
in the soma (Colbert et al., 1997). Second, variance adaptation
mediated by slow inactivation was robust to large changes in
many cell properties, including spike shape, firing rate, fast Na�

activation and inactivation, and membrane time constant.
The Na� currents of many spiking neurons are much larger

than the minimum needed to generate action potentials (Crill,
1996). This is also true for retinal ganglion cells. The surplus of
Na� current allows phenomena that constitute a small fraction of
the Na� current, such as persistent (Crill, 1996) and resurgent
(Raman and Bean, 2001) currents, to be large enough to modu-
late excitability. The surplus of Na� current also allows slow
inactivation to reduce excitability in a graded manner. As empha-
sized above, this allows adaptation to match the input– output
relationship of a cell to the dynamic range of its inputs. Slow Na�

inactivation also provides a feedback mechanism that shapes the
spike output of a cell by lowering excitability during periods of
high activity. Such a feedback, operating on a time scale similar to
the slow inactivation characterized here, is an essential part of a
recent model describing the relationship between light inputs
and ganglion cell outputs (Keat et al., 2001).
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