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Capturing statistical regularities in complex, high-dimensional data is an
important problem in machine learning and signal processing. Models
such as principal component analysis (PCA) and independent compo-
nent analysis (ICA) make few assumptions about the structure in the
data and have good scaling properties, but they are limited to represent-
ing linear statistical regularities and assume that the distribution of the
data is stationary. For many natural, complex signals, the latent variables
often exhibit residual dependencies as well as nonstationary statistics.
Here we present a hierarchical Bayesian model that is able to capture
higher-order nonlinear structure and represent nonstationary data distri-
butions. The model is a generalization of ICA in which the basis function
coefficients are no longer assumed to be independent; instead, the depen-
dencies in their magnitudes are captured by a set of density components.
Each density component describes a common pattern of deviation from
the marginal density of the pattern ensemble; in different combinations,
they can describe nonstationary distributions. Adapting the model to im-
age or audio data yields a nonlinear, distributed code for higher-order
statistical regularities that reflect more abstract, invariant properties of
the signal.

1 Introduction

The goal of many algorithms in machine learning, signal processing, and
computational perception is to discover and process intrinsic structures in
the data. Extracting these from real signals is a difficult problem, because
often the relationships among the observable variables are complex, and
there is little a priori knowledge about the types of structures that exist.
When some a priori knowledge is available, specialized algorithms can be
designed, but this approach is generally less desirable, as it places restric-
tions on the type of structure that can be learned. Another difficulty is that
the dimensionality of the data is often very high, and properties of inter-
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est lie in a relatively low-dimensional subspace. Because of the inherent
variability of most real-world signals, intrinsic regularities are statistical in
nature, which makes them that much more difficult to learn.

One approach to learning statistical regularities is to formulate a prob-
abilistic model of how the data are generated and adapt its parameters to
fit the observed distribution. The adapted parameters reflect the statistics
of the data ensemble, while internal representations encode individual data
patterns. These models make minimal assumptions about the data and can
result in more general representations than those in algorithms tailored for
specific tasks or types of data.

There are several ways in which data patterns are represented in prob-
abilistic generative models. Distributed representations of linear compo-
nential models, such as those for principal component analysis (PCA) and
independent component analysis (ICA), are particularly useful for model-
ing complex high-dimensional data because they can capture independent
regularities with independent internal parameters (Bell & Sejnowski, 1995).
This makes it possible to model a continuum of different statistical relation-
ships and allows scaling of the algorithms to large numbers of dimensions.
Current models, however, are limited in the type of structure they can rep-
resent; in order to understand these limitations, it is helpful to look at their
mathematical formulation.

Linear componential models achieve a distributed representation by de-
scribing the data as a combination of linear basis functions (for a review, see
Hyvärinen, Karhunen, & Oja, 2001; Cichocki & Amari, 2002). This yields
a probabilistic generative model in which the data (x) are generated as a
linear combination of basis functions (A) weighted by coefficients (u),

x = Au. (1.1)

The likelihood of the observed data under this model is

p(x) = p(u)/| det(A)| (1.2)

(Pearlmutter & Parra, 1996; Cardoso, 1997), and the basis function matrix
A is adapted to maximize the data likelihood. The coefficients u are the
unknown (latent) variables. They are assumed to be independent and iden-
tically distributed (i.i.d.),

p(u) =
∏

i
p(ui). (1.3)

The priors p(ui) are typically chosen to be fixed sparse distributions (al-
though parameters of the prior may be adjusted to maximize data likeli-
hood). Because basis function coefficients are assumed to be i.i.d., the de-
pendence among the data is represented solely by the learned matrix of
basis functions.
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The obvious limitation of this model is that its inherent linearity restricts
the type of structure it can capture. Even simple, low-dimensional data often
exhibit statistical dependencies that cannot be captured by linear transfor-
mations. In many applications, data are complex and rich with statistical
structure, and latent variables of linear models adapted to these data ex-
hibit significant residual mutual dependence (Hyvärinen & Hoyer, 2000;
Schwartz & Simoncelli, 2001; Karklin & Lewicki, 2003).

Another shortcoming of these models is that they assume that the statis-
tical regularities in the data do not change; they describe stationary prob-
ability distributions. For example, once model parameters are adapted in
ICA, both the prior and the basis functions are fixed, leading to a stationary
distribution over the data. This does not depend on the form of the prior
and also applies to models with adaptive or entirely nonparametric priors.
In many domains, however, the statistics of the data are known to change, as
the physical properties of the environment or conditions for data acquisition
vary. While the stationary prior assumption gives a valid approximation of
true density over a large enough corpus of training data, it does not reflect
the variation across contexts that is observed in many signals.

Figure 1 illustrates nonstationary statistics observed in images of natural
scenes. ICA basis functions were adapted to 20 × 20 patches taken from an
ensemble of natural images. Over the full ensemble of the training data, the
basis function coefficients have marginal distributions that are consistent
with the prior assumed by the model (not shown). However, computing
coefficient histograms over particular image regions reveals systematic de-
viations from the (globally valid) stationary distribution. Patterns in the
histograms suggest that basis functions of certain orientations are more ac-
tive in some parts of the image (e.g., textured, oriented surface of the log),
while in other regions, different subsets tend to be activated. This is observed
in other types of data as well: temporal basis functions adapted to speech
also yield coefficients whose statistics vary greatly across local regions of
the signal (see Figure 2).

Figures 1 and 2 give just a few examples of patterns in latent variable
distributions that depend on the local context. In fact, there is a wide range
of statistical regularities in complex data, a continuum of contexts that is as
multidimensional as the physical properties of the environment that give
rise to it. Local representations, as employed by clustering or mixture model
techniques, assume that the contexts are discrete and thus cannot describe
regularities that arise from a combination of different contexts. A model
that captures this variation must form flexible, distributed representations
of higher-order structure. Moreover, because the dimensions of the contexts
are not known a priori, the model must be able to automatically discover
this underlying structure. Finally, many previous models of nonstation-
ary distributions have relied on the assumption that data statistics vary
smoothly from sample to sample (Everson & Roberts, 1999; Pham & Car-
doso, 2001) and computed local estimates of context-dependent variation.
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Figure 1: The distribution of ICA basis function coefficients exhibits nonsta-
tionary statistics that reflect local image structure. (a) A subset of image basis
functions learned from an ensemble of natural images, ordered by orientation.
The small black square on the image indicates the size, relative to the image, of
the learned basis functions. (b) Coefficients of independent components were
computed over two regions of an image. (c, d) Histograms of the coefficients for
the two regions reveal patterns in the joint distributions. Each histogram in the
10 × 10 grid in c and d corresponds to a basis function at the same grid position
in a and is normalized so that the filled area sums to 1. Different types of local
image structure produce different patterns in the joint activities. For example,
the image region containing the log yields higher coefficient variation for ba-
sis functions oriented along the grain and matching the approximate spatial
frequency of the wood texture.



Learning Density Components 401

a

b

c

1 128 256
−8

−4

0

4

R
1

1 128 256
−8

−4

0

4

R
2

1

128

256

R
1

R
2

R
3

1 128 256
−8

−4

0

4

R
3

lo
g(

va
r(

u)
)

Figure 2: ICA basis functions adapted to speech data also exhibit nonstation-
ary statistical dependencies. (a) A subset of 256 ICA-derived basis functions
ordered by dominant frequency. (b) Each basis function was convolved with
three different regions of a speech signal. The length of the basis function is
indicated by the short bar above the start of the speech signal. (c) The variances
of coefficients sampled over the three regions, with the 256 coefficients ordered
by frequency as in a. Although all basis function coefficients have unit variance
when sampled over the whole data ensemble, local regions show characteristic
variance patterns that reflect local signal structure.

This assumption does not always hold; even spatially and temporally coher-
ent data exhibit abrupt changes that cannot be modeled as slowly evolving
processes.

Here we address the limitations of previous models with a hierarchical
Bayesian model that forms a distributed code of higher-order statistical reg-
ularities and captures nonstationarities in the data distribution. The model
is a generalization of ICA; thus, we begin with a standard linear componen-
tial model in which the data are generated as a combination of linear basis
functions. However, instead of assuming that the basis function coefficients
are independent (and their joint prior distribution is factorable; see equa-
tion 1.3), we explicitly model the dependence among hyperparameters of
their priors. In order to capture variable, context-dependent activation of
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basis functions, the dependence is specified through the scale parameters
governing the width of the prior (and hence the variance of the coefficients).
This dependence is modeled with a set of density components, a distributed
code that describes the shape of the joint density of the linear coefficients
and captures patterns in the variances of the coefficients as observed in the
motivating examples.

Each density component describes a common underlying deviation from
the standard assumption of independence (the i.i.d. joint prior) associated
with a frequently encountered context. Using a weighted combination of
density components, the model is able to represent a continuum of context-
dependent changes in probability distributions. Adapting the set of density
components and modeling their activation with a sparse prior yields a com-
pact description of higher-order statistical regularities of the data ensemble.
Unlike other recent methods, the model makes no assumptions of temporal
or spatial coherence; it is able to infer, independently for each data sample,
the higher-order code that describes the generating distribution.

Below we present the probabilistic framework for the model and describe
the associated learning algorithms. Previously, we have used this model
to discover higher-order structure in natural images (Karklin & Lewicki,
2003). Here, we describe the algorithm in more detail and frame it as a
general method of statistical density estimation for high-dimensional non-
stationary data. We verify the recovery of correct model parameters using
a toy data set, apply the learning algorithm to a wider range of data types,
and show how the learned higher-order code accounts for observed de-
pendencies. We provide results and analysis for photographs of natural
scenes, scanned images of newspapers, and speech waveforms. However,
the model is not tailored specifically to images or audio data, and can be
used to automatically learn the nonlinear statistical dependencies in any
data set with sufficiently rich structure.

2 A Hierarchical Model for Nonstationary Distributions

Our model is a generalization of previous linear models. Hence, we begin by
assuming that each data vector is generated as a combination of linear basis
functions, x = Au. As in standard ICA models (e.g., Cichocki & Amari,
2002), basis function coefficients are assumed to be sparsely distributed.
Here we use a generalized gaussian distribution with zero mean:

p(ui) = N (0, λi, qi) (2.1)

= zi exp
(

−
∣∣∣∣ui

λi

∣∣∣∣
qi
)

, (2.2)

where zi = qi/(2λi�[1/qi]) is a normalizing constant. The parameter qi de-
termines the weight of the distribution’s tails and can be estimated from the
data; in many ICA applications, the coefficients tend to be sparse, making
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their distributions supergaussian (qi < 2). Typically, the scale parameter λi
is fixed to a constant, since the basis functions in A can themselves scale to
fit the data.

In order to capture residual dependence among coefficients u, we must
abandon the assumption of fixed, independent priors. The motivating ex-
amples suggested that intrinsic structures in the data give rise to patterns in
the scales of the coefficients (similar dependencies have been observed pre-
viously in wavelet coefficients; Simoncelli, 1997). A natural way to model
this is through the scale parameters of the prior, which we model as a non-
linear transformation of latent higher-order variables. Specifically, we use
a matrix of density components B and density component coefficients v to
describe the logarithm of the scale parameter,

log(λ/c) = Bv. (2.3)

If we define the constant c = √
�(1/q)/�(3/q), the variance of the coefficients

becomes 1 when the right side of the equation is 0 (this becomes convenient
when a zero-centered prior is selected for the distribution of v; see below).

The joint prior distribution of coefficients u can now be expressed as

− log p(u|B, v) ∝
∑

i
[Bv]i +

∣∣∣∣ ui

c exp([Bv]i)

∣∣∣∣
qi

, (2.4)

where [Bv]i represents the ith element of the vector Bv (see the appendix
for the derivation).

Basis function coefficients are assumed to be independent conditional on
the higher-order variables, p(u|v) = ∏

p(ui|v). This accounts for the depen-
dence in the magnitudes of basis function coefficients. The new form of the
prior (2.4) implies that if v is 0, the model reduces to standard ICA in which
the linear coefficients are independent and identically distributed with vari-
ance equal to 1. Nonzero values of v scale and combine density components
(columns of B) that define patterns in the distributions of u. Because each
vi can be positive or negative, each density component represents contrast
in the magnitudes of coefficients u (see Figure 3).

We place a nongaussian, sparse prior on the latent variables v and infer
their values for each data sample.1 This means that a priori, we assume
that the activity of density component coefficients is sparse, and relatively
few components are needed to describe how the generating distribution
associated with each data sample differs from the i.i.d. ICA model. Using
this parameterization, we adapt the density components to the entire data
ensemble, which produces a compact description of higher-order statistical
regularities.

1 A Laplacian prior was used in the simulations, but other distributions may be more
appropriate.
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B j

p(u|v j = 1)

p(u|v j = 0)

p(u|v j = −1)

Figure 3: Each density component defines a pattern in the joint distribution p(u).
The plot at the top shows an example nine-dimensional density component Bj.
The distributions of coefficients u1,...,9 are shown for different values of vj. Here
we show only a single density component Bj, whereas the model adapts a set
of them B = {B1, B2, . . . , BM} to obtain a compact description for common scale
patterns in the data.

The full generative model is shown in graphical form in Figure 4. There
are two sets of random variables that give rise to the data, v and u, and two
sets of parameters adapted to the data: the linear basis functions A and the
density components B. A crucial difference between this generative form
and several other models that account for higher-order dependence is that
here, the density components specify a distribution over the coefficients,
as opposed to exact values or pooled magnitudes, which have been used
in other models (Hoyer & Hyvärinen, 2002; Welling, Hinton, & Osindero,
2003). Thus, the model forms a hierarchical representation in which the
lower-level codes data values precisely and the higher level represents more
abstract properties associated with the shape of the data distribution.

3 Inference of Density Component Coefficients

For each data sample, it is necessary to compute the higher-order represen-
tation v that best describes the pattern in the scale of coefficients u. This
transformation is nonlinear and cannot be expressed in closed form. Here,
we compute the best value of v by maximizing the posterior distribution,

v̂ = arg max
v

p(v|u, B), (3.1)

= arg max
v

p(u|B, v)p(v). (3.2)
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vi ∼ N (0,1,qi)

λ j = cexp[Bv] j

u j|λ j ∼ N (0,λ j,q j)

xk = ∑
j

Ak ju j

Figure 4: Schematic of the hierarchical generative model. Sparsely distributed
random variables v specify (through a nonlinear transformation) the scale hy-
perparameters λ for the distribution of coefficients u. The data x are a linear
combination of coefficients u. Matrices A and B are parameters that are adapted
to the statistical distribution of the data.

We assume that vi’s are independent (p(v) = ∏
i p(vi)) and sparsely dis-

tributed (log p(vi) ∝ −|vi|). For the simulations below, v̂ was derived by
gradient ascent. We used second-order methods (LeCun, Bottou, Orr, &
Müller, 1998) to stabilize and speed up convergence to optimal estimates.

Because the prior is zero centered and sparse, only a few nonzero val-
ues will contribute to the representation of each data sample. The infer-
ence of optimal density component coefficients is analogous to estimating
sample variance based on a single observation, but the problem is further
constrained by the structure of the learned density components. Because
the model is constrained to describe the pattern of variance with a sparse
combination of density components, the value of v for a typical pattern is
usually well determined. In addition, the high dimensionality of the input
facilitates the inference process, as it provides more directions of variation
that make up the variance pattern.

4 Adapting Model Parameters to the Data

The linear basis functions and the density components are adapted to the
data ensemble by maximizing the posterior p(A, B|X). We assume that sam-
ples in the data ensemble X = {x1, . . . , xN} are independent, so that

p(X|A, B) =
N∏

n=1

p(xn|A, B). (4.1)

For each data sample x, the posterior distribution is

p(A, B|x) ∝ p(x|A, B)p(A, B) (4.2)

= p(u|B)p(B)/| det(A)|. (4.3)
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Ideally, the marginal distribution p(u|B) would be computed by integrating
over v, but evaluating this integral for equation 2.4 is intractable. Here we
approximate it using the maximum a posteriori estimate v̂:

p(u|B) =
∫

p(u|B, v)p(v)dv, (4.4)

≈ p(u|B, v̂)p(v̂). (4.5)

Substituting this approximation into the posterior gives

p(A, B|x) ∝ p(u|B, v̂)p(v̂)p(B)/| det A|. (4.6)

The prior on B places a small a priori bias for small values of Bi,j and elim-
inates the problem of a degenerate case in which B grows without bounds
while v’s rescale to be smaller. For the results here, we assumed Bi,j followed
a gaussian distribution. The matrices A and B can be optimized iteratively by
maximizing p(A|X, B) and then maximizing p(B|X, A). In this case, the first
step amounts to performing ICA in which the priors incorporate the scale
estimates v̂. Alternatively, we can assume that optimal linear basis functions
are largely independent of the set of density components, and optimize B
using a fixed A. For computational efficiency, A and B were assumed to
be independent and were adapted separately in the simulations described
below. We confirmed the validity of this approach by training a model on
data of reduced dimensionality and with fewer density components; results
were qualitatively similar to optimizing the parameters independently.

In order to verify that the learning algorithm produces a valid solution,
we adapted model parameters to an artificial data set for which the opti-
mal solution was known. The data were generated by constructing a set
of density components and then sampling basis function coefficients ac-
cording to p(u|B). An illustration of the process and the obtained results
is shown in Figure 5. Optimizing density components from random ini-
tial values produced a matrix that was identical (up to a permutation of its
columns) to the true model parameters (see Figures 5a and 5b). The patterns
in the learned density components specify nonlinear dependencies among
coefficient magnitudes; in fact, there are no linear correlations among basis
function coefficients sampled from the model (even when the same v is used
to generate the coefficients). Linear models like ICA are unable to recover
these statistical regularities.

As a control, we adapted the density component model to a pure noise
data set in which coefficients u were random samples from independent
sparse distributions. In this case, no regularities in the magnitudes of co-
efficients existed, and the resulting density components consisted of small,
random values.
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5 Discovering Structure in Complex Data

5.1 Learned Density Components. We optimized model parameters on
several data sets and analyzed the learned density components. For com-
putational simplicity, the model was optimized in two stages in all the sim-
ulations. First, a complete linear basis A was adapted to the data using
standard methods; next, the density component matrix B was optimized on
the coefficients of the fixed A. Since the linear basis functions were learned
using standard ICA methods, our analysis and discussion here is limited to
the recovered matrix of density components. The density components were
initialized to small random values, and gradient ascent was performed on
stochastically sampled batches of data. The maximum a posteriori estimate
v̂ was obtained using 20 steps of gradient ascent. Convergence of the gra-
dient procedures for the optimization of B and estimation of v̂ was tested
in a number of ways, including varying the step size, the number of itera-
tions, and the initial conditions. The given optimization parameters yielded
reasonable speed and accuracy, as well as consistent solutions for different
random initial conditions.

We first applied the learning algorithm to small (20 × 20) image patches
sampled from a standard set of 10 gray-scale images of natural scenes (Ol-
shausen & Field, 1996; Karklin & Lewicki, 2003). We used a complete set
of 400 linear basis functions. The number of density components was set
to 100 (although the algorithm is able to recover any number that yield a
sparse distribution for coefficients v). We used batches of 1000 samples for
35,000 iterations of gradient ascent with a fixed step size of 0.3.

Statistical regularities of the data ensemble are captured in the matrix
of density components. In order to analyze the structure described by this
matrix, we need to examine its weights as they relate to the basis functions
whose distributions they affect. (Recall that each weight in a density compo-
nent vector specifies how a particular p(ui) is rescaled). The initial ordering
of basis functions in the learned matrix A is arbitrary; hence, weights in B
also appear random in their original ordering. However, we can rearrange
the weights in B according to some property of the linear basis functions and
examine whether the learned density components capture structure related
to the chosen property. For example, ICA basis functions adapted to nat-
ural images are spatially localized; arranging density component weights
according to the location of corresponding basis functions within the im-
age patch reveals patterns in their organization (see Figure 6). Thus, density
components that appear structured in this arrangement specify dependence
among spatially related linear basis functions. As parameters in the gener-
ative model, they describe common data distributions that reflect localized
image structure. Some density components also appear random when ar-
ranged spatially, but these often show organization along other dimensions
of the lower-order representation, such as orientation or spatial frequency
(Karklin & Lewicki, 2003). Changing the number of density components
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does not affect the type of structure captured by the hierarchical model. A
larger number of density components allows the model to represent finer-
scale spatial regularities, as well as other statistical structure that is not as
obvious to interpret.

We also applied the model to speech data from the TIMIT database. Linear
basis functions were adapted to bandpass filtered speech segments of 256
samples (16 msec of 16 kHz sound). The number of density components was
set to 100, and the parameters were optimized using stochastic learning
on data batches of 1000 for 10,000 iterations. A representative set of the
learned density components is shown in Figure 7. In order to display the
weights in the density components as they relate to the linear code, we first
computed the Wigner distributions (WD) of the linear basis functions using
the DiscreteTFDs Matlab package (O’Neill, 1999). The Wigner distribution
of a basis function is a surface in the time-frequency space; we took a contour
at 95% peak value for each basis function and drew all these contours on
a single time-frequency plot (time on the horizontal axis, 0 to 16 msec, and
frequency on the vertical axis, 0 to 8 kHz). Because the linear basis functions
adapted to speech tile most of the the time-frequency space, the contours
also exhibit relatively even tiling of the plots. In Figure 7, nine WD plots
show the weights in nine density components to the same set of linear
basis functions. Here, as in image density components, the shading of each
patch corresponds to the value of the weight. Some density components

Figure 5: Facing page. The model correctly recovers the density components used
to generate synthetic data. We constructed a 50 × 10 matrix B composed of 10
cosine-shaped density components (a). After 3000 iterations, the model recovers
(up to a permutation) the correct density components (b). (c) The generative and
inference steps of the algorithm. (1) Three 10-dimensional density component
coefficients are drawn from a sparse distribution; (2) each v(i) specifies a vector of
scaling variables λ(i) through the nonlinear transformation λ(i) = c exp[Bv](i).
(3) The scaling variables are hyperparameters for nonstationary distributions
p(u), from which data samples u are drawn. In order to emphasize that each
vector of scaling variables λ(i) specifies a distribution, not fixed values of u, we
plotted several u’s drawn from the distribution p(u|λ(i)

). In actual simulation,
each data point was generated independently. Using the learned density com-
ponents, estimates of (4) v̂ and (5) λ̂were obtained for each data sample. Because
the inference problem involves the estimation of density parameters from sin-
gle data points, v̂ and λ̂ only approximately match true parameters. Although
the complete hierarchical model includes another transformation x = Au, the
projection to data space x is linear and is not necessary for inference of v̂ when co-
efficients u are known. The scatter plot of 1000 samples of u1 and u2 drawn from
the model (d) shows that there is no linear dependence among basis function
coefficients.
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Figure 6: Density components optimized on an ensemble of 20 × 20 image
patches drawn from natural scenes. Each column of B is represented here as
a square; its weights to 400 image basis functions are plotted as dots, placed in
locations corresponding to the center of each image basis function in the im-
age patch. Each dot is colored according to the value of the weight, with white
indicating positive weights, black negative weights, and gray weights that are
close to zero. Most density components describe spatial relationships and cap-
ture coactivation of linear basis functions localized to a particular area of the
image patch. For example, the density component in the second row, second
column indicates whether contrast in the image patch is localized to the top or
the bottom half. While most density components represent location, orientation,
or spatial frequency regularities, the organization of some is not obvious.

describe coactivation of linear basis functions of adjacent frequency bands,
while others are localized in time within the sample window. Most density
components capture periodic higher-order structure and regularities across
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Figure 7: A subset of density components of speech. The weights in a column of
B are plotted as shaded patches in one of the nine panels. Each patch is placed
according to the temporal and frequency distribution of the associated linear
basis function and shaded according to the value of the weight, with white
indicating positive weights, black negative weights, and gray weights that are
close to zero. The axes represent time, 0 to 16 msec, horizontally, and frequency, 0
to 8 kHz, vertically. The density components form a distributed representation
of the frequency of the signal and the location of energy within the sample
window. Density components coding for multiple frequencies might capture
harmonic regularities in the speech signal (see the text for details).
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multiple frequencies or time intervals, and a few are tuned specifically to
subtle shifts in dominant frequency over the sample window.

5.2 Higher-Order Code. In order to better understand the type of struc-
ture captured by the model, it is informative to look at the higher-order
code—the coefficients of density components—and the statistical regular-
ities it represents. Individual density component coefficients indicate the
presence, in each data sample, of the type of structure represented in Figure
6. As a distributed code, their joint activity describes the data density whose
shape reflects underlying structure in the data.

Figure 6 shows that among other statistical regularities, the higher-order
code captures spatial relationships in the data. How does this representation
compare to the lower-level, linear code for image structure? The activity of
density component coefficients over contiguous regions of the data suggests
that the higher-order representation captures more abstract properties of
the data (see Figure 8). When a sliding window is applied to a natural
scene image, the resulting lower-level representation changes rapidly from
sample to sample, as would be expected from what are essentially outputs
of linear filters. The higher-order representation varies more slowly over the
image and captures more invariant properties of the data, such as overall
image contrast or the dominance of certain spatial frequencies. Also shown
in Figure 8 are the values of the linear and the density component coefficients
for a model trained on images of newspaper text. Here too the density
component coefficients describe more abstract properties: several combine
to form a distributed representation of text line position in the image patch
(the activity of one such coefficient is shown in the first panel of Figure 8f),
while others represent commonly observed structures in the data, such as
recurring shapes of letters or blank spaces between words.

Applied to audio data, the model also captures more abstract properties
of the stimulus. In Figure 9a, we plot an example audio signal, along with
the activities of three linear coefficients in Figure 9b and three density com-
ponent coefficients in Figure 9c. We emphasize that, as for the images, the
model is trained on segments drawn randomly from the data set, and the
values of the coefficients for each sample position in the signal shown in
the figure are determined independently. The higher-order representation
varies more slowly than responses of the linear filters and captures struc-
tural elements that extend well beyond the small sampling window. This
may reflect a general property of natural signals—fast fluctuations in their
exact values are caused by interactions of underlying physical properties,
which themselves change more slowly.

5.3 Modeling Residual Dependencies. The motivating examples (see
Figures 1 and 2) showed specific types of residual dependencies among the
“independent” linear coefficients, such as the dependence among the scale
of coefficients, which formed patterns that changed from context to context.
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Figure 8: The higher-order code captures more abstract properties of image
data and therefore forms a more invariant representation than the coefficients
of linear basis functions. We trained the model on natural images (a–c) and
scanned newspaper clippings (d–f) and analyzed the representation formed by
the model as it varied over the images. A sliding window (represented as white
squares in the images) was applied over contiguous sections of the training
data (a,d), and values of three linear coefficients ui (b,e) and three higher-order
coefficients vj (c,f) were plotted as they varied over the signal. White represents
large pos values, black large negative values, and gray zeros. Although the
model is trained on image patches selected randomly from the data set, the
higher-order code forms a representation that changes more slowly over space
and captures properties of the data that extend beyond the sampling window,
such as the overall contrast in natural images or the position of the text-line in
newspaper images.

The adapted hierarchical density component model is able to capture these
dependencies. First, drawing from the model generates data with similar
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a

b

c

Figure 9: The higher-order representation formed by the hierarchical model
trained on speech data is more invariant than simple outputs of linear filters. A
sliding window was applied to a speech signal (a; size of window indicated by a
short bar). At each point, the linear basis function coefficients u were computed
(b) and the higher-order coefficients v were inferred (c). Values of v change
slowly and represent more abstract properties, such as the presence of silence
or the onset of vocalization. Only three examples for u and v are shown.

statistical regularities. Furthermore, the higher-order representation in the
model defines an implicit normalization of the linear code, and the residual
dependencies are no longer observed in the normalized code.

Figure 10a shows the empirical joint distributions (top row) of two lin-
ear coefficients when sampled from the image regions R1 or R2 of Figure
1. In the two contexts, the shape of the distribution is different: the coeffi-
cients have high variance in one context but not in the other. The statistical
properties in the two contexts are captured by the inferred density compo-
nent coefficients. Fixing the density component coefficient to the empirical
distributions and sampling the linear coefficients reveals the same type of
statistical structure (middle row). At the same time, it is possible to use the
estimated parameters of the generating distribution to normalize the data.
Dividing the linear coefficients by the estimated scale parameters λ̂ results
in joint distributions that are symmetric with uniform variance across dif-
ferent contexts and image regions (bottom row).

Another way to observe dependence among coefficient magnitudes is
to draw a conditional histogram that plots distributions of one coefficient
conditional on different values of another (Simoncelli, 1997; Schwartz &
Simoncelli, 2001). While the joint histograms show that coefficient magni-
tudes are dependent on the sampling context, conditional histograms reveal
pair-wise dependencies between coefficients across all contexts. For natural
images, most linear coefficients show a positive magnitude dependence; the
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Figure 10: Dependence in the magnitudes of linear basis function coefficients
is captured by the density component model. (a) The joint distributions of lin-
ear coefficients are different in the two image regions from Figure 1, that is, the
data distribution is not stationary. Sampling from the model under the estimated
higher-order representation of each context results in similar distributions. Nor-
malizing the image data by the estimated scale parameters, ūi = ui/λi, eliminates
the non-stationarity. (b) Over the full data ensemble, empirical conditional his-
tograms for pairs of coefficients show statistical dependencies in the magnitude.
Sampling from the model adapted to this data ensemble produces similar de-
pendencies, and normalizing by the estimated scale parameters removes the
magnitude correlations. See the text for more details.

magnitude of one coefficient is positively correlated with the magnitude
of another, (e.g., the left pair in Figure 10b), but some exhibit the reverse
pattern. Sampling from the model produces data with the same statistical
dependencies (see Figure 10b, middle row), while normalized linear coeffi-
cients show no conditional magnitude dependence (see Figure 10b, bottom
row).

Joint and conditional histograms illustrate pair-wise structure in the lin-
ear coefficients; global patterns in coefficients, such as those observed in
Figures 1 and 2, are also captured by the model. In the top row of Figure 11,
we replot the statistics from Figure 2 that show variance patterns in different
regions of the speech signal. In the bottom row, we plot the same statistics
for the coefficients normalized by the estimated scale parameters; after nor-
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Figure 11: The model accounts for nonstationary statistics of coefficients. (Top
row) Log variance of u for the three regions in the speech signal from Figure 2b.
Each plot shows the log variance of 256 basis functions, sorted by dominant fre-
quency (replotted from Figure 2c). (Bottom row) Log variance of the normalized
basis function coefficients ūi = ui/λ̂i.

malization, the statistics are stationary, and the coefficients are identically
distributed. The same global normalization effect is observed for natural
images (plots not shown).

6 Discussion

Some previous work has focused on extending linear probabilistic models.
Mixtures of linear ICA models have been used to describe high-dimensional,
nongaussian data drawn from distinct classes (Lee, Lewicki, & Sejnowski,
2000; Lee & Lewicki, 2002). In this approach, the number of classes is spec-
ified in advance, and an optimal linear basis is learned for each class. This
nonlinear generative model describes different data distributions for differ-
ent classes, but its higher-order representation is fundamentally local and
does not scale well in domains where the variation in higher-order struc-
ture is continuous and high-dimensional. A key problem addressed by the
model presented here is the presence and interaction of multiple instrinsic
structures, and this is achieved by a continuous, distributed higher-order
code.

Other models have extended ICA to handle nonstationary data distri-
butions. Everson and Roberts (1999) proposed a model in which ICA ba-
sis functions evolve with time as a first-order Markov diffusion process.
Similarly, Pham and Cardoso (2001) developed and Choi, Cichocki, and Be-
louchrani (2002) extended algorithms for non-stationary models in which
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the variances of the sources modulate slowly in time. These are also re-
lated to models of time-varying mean and variance in economics (Bollerslev,
Engle, & Nelson, 1994), and typically model data whose statistics change
slowly over time or space. Alternatively, one can describe the variance
with a sparse but temporally coherent latent variable (Hyvärinen, Hurri,
& Väyrynen, 2003). However, in many cases, real-world data are subject
to both smooth and abrupt changes that do not follow diffusion dynam-
ics or smooth amplitude modulation. In contrast to these approaches, the
density component model makes no assumptions of temporal or spatial
smoothness. It infers an optimal generating distribution for each data sam-
ple based on only the values of that sample, though the inference process is
constrained by parameters adapted to the statistical regularities of the entire
data ensemble. Thus, it is able to capture both smooth and abrupt changes
in the underlying structure.

Another approach to capturing intrinsic structures in the data has been to
incorporate a specific nonlinearity, such as the sum of squares (Krüger, 1998;
Hoyer & Hyvärinen, 2002) or sigmoid functions (Lee, Koehler, & Orglmeis-
ter, 1997). The drawback to these models is that the type of structure learned
is limited by the specific choice of the nonlinearity. Most of these methods
also assume a fixed linear representation (e.g., a set of oriented, localized 2D
basis functions for image models), and those that adapt the linear represen-
tation assume a more constrained form of the nonlinear dependence (see
below). In the model presented here, the linear basis is adapted to the data
and maximizes the statistical independence of the linear representation.
This ensures that the statistical regularities captured by the higher-order
code represent fundamentally nonlinear dependencies rather than residual
dependence resulting from the choice of a suboptimal linear basis. Further-
more, in some applications, there is no clear choice of linear representation
(such as Gabor filters or wavelets in image processing); in such cases, it is
sensible to derive the linear code from the statistics of the data.

Several earlier models have explicitly represented the dependence among
coefficients of linear basis functions. In the subspace ICA model (Hyvärinen
& Hoyer, 2000), the linear basis functions are grouped into neighborhoods
and adapted to maximize the independence of the vector norms of the neigh-
borhoods. Basis functions within a neighborhood are no longer assumed to
be independent; in fact, the energies of their coefficients are correlated. In
the more generalized form of the model, called topographic ICA, the disjoint
sets of dependent basis functions are replaced by a topographic arrangement
that defines magnitude dependencies among basis functions (Hyvärinen,
Hoyer, & Inki, 2001). The generative forms of subspace ICA and topographic
ICA can be interpreted as more constrained versions of the density compo-
nent model presented here. Neighborhood or topographic dependencies
can be equivalently represented by density components whose weights are
specified in advance to reflect tree-dependent or topographic relationships.
The density component model, however, places no such constraints on the
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higher-order representation; thus, density components adapted to the data
can capture nontopographic dependencies as well.

A related set of work has attempted to model the dependence among
coefficients of a fixed linear transform, such as a multiscale wavelet de-
composition. Romberg, Choi, and Baraniuk (2001) used a set of discrete
latent variables, propagated along a multiscale wavelet tree, to describe
the distribution of each wavelet coefficient. The transition probabilities of
the latent states were adapted to match the scale dependencies between
adjacent nodes in the tree. Buccigrossi and Simoncelli (1999) computed a
linear predictor of scale for each coefficient as a function of the magnitudes
of its neighbors. Wainwright, Simoncelli, and Willsky (2001) extended this
approach by modeling the wavelet coefficients as observed variables in a
gaussian scale mixture, in which random gaussian variables are multiplied
by latent scaling variables. Dependence among coefficients adjacent on the
wavelet tree is captured through the structure of a gaussian process de-
fined on the scaling variables. In addition to its reliance on a fixed linear
representation (the drawbacks of this are outlined above), this model is lim-
ited in that it can only describe pairwise dependencies between variables
adjacent on the wavelet tree. Adapting a model to learn global statistical
regularities, as opposed to local representations of class structure or pair-
wise dependence, allows it to capture a wider range of intrinsic structures.
Also, learning an efficient basis to describe these dependencies facilitates
their interpretability and provides a better fit to the underlying structure.

7 Conclusion

We have introduced a hierarchical, generative Bayesian model that can be
considered a nonlinear extension to ICA. It uses parametric density estima-
tion to learn statistical regularities from the data and makes no assumptions
about the type of structure it expects to find. The model is general, it is not
specific to any domain and can be applied to any data set with rich statistical
structure. Because the model forms distributed representations at all levels
of its hierarchy, it scales well to large-dimensional data.

Adapted to patches from natural images or samples from speech data,
the density component model was able to learn nonlinear statistical regu-
larities. It yielded a distributed representation of context, which included
higher-order spatial relationships for image data and frequency and har-
monic structure for audio data. Sampling from the model produced data
with the same statistical regularities observed in the training data sets and
the model’s implicit normalization of the lower-order code accounted for
the residual dependencies observed in various data sets.

Recently, it has been argued that higher-order properties of natural sig-
nals change slowly across time or space and that this spatial and temporal co-
herence can be used to extract higher-order structure from the data (Foldiak,
1991; Kayser, Einhäuser, Dümmer, König, & Körding, 2001; Wiskott & Se-
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jnowski, 2002; Hurri & Hyvärinen, 2003). We show that in some cases, sim-
ply learning higher-order statistical regularities in the data leads the model
to recover more abstract properties that tend to vary slowly with time or
space. This raises the possibility that the explicit computational goal of ex-
tracting coherent (slowly changing) parameters is helpful, but not necessary
to learning intrinsic structures that underlie the variation in the data.

One result of learning global statistical regularities is that the learned
structure is not necessarily obvious; for example, density components
adapted to natural images describe a variety of statistical regularities, some
of which are not easily interpreted. This is true for many unsupervised
learning models that do not specify in advance the structure to be learned.
For example, ICA applied to natural images yields a matrix of basis func-
tions whose functional interpretation has ranged from edge detectors (Bell
& Sejnowski, 1997) to models of biological sensory systems (van Hateren &
van der Schaaf, 1998). The work presented here suggests that as more pow-
erful unsupervised learning models are developed, the analysis of learned
parameters and data representations will gain in importance.

The approach taken in this work is to attack a difficult problem—captur-
ing intrinsic regularities in complex high-dimensional data—incrementally.
Although the model is able to capture some nonlinear statistical regularities,
the structure it learns is still quite low level. This step-wise approach stands
in contrast to other computational schemes that solve specific problems,
such as perceptual invariance or scene segmentation. This may prove more
tractable and robust because it does not rely on preconceived notions of
intrinsic structures but learns them from the data. This approach might also
give more insight into the organization of biological perceptual systems,
where each processing unit performs a relatively simple computational task,
and many computational goals might be achieved incrementally and in
parallel.

Appendix

The value of v̂ for a given u was obtained by maximizing the log posterior
distribution

L = log p(v|u, B) ∝ log p(u|B, v)p(v). (A.1)

We use the Laplace distribution for the prior on v and a generalized gaussian
distribution with the scale parameters λ for the likelihood p(u|B, v), so that

L ∝ log
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∝
N∑

i=1

[
− log λi −

∣∣∣∣ui

λi

∣∣∣∣
qi
]

−
M∑

j=1

∣∣∣∣vj

c

∣∣∣∣
qj

, (A.4)

where z = q/(2λ�(1/q)) is the normalization term, λi = ce[Bv]i , and c =√
�(1/q)/�(3/q). For a given data sample, u is the N × 1 vector of linear

basis function coefficients and v the M × 1 vector of density component
coefficients. A is the N × N matrix of linear basis functions, and B is the
N×M matrix of density components. We use [Bv]i to denote the ith element
of the vector Bv, and Bi to denote the ith row of the matrix B.

The MAP estimate v̂ was obtained by gradient ascent,

∂L
∂vj

= ∂

∂vj
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=
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cqj
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The gradient ascent procedure was sensitive to initial conditions and
in some cases did not converge to a solution. We tried several alternatives,
including a closed-form approximation to the MAP estimate. Ultimately, the
most effective learning method was to adjust the step size ε by the stochastic
estimate of the Hessian over each batch of data (LeCun et al., 1998):

ηj = ε

〈 ∂2L
∂v2

j
〉 + µ

, (A.7)

where µ is a small constant that improves stability when the second deriva-
tive is very small. The second derivative for a data sample is given by

∂2L
∂v2
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= −
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i B2

ij
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ce[Bv]i
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cqj
. (A.8)

The density component matrix B was estimated by maximizing the pos-
terior over the data ensemble,

log p(B|x1, . . . , xN, A) ∝ log p(x1, . . . , xN|A, B)p(B) (A.9)

∝
∑

n
log p(xn|A, B)p(B) (A.10)

∝
∑

n
log p(un|B, v̂n)p(v̂n)p(B)/| det A|. (A.11)

Let L̂n = log p(un|B, v̂n)p(v̂n)p(B). We place a gaussian prior on B and im-
plement gradient ascent B = 1

N

∑
n ∂L̂n/∂Bij, where the posterior for each
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data sample xn is

∂L̂
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[
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]
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Kayser, C., Einhäuser, W., Dümmer, O., König, P., & Körding, K. (2001). Ex-
tracting slow subspaces from natural videos leads to complex cells. Artificial
Neural Networks, 2130, 1075–1080.
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